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Deep learning-based virtual staining was developed to introduce image contrast to label-free tissue sections, digitally matching the
histological staining, which is time-consuming, labor-intensive, and destructive to tissue. Standard virtual staining requires high
autofocusing precision during the whole slide imaging of label-free tissue, which consumes a significant portion of the total
imaging time and can lead to tissue photodamage. Here, we introduce a fast virtual staining framework that can stain
defocused autofluorescence images of unlabeled tissue, achieving equivalent performance to virtual staining of in-focus label-
free images, also saving significant imaging time by lowering the microscope’s autofocusing precision. This framework
incorporates a virtual autofocusing neural network to digitally refocus the defocused images and then transforms the refocused
images into virtually stained images using a successive network. These cascaded networks form a collaborative inference
scheme: the virtual staining model regularizes the virtual autofocusing network through a style loss during the training. To
demonstrate the efficacy of this framework, we trained and blindly tested these networks using human lung tissue. Using 4×
fewer focus points with 2× lower focusing precision, we successfully transformed the coarsely-focused autofluorescence images
into high-quality virtually stained H&E images, matching the standard virtual staining framework that used finely-focused
autofluorescence input images. Without sacrificing the staining quality, this framework decreases the total image acquisition
time needed for virtual staining of a label-free whole-slide image (WSI) by ~32%, together with a ~89% decrease in the
autofocusing time, and has the potential to eliminate the laborious and costly histochemical staining process in pathology.

1. Introduction

Histological analysis is considered to be the gold standard
for tissue-based diagnostics. In the histological staining
process, the tissue specimen is first sliced into 2–10μm thin
sections and then fixed on microscopy slides. These slides
are stained in a process that dyes the specimen with
markers by binding, e.g., chromophores to different tissue
constituents, revealing the sample’s cellular and subcellular
morphological information under a microscope [1]. How-
ever, the traditional histological staining is a costly and
time-consuming procedure. Some types of stains, such as
immunohistochemical staining (IHC), require a specialized

laboratory infrastructure and skilled histotechnologists to
perform tissue preparation steps.

The ability to virtually stain microscopic images of unla-
beled tissue sections was demonstrated through deep neural
networks, avoiding the laborious and time-consuming his-
tochemical staining processes. These deep learning-based
label-free virtual staining methods can use different input
imaging modalities, such as autofluorescence microscopy
[2–4], hyperspectral imaging [5], quantitative phase imag-
ing (QPI) [6], reflectance confocal microscopy [7], and pho-
toacoustic microscopy [8], among others [9–11]. Virtual
staining, in general, has the potential to be used as a substi-
tute for histochemical staining, providing savings in both
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costs and tissue processing time. It also enables the preser-
vation of tissue sections for further analysis by avoiding
destructive biochemical reactions during the chemical stain-
ing process [12].

In all these label-free virtual staining methods, the acqui-
sition of in-focus images of the unlabeled tissue sections is
essential. In general, focusing is a critical but time-
consuming step in scanning optical microscopy used to cor-
rect focus drifts caused by mechanical or thermal fluctua-
tions of the microscope body and the nonuniformity of the
specimen’s topology [13]. Focus map surveying, the most
adopted autofocusing method for whole slide imaging of tis-
sue sections, creates a prescan focus map by sampling the
focus points in a pattern [14]. At each focus point of this
pattern, the autofocusing process captures an axial stack of
images, from which it extracts image sharpness measures
at different axial depths and locates the best focal plane using
an iterative search algorithm [15–17]. To acquire finely-
focused whole slide images (WSI) of label-free tissue sections
and generate high-quality virtually stained images, standard
virtual staining methods demand many focus points across
the whole slide area with high focusing precision to form
an accurate prescan focus map. However, this fine focus
search process is time-consuming to perform across a WSI
and might introduce photodamage and photobleaching
[18] on the tissue sample. To alleviate some of these prob-
lems, various hardware-based approaches were developed
to reduce focusing and scanning time for microscopic imag-
ing [19–22]. However, such hardware modifications require
additional components, cost, and labor, and may not be
always compatible with the existing microscope hardware
already deployed in clinical labs. Recent works in optical
microscopy have explored the use of deep learning for
online autofocusing [23–26], offline autofocusing [27], and
depth-of-field (DoF) enhancement [28–30]. Despite all this
progress, integrating deep learning-based autofocusing
methods with virtual staining of unstained tissue remains
to be explored.

