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ABSTRACT: Pathological diagnosis relies on the visual inspection -
of histologically stained thin tissue specimens, where different types
of stains are applied to bring contrast to and highlight various
desired histological features. However, the destructive histochem-
ical staining procedures are usually irreversible, making it very
difficult to obtain multiple stains on the same tissue section. Here,
we demonstrate a virtual stain transfer framework via a cascaded
deep neural network (C-DNN) to digitally transform hematoxylin
and eosin (H&E) stained tissue images into other types of = “~ooooooooooo .
histological stains. Unlike a single neural network structure that

only takes one stain type as input to digitally output images of another stain type, C-DNN first uses virtual staining to transform
autofluorescence microscopy images into H&E and then performs a stain transfer from H&E to the domain of the other stain in a
cascaded manner. This cascaded structure in the training phase allows the model to directly exploit histochemically stained image
data on both H&E and the target special stain of interest. This advantage alleviates the challenge of paired data acquisition and
improves the image quality and color accuracy of the virtual stain transfer from H&E to another stain. We validated the superior
performance of this C-DNN approach using kidney needle core biopsy tissue sections and successfully transferred the H&E stained
tissue images into a virtual PAS (periodic acid-Schiff) stain. This method provides high-quality virtual images of special stains using
existing, histochemically stained slides and creates new opportunities in digital pathology by performing highly accurate stain-to-stain
transformations.

Label-free images

KEYWORDS: deep learning microscopy, histopathology, cascaded neural networks, virtual staining

H INTRODUCTION light-scattering imaging,9 reflectance confocal microscopy,10
and ultraviolet surface excitation microscopy,'' among
others."”"® Virtual staining methods can reduce the time,
labor, and cost of tissue staining,14 enabling further molecular
analyses to be performed on the same tissue slide, as no
destructive biochemical reaction is needed.

An alternative approach that can be used to overcome the
disadvantages of traditional histochemical staining is virtually
transforming the stain applied to a histochemically stained
image into another stain (referred to as stain transfer), for
example, transferring H&E stain to PAS stain. Stain transfer
introduces additional versatility to the concept of virtual
staining. In clinical applications, after examining H&E stained
tissue sections, pathologists may suggest additional special
stains to be acquired for a more accurate diagnosis. In such
scenarios, when some types of stains are already prepared and

Histochemical staining of tissue sections is a critical step in
pathology, which serves as a gold standard for diagnosing
various diseases." For example, hematoxylin and eosin (H&E),
the most commonly used histochemical stain,” is relatively
cost-effective and easy to access, which highlights the contrast
between the cell nuclei and the extracellular matrix and helps
provide important information about the pattern, structure,
and type of cells. As another example, periodic acid-Schiff
(PAS) stain highlights the glycated molecules and is commonly
used to examine diseases of basement membranes.” However,
traditional histochemical staining requires tedious tissue
treatment steps and lab-based monitoring by a histotechnol-
ogist that can be laborious and costly, especially for special
stains, which are often more challenging to perform compared
to H&E. The tissue damage introduced during the chemical
staining procedures is irreversible, thus making a wash-and-
restain process very difficult. To overcome such limitations, Received: June 18, 2022
virtual staining was developed using deep learning to generate

computationally stained images from the images captured

using label-free tissue slides. Such label-free staining methods

have been demonstrated with autofluorescence imaging,4_6

hyperspectral imaging,’ quantitative phase imaging (QPI),"
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Figure 1. Histochemical stain transfer via cascaded deep neural networks (C-DNNs). The schematic illustrates the (a) training and (b) testing
process of digitally transforming H&E stained slide images into PAS stained images. Autofluorescence (label-free), H&E and PAS stained images
are used in the training phase. Once the training is complete, only the second generator (CG,) is used for the blind testing, taking a histochemically
stained H&E image as input and outputting a stain transferred PAS image as output. Scale bar: 30 pm

imaged, and other types of stains are still required, virtual stain
transfer can reduce the additional labor and cost of tissue
preparation, staining, and imaging. Deep learning-based stain
transfer methods also possess the same advantages that virtual
staining methods have, such as staining consistency and
repeatability."

