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Soft Channel Estimation and Localization for
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Abstract—In millimeter wave (mmWave) communications, user
position information can enable various position-based commu-
nication services, such as resource allocation, beam tracking and
alignment, interference control, and synchronization. Classical lo-
calization methods focus on hard localization information, but soft
localization provides the confidence levels in position estimates and
thus enables the information to be efficiently fused with different
measurements and application layers to realize integrated commu-
nication and localization. In this study, we propose a soft channel
estimation and localization algorithm for an mmWave systems
with multiple base stations. We present the Newtonized variational
inference spectral estimation algorithm to extract soft information
of position-related channel parameters. The soft localization al-
gorithm estimates user position by using soft channel parameters
from the expectation propagation simultaneous localization and
mapping algorithm framework. The proposed algorithms realize
channel estimation and localization in the communication pro-
cess and refine the channel estimation through the localization
information. Numerical results show that the proposed algorithms
approach the Cramér-Rao lower bound for channel estimation and
localization, and are thus verified to be effective.

Index Terms—Channel estimation, localization, mmWave
system, soft information.

I. INTRODUCTION

M ILLIMETER wave (mmWave) technology plays a key
role in fifth-generation mobile communication sys-

tems [1]. MmWave communication systems provide high data
rates by exploiting the large bands of available spectra at
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high frequencies [2]. MmWave technology is believed to have
considerable potential for future mobile systems that integrate
communication and localization [3], [4]. The wireless channels
at mmWave frequencies usually comprise relatively fewer paths
because of severe attenuation and reduced scattering. Communi-
cation between user and receivers relies heavily on line-of-sight
(LoS) transmission. Position-related channel parameters, such
as the angle-of-arrival (AoA) and delay of LoS paths, can be
used to estimate user position. Extracting these parameters not
only provides position information but also allows the estimation
of channel state information (CSI) because the equivalent chan-
nels needed for communication services, such as detection and
precoding, can be reconstructed using the channel structure. Ob-
taining accurate CSI and position information is crucial to enable
future integrated communication systems [5] and reconfigurable
intelligent surface-assisted systems [6], [7], [8], [9], [10], [11].

Channel estimation algorithms for mmWave systems have
been discussed in many studies. The two types of methods that
exploit structured channel models are grid-based and gridless
methods [12]. Grid-based methods use a set of grid points to
represent the possible values of channel parameters and search
for feasible solutions. However, grid-based methods induce esti-
mation bias, which decreases estimation performance. Gridless
methods generally have better performance than grid-based
methods because they treat channel parameters as continuous
variables. An example of such methods is the sparse Bayesian
learning for multipath channel estimation [13], [14]. Refer-
ence [15] investigated gridless channel estimation for mmWave
systems by using atomic norm. In [16], the authors proposed the
Newtonized orthogonal matching pursuit (NOMP) algorithm,
which can be used in multipath channel estimation. However,
these existing studies only provide hard estimates of channel
parameters. Soft parameter estimates that include an indication
of estimate quality are useful in a variety of communication
services, especially localization applications. An example is the
soft gridless algorithm in [17] that uses variational inference
to provide soft frequency estimates in the form of von Mises
distributions.

Localization methods can be classified into two main cate-
gories: direct and indirect localization [18], [19]. Direct local-
ization uses the received waveform to estimate the user position
directly [20], [21]. By contrast, indirect localization exploits es-
timated channel parameters for user positioning. Reference [22]
studied sensor network localization and proposed a closed-
form solution by using AoAs. In [23], the authors investigated
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localization with a single reference station by using a beam train-
ing approach. Localization for mmWave systems with weighted
least squares methods was proposed in [24], [25], [26]. These
existing studies only considered the localization problem and
assumed that channel parameter estimates are already known
at the receiver. Moreover, these studies only provided hard
estimate decisions, that is, a single user position estimate. How-
ever, hard estimate decisions cannot satisfy the demands for
extensive and flexible position-based services. In [27], [28], the
authors introduce the terminology of soft positioning, which
characterizes the spatial distribution of target position. Refer-
ences [29], [30] realizes the robust localization by exploiting
the soft information of radio channels. In [31], [32], [33], [34],
[35], the authors develop the BP-SLAM algorithm framework to
systematically solve the soft localization and mapping problems
by exploiting simultaneous localization and mapping (SLAM)
techniques in a fully Bayesian manner. In [36], we proposed
a general and fully Bayesian algorithm framework, that is, the
expectation propagation simultaneous localization and mapping
(EP-SLAM) algorithm framework, for soft localization with
Gaussian distributions.

As mentioned previously, signal processing algorithms for
joint channel estimation and localization are the foundation for
integrated communication and localization services in future
mmWave systems, and they are currently attracting extensive
research interest. In [37], the authors revealed several potential
uses of mmWave positioning in vehicular networks, such as
automated driving in various forms. Beamwidth optimization
and beam alignment for position-aware mmWave systems were
investigated in [38] and [39], respectively. In general, possessing
position information can significantly improve the performance
of various communication services. In many applications, the
confidence level in position estimate quality must also be de-
termined to provide important context for estimates because
localization algorithms provide different levels of performance
in different propagation environments. If the soft information of
position estimates is available, such as in the form of the spatial
distribution of network user, then an appropriate strategy for
subsequent decisions, such as vehicle speed control in automated
driving, can be selected.

In the current study, we develop a soft channel estimation and
localization algorithm for providing soft position information
in mmWave systems. This work is a comprehensive extension
of our conference version [40]. The main contributions of this
study are as follows:
� We propose the Newtonized variational inference spec-

tral estimation (NVISE) algorithm for a two-dimensional
structured channel parameterized by AoA and delay. Sim-
ilar to that proposed in [17], the NVISE algorithm solves
the variational inference problem, but is uses a differ-
ent approach. Specifically, NVISE uses a regular Newton
method, similar to that in [16], to solve the problem,
whereas the algorithm in reference [17] adopts an unnat-
ural and complicated iterative method. Hence, unlike the
algorithm in [17], the proposed NVISE algorithm can be
easily extended to deal with high-dimensional problems
for arbitrary beamforming designs, pilot signals, antenna

Fig. 1. Illustration of an mmWave system with three receivers.

array configurations, and hardware mechanisms, such as
the mixed analog-to-digital converter (ADC) architecture
in mmWave systems. More importantly, unlike that in [16]
and other algorithms, NVISE extracts soft estimates of
AoAs, delays, and complex channel gains that are charac-
terized by a multivariate Gaussian distribution. This feature
enables NVISE to achieve soft localization.

� The soft channel estimates provide confidence levels for
the estimated parameters in different propagation environ-
ments. Leveraging the soft estimates of AoAs and delays,
we propose soft localization algorithms for perfect and im-
perfect synchronization cases on the basis of the EP-SLAM
algorithm framework. The proposed algorithms transfer
the soft estimates of AoAs and delays to the soft user
position in the form of a 2D Gaussian distribution. They
also use the cost function to associate LoS paths and fuse
the data accordingly.

� The performances of the proposed algorithms are inves-
tigated via simulations. Results show that the proposed
algorithms approach the Cramér-Rao lower bound (CRLB)
for channel estimation and localization parameters. The
localization provides additional gains for channel esti-
mation in the proposed integrated system. Moreover, the
confidence levels for the soft user position information in
indoor and outdoor scenarios are illustrated.

Notations: Capital and lowercase boldface letters denote ma-
trices and vectors, respectively.A∗,AT , andAH denote the con-
jugate, transpose, and conjugate transpose of A, respectively;
tr(A) represents its trace. 1M ∈ RM×1 is the all-ones vec-
tor. E{·} denotes the expectation operator. DKL(q(x)‖p(x)) =∫
q(x)ln q(x)

p(x)dx is the Kullback-Leibler (K-L) divergence be-
tween pdf q(x) and p(x).

