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1. Introduction

Pathology is a medical discipline dealing with diagnosing and
studying diseases. Through recognizing structural histological
alterations, pathologists acquire valuable information on the
effect of these changes on cellular and tissue function.
Pathologist evaluation is performed by examination of histo-
logically stained tissue mounted on a glass slide through an
optical microscope, or, in recent years, of a digitized version of
the histological image (i.e. digital whole slide imaging, WSI).

The long-established pathology workflow consists of a series of
processes to prepare stained tissue samples, which involve fixa-
tion, processing, embedding, sectioning and staining [1]. Staining
is used to highlight important features of the tissue, as well as to
enhance tissue contrast. This is in general a time-consuming,
laborious process that needs to be performed in a designated
lab infrastructure by trained technicians due to the toxicity of
most chemical staining reagents. The semi-automated or manual
staining processes and the utilization of different chemical
reagents lead to high technical variability in sample preparation,
which sometimes causes diagnostic challenges.

Furthermore, the staining process distorts the tissue and
prohibits additional staining of any specific section and further
molecular analysis on the same section. This is highly impor-
tant in small tissue biopsies of diagnostically challenging
cases, where multiple stains are often needed, followed by
ancillary tests (e.g. DNA/RNA sequencing) that may be
required to reach a diagnosis. If all the tissue biopsy material
is used for staining, such molecular analysis cannot be
performed.

2. Advancing pathology through virtual staining

Numerous optical imaging methods with alternative contrast
mechanisms have been explored over the last decades [2].
Most of these were targeted at eliminating the tissue fixation
step and providing an intraoperative or bedside instrument
that can be used for tumor margin assessment during surgery
[3]. Some of these methods have also augmented their results
with a post-processing step that generates hematoxylin and
eosin stain (H&E)-like images [4,5]. H&E stain is the principal
stain in pathology, resulting in high contrast for the nucleus,

cytoplasm, and extracellular constituents. However, the quality
of these pseudo-H&E images usually lags behind the quality
that pathologists are accustomed to work with, and they have
limitations in representing pigments [6]. Furthermore, this
type of pseudo staining is in general much more challenging
to successfully apply to other types of stains beyond H&E.

Recently, our research group introduced a method to virtually
stain autofluorescence images of unstained tissue sections, elim-
inating the need for chemical staining while creating high-
quality virtually stained slides (see Figure 1) [3,7]. In this virtual
staining workflow, we acquired autofluorescence images of
unstained tissue slides using a conventional fluorescence scan-
ning microscope. Next, we used a deep convolutional neural
network (CNN) which was trained using the concept of
Generative Adversarial Networks (GAN) [8] to learn the transfor-
mation from a label-free unstained autofluorescence input
image to the corresponding bright-field image of the histologi-
cally stained version of the same sample. The network output
created virtually-stained images that were well matched to the
images of the same tissue samples that were labeled with differ-
ent stains, including H&E, Jones, Masson’s trichrome and PAS
(Periodic acid-Schiff). The virtually stained slides achieved a high
degree of agreement with the histologically stained images of
the same samples when they were blindly evaluated by a group
of pathologists, while significantly shortening the staining time,
manual labor and cost associated with lab-based chemical stain-
ing of tissue. This virtual staining framework was also applied to
other contrast mechanisms, including holography and quantita-
tive phase imaging [9] as well as reflectance confocal micro-
scopy [10].

The computational nature of this deep learning-based vir-
tual staining technology enabled us to generate stains that
would be impossible to create using traditional histochemical
staining [11]. For example, we used what we refer to as
a ‘digital staining matrix’ which allowed us to generate and
digitally blend multiple stains using a single deep neural net-
work by specifying which stain should be performed at the
pixel level [11]. Not only could this novel framework be used
to perform multiple stains on a single tissue section, it could
also be used to create micro-structured stains, digitally stain-
ing different areas of label-free tissue with different stains.
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Figure 1. lllustration of virtual histology workflow using deep learning. The unstained tissue slide is imaged by a standard optical microscope with different
fluorescence channels (DAPI/FITC/TxRed/CY5, grayscale images). A GAN-based CNN transforms the unstained tissue slides into a virtually stained image [a-Jones
stain], a digital blend of histological stains [b-H&E, Jones and Masson'’s trichrome stains], or IHC stain [c-HER2 stain].