One of the main difficulties in training a deep neural
network to perform the stain transfer lies in the data
acquisition dilemma: a slide can only be stained once with
one type of stain without a washing process, which may
damage the tissue, making the acquisition of paired images
with different stains very challenging. Neighboring cut slides of
the same tissue block do not provide pixel-wise matched image
pairs. Therefore, the neighboring slides cannot be used in
training supervised image translation models, such as pix2pix, ¢
due to the mismatch of the essential features or the interslide
misalignment and distortions. The CycleGAN'’ based
approaches can potentially eliminate the requirement for
pixel-wise paired data and can be used to obtain image
translation models by learning latent consistency across
unpaired image data. Several stain transfer methods using
CycleGAN-like models with unpaired data have been
demonstrated: from H&E to Masson’s trichrome (MT),"®
PAS and Jones’ silver stain,'” from H&E to Ki-67
immunohistochemistry (IHC),” among others.”’ However,
the lack of direct pixel-wise structural loss makes these
CycleGAN-based models prone to potential hallucinations,
thus deteriorating the output image quality.">** To circumvent
data acquisition difficulty, de Haan et al."> used pretrained
label-free virtual staining models to virtually transform the
same autofluorescence image into two different stains
concurrently, generating spatially registered (i, perfectly
paired) image data sets. Using these perfectly paired data sets,
the stain transfer models were trained to convert the existing
histochemical stained images into other stain types. With the
additional stain types provided by the stain transfer networks,
the diagnosis accuracy of several non-neoplastic kidney

diseases was improved.'> However, these stain transfer models
were trained using virtually generated images as the input and
target, whose distributions inevitably deviate from the
histochemically stained image data distribution. This is due
to the limited data availability, network generalization, model

23,24 : 25
*”" and model uncertainty.

inductive biases, Such discrep-
ancies might undermine the final performance of stain transfer
networks.

Here, we present a supervised deep learning-based stain
transfer framework using a cascaded deep neural network,
termed C-DNN (Figure 1), trained with two groups of data
with different histochemical stains, as shown in Figure 2a. In
the training process, two deep neural networks are cascaded to
first virtually stain label-free autofluorescence images into H&E
and then transfer the H&E stained output images into special
stains. The cascaded network structure allows C-DNN to
directly minimize the loss between the output images and the
histochemically stained target images in both H&E and special
stain domains, aiming to mitigate the discrepancy introduced
by using input and target images generated by virtual staining
networks and accordingly improve the stain transfer perform-
ance. After the training process of C-DNN, only the second
neural network of the cascaded structure is used for blind stain
transfer.

We demonstrated the success of C-DNN using kidney
needle core biopsy tissue sections by transforming H&E
stained images into PAS stain. We compared our results with a
single U-Net-based stain transfer model reported in ref."
(referred to as the standard stain transfer network) both
qualitatively and quantitatively, where our model achieved
improved image quality, more accurate color distribution, and
higher contrast. This method can provide high-quality virtual
images of special stains from existing, histochemically stained
slides, enriching the information available to pathologists with
no additional cost of expert time and labor.
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Figure 2. Data preparation and training of C-DNN for virtual stain transfer. (a) Data preparation: unstained slides are first scanned to obtain
autofluorescence images (label-free) and then split into two groups: A and B. For group A, the unstained slides are histochemically stained with
H&E, and the corresponding autofluorescence images are virtually stained to PAS using the pretrained virtual staining network G4r_ pas. For group
B, the slides are histochemically stained with PAS, and the autofluorescence images are virtually stained to H&E using the pretrained virtual
staining network Gp_ygg. (b) The C-DNN is trained on both group A and group B (labeled with superscripts), with the autofluorescence image
used as the input (x), H&E as the first target (y,), that is, the virtual staining target, and PAS as the second target (y,), that is, the stain transfer
target. (c) The standard stain transfer relies on pretrained virtual staining networks to generate virtually stained images from autofluorescence
images for both the input and output. Black solid boxes indicate histochemically stained images, while the dashed black boxes represent virtually

stained images. Scale bar: 30 ym.