Here, we demonstrate a deep learning-based fast virtual
staining framework that can generate high-quality virtually
stained images using defocused autofluorescence images of
label-free tissue. As shown in Figure 1, this framework uses
an autofocusing neural network (Deep-R) [27] to digitally
refocus the defocused autofluorescence images. Then, a vir-
tual staining network is used to transform the refocused
images into virtually stained images, matching the bright-
field microscopic images of the histochemically stained tis-
sue (ground truth). Instead of training the two cascaded
networks (i.e., the autofocusing and virtual staining neural
networks) separately, we first trained the virtual staining net-
work and used the learned virtual staining model to regular-
ize the Deep-R network using a style loss during the training
stage, which formed a collaborative inference scheme.

To demonstrate the success of this deep learning-based
fast virtual staining framework, we trained the networks
using human lung tissue sections. Through blind testing on
coarsely-focused autofluorescence images of unlabeled lung
tissue sections, the fast virtual staining framework success-
fully generated virtual H&E stained images matching the

staining quality of the standard virtual staining framework
that used in-focus autofluorescence images of the same sam-
ples. These coarsely-focused autofluorescence images of
unlabeled tissue were acquired with 4× fewer focus points
and 2× lower focusing precision than their finely-focused
counterparts used in the standard virtual staining frame-
work; this resulted in a ~32% decrease in the total image
acquisition time (per WSI) and a ~89% decrease in autofo-
cusing time using a benchtop scanning optical microscope.
With its capability to stain defocused images of unstained
tissue, we believe this virtual staining method will save time
without sacrificing the image quality of the virtually stained
images and be highly useful for histology.

2. Results

The standard virtual staining framework [2] uses in-focus
autofluorescence microscopic images of label-free tissue to
digitally stain the corresponding images. To generate high-
quality virtually stained images using defocused autofluores-
cence images, we first use a Deep-R [27] network for virtual
autofocusing, followed by the virtual staining of the resulting
refocused autofluorescence images, as shown in Figures 1
and 2(a). To achieve accurate virtual staining on the refo-
cused autofluorescence images (the output of Deep-R),
the trained virtual staining model was used to regularize
the Deep-R network during its training by introducing a
style loss, which minimizes the difference between multi-
scale virtual staining features of the Deep-R output and
the target (see the Materials and Methods section for
details). In other words, the presented defocused image vir-
tual staining framework does not involve a simple cascade
of two different, separately trained neural networks, one
following another.

We trained this defocused image virtual staining frame-
work with a dataset of 5,832 human lung tissue fields-of-
views (FOVs), each of which had 512 × 512 pixels, imaged
using a 40×/0.95 NA objective lens. As shown in
Figure 1(b), to train the Deep-R network, it was fed with
accurately paired image data consisting of (1) autofluores-
cence images of label-free tissue (including DAPI and TxRed
filter channels) acquired at different axial defocus distances
(ranging from -2μm to 2μm with an axial step size of
0.5μm, as illustrated in Figure 1(b)) as inputs and (2) the
corresponding in-focus DAPI and TxRed autofluorescence
images as targets. During the training of the Deep-R net-
work, the input autofluorescence images (defocused) in each
batch were randomly picked from the z-stacks. To train the
virtual staining network, registered pairs of in-focus autoflu-
orescence images (DAPI and TxRed channels) captured
before the histochemical staining and the brightfield images
of the same tissue sections after their histochemical staining
is used (see Figure 1(a) and the Materials and Methods sec-
tion). The two networks (Deep-R and the successive virtual
staining network) are linked together by a style loss during
the training (see the Materials and Methods section), form-
ing a collaborative inference scheme.

Once trained, the defocused image staining framework
can generate high-quality virtually stained images using

2 Intelligent Computing

D
ow

nloaded from
 https://spj.science.org on D

ecem
ber 17, 2022



defocused autofluorescence microscopic images of label-free
tissue as its input; this capability enables using fewer autofo-
cus points and lower focusing precision at each focus point
during the WSI scanning process. To demonstrate its suc-
cess, we blindly tested and compared the performance of
the standard in-focus image virtual staining framework
and our defocused image virtual staining framework on
2081 unique image FOVs (each image with 2048 × 2048
pixels) from ten new patients that were never seen by the
network before. For the standard in-focus virtual staining
framework, we acquired finely-focused whole slide autofluo-
rescence images of the test tissue sections (~23mm2 of sam-
ple area per patient on average) by using focus points at 8.5%

of the total acquired image FOVs, and a ±0.35μm focusing
precision at each focus point to form a fine focus map before
the WSI scanning. On the other hand, for the defocused vir-
tual staining framework, we used a smaller number of focus
points that only took up 2.1% of the total acquired image
FOVs, and reduced the focusing precision to ±0.83μm for
each focus point to acquire coarsely-focused whole slide
autofluorescence images, as illustrated in Figure 2(a). These
changes reduced the autofocusing time (per WSI) from 9.8
minutes to 1.1 minutes and the total image acquisition time
from 27.1 minutes to 18.4 minutes, achieving an 88.8%
decrease in the autofocusing time and a 32.1% decrease in
the entire image acquisition process per WSI (see the