II. SYSTEM MODEL

In this study, we consider an mmWave system with a single
antenna user and several receivers. Each receiver is assumed to
employ a uniform linear array (ULA) with M antennas, with
an antenna spacing of λ/2, where λ is the carrier wavelength.
The considered mmWave system uses orthogonal frequency
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division multiplexing, with N subcarriers spaced by fD on the
frequency axis. Fig. 1 shows an example with a user and three
receivers located in different positions. The position of receiver 1
is expressed as x1

b = (x1
b, y

1
b)

T , and the corresponding rotation
of its ULA is given by ω1. During the uplink training stage,
the user transmits pilot signals, and the wireless signals arrive
at each receiver along an LoS and several non-line-of-sight
(NLoS) paths. Each path can be characterized by AoA and delay
propagation parameters. For example, θ01 and τ01 are the AoA and
delay of the LoS path of receiver 1, respectively.

In the frequency domain, the received signal at receiver i is
given by

Yi = Ri

(
Hi�

(
1M⊗xT

)
+Wi

)
, (1)

where Hi is defined as

Hi =

Ki∑
k=0

gki a
(
θki
)
bT

(
τki

)
. (2)

In (1), Ri ∈ C
Mr×M is the beamforming matrix with a radio

frequency chain number Mr, x ∈ C
N×1 is the pilot signal,

and Wi ∈ C
M×N is the complex Gaussian noise with variance

vw. In addition, � and ⊗ are the Hadamard and Kronecker
products, respectively. The channel matrix Hi ∈ C

M×N com-
prises an LoS path and Ki NLoS paths. The steering vectors
a(θ0i ) ∈ C

M×1 (for M antennas) and b(τ0i ) ∈ C
N×1 (for N

subcarriers) of the LoS path are expressed as

a
(
θ0i
)
=

(
1, ejπcos(θ

0
i ), · · ·, ejπ(M−1)cos(θ0

i )
)T

, (3)

b
(
τ0i
)
=

(
1, ej2πfDτ0

i , · · ·, ej2π(N−1)fDτ0
i

)T

, (4)

where θ0i ∈ (0, π) and τ0i ∈ (0, 1/fD) are the AoA and delay of
the LoS path, respectively; and g0i is the corresponding complex
channel coefficient. Similar definitions hold for a(θki ), b(τ

k
i ),

and gki of the NLoS path k (k > 0). If the LoS path to one of the
receivers is blocked by obstacles, then g0i � 0. For example, in
Fig. 1 we see that the LoS path of receiver 3 is nonexistent.

Given the propagation parameters of the LoS path, the user po-
sition can be obtained using a topology condition. For receiver i,
the user position xu = (xu, yu)

T is given by the following
topology condition:[

xu

yu

]
=

[
xi
b

yib

]
+ cτ0i

[
cos

(
θ0i + ωi

)
sin

(
θ0i + ωi

) ]
, (5)

where c is the speed of light. Therefore, the user position estimate
x̂u = (x̂u, ŷu)

T can be computed using (5) with known receiver
position xi

b = (xi
b, y

i
b)

T and ULA rotation ωi if the parameter
estimates θ̂0i and τ̂0i of the LoS path are extracted from (1).
A good user position estimate can be obtained by fusing the
results of multiple receivers, such as receivers 1 and 2 in Fig. 1,
according to the confidence levels of the results. In the pro-
posed mmWave system, channel estimation and localization are
achieved in the uplink training stage, where the channel estimate
Ĥi is reconstructed using the estimates ĝki , θ̂ki , and τ̂ki for each
receiver, and the user is localized using the estimates θ̂0i and τ̂0i
of the LoS paths.

Channel estimation and localization suffer from several prob-
lems. An appropriate channel estimation algorithm that can
provide parameter estimates and their corresponding confidence
levels is important for channel reconstruction and user localiza-
tion. A systematic localization algorithm is needed to find the
parameter estimates of the LoS paths among those of various
NLoS paths and infer the user position jointly by using these
parameter estimates. The localization algorithm must be capable
of handling complex propagation environments (some LoS paths
may be blocked) and the problems of missed detection and false
alarms that arise from imperfect channel estimation.

The previous discussion assumes perfect synchronization
among the user and receivers. However, a perfect synchro-
nization is difficult to achieve over the air. For the imperfect
synchronization case, the channel matrix of receiver i can be
written as

Hi =

Ki∑
k=0

gki a
(
θki
)
bT

(
τki + τu

)
, (6)

where τu is the clock bias. The receivers are synchronized
through the wired network and thus share a common clock bias
τu caused by the synchronization error. For the imperfect syn-
chronization case, the localization algorithm should be designed
to simultaneously estimate the clock bias τu and localize the user
position xu.

The next section focuses on channel estimation. A general
channel estimation algorithm, which is capable of providing
soft parameter estimates for arbitrary steering vector forms and
hardware platforms, is proposed on the basis of variational
inference.

III. SOFT CHANNEL ESTIMATION

In this section, we develop a general channel estimation algo-
rithm on basis of variational inference. The proposed NVISE
algorithm can estimate the AoAs and delays in the families
of multivariate Gaussian distributions, thus providing soft es-
timates of these parameters.

A. Spectral Estimation Problem Formulation

NVISE is a general algorithm that can extract parameters
by handling the measurement (received signal Yi) with an
arbitrary posterior pdf. Therefore, for convenience, we consider
the following simplified form of measurement:

Y = H+W =

K∑
k=1

hke
jφka(θk)b

T (ηk) +W. (7)

In (7), W ∈ C
M×N is complex Gaussian noise with variance

vw. The steering vectors a(θk) ∈ C
M×1 and b(ηk) ∈ C

N×1 are
defined as follows

a(θk) =
(
1, ejπcos(θk), · · ·, ejπ(M−1)cos(θk)

)T

, (8)

b(ηk) =
(
1, ejηk , · · ·, ej(N−1)ηk

)T

. (9)
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The channel H ∈ C
M×N comprises K components (paths),

each of which is determined by (θk, ηk, hk, φk). For compo-
nent k, θk ∈ (0, π) represents the AoA, and ηk = 2πfDτk ∈
(0, 2π) denotes the frequency associated with delay τk. In addi-
tion, hke

jφk is the complex channel coefficient, where hk ∈ R
and φk ∈ (0, 2π) are real numbers. The model order K and
(θk, ηk, hk, φk) of each component are unknown parameters that
must be obtained from measurement Y.

According to (7), one can use a factorized surrogate pdf
such as q(θ,η,h,φ) = q(h,φ)

∏K
k=1 q(θk, ηk) to character-

ize (θk, ηk, hk, φk) through the mean-field approximation and
the variational inference [17], [41], [42], [43]. However, we
consider a different approach, where the joint surrogate pdf
q(θk, ηk, hk, φk) is used to characterize each component. In par-
ticular, q(θk, ηk, hk, φk) is restricted to the Gaussian distribution
family, where the gradient descent method is used to refine the
parameters of Gaussian pdf by maximizing the evidence lower
bound (ELBO). In addition, the cyclic refinements are employed
to incorporate the newly detected component by reevaluating the
previously detected components.

First we focus on the single component case where K = 1.
The subscript k is omitted hereafter. A probabilistic model is
used to characterize the problem through the posterior pdf:

p(θ, η, h, φ|Y) =
p(Y, θ, η, h, φ)

p(Y)
, (10)

where

p(Y, θ, η, h, φ) = p(θ)p(η)p(h)p(φ)

×
M∏

m=1

N∏
n=1

fCN

(
ymn;he

jφej(m−1)πcos(θ)ej(n−1)η, vw

)
,

(11)

and p(Y) is the marginal of the joint pdf (11) that acts as
a normalizing constant. In (11), ymn is the element in the
m-th row and n-th column of Y ∈ C

M×N , and fCN(x;m, v)
represents the complex Gaussian distribution with mean m and
variance v. If the prior information is unavailable, the uniform
distributions are used to characterize the prior distributions p(θ),
p(η), and p(φ). For example, we have p(θ) = 1/π, θ ∈ (0, π).
Assuming that p(h) also follows a “uniform prior distribution,”
then p(θ, η, h, φ|Y) is given by

p(θ, η, h, φ|Y)

∝
M∏

m=1

N∏
n=1

fCN

(
ymn;he

jφej(m−1)πcos(θ)ej(n−1)η, vw

)
.

