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ABSTRACT
Many real-life scenarios require humans to make difficult trade-

offs: do we always follow all the traffic rules or do we violate the

speed limit in an emergency? In general, how should we account

for and balance the ethical values, safety recommendations, and

societal norms, when we are trying to achieve a certain objective?

To enable effective AI-human collaboration, we must equip AI

agents with a model of how humans make such trade-offs in envi-

ronments where there is not only a goal to be reached, but there

are also ethical constraints to be considered and to possibly align

with. These ethical constraints could be both deontological rules on

actions that should not be performed, or also consequentialist poli-

cies that recommend avoiding reaching certain states of the world.

Our purpose is to build AI agents that can mimic human behavior

in these ethically constrained decision environments, with a long

term research goal to use AI to help humans in making better moral

judgments and actions. To this end, we propose a computational

approach where competing objectives and ethical constraints are

orchestrated through a method that leverages a cognitive model

of human decision making, called multi-alternative decision field
theory (MDFT). Using MDFT, we build an orchestrator, called MDFT-

Orchestrator (MDFT-O), that is both general and flexible. We also

show experimentally that MDFT-O both generates better decisions

than using a heuristic that takes a weighted average of competing

policies (WA-O), but also performs better in terms of mimicking

human decisions as collected through Amazon Mechanical Turk

(AMT). Our methodology is therefore able to faithfully model hu-

man decision in ethically constrained decision environments.

CCS CONCEPTS
• Theory of computation → Reinforcement learning;
Markov decision processes; Sequential decision making; •
Computing methodologies → Theory of mind; • Human-
centered computing → HCI design and evaluation methods.
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1 INTRODUCTION
Implicit and explicit constraints are present in many decision mak-

ing scenarios, and they force us to make difficult decisions: do we

always satisfy all constraints, or do we violate some of them in

exceptional circumstances? These decisions are especially difficult

when such constraints model ethics or safety-related principles and

policies, since violating such constraints may be perceived as our

inability to live by our moral principles or to take care of our safety.

We believe that machines can help humans improve their moral

and safety decisions, by alerting them when they predict that they

will probably make unethical moves in their decision environment

[2–4, 9, 10, 14, 16]. The first step to achieve this vision is to build

machines that are able to make these predictions with high accu-

racy. In this paper, we propose an approach to build an AI agent

that can accurately mimick human decision making in an ethically

constrained environment.

We model our environment as a Markov Decision Process (MDP).

In particular, we consider a transition system with states and ac-

tions that allow an agent to transition from one state to another

one. Each task has an initial state and a goal state, to be reached

through a sequence of actions while minimizing the length of the

sequence and the number of constraint violations. The constraints

we consider model ethical and safety rules and policies in a compre-

hensive way, by including both constraints on actions, that model

deontological rules such as "don’t kill" or "don’t drive too fast", and

constraints over states, that model consequentialist policies such as

"any action is possible, but make sure you don’t end up in a certain

situation". Moreover, state constraints can refer to specific states

(such as in "make sure to avoid having a too high blood pressure") or

also classes of states (such as in "avoid any situation where people

are in danger"). In this constrained decision environment, we build

an AI agent that finds trade-offs between reaching the goal with

the shortest sequence of moves and satisfying the constraints.

https://doi.org/10.1145/3514094.3534174
https://doi.org/10.1145/3514094.3534174
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Many techniques can be used to build AI agents that rationally

minimize constraint violations while achieving a given goal [12, 20].

However, here the aim is to mimic human behavior, and it is well

known that humans are not rational, especially when confronted

with decisions that require making trade-offs between collective

norms and personal objectives, where they often reason by employ-

ing heuristics and approximations which are subject to bias and

noise [4, 5]. Therefore, techniques that employ optimal rationality

are not suitable to mimick human behavior [14]. For this reason,

our AI agent is inspired by a cognitive theory of human deliber-

ation, called "multi-alternative decision field theory" (MDFT) [5].

MDFT is a psychological theory of how humans make decisions

that has been shown to be able to capture deviations from ratio-

nality observed in humans, making trade-offs between competing

objectives in a human-like way. Here we use MDFT to decide on

each individual action in the sequence from the initial to the goal

state, providing all the possible actions (both constrained and not)

at each step. MDFT also includes a way to focus attention on indi-

vidual features of the options. We use this to allow our AI agent to

focus on either reaching the goal state or satisfying the constraints.

Given that our AI agent effectively orchestrates between these two

competing desires, we call it MDFT-O (for MDFT-Orchestrator).

We study MDFT-O both theoretically and experimentally, show-

ing that our architecture is theoretically more expressive and ob-

tains better empirical performance compared to other orchestrators

across a range of metrics. We also compare the action sequences

generated by MDFT-O with those generated by humans and ob-

tained via data collected through Amazon Mechanical Turk (AMT),

showing that MDFT-O generates human-like trajectories much

better than other orchestrators.

Summarizing, our contribution in this paper are as follows:

• We define a constrained decision environment which models

both deontological and consequentialist ethics policies;

• We build an AI orchestrator agent that acts in this decision

environment by making trade-offs between reaching the

goal and satisfying the constraints;

• We prove theoretically that our agent is strictly more general

than other orchestrators;

• We also prove experimentally that it generates better action

trajectories than other orchestrators, and that it can faithfully

mimic human trajectories.