Figure 1: The diagram of the training and testing schemes for the defocused image virtual staining framework. (a) Training of the standard
in-focus image virtual staining network. Aligned pairs of in-focus autofluorescence images captured before the histochemical staining
process and the brightfield images of the same tissue sections after the histochemical staining are used. (b) Training of the autofocusing
network (Deep-R). Autofluorescence images (defocused) were randomly picked from z-stacks (ranging from -2 μm to 2μm) as the
network inputs. The network target is the corresponding in-focus autofluorescence image. (c) Testing of the defocused image virtual
staining framework.
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Materials and Methods section). Because of the coarse focus
map, the acquired autofluorescence image FOVs exhibit
various defocus distances for each WSI. Figure 2(b) pre-
sents the zoomed-in regions of the acquired autofluores-
cence images and the generated virtually stained images.
Both frameworks (in-focus vs. defocused image virtual
staining networks) can generate high-quality staining that
presents a good match to the corresponding histochemi-
cally stained ground truth images. Although the fast virtual

staining framework took defocused autofluorescence images
as its input, with an apparent loss of sharpness and contrast
compared to their finely-focused counterparts, it can still
achieve comparable virtual staining performance to the
standard network that used in-focus input images.

To further showcase the ability of the presented frame-
work, we compared the performance of the standard in-
focus image virtual staining network (termed framework 1)
and the fast, defocused image virtual staining network

Figure 2: Defocused image virtual staining. (a) Comparison of the standard in-focus image virtual staining framework and our defocused
image virtual staining framework. The defocused image virtual staining framework can decrease 88.8% of the autofocusing time and 32.1%
of total image acquisition time per WSI by using 4× fewer focus points and 2× lower focusing precision. (b) Different regions of the acquired
autofluorescence images and the generated virtually stained images using the two frameworks in (a). Histochemically stained ground truth
images are also shown in the last column for comparison. (c) Zoomed-in virtually stained images and histochemically stained ground truth
images of the two regions in (b).
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(termed framework 2) using the same coarsely-focused
autofluorescence images as input. Framework 1 directly
applies the virtual staining network on these coarsely-
focused autofluorescence images of label-free tissue sec-
tions, without using the Deep-R network for refocusing,
whereas framework 2 uses the Deep-R network for refocus-

ing of defocused autofluorescence images, followed by the
virtual staining. In this comparison, the results of the stan-
dard virtual staining using finely-focused image FOVs were
also used as a baseline, which we termed framework 3.
Figure 3 reports a detailed comparison of these three frame-
works’ inference on various FOVs of different lung tissue

Figure 3: Comparison between the results of the standard in-focus image virtual staining network and the defocused image virtual staining
network using coarsely-focused input images. (a–e) Standard in-focus image virtual staining network output using coarsely-focused
autofluorescence images as inputs on FOVs of different lung tissue sections that were never used during the training phase. (f–j)
Defocused image virtual staining output using the same coarsely-focused input images as (a–e). (k–o) Standard in-focus image virtual
staining network output using finely-focused image FOVs is shown as baseline, for comparison purposes. (p–t) Histograms of the Cb
and Cr color channels for the virtual staining results in (a–e), (f–j), and (k–o).
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sections, never used during the training phase. Using defo-
cused autofluorescence images, framework 1 presented a
noticeable sharpness and contrast degradation in its virtu-
ally stained images (Figures 3(a)–3(e)). Furthermore, it also
caused hallucinations of nuclei and red blood cells and
related artifacts that cannot be seen in the results of frame-
work 3 (Figures 3(k)–3(o)). In contrast, framework 2
(Figures 3(f)–3(j)) successfully avoids these hallucinations
and artifacts, and produces sharp virtually stained images
that are in-focus, with a good match to the results of frame-
work 3, further confirming the conclusions reported in
Figure 2(b).

We further quantified the virtual staining performance
by calculating the peak signal-to-noise ratio (PSNR) and
the structural similarity index (SSIM) [31] between (1)
framework 1 or framework 2 and (2) the corresponding
baseline results in framework 3, as shown in
Figures 3(a)–3(j). Compared to the inference of framework
1, both metrics (PSNR and SSIM) were significantly
improved by the reported defocused image virtual staining
method (framework 2), demonstrating its robustness to
defocused image inputs.