(12)

In fact, for the received signal (1) with deterministic beamform-
ing matrixRi and pilot signalx, we can obtain the corresponding
posterior pdf p(θ, η, h, φ|Yi,Ri,x) and solve it analogously by
using the NVISE algorithm.

Equation (12) implies that the prior distribution (of θ, η, h,
and φ) is not involved in the posterior pdf. References [41],
[42], [43], [44], [45], [46], [47], [48], [49] uses the Bayesian
hierarchical prior distribution to introduce sparsity. As shown in

Section III-C, the proposed algorithm introduces sparsity by
sequentially extracting a few paths.

B. Variational Inference

According to the variational inference [50], for any surrogate
pdf q(θ, η, h, φ), the log model evidence can be obtained as:

ln(p(Y)) = L(q(θ, η, h, φ))
+DKL(q(θ, η, h, φ)‖ p(θ, η, h, φ|Y)), (13)

where

L(q(θ, η, h, φ)) = Eq(θ,η,h,φ)

{
ln
p(θ, η, h, φ|Y)

q(θ, η, h, φ)

}
. (14)

Because the log model evidence is a constant, minimizing the
K-L divergence between the posterior pdf (12) and the sur-
rogate pdf q(θ, η, h, φ) is equivalent to maximizing ELBO
L(q(θ, η, h, φ)) and tightening it as a lower bound to the log
model evidence [17].

However, the posterior pdf (12) is intractable in general.
Alternatively, we restrict the surrogate pdf to a certain family
of pdf, and then use the tractable surrogate pdf to approximate
the posterior pdf by maximizing ELBO. In this work, we use the
multivariate (real) Gaussian distribution as the surrogate pdf:

q(θ, η, h, φ) = fN

(
s; ŝ, V̂

)
, (15)

where s = (θ, η, h, φ)T , ŝ = (θ̂, η̂, ĥ, φ̂)T , and V̂ is given by

V̂ =

⎡
⎢⎢⎣

v̂θθ v̂θη v̂θh v̂θφ
v̂θη v̂ηη v̂ηh v̂ηφ
v̂θh v̂ηh v̂hh v̂hφ
v̂θφ v̂ηφ v̂hφ v̂φφ

⎤
⎥⎥⎦ . (16)

In (15), fN(s; ŝ, V̂) denotes the multivariate (real) Gaussian dis-
tribution, where ŝ is the parameter estimate, and V̂ is interpreted
as the confidence level of the parameter estimates. Then we have

L(q(θ, η, h, φ)) = Eq(θ,η,h,φ){ln(p(θ, η, h, φ|Y))}. (17)

The NVISE algorithm uses the Newton gradient descent method
to maximize L(q(θ, η, h, φ)) by updating ŝ and V̂. According
to (12) and (17), L(q(θ, η, h, φ)) is given by

L(q(θ, η, h, φ)) � Eq(θ,η,h,φ){f(θ, η, h, φ)}, (18)

where

f(θ, η, h, φ) =

M∑
m=1

N∑
n=1

[
2|ymn|h

vw
cos(ψ)− h2

vw

]
, (19)

in which

ψ = (m− 1)πcos(θ) + (n− 1)η + φ− ∠ymn. (20)

As a result of the characteristics of the spectral estimation prob-
lem, q(θ, η, h, φ) = fN(s; ŝ, V̂)generally results in a covariance
matrix V̂ with small variances. Therefore, f(θ, η, h, φ) can be
approximated as a linear function using first and second order
derivatives.
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For f(θ, η, h, φ), the first-order derivatives at s = ŝ can be
obtained as

dθ =
M∑

m=1

N∑
n=1

2|ymn|h
vw

(m− 1)sin(ψ)πsin(θ), (21a)

dη =

M∑
m=1

N∑
n=1

−2|ymn|h
vw

(n− 1)sin(ψ), (21b)

dh =

M∑
m=1

N∑
n=1

2|ymn|
vw

cos(ψ)− 2 hMN

vw
, (21c)

dφ =

M∑
m=1

N∑
n=1

−2|ymn|h
vw

sin(ψ). (21d)

In addition, the second-order derivatives at s = ŝ are given by

aθθ =

M∑
m=1

N∑
n=1

2|ymn|h
vw

[(m− 1)sin(ψ)πcos(θ)

− (m− 1)2cos(ψ)π2sin2(θ)
]
, (22a)

aθη =
M∑

m=1

N∑
n=1

2|ymn|h
vw

(m− 1)(n− 1)cos(ψ)πsin(θ),

(22b)

aθh =

M∑
m=1

N∑
n=1

2|ymn|
vw

(m− 1)sin(ψ)πsin(θ), (22c)

aθφ =

M∑
m=1

N∑
n=1

2|ymn|h
vw

(m− 1)cos(ψ)πsin(θ), (22d)

aηη =

M∑
m=1

N∑
n=1

−2|ymn|h
vw

(n− 1)2cos(ψ), (22e)

aηh =

M∑
m=1

N∑
n=1

−2|ymn|
vw

(n− 1)sin(ψ), (22f)

aηφ =
M∑

m=1

N∑
n=1

−2|ymn|h
vw

(n− 1)cos(ψ), (22g)

ahh = −2 MN

vw
, (22h)

ahφ =

M∑
m=1

N∑
n=1

−2|ymn|
vw

sin(ψ), (22i)

aφφ =

M∑
m=1

N∑
n=1

−2|ymn|h
vw

cos(ψ). (22j)

According to (18), (19), (21), and (21), L(q(θ, η, h, φ)) can be
approximated as

L(q(θ, η, h, φ)) � f(θ̂, η̂, ĥ, φ̂)+
âθθv̂θθ

2
+

âηη v̂ηη
2

+
âhhv̂hh

2

+
âφφv̂φφ

2
+ âθη v̂θη + âθhv̂θh + âθφv̂θφ

+ âηhv̂ηh + âηφv̂ηφ + âhφv̂hφ. (23)

In (23), âθθ is given by

âθθ = aθθ|θ=θ̂,η=η̂,h=ĥ,φ=φ̂ , (24)

where aθθ is defined in (22a). The other parameters in (23), such
as âθφ, follow similar definitions.

According to (23), the maximization of L(q(θ, η, h, φ)) can
be achieved by iteratively updating ŝ and V̂ through the New-
ton gradient descent method. However, updating ŝ and V̂
simultaneously requires high computational complexity. A sub-
space update approach, where ŝ and V̂ are updated sequen-
tially, is considered instead. For example, according to (23),
L(q(θ, η, h, φ)) = f(θ̂, η̂, ĥ, φ̂) when V̂ = 0. The local max-
imum of L(q(θ, η, h, φ)) around s = ŝ can be obtained by
updating ŝ through the Newton gradient descent update

ŝ ← ŝ− Â−1d̂, (25)

where

Â =

⎡
⎢⎢⎣

âθθ âθη âθh âθφ
âθη âηη âηh âηφ
âθh âηh âhh âhφ
âθφ âηφ âhφ âφφ

⎤
⎥⎥⎦ , (26)

d̂ =
(
d̂θ, d̂η, d̂h, d̂φ

)T

. (27)

In (27), d̂θ is given by

d̂θ = dθ|θ=θ̂,η=η̂,h=ĥ,φ=φ̂ , (28)

where dθ is defined as (21a). In addition, d̂η , d̂h, and d̂φ follow
similar definitions. As the multivariate Gaussian distribution
(15) is used to approximate the posterior pdf (12), after the
update of ŝ in (25), V̂ can be updated using the following local
second-order gradient:

V̂ ← −Â−1. (29)

In (29), Â is recomputed using the updated ŝ that was obtained
from (25). Given arbitrary and fixed V̂, the Newton gradient
decent updates can be obtained similarly using (23) rather
than L(q(θ, η, h, φ)) = f(θ̂, η̂, ĥ, φ̂). Given space limitations,
the computational details are omitted herein.