B RESULTS

C-DNN Stain Transfer Framework and Data Prepara-
tion. We demonstrated our framework by transferring H&E
stained images to PAS-stained images of the same field-of-view
(FOV). To train the C-DNN framework, two groups of data

sets are required, denoted here as groups A and B (see Figure
2). EBach group contains three types of images: (1)
autofluorescence images of the unstained/label-free tissue
sections, (2) H&E stained images (histochemically stained for
group A and virtually stained for group B), and (3) PAS
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Figure 3. Stain transfer from H&E to PAS using C-DNN and its comparison with the standard stain transfer network. (a) Group A and (b) group
B testing results. Two FOVs for each group are tested, and the input, target and output images are shown; images from different FOVs are
separated by dashed horizontal lines. Here, y; is the H&E stained input image and y, is the PAS stained target. MS-SSIM values between the target
and the output images from CG, (C-DNN) and G, (standard stain transfer) are shown next to their output images. Scale bar: 30 ym.

stained images (virtually stained for group A and histochemi-
cally stained for group B). The virtually stained images in each
group were generated from the label-free autofluorescence
(AF) images using the corresponding pretrained virtual
staining networks, that is, Gar_pas for group A and Gup_ e
for group B (see Figure 2a and Methods). These
autofluorescence images in C-DNN training serve as a bridge
to build perfectly matched image pairs for both groups A and
B, and they are no longer needed once the training process is
completed; the model inference is a single feed-forward
process of subsecond time scale per image tile.

The C-DNN contains two cascaded U-Net*® structures
(Figures 1 and 2b) as generators, each accompanied by a
discriminator following the generative adversarial network
(GAN)*” scheme (see Methods). C-DNN training workflow is
illustrated in Figure 2. In the training stage, the first generator
takes autofluorescence images x as input and outputs H&E

stained images 3, denoted as j = CG,(x), where CG, is the
first generator of C-DNN, y, is the first target and j is the first

output. The second generator takes the output of the first
generator and infers the PAS stained output, denoted as
% = CG,(5]) = CG,(CG(x)). The first generator in the C-

DNN structure converges to a label-free virtual staining
network, while the second generator performs a virtual stain
transfer. At the testing stage, following the training, only CG, is
used by taking histochemical H&E stained images as input to
virtually infer PAS stained images, denoted by 3, = CGz(yl).

To utilize the two groups of data (A and B, labeled by
superscripts), the C-DNN is first trained on group A with
equally weighted losses for CG; and CG, (see Methods).
Upon convergence, we applied transfer learning to group B
with adjusted weights. A higher weight is assigned for the loss
from CG, to emphasize the error between the histochemically
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Figure 4. Color distribution of stain transfer networks. Two FOVs (one for each group, A and B) are tested, and the input, target and output
images are shown for both groups. Zoomed-in regions are shown next to the corresponding output images labeled with the blue boxes. All the
images are converted from RGB to YCbCr channels, and the Cb and Cr distributions are visualized with the histograms. (a) The testing images and
their histograms of Cb and Cr values from group A, (b) testing images and their histograms of Cb and Cr values from group B. The histograms of
the target images are plotted in green, and the histograms of C-DNN output images are plotted in blue, while for the standard stain transfer
network, the corresponding image histograms are plotted in red. Scale bar: 30 ym.

stained PAS image and the second neural network output,
where the error from CG; is measured with virtually stained
images. By using this cascaded structure and the two groups of
data (A and B in Figure. 2), our framework has direct access
during its training to the distances between its output images
and the histochemically stained images for both H&E and PAS
stains: Lﬁ(CGl(xA), ylA) and LE(CGZ(CGl(xA)), yZB) (see
Figure 2b and Methods).

Stain Transfer from H&E to PAS Using C-DNN (CG,).
We demonstrated our stain transfer method with C-DNN
using two test data sets, from groups A and B. The testing
FOVs were never seen by the networks in the training stage.
The testing results and the comparison against the standard U-

Net stain transfer (both the input and target are virtually
stained) are summarized in Figures 3 and 4. In group A testing,
histochemically stained H&E images were used as the input,
and the virtually stained PAS images were used as the target.
Two testing FOVs are shown in Figure 3a. The C-DNN
output images CG,(y})) agree well with the PAS targets. C-
DNN output images also reveal unique PAS features not
available directly from the corresponding H&E images. For
instance, in the virtually stained target of the first FOV (Figure
3, al), we can observe basement membranes (labeled with
green arrows) that are unique for PAS stain and are not clear in
the input H&E images. The C-DNN output recovers these
unique features, which agree well with the target, while the
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standard stain transfer network output (Gy(y{)) could not
recover such structures with high contrast. In the second FOV
(Figure 3, a2), the standard stain transfer network stained the
green-arrow-pointed region purple, which is inconsistent with
the target, while the C-DNN output agrees well with the target
color.