Since the chromatic contrast among different tissue com-
ponents serves as one of the most significant features/cues
for pathologists to interpret tissue sections, we also quantified
the color distribution of the virtually stained images by con-
verting them from RGB to YCbCr color space and then plot-
ting the histograms of Cb and Cr channels, as shown in
Figures 3(p)–3(t). The two chroma components (Cb and Cr)
can present the blue and red information of the virtually
stained images, respectively, reflecting the staining quality of
H&E where hematoxylin stains nuclei a purplish-blue, and
eosin stains the extracellular matrix and cytoplasm pink [32].
For both Cb and Cr channels, the distributions of framework
1 image inference have obvious shifts compared to the other
two frameworks (2 and 3). In contrast, the image inference
results of framework 2 agree well with the distributions of
framework 3, further validating the success of our defocused
image virtual staining framework. It is also worth noting that
the defocused image virtual staining has performance degra-
dation on autofluorescence images with a large defocus dis-
tance (e.g., with an axial defocus amount of >2.5μm, see
Figures 3(i)–3(j)), which is not surprising since this large defo-
cus lies outside of its training range (±2μm).

Next, we used the differences in the YCbCr color space
to further quantify the relationship between the virtual stain-
ing performance and the axial image defocus distance (see
Figure 4). To conduct this analysis, we acquired z-stacks of
autofluorescence images of label-free lung tissue sections
(over an axial range of -3μm to 3μm with a step size of
0.5μm, see the Materials and Methods section), resulting
in 562 unique image FOVs, each with 512× 512 pixels. Then,
we separately tested framework 1 and framework 2 on the
acquired autofluorescence images at different axial defocus
distances. The resulting virtually stained images were used
to compute the absolute YCbCr color difference with respect
to the virtual staining results of framework 3 that used in-
focus autofluorescence images (i.e., using z = 0 μm of the
same FOVs). The average absolute color differences (of the

562 image FOVs) are plotted as a function of the axial defo-
cus distance, as shown in Figure 4(a). These results reveal
that framework 2 performs similarly to framework 1 when
the input autofluorescence image has a small defocus dis-
tance (e.g., <1μm). On the other hand, when the input auto-
fluorescence images have a large defocus distance of ≥1μm,
framework 2 has significantly better performance than
framework 1. We also performed paired upper-tailed t tests
(see the Materials and Methods section) between the two
frameworks for each color channel and plotted the resulting
p values as a function of the axial defocus distance to fur-
ther illustrate the performance improvement of our defo-
cused image virtual staining framework, as presented in
Figure 4(b). The t test results demonstrate that the defo-
cused image virtual staining network has a statistically sig-
nificant improvement in virtual staining performance over
the standard virtual staining network at a defocus distance
of ± ~1μm or larger.

3. Discussion

We demonstrated a deep learning-based framework that
decreases the total image acquisition time needed for virtual
staining of a label-free WSI by ~32%, also resulting in a
~89% decrease in the autofocusing time per tissue slide. By
combing a Deep-R network with a virtual staining model,
our framework generated virtual H&E stained images from
coarsely-focused whole slide autofluorescence images of
label-free tissue sections, matching the standard virtual
staining inference that used finely-focused WSIs that were
acquired with 4× more focus points and 2× higher focusing
precision. For a 1 cm2 label-free tissue section, consisting of
900 image FOVs (with each FOV having 2048 × 2048
pixels), the data acquisition for in-focus autofluorescence
images per sample takes ~6,900 seconds using a scanning
optical microscope (see the Materials and Methods section).
With the help of the presented defocused image virtual
staining network, this scanning time can be reduced to
~4,800 seconds by acquiring coarsely-focused WSIs with
reduced focus points and focusing precision. After the train-
ing is complete, which is a one-time effort, the inference pro-
cess for both the Deep-R and the virtual staining network
only takes ~18 seconds (i.e., ~36 seconds in total) for a tissue
area of 1 cm2; stated differently, the total inference time for
virtual staining is negligible compared with the whole slide
image acquisition process.

Besides saving significant amounts of image acquisition
time, the framework presented here can also act as an add-
on module to improve the robustness of the standard virtual
staining framework. Even when using high-precision pre-
scan focus maps, parts of the WSI can still be inaccurately
focused due to fluctuations of the microscope body and local
variations of the specimen’s topology. This can cause either
defocused image FOVs in parts of the WSI or an inaccurate
focus map. Our fast virtual staining framework can be
applied to these defocused FOVs to generate the same
high-quality virtually stained images as the other in-focus
regions, improving the inference consistency of the virtual
staining framework using label-free tissue sections.
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The ability of the fast virtual staining framework to gen-
erate high-quality stained images using coarsely-focused
autofluorescence images stems from the integration of the
Deep-R and virtual staining neural networks. In the training
of these two networks, the style loss (see Figure 5(b) and the
Materials and Methods section) serves as an essential regu-
larization term to optimize the Deep-R network to generate
refocused autofluorescence images suitable for the trained
virtual staining network. To demonstrate that this style loss
plays an indispensable role in our framework, we further

trained the Deep-R and the virtual staining networks sepa-
rately, without the style loss for the collaborative training;
for comparison, we term this framework 4. We separately
tested our defocused image virtual staining framework
(framework 2), and this new framework 4 on the autofluo-
rescence images acquired at different axial defocus distances
used in Figure 4 and accordingly computed the absolute
YCbCr color differences with respect to the virtual staining
results of framework 3 that used in-focus autofluorescence
images of the same sample FOVs. The average absolute color