C. NVISE Algorithm

In the previous analysis, variational inference with Newton
gradient descent updates is derived for the single component
case with K = 1. The Newton gradient descent update requires
the initialization of ŝ and V̂. We propose to use the orthogonal
matching pursuit (OMP) algorithm to initialize ŝ. The OMP
algorithm extracts the component from the measurement by
maximizing the following function:

(θ̂, η̂) = argmax
(θ,η)∈Ω

∣∣aH(θ)Yb∗(η)
∣∣2 (30)

on the set of grid points of

Ω =

{(
2πk1
MγM

,
2πk2
NγN

)
,
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k1 = 0, 1, · · ·,MγM − 1, k2 = 0, 1, · · ·, NγN − 1} , (31)

where the integers γM > 1 and γN > 1 are oversampling rates.
The corresponding least squares estimate of the channel coeffi-
cient is given by

ĥejφ̂ =
1

NM
aH(θ̂)Yb∗(η̂). (32)

Our proposed NVISE approach is summarized in Algorithm 1.
NVISE sequentially extracts the components from the measure-
ment. Before the extraction of a new component, the extracted
components are refined through several rounds of single and
cyclic Newton refinements (gradient descent updates).

Assume that l − 1 components characterized by ŝk and V̂k

with k = 1, 2, · · ·, l − 1 have been extracted. The residual mea-
surement is given by

Yr = Y −
l−1∑
k=1

ĥke
jφ̂ka(θ̂k)b

T (η̂k). (33)

In Algorithm 1, a new component characterized by ŝl =
(θ̂l, η̂l, ĥl, φ̂l)

T is initialized in line 2 by using Yr rather than
Y. In addition, V̂l = 0 is initialized.

Then, Rs rounds of Newton gradient descent updates are
performed for component l with ŝl and V̂l in line 3. Given fixed
(ŝk, V̂k), k = 1, 2, · · ·, l − 1, the posterior pdf is

p(θl, ηl, hl, φl|Y)

�
M∏

m=1

N∏
n=1

fCN

(
ymn;ψ + hle

jφlej(m−1)πcos(θl)ej(n−1)ηl , vw

)

=
M∏

m=1

N∏
n=1

fCN

(
ymn−ψ;hle

jφlej(m−1)πcos(θl)ej(n−1)ηl , vw

)
,

(34)

where

ψ =
l−1∑
k=1

ĥke
jφ̂kej(m−1)πcos(θ̂k)ej(n−1)η̂k . (35)

Therefore, the Newton gradient descent update with posterior
pdf (34) can be performed similar to the approach discussed in
Section III-B. Note that the components 1, 2, · · ·, l − 1 are fixed
when updating ŝl and V̂l for component l.

Next, Rc rounds of cyclic Newton gradient descent updates
are performed for components 1, 2, · · ·, l in line 4 to minimize
the K-L divergence for l components rather than for a single
component with K = 1. In each round, the Newton gradient
descent updates are performed for component 1 → 2 → · · · → l
sequentially. For component i, the posterior pdf is given by

p(θi, ηi, hi, φi|Y)

�
M∏

m=1

N∏
n=1

fCN

(
ymn−ψ;hie

jφiej(m−1)πcos(θi)ej(n−1)ηi , vw

)
,

(36)

Algorithm 1: NVISE Algorithm.
Input: Measurement Y, Newton refinement steps Rs and
Rc.

Initialization: l = 0.
while l < L

1: l ← l + 1,
2: Perform grid detection to initialize ŝl and V̂l,
3: Perform Rs rounds of single Newton refinements on

ŝl and V̂l,
4: Update: Rc rounds of cyclic Newton refinements on

(ŝ1, V̂1) → (ŝ2, V̂2) → · · · → (ŝl, V̂l).
end
Output: (ŝk, V̂k), k = 1, 2, · · ·, L.

where

ψ =

l∑
k=1,k �=i

ĥke
jφ̂kej(m−1)πcos(θ̂k)ej(n−1)η̂k . (37)

The Newton gradient descent update for component i can be
obtained analogously. Unlike the single Newton refinement, the
cyclic Newton refinement completes the minimization of the
K-L divergence for all l components.

The NVISE algorithm repeats the above procedures until L
components are extracted from the measurement. The channel
matrix is then reconstructed as follows:

Ĥ =

L∑
k=1

ĥke
jφ̂ka(θ̂k)b

T (η̂k). (38)

In addition, the covariance matrix V̂k indicates the confidence
level of (φk, ηk), k = 1, 2, · · ·, L, which enables the soft lo-
calization algorithm. Furthermore, the following constant false
alarm rate based termination criterion can be used similar to
that in [16]: NVISE will stop if the power of the residual
measurement (33) is lower than a threshold. NVISE may miss
some components when L < K, but it may extract spurious
components whenL > K. The missed detection and false alarm
problems will be addressed in the soft localization. In addition,
there are other promising approaches, such as the soft thresholds
provided by the sparsity enforcing hierarchical models [17],
[41], [42], [43], [51], [52], [53].

A simplified version of NVISE can be obtained by assuming
the steering vectors are approximately orthogonal. In the simpli-
fied version, the Newton gradient descent update is performed
for (θ, η) with a fixed complex channel coefficient ĝ = ĥejφ̂

rather than (θ, η, h, φ). The details of the Newton gradient
descent update for the simplified algorithm can be obtained in
the same way as detailed above. In addition, after any Newton
gradient descent update in lines 3 and 4, the complex channel
coefficient is updated using the least squares estimation:

ĝi = aH(θ̂i)
Y −∑l

k=1,k �=i ĝka(θ̂k)b
T (η̂k)

NM
b∗(η̂i). (39)

Remark 1: Similar to the NOMP algorithm, the NVISE algo-
rithm uses the Newton method to solve the spectral estimation
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problem [16]. However, NVISE considers the general K-L diver-
gence minimization cost function in the Bayesian perspective.
Meanwhile, the NOMP algorithm can be viewed as a special case
of NVISE with linear observation with complex Gaussian noise
and V̂ = 0. Therefore, NOMP cannot handle nonlinear obser-
vations with an arbitrary form of noise and is unable to provide
soft information (confidence level) of the parameter estimate ŝ.
In soft localization algorithms, soft information is indispensable.

D. Generation

NVISE is a general algorithm that is capable of handling
arbitrary posterior pdfs for the spectral estimation problems.
Hence, NVISE can be applied to different cases for the consid-
ered system, such as antenna arrays without a uniform configu-
ration and users with multiple antennas. In addition, because of
the prohibitive cost and power consumption of high-resolution
ADCs, practical mmWave system systems often adopt mixed
ADC architectures [2]. For example, the quantized signal at the
m-th antenna and n-th subcarrier is given by

zmn = Q
(

K∑
k=1

hke
jφkej(m−1)πcos(θk)ej2π(n−1)fDτk+wmn

)
,

(40)
where wmn is complex Gaussian noise and Q(·) is the
quantization function [54]. Similarly, NVISE can handle
posterior pdfs that characterize quantized signals (40) using
similar techniques. However, the above extensions are beyond
the scope of this study.