In group B testing, we used virtually stained H&E images as
the input and the histochemically stained PAS images as the
target. Two testing FOVs are shown in Figure 3b. The color of
C-DNN output images is more accurate and provides a better
match to the histochemically stained target, while the standard
stain transfer network output color is denser and differs from
the target. These color differences are further analyzed in
Figure 4, supporting the same conclusion. In addition to Figure
3b, we also show two more testing FOVs from group B in
Supporting Information, Figure S1, where we compared them
with the virtually stained images generated using Gpp_pas-
These results reveal that both the virtual staining and stain
transfer output images match the histochemically stained
ground truth well, supporting that C-DNN can provide high-
quality stain transfer images from existing histochemically
stained tissue sections.

To quantify the image structural similarity, we calculated the
multiscale structural similarity index”® (MS-SSIM, see
Methods) between the output and target images for each
FOV, the results of which are shown next to the output images
in Figure 3. We also quantified the MS-SSIM over 20 different
FOVs of 1024 X 1024 pixels for each group (from six patients
for Group A and eight patients for group B), and the MS-SSIM
values that are averaged over 20 individual FOVs are
summarized in Table 1. This analysis indicates that the output
images from C-DNN achieved higher MS-SSIM in both test
groups.

Table 1. MS-SSIM Quantification of C-DNN Compared
with the Standard Stain Transfer Network

group A group B
C-DNN output, CG,(-) 0.831 0.800
standard stain transfer, Gy(-) 0.827 0.788

Since chromatic distinction among different tissue con-
stituents serves as one of the most significant features for
pathologists to interpret tissue sections, we further quantified
the color distribution of output images to assess the stain
transfer quality. We compared the color distribution differ-
ences on two additional testing FOVs, one from each group, by
converting the images from RGB to YCbCr color space. In
Figure 4, we plot and compare the histograms of Cb and Cr
channel values of the outputs from C-DNN (blue), the
standard stain transfer network (red), and the target images
(green). For both Cb and Cr channels, we observe that the C-
DNN distributions agree well with the target distributions. The
histograms are tighter for the standard stain transfer network
output images and have higher peaks, signs of inferior image
color contrast. Zoomed-in regions in the output images are
also shown to demonstrate the superior feature contrast of C-
DNN output images (membrane features and nuclei labeled
with green arrows).

Alongside stain transfer, a well-trained C-DNN can also be
applied for virtual staining of both H&E and PAS with
comparable performance to the pretrained virtual staining
networks. Using an autofluorescence image x as input,

j}I=CG1(x) generates a virtual H&E image, and
% = CG,(CG,(x)) generates a virtual PAS image. We

compared these H&E and PAS images generated by C-DNN
with those generated by the corresponding pretrained virtual
staining networks (i.e., Gapopge and Gup_pas) and the
histochemically stained ground truth. These results are
shown in Supporting Information, Figure S2, where the C-
DNN output images are comparable to the pretrained virtual
staining networks’ output images and agree well with the
histochemically stained ground truth images in both H&E and
PAS domains, demonstrating the robust virtual staining
capability of C-DNN.

Bl DISCUSSION

We presented a stain transfer framework using cascaded neural
networks with superior performance compared to the standard
stain transfer methods. C-DNN output contains high contrast
features in the target domain, such as the basement
membranes in PAS stains, which agree well with the
histochemically stained targets with improved color accuracy.
Without additional sample extraction or chemical treatment
steps that are laborious, slow and costly, this framework rapidly
reveals more features from the existing stained tissue sections,
virtually enriching the information available to pathologists.
While the presented qualitative and quantitative analyses
demonstrate the improved stain transfer quality using C-DNN
framework, its superiority toward ultimate clinic adoption
needs to be verified by pathologists in blinded studies. It
remains as future work to evaluate the stain transfer results of
our method through blinded analyses of expert pathologists
over a wide range of clinical cases.

The success of this framework comes from using two data
set groups during the training and the cascaded neural network
structure to better exploit the histochemically stained image
data in the training phase. These enable the model to directly
minimize the loss function calculated from the network output
and histochemically stained target images for both H&E and