Figure 4: Comparison of YCbCr color difference vs. the axial image defocus distance. (a) Absolute YCbCr color differences between (1) the
standard in-focus image virtual staining (and the defocused image virtual staining) inference results on autofluorescence input images
acquired at different axial depths and (2) the results of the standard virtual staining image inference using in-focus autofluorescence
images are plotted as a function of the axial defocus distance. (b) Results of the paired upper-tailed t tests (see the Materials and
Methods section). The resulting p values are plotted as a function of the axial defocus distance. In the area of p < 0:05, the defocused
image virtual staining framework statistically significantly improved virtual staining quality over the in-focus image virtual staining
framework for the same defocused input autofluorescence images.
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differences were plotted as a function of the axial defocus
distance (see Supplementary Figure S1), demonstrating
that framework 2 has significantly better performance than
framework 4 over the entire defocus range, which reveals
the significance of the style loss.

Since the neural network output usually has a distribu-
tion deviation from its target, directly feeding the refocused
output images of Deep-R into the virtual staining network
(such as in framework 4) leads to artifacts and hallucinations
in the generated virtually stained images. The style loss,
however, helps us regularize the Deep-R network such that
Deep-R learns to recover the “style features” used for the vir-
tual staining network, close to those of the in-focus autoflu-
orescence images. Furthermore, conventional loss terms,
such as the mean absolute error (MAE), emphasize low-
level image features by achieving pixel-wise correlations
between the output and the ground truth images. The style
loss, however, penalizes the high-level image features by
comparing multiscale features of the virtual staining net-
work, enabling Deep-R to retrieve the features for the con-
nected virtual staining network.

By introducing an additional Deep-R network in the
inference process, the fast, defocused image virtual staining
framework can be implemented on conventional fluores-
cence microscopes without hardware modifications or a cus-
tomized optical setup. This fast virtual staining workflow
can also be expanded to many other stains, such as Masson’s
Trichrome stain, Jones’ silver stain, and immunohistochem-
ical (IHC) stains [2–4, 12]. In addition to lung tissue, the
presented virtual staining workflow can be applied to other
types of human tissue such as, e.g., breast, kidney, salivary
gland, liver, and skin [2–4]. Although the virtual staining
approach presented here was demonstrated based on the
autofluorescence imaging of unlabeled tissue sections, it
can also be used to speed up the virtual staining workflow
of other label-free microscopy modalities [6, 7].

This fast virtual staining method using defocused auto-
fluorescence images of label-free tissue can be further
improved to get better image quality and inference general-
ization. As shown in the zoomed-in regions in Figure 2(c),
both the standard and fast virtual staining output images
in some areas miss the nuclear features compared to the his-
tochemically stained ground truth images. Additional chan-
nels of autofluorescence (e.g., FITC and Cy5 filters in
addition to DAPI and TxRed filters) can be used to further
improve the inference accuracy of the virtual staining net-
work as demonstrated in Ref. [4] for IHC staining.

4. Materials and Methods

4.1. Image Data Acquisition. The neural networks were
trained using microscopic images of thin tissue sections
from lung needle core biopsies. Unlabeled tissue sections
were obtained from existing deidentified specimens from
the UCLA Translational Pathology Core Laboratory
(TPCL). The human lung tissue blocks were sectioned using
a microtome into ~4μm thick sections, then deparaffinized
using xylene, and mounted on a standard glass slide using
mounting medium Cytoseal 60 (Thermo-Fisher Scientific).

The autofluorescence images were captured using a Leica
DMI8 microscope, controlled with Leica LAS X microscopy
automation software. The unstained tissue sections were
excited near the ultraviolet range and imaged using a DAPI
filter cube (Semrock OSFI3-DAPI5060C, EX377/50 nm EM
447/60 nm) as well as a TxRed filter cube (Semrock OSFI3-
TXRED-4040C, EX 562/40 nm EM 624/40 nm). The auto-
fluorescence images were acquired with a 40×/0.95 NA
objective (Leica HC PL APO 40×/0.95 DRY). Each FOV
was captured with a scientific complementary metal-oxide-
semiconductor (sCMOS) image sensor (Leica DFC 9000
GTC) with an exposure time of ∼100ms for the DAPI chan-
nel and ∼300ms for the TxRed channel.