IV. SOFT LOCALIZATION

In this section, we propose a soft localization algorithm for
the considered mmWave system on the basis of the EP-SLAM
algorithm framework [36]. The EP-SLAM algorithm framework
provides a systematic and fully Bayesian solution for localiza-
tion and mapping problems. In Section IV-A, a soft user position
estimate is derived using the soft parameter estimates obtained
from the NVISE algorithm. Soft localization algorithms for
perfect and imperfect synchronization cases are proposed in
Sections IV-B and IV-C, respectively.

A. Soft User Position

Given the propagation parameter estimates θ̂ and η̂ and
the confidence levels v̂θθ, v̂θη, and v̂ηη , user position can be
computed using topology condition (5). According to (5) and
η = 2πfDτ , given θ = θ̂ and η = η̂, user position estimate x̂u

can be obtained as[
x̂u

ŷu

]
=

[
xi
b

yib

]
+

cη̂

2πfD

[
cos(θ̂ + ωi)

sin(θ̂ + ωi)

]
. (41)

The confidence level of x̂u needs to be determined to find the
LoS paths and fuse the user position estimates of all receivers.
In the following analysis, the confidence level of x̂u is measured
through first-order approximations.

Differentiation with respect to θ and η on the two sides of (5)
at (θ̂, η̂) yields the first-order approximations

Δxu
= − cη̂

2πfD
sin(θ̂ + ωi)Δθ +

c

2πfD
cos(θ̂ + ωi)Δη,

(42a)

Δyu
=

cη̂

2πfD
cos(θ̂ + ωi)Δθ +

c

2πfD
sin(θ̂ + ωi)Δη. (42b)

According to the NVISE algorithm,Δθ andΔη follow multivari-
ate Gaussian distribution with the following covariance matrix:

V̂ =

[
v̂θθ v̂θη
v̂θη v̂ηη

]
. (43)

On the basis of (42a) and (43), the variance of Δxu
can be

obtained as

v̂xuxu
=

c2η̂2

4π2f2
D

sin2(θ̂ + ωi)v̂θθ +
c2

4π2f2
D

cos2(θ̂ + ωi)v̂ηη

− c2η̂

2π2f2
D

sin(θ̂ + ωi)cos(θ̂ + ωi)v̂θη. (44)

Similarly, the variance of Δyu
is given by

v̂yuyu
=

c2η̂2

4π2f2
D

cos2(θ̂ + ωi)v̂θθ +
c2

4π2f2
D

sin2(θ̂ + ωi)v̂ηη

+
c2η̂

2π2f2
D

sin(θ̂ + ωi)cos(θ̂ + ωi)v̂θη. (45)

In addition, the covariance between Δxu
and Δyu

follows

v̂xuyu
=

c2

4π2f2
D

sin(θ̂ + ωi)cos(θ̂ + ωi)
(−η̂2v̂θθ + v̂ηη

)

+
c2η̂

4π2f2
D

(
−sin2(θ̂ + ωi) + cos2(θ̂ + ωi)

)
v̂θη.

(46)

Therefore, the covariance matrix that characterizes the confi-
dence level of x̂u can be expressed as

V̂u =

[
v̂xuxu

v̂xuyu

v̂xuyu
v̂yuyu

]
. (47)

According to the analysis, user position estimates can be
characterized by a 2D Gaussian distribution fN(x̂u, V̂u), where
x̂u and V̂u are defined as (41) and (47), respectively. Note that
the above computation rules only apply to the LoS path.

B. Perfect Synchronization Case

In this part, we propose a soft localization algorithm based
on the EP-SLAM algorithm framework. Two problems emerge
in user localization: 1) data association to find the LoS path
among the NLoS paths for each receiver and 2) data fusion to
fuse the user position estimates provided by the LoS paths of all
receivers.

Data fusion problem can be solved by exploiting the Gaussian
reproduction formula [50]

fN

(
x̂a, V̂a

)
fN

(
x̂b, V̂b

)
= CfN

(
x̂c, V̂c

)
, (48)
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where C is a constant and

x̂c = V̂c

(
V̂−1

a x̂a + V̂−1
b x̂b

)
, (49a)

V̂c =
(
V̂−1

a + V̂−1
b

)−1

. (49b)

In soft localization, mapping, and tracking, the probabilistic
association methods are usually used to solve data association
problems [29], [30], [55], [56]. Unlike the probabilistic associ-
ation methods, the proposed soft localization algorithm uses a
consistency metric to find the LoS paths. For data association,
the following cost function is used to find the LoS paths [36]:

ρ =

{
1, (x̂a − x̂b)

T
(
V̂a + V̂b

)−1

(x̂a − x̂b) < ζ2,

0, otherwise,
(50)

where ρ is the data fusion indicator and ζ is a tunable parameter.
If ρ = 1, the data fusion of fN(x̂a, V̂a) and fN(x̂b, V̂b) is
performed using (49). For fN(x̂u, V̂u), according to the pdf
of Gaussian distribution, the elliptical region

(x− x̂u)V̂
−1
u (x− x̂u) = ζ2 (51)

corresponds to the probability erf(ζ/
√
2), where x = (x, y)T

and erf(·) is the Gaussian error function. The elliptical re-
gion contains 99.73% probability when ζ = 3. (50) implies
that fN(x̂a, V̂a) and fN(x̂b, V̂b) are fused when the distance
between the centers of two ellipses are smaller than a threshold
characterized by ζ.

Assume that the soft parameter estimates of receiver i are
obtained as ŝik and V̂i

k with k = 1, 2, · · ·, Li, where ŝik and V̂i
k

are defined as

ŝik =
(
θ̂ik, η̂

i
k

)T

, (52)

V̂i
k =

[
v̂iθθ,k v̂iθη,k
v̂iθη,k v̂iηη,k

]
. (53)

In addition, there are R receivers. In the following analysis,
standard and light versions of the soft localization algorithm are
proposed for the perfect synchronization case on the basis of the
EP-SLAM algorithm framework.

1) Standard Version: The procedures of the standard version
are summarized as follows.

Initialization: Parameter ζ of cost function.
Input: ŝik and V̂i

k with k = 1, 2, · · ·, Li and i = 1, 2, · · ·, R.
Step 1) User position inference: Given ŝik and V̂i

k, the soft
user position fN(x̂

i
u,k, V̂

i
u,k) can be inferred at receiver i with

xi
b andωi by using the results of Section IV-A. Receiver i obtains

Li soft user positions.
Step 2) User position association and fusion:

a) A receiver combination with R soft user positions can be
obtained by selecting a soft user position from each re-
ceiver. Overall, there are

∏R
i=1 Li receiver combinations.

b) For any receiver combination, there are C1
R + C2

R +
· · ·+ CR

R = 2R − 1 combinations for R soft user posi-
tions. At least one of the (2R − 1)

∏R
i=1 Li combinations

contains all the soft user positions generated by the LoS
path.

c) For any combination with more than one soft user
position, the data association and fusion are se-
quentially performed. For example, suppose a com-
bination contains the fN(x̂u,1, V̂u,1), fN(x̂u,2, V̂u,2),
and fN(x̂u,3, V̂u,3). First, if the cost function of
fN(x̂u,1, V̂u,1) and fN(x̂u,2, V̂u,2) implies ρ = 1,
then fN(x̂u,12, V̂u,12) can be obtained by fusing
fN(x̂u,1, V̂u,1) and fN(x̂u,2, V̂u,2). Second, if the cost
function of fN(x̂u,12, V̂u,12) and fN(x̂u,3, V̂u,3) implies
ρ = 1, then fN(x̂u,∗, V̂u,∗) can be obtained using (49)
analogously. If all the soft user positions of a combi-
nation can be fused together, then the final fusion re-
sult fN(x̂u,∗, V̂u,∗) is saved; otherwise, this combination
is discarded. For combinations with only a single soft
user position fN(x̂u, V̂u), we have fN(x̂u,∗, V̂u,∗) ←
fN(x̂u, V̂u).

d) For (2R − 1)
∏R

i=1 Li combinations, the soft user posi-
tion fN(x̂u,∗, V̂u,∗)with the least cost tr(V̂u,∗) is labeled
as the user position estimate.