PAS domains, that is, .Ef\(CGl(xA),ylA) and
LE(CGZ(CGl(xA)), yzB); also see Methods. Note that the

loss terms from CG, are only used to update the parameters in
CG; in each iteration. However, due to the cascaded nature of
C-DNN, the output images of CG, are directly fed into CG, as
input, forming a joint optimization scheme to avoid local
minima which can be encountered if we were to only optimize
CG, separately. Converging into local minima can stagnate the
training process and hinder the model from being further
optimized. Updating the parameters of CG; in a given training
iteration will change the output distribution of CG; and
therefore benefit the training of CG, in the subsequent
iterations. Similarly, if only CG, were to be optimized with
Group B data, the stain transfer network would converge to a
local minimum where it converts a virtually stained input
distribution to a histochemically stained output distribution.
When the histochemically stained images are used as the inputs
for real-life applications, the discrepancy between the virtual
and histochemical input distributions might deteriorate the
stain transfer quality, which can be avoided by applying the C-
DNN structure and joint optimization process outlined in this
work. Furthermore, to better generalize to and handle lab-to-
lab variations observed in the histochemical staining style, a
pretrained C-DNN can be fine-tuned using few-shot transfer
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learning™” with adjusted weights using limited data similar to
Group A, but with a unique histochemical stain style for H&E.

Although the presented stain transfer method was
demonstrated on kidney biopsy sections from H&E to PAS
stains, the C-DNN can also generalize to perform stain-to-stain
transformations between other stains and on different tissue
types. As different types of stains reveal various unique features
of tissue, an exciting future work is to comprehensively study
the mutual information across multiple stains to better
understand and optimize the selection of virtual staining
panels for different clinical applications. Furthermore, other
label-free imaging modalities, such as quantitative phase
imaging8 and autofluorescence lifetime imaging,30 could be
introduced in the virtual staining and stain transfer processes in
addition to or as an alternative for autofluorescence
microscopy images.

In summary, various stain-to-stain transformations can be
learned and blindly performed using the C-DNN framework to
provide unprecedented information on perfectly registered
channels of different stains to pathologists. This cascaded
neural network-based stain transfer method will open up new

opportunities in digital pathology and histology.

B METHODS

Image Acquisition and Preprocessing. The training
data were acquired by microscopic imaging of thin tissue
sections sliced from needle core kidney biopsies. The
autofluorescence images were obtained using an Olympus
IX-83 microscope with a DAPI and a Texas Red (TxRed) filter
set (Semrock OSFI3-DAPIS060C, OSFI3-TXRED-4040C)
using a 20X/0.7SNA objective. The Tissue Technology Shared
Resource performed the H&E and PAS histochemical staining
at UC San Diego Moores Cancer Center. All the slides and
digitized images were prepared from the existing specimen
(under UCLA IRB 18-001029), and this work did not interfere
with standard care practices or sample collection procedures. A
bright-field scanning microscope (Leica Biosystems Aperio
AT?2 slide) was used to image the histochemically stained
tissue sections with a 40X/0.7SNA objective.

To create pairs of matched data for autofluorescence and
bright-field images, we applied a multistage registration
algorithm similar to previous works.'”"® Bright-field images
were first downsampled and coarsely matched to autofluor-
escence images using a correlation-based registration algo-
rithm. Then a multimodal registration algorithm was used to
correct the rotation and image size of stained bright-field
images with respect to the autofluorescence images. To address
the local misalignment introduced in the histochemical
staining process, we used a pretrained virtual staining model
to roughly stain the autofluorescence images. Then a pyramidal
elastic registration algorithm™***" was implemented between
the roughly stained autofluorescence and the stained bright-
field images. The estimated transform was applied to the
stained bright-field image to coregister it with respect to the
autofluorescence image with subpixel accuracy.

After this coregistration process, the autofluorescence
images were fed into two pretrained virtual staining networks
(described in the following subsection) to acquire virtually
stained images (PAS for group A, H&E for group B). For each
group, we have three types of images for a training patch:
autofluorescence image, virtually stained image, and histo-
chemically stained image. These image patches are randomly
cropped to a size of 256 X 256 pixels with ~10% overlap for

training, and 40 image patches of 1024 X 1024 pixels are left
for blind testing. The total number of the image patches used
in the training phase is approximately ~25000 for groups A
and B together. In the training process, the data set is split into
training and validation sets with a ratio of 9 to 1.

Implementation of the Pretrained Virtual Staining
Networks. The virtual staining networks used in the data
preparation stage (Gap_pge and Gap_pag) were a modified
version of the original virtual staining network.* A progressive
method was utilized in the training process to improve
performance on edge details.”> While generating virtually
stained images, each image is zero-padded to 1536 X 1536
pixels to be compatible with the progressive GAN. An area of
1024 X 1024 pixels was cropped from the center FOV to avoid
the edge effects induced by zero padding.