While acquiring the autofluorescence images of the sam-
ples used to train the networks, we first built a fine prescan
focus map with focus points uniformly distributed over the
sample, taking up ~10% of the total image FOVs. Each focus
point had a focusing precision of ±0.35μm. At each FOV,
we acquired a z-stack of autofluorescence images ranging from
−2 to 2μmwith 0.5μm axial spacing, where z = 0 μm refers to
the in-focus position from the fine prescan focus map. The in-
focus autofluorescence images (z = 0 μm) are used as the net-
work input to the virtual staining network (Figure 1(a)) and
network target for the Deep-R network (Figure 1(b)). The
autofluorescence images at different axial depths in the z-stack
were randomly fed into the Deep-R network as input.

For each testing tissue sample, we first built the fine pre-
scan focus map similar to the acquisition of the training
images, and acquired the finely-focused whole slide autoflu-
orescence images, which were the test inputs for the stan-
dard virtual staining framework. Then, we built a coarse
prescan focus map and acquired the corresponding
coarsely-focused WSI for the same sample. The focus points
on the coarse focus map had a precision of ±0.83μm and
were evenly distributed over the sample, taking up ~2% of
total image FOVs. For the blind testing samples that were
used to quantify the relationship between the virtual staining
performance and the axial defocus distance in Figure 4, we
build fine prescan focus maps, the same as the acquisition
of the training sample. At each image FOV, we then
acquired z-stacks ranging from −3 to 3μm with 0.5μm axial
spacing. To achieve the ±0.35μm (or ±0.83μm) focusing
precision, the Leica LAS X microscopy automation software
performs a two-step search algorithm to find the in-focus
position. It first controls the microscope to implement a
coarse focus search in a z-stack that has a range of 50μm
with 23 (or 9) axial steps. Then, a fine focus search in a z-
stack with a range of 20μm with 29 (or 13) axial steps finds
the optimal focus; the time of the autofocusing process at
each focus point is 33 (or 15) seconds, respectively.

After the autofluorescence imaging of each tissue section,
the H&E histochemical staining was performed by UCLA
TPCL. These stained slides were then digitally scanned using
a brightfield scanning microscope (Leica Biosystems Aperio
AT2), which were used as ground truth images.

4.2. Image Preprocessing and Coregistration. To train the
network through supervised learning, matching pairs of
images must be obtained before and after the histochemical
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staining. To do this, the in-focus autofluorescence images of
an unlabeled tissue section were coregistered to brightfield
images of the same tissue section after it was histochemi-
cally stained. This image coregistration was done through
a combination of coarse and fine matching steps that were
used to progressively improve the alignment until subpixel
level accuracy was achieved, which followed the process
reported by Rivenson et al. [2]. In the coarse image registra-
tion, a cross-correlation-based method was first used to
extract the most similar portions in the stained images
matching the autofluorescence images. Next, multimodal
image registration [33] between the extracted histochemi-
cally stained images and the autofluorescence images
resulted in an affine transformation, which was applied to
the extracted stained images to correct any changes in size
or rotation. To achieve pixel-level coregistration accuracy,
a fine matching step using an elastic pyramidal registration

algorithm [34, 35] was implemented. Since this step relies
upon local-correlation-based matching, an initial rough vir-
tual staining network is applied to the autofluorescence
images. These roughly stained images were then coregis-
tered to the brightfield images of the histochemically stained
tissue using the elastic pyramidal registration algorithm.

Before feeding the aligned images into the neural net-
works, several preprocessing steps were applied to the
images. For the Deep-R network, each pair of input and
target autofluorescence images was normalized to have
zero mean and unit variance. The same normalization
was also applied to the input autofluorescence images of
the virtual staining network. The histochemically stained
images (ground truth) were converted to the YCbCr color
space before being fed into the virtual staining network as
target. For both the Deep-R and virtual staining networks,
all image pairs were randomly partitioned into patches of

Figure 5: Training loss and network architecture of the defocused image virtual staining framework. A GAN architecture consisting of two
deep neural networks including a generator and a discriminator was used to train the Deep-R and the virtual staining networks. (a) The
network architectures of the generator and discriminator used in the Deep-R and virtual staining networks. (b) Training details of the
Deep-R network. The objective function of the Deep-R generator training contains a perceptual loss and an adversarial loss from
discriminator, the MAE loss and the MSSSIM loss between the Deep-R output and the ground truth in-focus images, and a style loss
based on the high-level image features of the trained virtual staining network (see the Materials and Methods section for details).
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512 × 512 pixels and then augmented eight times by ran-
dom flipping and rotations during training.