Output: User position estimate x̂u = x̂u,∗.
Remark 2: The cost function measures the consistency of

two soft user positions. If the distance between two soft user
positions is lower than a threshold, then these two soft user
positions are identified as two observations of a single source.
The user position is the source that generates many LoS paths.
The EP-SLAM algorithm framework solves the data association
and fusion problems and obtains the user position estimate by
finding the combination with the least cost (highest consistency)
tr(V̂u,∗).

2) Light Version: Because all the combinations are com-
puted in the standard version, the computational complexity
is extremely high when R and Li, i = 1, 2, · · ·, R are large. In
the light version, only a single combination is considered. The
procedures of the light version are summarized as follows:

Initialization: Parameter ζ of cost function.
Input: ŝik and V̂i

k with k = 1, 2, · · ·, Li and i = 1, 2, · · ·, R.
Step 1) User position inference: Given ŝik and V̂i

k, the soft
user position fN(x̂

i
u,k, V̂

i
u,k) can be inferred at receiver i with

xi
b andωi by using the results of Section IV-A. Receiver i obtains

Li soft user positions.
Step 2) User position association and fusion:

a) According to the analysis of [36], the soft user posi-
tion generated by the LoS path generally has the least
cost. Therefore, for receiver i, the soft user position
estimate with the least cost tr(V̂u) is selected from
Li soft user position estimates. The R soft user posi-
tion estimates from the R receivers are reindexed as
fN(x̂u,i, V̂u,i), i = 1, 2, · · ·, R in descending order of
cost: tr(V̂u,1) < tr(V̂u,2) < · · · < tr(V̂u,R).

b) The data association and fusion are sequentially per-
formed for fN(x̂u,i, V̂u,i), i = 1, 2, · · ·, R. For exam-
ple, suppose the combination contains fN(x̂u,1, V̂u,1),
fN(x̂u,2, V̂u,2), and fN(x̂u,3, V̂u,3). If the cost function
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Fig. 2. Illustrations of soft user positions without and with clock bias.

of fN(x̂u,1, V̂u,1) and fN(x̂u,2, V̂u,2) implies ρ = 0,
then fN(x̂u,2, V̂u,2) is discarded. If the cost function
of fN(x̂u,1, V̂u,1) and fN(x̂u,3, V̂u,3) implies ρ = 1,
then fN(x̂u,∗, V̂u,∗) can be obtained using (49). If the
cost function of fN(x̂u,1, V̂u,1) and any other soft user
positions implies ρ = 0, then we have fN(x̂u,∗, V̂u,∗) ←
fN(x̂u,1, V̂u,1).

Output: User position estimate x̂u = x̂u,∗.

C. Imperfect Synchronization Case

For the imperfect synchronization case, the clock bias τu
and user position xu need to be simultaneously estimated. As-
sume that we have two soft user positions fN(x̂u,1, V̂u,1) and
fN(x̂u,2, V̂u,2) characterized by soft parameters ŝ1 = (θ̂1, η̂1)

T

and V̂1 and ŝ2 = (θ̂2, η̂2)
T and V̂2 from two receivers with

(x1
b, ω1) and (x2

b, ω2), respectively. Fig. 2 shows examples of
soft user positions fN(x̂u,1, V̂u,1) and fN(x̂u,2, V̂u,2) with and
without clock bias τu. The soft user positions resemble ellipses.
As shown in Fig. 2, without the clock bias τu, fN(x̂u,1, V̂u,1)

and fN(x̂u,2, V̂u,2) overlap and satisfy the cost function (50).
With the clock bias τu, fN(x̂u,1, V̂u,1) and fN(x̂u,2, V̂u,2)move
away from each other, and they no longer satisfy the cost function
(50) when τu is large enough.

At this point, we show how to estimate the clock bias τu
for fN(x̂u,1, V̂u,1) and fN(x̂u,2, V̂u,2). According to (41), the
distance between x̂u,1 and x̂u,2 can be written as

d2 =
(
x1
b − x2

b + μp1(η̂1 − ηu)− μp2(η̂2 − ηu)
)2

+
(
y1b − y2b + μq1(η̂1 − ηu)− μq2(η̂2 − ηu)

)2
, (54)

where

μp1 =
c

2πfD
cos(θ̂1 + ω1), (55a)

μp2 =
c

2πfD
cos(θ̂2 + ω2), (55b)

μq1 =
c

2πfD
sin(θ̂1 + ω1), (55c)

μq2 =
c

2πfD
sin(θ̂2 + ω2). (55d)

Fig. 3. Illustration of integrated communication and localization system.

For the perfect synchronization case, ηu = 0. Using some alge-
braic operations, the global minimum of d2 is achieved at

η̂u =
c1(μp1 − μp2) + c2(μq1 − μq2)

(μp1 − μp2)2 + (μq1 − μq2)2
, (56)

where

c1 = x1
b − x2

b + μp1η̂1 − μp2η̂2, (57a)

c2 = y1b − y2b + μq1η̂1 − μq2η̂2. (57b)

We then have the updates η̂1 ← η̂1 − η̂u and η̂2 ← η̂2 − η̂u. If
the updated η̂1 and η̂2 satisfy 0 < η̂1 < 2π and 0 < η̂2 < 2π,
then fN(x̂u,1, V̂u,1) and fN(x̂u,2, V̂u,2) can be recomputed
using (ŝ1, V̂1) and (ŝ2, V̂2), respectively, according to the ap-
proach proposed in Section IV-A. If the updated fN(x̂u,1, V̂u,1)

and fN(x̂u,2, V̂u,2) satisfy the cost function (50), then τ̂u =
η̂u/(2πfD) is a possible clock bias estimate.

According to the analysis, the light version of the soft local-
ization algorithm is proposed as follows:

Initialization: Parameter ζ of cost function.
Input: ŝik and V̂i

k with k = 1, 2, · · ·, Li and i = 1, 2, · · ·, R.
Step 1) User position inference: Given ŝik and V̂i

k, the soft
user position fN(x̂

i
u,k, V̂

i
u,k) can be inferred at receiver i with

xi
b andωi by using the results of Section IV-A. Receiver i obtains

Li soft user positions.
Step 2) User position association and fusion:

a) For receiver i, the soft user position estimate with the
least cost tr(V̂u) is selected from Li soft user position
estimates. The R soft user position estimates from R
receivers are reindexed as fN(x̂u,i, V̂u,i), i = 1, 2, · · ·, R
in descending order of cost: tr(V̂u,1) < tr(V̂u,2) <

· · · < tr(V̂u,R).
b) For any two soft user positions, the clock bias τ̂u =

η̂u/(2πfD) can be estimated using (56).
c) For the clock bias τ̂u = η̂u/(2πfD), the soft user po-

sitions fN(x̂u,i, V̂u,i), i = 1, 2, · · ·, R are recomputed
with η ← η − η̂u. The data association and fusion are se-
quentially performed for fN(x̂u,i, V̂u,i), i = 1, 2, · · ·, R,
and the final fusion result is given by fN(x̂u,∗, V̂u,∗).
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d) For all the possible clock bias estimates, the soft user
position fN(x̂u,∗, V̂u,∗) with the least cost tr(V̂u,∗) is
labeled as the user position estimate.

Output: User position estimate x̂u = x̂u,∗ and clock bias
τ̂u = η̂u/(2πfD).

The user position estimate x̂u and clock bias τ̂u can be further
refined by minimizing the sum of the distances between x̂u and
each component x̂u,i that were used to obtain x̂u.