Furthermore, this digital staining matrix enabled these stains
to blend together by setting the encoding matrix as a mixture
of the possible stains. This technology can be used to focus on
the most relevant information possible from the various virtual
stains being performed so that pathologists can get more
diagnostically relevant information while reducing their slide
examination time.

Stemming from the success of virtual staining of the label-
free tissue sections, we also created neural networks that
enabled stain-to-stain transformations [12,13]. This deep learn-
ing-based framework enables the digital transformation of
existing images of tissue biopsy stained with one type of
stain into many other types of stains. A stain-to-stain transfor-
mation process takes less than one minute per tissue sample,
as opposed to several hours or even more than a day when
performed by human experts, without requiring additional
tissue sections. This speed advantage enables faster prelimin-
ary diagnoses that require special stains, while also providing
significant cost savings.

Another recent advancement through our virtual staining
methodology was the introduction of virtual immunohisto-
chemistry (IHC) staining [14]. IHC is one of the pillars of
modern diagnostic pathology and a fundamental research

Table 1. Comparison of conventional and virtual tissue staining.

tool in both pathology and translational research laboratories.
Conventional IHC staining is a delicate process that requires
accurate control of time, temperature, and concentrations of
the reagents at each tissue handling step; in fact, IHC stains
have up to 30% technical staining failures [15]. Focusing on
HER2, a pivotal breast cancer-related protein, we generated
virtual HER2 IHC images from the autofluorescence images of
unlabeled breast tissue sections, matching the bright-field
images captured after the standard IHC-staining while redu-
cing the turnaround time to minutes.

3. Future developments and utilization of virtual
histology technology

The ability to virtually stain label-free tissue sections can
potentially restructure the clinical workflow in pathology
(Table 1). The current virtual staining process takes a few
minutes per slide, and this image synthesis and virtual stain
creation time could be dramatically shortened by using dedi-
cated hardware and reach real-time performance, which might
especially be useful in intra-operative pathology consultation.
By applying multiple stains to a single tissue section, alongside
the added capabilities of stain blending, synthesis, and micro-

Conventional staining

Virtual staining

Time to perform

Manual labor

Stain variability

Hazardous waste composition

Hours to days

Significant

Tissue disruption (Destructive) Yes
Multiple stains on a single slide No
Stain-to-stain transformation No

Technical failures (e.g. IHC) High

Semi-automated process (requires qualified technicians)

Tissue fixatives, preservatives and staining dyes

Minutes

Minimal (e.g. paraffin embedding, tissue cutting)
Minimal

Tissue fixatives and preservatives

No

Yes

Yes

Low




structured virtual staining, we will be able to create novel
stains that may better highlight cellular structures and orga-
nelles. Pathologists will be able to create customized stains
that will maximize their morphological diagnostic abilities
while minimizing the examination time.

We believe that this deep learning-based virtual staining
framework paves the way for new applications in life sciences
and biomedical diagnostics. For example, the significantly
reduced [HC staining time could help clinicians to provide
better patient care, especially in short-staffed pathology
departments where IHC can take nearly a week to perform
and can result in significant delays in the treatment of
patients. Furthermore, this technology could potentially be
used to virtually stain cellular elements that current IHC meth-
ods fail to highlight, such as heavily masked antigens, proteins
with low expression levels and possibly assist in the detection
of genomic aberrations (e.g. oncogene amplifications, dele-
tions and fusions) that require expensive ancillary tests not
available in many pathology departments.

In summary, virtual staining technology has transformative
potential in enabling tissue diagnoses and helping clinicians
to provide better patient care while reducing costs, labor and
time-to-diagnosis.
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