4.3. Network Architecture, Training, and Validation. To per-
form the virtual staining network, we used a GAN [36] archi-
tecture (see Figure 5(a)), which is composed of two deep
neural networks, including a generator and a discriminator.
The generator network follows a U-net [37] structure, con-
sisting of four downsampling blocks with residual connec-
tions and four upsampling blocks. Each downsampling
block comprises three convolution layers and their activa-
tion functions, which double the number of channels. An
average pooling layer follows these convolution layers with
a stride and kernel size of two. The upsampling blocks first
2× bilinearly resize the tensors and then use three convolu-
tion layers with activation functions to reduce the number
of channels by a factor of four. Skip connections between
the downsampling and the upsampling layers at the same
level allow features at various scales to be learned.

The input of the discriminator network was either the
virtually stained images from the generator or the histo-
chemically stained ground truth images. The discriminator
contains six convolution blocks, each of which consists of
two convolution layers that double the number of channels
and has a stride of two. These six blocks were followed by
a global pooling layer and two dense layers to generate a sca-
lar after a sigmoid activation function.

During the training phase, the virtual staining network
iteratively minimizes the loss functions of the generator
and discriminator networks, defined as

LGVS
= LMAE z,GVS yð Þð Þ + ηLadv GVS yð Þð Þ + λLTV GVS yð Þð Þ,

ð1Þ

LDVS
=DVS GVS yð Þð Þ2 + 1 −DVS zð Þð Þ2, ð2Þ

where DVSð:Þ and GVSð:Þ refer to the outputs of the discrim-
inator and generator for the virtual staining network, respec-
tively. y represents the in-focus autofluorescence images, and
z denotes the brightfield counterparts of the histochemically
stained tissue (ground truth). In these loss functions, the
total variation (TV) and MAE loss terms are used as struc-
tural regularization terms to ensure that highly accurate vir-
tually stained images are generated. The MAE loss and TV
operator are defined as

LMAE z,GVS yð Þð Þ = 1
P ×Q

〠
p

〠
q

zp,q −GVS yð Þp,q
��� ���, ð3Þ

LTV GVS yð Þð Þ =〠
p

〠
q

GVS yð Þp+1,q − GVS yð Þp,q
��� ����

+ GVS yð Þp,q+1 −GVS yð Þp,q
��� ����,

ð4Þ

where P and Q represent the number of vertical and hori-
zontal pixels of the image patch, and p and q represent the
pixel locations. The adversarial loss is defined as

Ladv GVS yð Þð Þ = 1 −DVS GVS yð Þð Þð Þ2: ð5Þ

The regularization parameters (η and λ) were empiri-
cally set to 2,000 and 0.02.

For the virtual staining network, the generator and dis-
criminator both use the Adam [38] optimizer with the initial
learning rates of 10−4 and 10−5, respectively. The number of
channels for the first downsampling block of the virtual
staining generator and discriminator was set to 64. A batch
size of 4 was used during the training phase, and the training
process took ~24 hours and converged after ~40,000 itera-
tions (equivalent to ~30 epochs). Also, see the computer
implementation details listed below.

For the Deep-R network, a similar GAN structure to the
virtual staining network was used, but several modifications
were made to the generator architecture. The Deep-R gener-
ator adapts five upsampling and downsampling blocks, and
each downsampling or upsampling block contains two con-
volution layers in conjunction with a residual connection. In
the downsampling path, instead of an average pooling layer,
the Deep-R generator adapts max-pooling layers. For the
objective function of the generator training, we use an adver-
sarial loss from the discriminator, a perceptual loss [39], and
a style loss based on high-level image features, in addition to
the MAE loss and the multiscale structural similarity
(MSSSIM) losses between the Deep-R output and the
ground truth in-focus images, as shown in Figure 5(b). The
generator and discriminator losses of the Deep-R network
are defined as

LGDR
= aLadv GDR xð Þð Þ + bLp y,GDR xð Þð Þ + cLs y,GDR xð Þð Þ

+ dLMAE y,GDR xð Þð Þ + eLMSSSIM y,GDR xð Þð Þ,
ð6Þ

LDDR
=DDR GDR xð Þð Þ2 + 1 −DDR yð Þð Þ2, ð7Þ

where a, b, c, d, and e are training coefficients empirically set
as 300, 2,000, 500, 100, 100, respectively. DDRð:Þ and GDRð:Þ
refer to the discriminator and generator outputs for the
Deep-R, respectively. x denotes the autofluorescence images
taken from a z-stack ranging from −2 to 2μm with an axial
step size of 0.5μm; same as before, y represents the in-focus
autofluorescence images. The adversarial loss and MAE loss
are defined as before. The perceptual loss Lp is defined as