D. Integrated Communication and Localization

The integrated communication and localization system is
shown in Fig. 3. First, Algorithm 1 is implemented at each
receiver in parallel to solve the channel estimation problem and
obtain the soft parameter estimates. Second, the soft parameter
estimates of all the receivers are transmitted to the data center to
implement the soft localization algorithm. Finally, the propaga-
tion parameters θ̂0i and τ̂0i can be obtained using the user position
estimate x̂u and the topology condition (5) for receiver i. Given
fixed θ̂0i and τ̂0i , the channel estimate of receiver i can be refined
through the Newton gradient descent updates of Algorithm 1 if
receiver i has the LoS path.

Remark 3: Designing a turbo-based approach to combine the
soft channel estimation and localization algorithms is possi-
ble because the algorithms produce soft estimates. However,
additional turbo iterations between the two algorithms cannot
provide additional performance improvement. The same is not
true for turbo detection in MIMO systems, where the transmitted
symbols are chosen from several discrete constellations and in-
formation regarding the symbols is known. Therefore, a perfor-
mance improvement from a turbo-based algorithm is expected
in MIMO detection. By contrast, the topology condition (5) only
imposes a consistency constraint between the different LoS paths
by forcing them to come from a single source at the user position.
Finding a single source implies a good user position estimate,
but such an estimate does not provide true prior information of
the user position. Hence, additional iterations do not provide
further improvement.

V. NUMERICAL RESULTS

The performance of the proposed algorithms are verified in
this section by computer simulations. First, an outdoor mmWave
system is investigated, as shown in Fig. 4. The system has 16
receivers, which are deployed around the sides of a rectangular
region; the user is located at (35, 28). The ULA rotation ωi of
receivers 1 to 16 are given by 0◦, 0◦, 0◦, 0◦, 180◦, 180◦, 180◦,
180◦, −90◦, −90◦, −90◦, −90◦, 90◦, 90◦, 90◦, and 90◦. For
the imperfect synchronization case, the clock bias is τu = 1 ms.
Each receiver has M = 8 antennas and uses N = 128 subcarri-
ers with spacing f� = 60 kHz, and the bandwidth of the system
is 7.68 MHz. The system operates at 28 GHz, which means that
the carrier wavelength is λ = 1.07 cm, and the power spectral
density of the AWGN at the receiver side is −164 dBm/Hz.
A free space path loss model is assumed for the LoS path as
follows:

βi
los =

√
GtGrλ

2

16π2d2i
, (58)

Fig. 4. Illustration of outdoor mmWave system assumed in the simulations.

Fig. 5. NMSE of channel estimate for receivers 7 and 15.

TABLE I
RECEIVED SNR OF THE LOS PATH FOR EACH RECEIVER

where Gt = Gr = 1 and di is the distance between the user and
receiver i. Each receiver has an NLoS path, whose power is
one-third that of the LoS path. The angle and delay of the NLoS
path are randomly generated.

Fig. 4 shows that many of the receivers are far from the user,
and thus, their received signal power is weak. Table I shows
the received signal-to-noise ratio (SNR) of the LoS path at each
receiver when the transmit power is 0 dBm. This table indicates
that the user is visible to only a small fraction of the receivers.
If a coarse user position estimate is available, which can be
obtained by user tracking, then a specific subset of the receivers
can be used to serve this user for channel estimation, data
transmission, localization, and position-based communication
services. In addition, the mmWave system can serve multiple
spatially distant users with the same time frequency resources.
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Fig. 6. RMSE of AoA estimate θ̂ (LoS path) for receivers 7, 8, 15, and 16.

Fig. 7. RMSE of distance estimate cτ̂ (LoS path) for receivers 7, 8, 15, and
16, where c is the speed of light.

Fig. 8. RMSE of soft localization algorithm.

Sections V-A and V-B assume that only receivers 7, 8, 15, and
16 receive an LoS path from the user.

A. Channel Estimation Performance

The NVISE algorithm uses a 10× oversampling rate, which
means γM = γN = 10. In addition, Rs = Rc = 5 and L = 2.

Fig. 9. Empirical cdf of localization error for different transmit power levels.

Fig. 10. Spatial distribution of soft localization output.

Fig. 5 shows the normalized mean squared error (NMSE) of
the channel estimate for receivers 7 and 15. Receiver 15 shows
a better performance than receiver 7 because it is near the
user. For comparison, the channel estimation performance of
the NOMP algorithm [16] is considered. The NOMP algorithm
uses gridless Newton refinement to remove the grid effect of
the OMP algorithm, and its performance can approach that of
the CRLB. For the NOMP algorithm, the oversampling rates are
γM = γN = 10, and the number of single and cyclic Newton re-
finements are both equal to 5. In addition, NOMP extractsL = 2
paths in each experiment. As shown in Fig. 5, the performance of
the NVISE algorithm is similar to that of the NOMP algorithm.
NVISE and NOMP use the same grid detection (30) for ini-
tialization, and the computational complexity of grid detection
is O(MN log(MN)). In addition, NVISE and NOMP use the
same Newton gradient descent approach, and the computational
complexity of each Newton gradient descent is O(MN). Thus,
the computation complexity of NVISE is comparable to that of
NOMP.

Fig. 6 depicts the root mean square error (RMSE) of the AoA
estimate of the LoS path for receivers 7, 8, 15, and 16, with the
NVISE algorithm performed at each receiver independently. In
addition, the CRLB is derived for each receiver independently.
Appendix A shows the derivation details. The AoA estimate
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Fig. 11. (a) Illustration of the indoor mmWave scenario. (b) User position estimates and the corresponding elliptical regions for different user positions. The
red dot shows the actual user position, while the blue “+” denotes the user position estimate, and the blue ellipse shows the region with 99.73% confidence level
(ζ = 3). There is a sudden increase in the elliptical region when two of the LoS paths are blocked.

of the NVISE algorithm approaches that of the CRLB at every
SNR level. Similar conclusions are obtained for the delay as
shown in Fig. 7. According to Table I, the received SNRs of the
receivers satisfy7 < 8 < 15 < 16. Therefore, the delay estimate
performance of receiver 8 is worse than that of receiver 15.
However, for AoA θ, the resolution increases when θ moves
toward 90◦ for the ULA array. Consequently, unlike the case of
the delay estimate, the AoA estimate performance of receiver 8
is better than that of receiver 15 because the AoA of receiver 8
is 98.9◦ while that of receiver 15 is 54.2◦.

Imposing the geometrical constraint of the LoS paths of
receivers in soft localization can improve the AoA and delay
estimate performance. In Section IV-D, the AoA and delay
estimates of the LoS path for each receiver are recomputed
using user position after the soft localization. Then, the AoA and
delay estimates of the NLoS paths are recomputed through the
Newton method with a fixed LoS path. The channel estimation
performance is further improved because the AoA and delay
estimates of the LoS path are refined. As shown in Fig. 5, the
refinement provides a gain of nearly 1 dB.

B. Localization Performance

In this section, we study the accuracy of the proposed soft
localization algorithms. Fig. 8 depicts the RMSE localization
performance of the light version of the soft localization algo-
rithms for perfect and imperfect synchronization cases with
ζ = 3. The results show that the soft localization algorithms
can provide decimeter-level localization accuracy. The CRLB
considers the relationship between the user position and the
AoAs and delays at the receivers. Appendix A shows further
details. The performance of the perfect and imperfect synchro-
nization cases approach their CRLBs, respectively. In addi-
tion, the performance of the imperfect synchronization case is
nearly the same as that of the perfect synchronization case, thus
verifying the effectiveness of the soft localization algorithms.
Fig. 9 plots the empirical cumulative distribution function (cdf)
of the localization error for the perfect synchronization case,
where the localization error is given by

√
(xu − x)T (xu − x).

The performance improves uniformly with the transmit power,
showing a 84.9% success rate in achieving an accuracy of better
than 10 cm when the transmit power is 0 dBm.