Implementation of Stain Transfer Deep Neural
Networks. The deep neural networks in this paper were
trained using the GAN framework,”” each consisting of a
generator (G) and a discriminator (D). The generator
transforms the input x into a target image y, while the
discriminator network discriminates between the generator
outputs and the target images to help guide the generator to
produce images matching the distribution of the target data
domain. The C-DNN structure contains two U-Net-based
GANSss cascaded such that the output of the first generator is
directly used as the input for the second generator.”® Both
generators are composed of a five-block down-sampling path
and a four-block up-sampling path. Down-sampling block
contains two convolutional layers, each with kernels with a size
of 3 X 3 and rectified linear unit (ReLU)** as activation
function and residual connections,” followed by a 2 X 2
average pooling layer with a stride of 2 to perform a down-
sampling factor of 2. The up-sampling block is similar to the
downsampling blocks, but concatenates the tensor of the last
block with the tensor of the corresponding down-sampling
path. The average pooling layers are replaced by 2X bilinear
upsampling layers. The discriminator has six consecutive
convolutional blocks with ReLU activations, followed by a fully
connected layer with a sigmoid activation function. All weights
are initialized using Xavier.*

The loss functions that C-DNN aims to minimize are

Lo=Lg, + L,
= —log D,(CG,(x)) + a-MSE(CG;(x), yl) — log D,(CG,(CG(«)))
+ a-MSE(CG,(CG,(x), ) (1)
Ly = LD,I + LD,Z
= —log Dl(yl) — log[1 — D;(CG,(x))] — log Dz(yz)
— log[1 — D,(CG,(CG,(x)))] (2)

where MSE refers to the 2D mean squared error, CG; and D;
represent the i generator and discriminator, respectively, that
is, i =1 or 2.

For the standard stain transfer networks, the loss functions
are

LG(, —log DO(GO(y1)) + a-MSE(GO(yl), yz) (3)

Ly, = —logD,(3,) — logl1 — Dy(Go())] (4)

Here, y, represents the H&E stained image which serves as
the input, G, and D, represent the generator and the
discriminator, respectively. The networks are trained using an
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Adam optimizer’” and @ = 0.02 with learning rates of 10 and
3 X 107° for the generator and the discriminator networks,
respectively.

C-DNN is first trained on group A data until convergence.
Then we applied transfer learning to group B data with a
weighted loss: L = VLG,l + LG,zx Ly = ]/.ED‘I + LD,Z
where y = 0.1. This weighted loss was used to help the C-
DNN focus more on minimizing the loss between the virtually
stained PAS output and the histochemically stained PAS
images.

To ensure fair comparisons, the generators and the
discriminators used in C-DNN and standard U-Net-based
stain transfer networks are of the same structure and were
trained using the same image data. The standard stain transfer
network was trained with both groups A and B, using
autofluorescence and virtually stained images. All the networks
are implemented using TensorFlow’® v2.7.0 and python
version 3.9.7 with Compute Unified Device Architecture
(CUDA) version 11.3.1. Training and testing are completed on
a computer with two GeForce RTX 3090 graphics processing
units (GPU) and an Intel Core i9-10920X central processing
unit (CPU) with 256 GB of random-access memory (RAM).
Typically, ~24 h (~30 epochs) are needed for training
convergence, and the blind inference time of CG, for a 1024 X
1024 pixel image is ~0.6S s.

For performance evaluations, multiscale structural similarity
index is used to quantify the quality of the network output
images. The MS-SSIM™® averages the structural similarity
index (SSIM)*” on multiple scales. The SSIM and MS-SSIM
are calculated as

(Zﬂxﬂy +¢)(20, + ¢,)
(//lx2 + //‘; + C1)(Ux2 + Gyz +6) ()

SSIM(x, y) =

M

MS-SSIM(x, y) = L D SSIM(x, 3)

M3 (6)
where 4, and p,, are the mean values of the images x and y, o2
and o7 are the variances of the images x and y, respectively, and
o,y is the covariance between images x and y. ¢, and c, were set
to be 0.01> and 0.03% The subscripts of x; and y; represent
downsampled images by i times. MS-SSIM is averaged over
eight scales (M = 8) on images with 1024 X 1024 pixels.

To assess color distribution accuracy, the images were
converted from RGB color space to YCbCr color space.*
Before converting to the YCbCr channel, all the images were
saved as 8-bit Tag Image File Format (TIFF) in linear RGB
color space and normalized to [0—1].

Each histogram in Figure 4 was collected from one image
with 1024 X 1024 pixels.
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