Lp y,GDR xð Þð Þ = 1
K
〠
k

DDR,k yð Þ −DDR,k GDR xð Þð Þ�� ��
1, ð8Þ

where DDR,kð·Þ represents the output feature map at the k-th
convolutional block of the discriminator. The style loss Ls is
defined as

Ls y,GDR xð Þð Þ = 1
M

〠
M

m=1
GVS,m yð Þ −GVS,m GDR xð Þð Þ�� ��

1, ð9Þ

where GVS,mð·Þ stands for the output feature map at the m-th
downsampling block of the trained virtual staining network
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(see Figure 5(b)). In the training of the Deep-R network, the
refocused output images from the Deep-R generator and the
in-focus ground truth images were input into the trained
virtual staining network separately. Output feature maps at
each downsampling block of these two inputs were used to
compute the MAE losses for different feature levels (see
Figure 5(b)), which were then summed up and averaged to
generate the style loss.

The MSSSIM loss, LMSSSIM, is defined as

LMSSSIM f , gð Þ = 1 −
2μf S

μgS + C1

μ2f S + μ2gS + C1

" #αS

×ΠS
j=1

2σf j
σgj

+ C2

σ2
f j
+ σ2

gj
+ C2

" #β j σf jgj
+ C3

σf j
σgj

+ C3

" #γ j

,

ð10Þ

where f j and gj are the distorted (or recovered/inferred) and

reference images downsampled 2j−1 times, respectively; μf ,
μg are the averages of f , g; σ2f , σ2g are the variances of f , g,
respectively; σf g is the covariance of f , g; C1, C2, C3 are the
constants used to stabilize the division with a small denom-
inator; and αS, βj, γj are exponents used to adjust the rela-
tive importance/weights of different components. The
MSSSIM function is implemented using the TensorFlow
function tf.image.ssim_multiscale using its default parame-
ter settings.

The generator and discriminator for the Deep-R network
used the Adam optimizers with the initial learning rates of
10−5 and 10−6, respectively. The number of channels for
the first downsampling block of the Deep-R generator and
discriminator was set to 32. We used a batch size of 5 in
our training phase, and the training process took ~72 hours
and converged after ~100,000 iterations (equivalent to ~10
epochs). After the training of the Deep-R and the virtual
staining networks, the blind inference process of the cas-
caded networks on a 512 × 512 pixel input image (including
the DAPI and TxRed channels) takes ~0.1 s (see the com-
puter implementation details below).

4.4. Quantitative Image Metrics. PSNR is defined as

PSNR = 10 ×
MAXI

2

MSE

� �
, ð11Þ

where MAXI is the maximum possible value of the ground
truth image. MSE is the mean square error between the
two images being compared, defined as

MSE =
1
n2

〠
n−1

i=0
〠
n−1

j=0
I i, jð Þ −K i, jð Þ½ �2, ð12Þ

where I is the target image and K is the image that is com-
pared with the target image.

SSIM is defined as

SSIM a, bð Þ = 2μaμb + C1ð Þ 2σa,b + C2ð Þ
μ2a + μ2b + C1
� �

σ2a + σ2b + C2
� � , ð13Þ

where a and b are the two images being compared. μa and μb
are the mean values of a and b, respectively. σa and σb are
the standard deviations of a and b, respectively. σa,b is
cross-covariance of a and b. C1 and C2 are the constants that
are used to avoid division by zero.

4.5. Statistical Analysis. Paired upper-tailed t tests were used
to determine whether statistically significant improvements
were made when using the fast, defocused virtual staining
framework. For each YCbCr color channel and the axial
defocus distance, the paired upper-tailed t test was per-
formed across the 562 unique FOVs using the absolute color
differences between the virtual staining results of framework
1 and framework 3 (termed c1: comparison 1) and the abso-
lute color differences between the virtual staining results of
framework 2 and framework 3 (termed c2: comparison 2).
The null hypothesis for the paired upper-tailed t test is that
c1 and c2 have the same mean. We used a 0.05 statistical sig-
nificance to reject the null hypothesis in favor of an alternate
upper-tailed hypothesis that c2 has a smaller mean than c1,
indicating that the framework 2 has a statistically significant
improvement over the framework 1 (see Figure 4).

4.6. Implementation Details. The image preprocessing was
implemented in MATLAB using version R2018b (Math-
Works). The neural networks were implemented using
Python version 3.9.0 and TensorFlow 2.1.0. The training
was performed on a desktop computer with an Intel Xeon
W-2265 central processing unit (CPU), 256GB random-
access memory (RAM), and an Nvidia GeForce RTX 2080
TI graphics processing unit (GPU).
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