Herein, we use an example to show how soft localization
works. Fig. 10 depicts the elliptical regions with ζ = 3 of a
random realization for the perfect synchronization case, where
the transmit power is −6 dBm. Receivers 7, 8, 15, and 16 in
case I are assumed to have LoS paths while only receivers 7 and
8 have LoS paths in case II, and only receivers 15 and 16 have
LoS paths in case III. The localization errors for cases II and
III are 18.7 and 16.4 cm, respectively. The elliptical region of
case II is larger than that of case III because receivers 7 and 8
have smaller received SNRs than receivers 15 and 16. Case I
shows the best performance (9.7 cm localization error) and the
smallest elliptical region because of the two additional receivers.
The proposed soft localization algorithms are scalable for local-
ization. For example, as the user position is static in Fig. 4, the
user position estimate can be easily refined by incorporating
extra soft information into the Gaussian distribution using the
Gaussian reproduction formula.

The localization performance relies heavily on the propa-
gation environment. Leveraging the proposed soft localization
algorithms, the accuracy of the user position estimate can be
easily evaluated through its spatial distribution. Such feature is
useful in many position-based communication services, such as
user position tracking. Next, we discuss the use of soft localiza-
tion in a different indoor propagation environment. Fig. 11(a)
shows the layout of an indoor room (20 m × 12 m) with four
obstacles (pillars) distributed around the room. The system has
four receivers deployed on the front and back walls of the room,
and the ULA rotations of receivers 1 to 4 are given by 180◦,
180◦, 0◦, and 0◦. Ray tracing is used to compute the LoS and
NLoS paths, as shown in Fig. 11(a). Only first-order reflections
are considered because of the high attenuation in mmWave
bands. The free space path loss model of (58) is adopted, and
the reflection via the wall is assumed to cause an additional
3 dB loss. The transmit power of the user is −10 dBm, and the
other system settings remain the same as those in Sections V-A.
Two different scenarios are considered. In case I, the user is
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located at (3.5, 6), and Fig. 11(a) shows that all the receivers
see an LoS path. A user located at (16.5, 6) would have the
same performance as one at (3.5, 6) because the layout of the
room is symmetrical. For case II, the user moves to the right
from (16.5, 6) to (16.9, 6). The LoS paths for receivers 2 and
4 in case II are blocked by the pillars despite the fact that the
user only moves 40 cm. Fig. 11(b) shows the elliptical regions
with 99.73% confidence levels at different positions as the user
moves from (16.5, 6) to (16.9, 6) in steps of 10 cm. We see that
the size of the elliptical region suddenly increases when the user
moves from (16.7, 6) to (16.8, 6) because it is at this point that
the LoS paths of receivers 2 and 4 become blocked.

VI. CONCLUSION

Soft channel estimation and the soft localization algorithms
are proposed in this study for perfect and imperfect synchro-
nization cases. The proposed algorithms use a fully Bayesian
approach to extract soft information of the AoAs and delays
of user signals at several receivers, reconstructs the equivalent
channel, and localizes the user position. The performance of the
proposed algorithms are extensively studied. The results show
that the proposed algorithms can approach the CRLB for channel
estimation and localization. The impact of the propagation en-
vironment on localization performance is presented for a static
case. Moreover, evolving confidence levels are plotted on the
basis of the estimated soft position information for a moving
user. These evaluations show that the algorithms have promise
for a variety of position-based communication services, such as
resource allocation, beam alignment, and interference control.

APPENDIX A
THE DERIVATION OF CRLB

The CRLBs of the AoA and delay (distance) are discussed
first. For any receiver, the received signal can be written as

Y = h1e
jφ1a(θ1)b

T (η1) + h2e
jφ2a(θ2)b

T (η2) +W. (59)

In the RHS of (59), the first term represents the LoS path and
the second term denotes the NLoS path. The frequency η1 can
be expressed as

l1 = cτ1 =
c

2πfD
η1, (60)

where c is the speed of light and l1 is the length of LoS path. For
the element in them-th row andn-th column ofY, the first-order
derivatives are given by

vmn
θ1

= −j(m− 1)πsin(θ1)h1e
jφ1ej(m−1)πcos(θ1)ej(n−1)η1 ,

(61a)

vmn
l1

=j(n−1)
2πfD
c

h1e
jφ1ej(m−1)πcos(θ1)ej(n−1)η1 , (61b)

vmn
h1

= ejφ1ej(m−1)πcos(θ1)ej(n−1)η1 , (61c)

vmn
φ1

= jh1e
jφ1ej(m−1)πcos(θ1)ej(n−1)η1 . (61d)

In particular, vθ1 ∈ C
MN×1 is the vector which con-

tains vmn
θ1

,m = 1, 2, · · ·,M, n = 1, 2, · · ·, N . Similar defini-
tions hold for vl1 with vmn

l1
, vh1

with vmn
h1

, and vφ1
with

vmn
φ1

. Moreover, we have V = (vθ1 ,vl1 ,vh1
,vφ1

). Therefore,
the Fisher information matrix F can be obtained as

F =
2

vw
Re

(
VHV

)
. (62)

The CRLB is given byF−1. The elements with indicies (1, 1) and
(2, 2) of F−1 are the CRLBs for the AoA and delay (distance),
respectively.

The CRLB of the user position is derived in the following
analysis. According to (5), we have

θ1 = arccot

(
(xu − xb)cos(ω) + (yu − yb)sin(ω)

(yu − yb)cos(ω)− (xu − xb)sin(ω)

)
, (63)

η1 =
2πfD
c

√
(xu − xb)2 + (yu − yb)2, (64)

where (xu, yu)
T is the user position, (xb, yb)

T and ω are the
position and ULA rotation of the receiver, respectively. For the
element in the m-th row and n-th column of Y, the first-order
derivatives can be obtained as

vxu
= h1e

jφ1ej(m−1)πcos(θ1)ej(n−1)η1

×
[
j(m− 1)πsin(θ1)

yu − yb
(xu − xb)2 + (yu − yb)2

+ j(n− 1)
2πfD
c

xu − xb√
(xu − xb)2 + (yu − yb)2

]
,

(65a)

vyu
= h1e

jφ1ej(m−1)πcos(θ1)ej(n−1)η1

×
[
−j(m− 1)πsin(θ1)

xu − xb

(xu − xb)2 + (yu − yb)2

+ j(n− 1)
2πfD
c

yu − yb√
(xu − xb)2 + (yu − yb)2

]
.

(65b)

Moreover, we have V = (vxu
,vyu

,vh1
,vφ1

), and the defini-
tions ofvxu

andvyu
are similar to that ofvh1

andvφ1
. The Fisher

information matrixF can be obtained analogously like (62). The
CRLB of the user position is given by

√
a+ b, where a and b are

the elements with indicies (1, 1) and (2, 2) of F−1. The above
analysis is for single receiver. For the case of multiple receivers,
the CRLB of the user position should include information from
all receivers (7, 8, 15, and 16).

For imperfect synchronization case, η1 is defined as

η1 =
2πfD
c

√
(xu − xb)2 + (yu − yb)2 + ηu, (66)

where ηu = 2πfDτu and τu is the clock bias. For the element in
the m-th row and n-th column of Y, the first-order derivative
with respect to ηu is given by

vηu
= j(n− 1)h1e

jφ1ej(m−1)πcos(θ1)ej(n−1)η1 . (67)
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V = (vxu
,vyu

,vηu
,vh1

,vφ1
) can be derived accordingly,

where vηu
follow the definition similar to vh1

. Analogously,
we can obtain F and the corresponding CRLB of localization
for imperfect synchronization case with multiple receivers. Ac-
cording to (65b) and (67), for single receiver, F is a singular
matrix. This result coincides with the common sense, because
the clock bias cannot be estimated with a single receiver.
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