2 MARKOV DECISION PROCESSES AND
CONSTRAINTS

In order to define and test MDFT-O, we use Markov Decision Pro-

cesses (MDPs) to model the decision environment where actions

involving trade-offs take place. MDPs are a general model of deci-

sion making widely used in artificial intelligence and robotics [19].

Formally, a finite-horizon Markov Decision Process (MDP) M is

a model for sequential decision making over time steps 𝑡 ∈ 𝑇 is

defined by a tuple (S,A, 𝑃, 𝐷0, 𝜙,𝛾, 𝑅) [19] where:
• S is a finite set of discrete states;

• {A𝑠 } ⊆ A is a set of actions available at state 𝑠;

• 𝑃 : S × A × S → [0, 1] is a model of the environment

given as transition probabilities where 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) is the

probability of transitioning to state 𝑠𝑡+1 from state 𝑠𝑡 after

taking action 𝑎𝑡 ∈ {A𝑠𝑡 } at time 𝑡 ;

• 𝐷0 : S → [0, 1] is a distribution over start states;

• 𝜙 : S × A × S → R𝑘
is a mapping from the transitions to

a 𝑘-dimensional space of features; 𝛾 ∈ [0, 1) is a discount
factor; and

• 𝑅 : S ×A ×S → R is a scalar reward received by the agent

for being in one state (𝑠𝑡 ) and transitioning to another state

(𝑠𝑡+1) at time 𝑡 , written as 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1).
Within the environment defined by the MDP, agents gener-

ate a sequence of actions called a trajectory of length 𝑡 . Let 𝜏 =

((𝑠1, 𝑎1, 𝑠2), ..., (𝑠𝑡−1, 𝑎𝑡−1, 𝑠𝑡 )) ∈ (S × A × S)𝑡 . We evaluate the

quality of a particular trajectory in terms of the amount of re-

ward accrued over the trajectory, subject to discounting, 𝑅(𝜏) =∑𝑡
𝑖=1 𝛾

𝑖𝑅(𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1). A policy, 𝜋 : S → P(A) is a map of proba-

bility distribution to actions for every state such that 𝜋 (𝑠, 𝑎) is the
probability of taking action 𝑎 in state 𝑠 . The probability of a trajec-

tory 𝜏 under a policy is 𝜋 (𝜏). The goal is to find 𝜋∗ that maximizes

the expected reward, 𝐽 (𝜋) = E𝜏∼𝜋 [𝑅(𝜏)] [11]. Classical tabular
methods can be used to find 𝜋∗, e.g, value iteration (VI). Such a

method finds an optimal policy by estimating the expected reward

for taking an action 𝑎 in a given state 𝑠 , i.e., the 𝑄-value of pair

(𝑠, 𝑎), written 𝑞(𝑠, 𝑎) [19].

Figure 1: Example environment for our agents. The agent
must move from 𝑆0 to 𝑆𝐺 while not violating various con-
straints (black squares). Constraints can be over actions (top
right, black squares), state features (green and blue color,
bottom right), or state occupancy (black squares in the grid,
left). Violating a constraint incurs a penalty.

A Constrained MDP MC
is a nominal MDP MN

with an addi-

tional cost function C : S×A×S → R and a budget 𝛼 ≥ 0. We can

then define the cost of a trajectory to be 𝑐 (𝜏) = ∑𝑡
𝑖=1 𝑐 (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1)

[1, 11]. Setting 𝛼 = 0 is enforcing hard constraints, i.e., we must

never trigger constrained transitions. Under a soft constraints par-

adigm, each constraint comes with a real-valued penalty/cost and

the goal is to minimize the sum of penalties incurred by the agent.

We consider three very general types of constraints, illustrated in

Figure 1, which could arise from ethical or moral considerations:

Action Constraints: An agent should not perform some (set of)

action 𝑎𝑖 ;

Occupancy Constraints: An agent should not occupy a (set of)

states 𝑠𝑖 ;
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Feature Constraints: Given a feature mapping of transitions 𝜙 ,

an agent should not perform an (set of) action in presence

of specific state features.

For example, the task of driving to a destination under time

pressure, the nominal world MN
would correspond to the un-

constrained environment, where we can reach our goal along any

path, regardless of its safety or compliance with traffic regulations.

On the other hand, in the constrained worldMC
we would have

action constraints preventing wrong-way driving, occupancy con-

straints discouraging driving on sidewalks, and feature constraints

deterring from using any lane reserved for public transport.

The optimal policies for MN
and MC

, denoted with 𝜋𝑛 and

𝜋𝑐 , can, thus, be seen as representing optimal strategies in terms

reaching the destination as quickly as possible and driving safely,

respectively.

3 MULTI-ALTERNATIVE DECISION FIELD
THEORY (MDFT)

In this paper, we propose using a cognitive model of decision

making to orchestrate between pursuing goals and satisfying con-

straints. Decision field theory (DFT) is a dynamic-cognitive ap-

proach that models human decision making based on psychological

principles [5]. DFT models the preferential choice as an accumu-

lative process in which the decision maker attends to a specific

attribute at each time to derive comparisons among options and

update his preferences accordingly. Ultimately the accumulation of

those preferences forms the decision maker’s choice. DFT has been

extended by [15] to multialternative preferential choice (denoted

MDFT, for Multialternative DFT), where an agent is confronted

with multiple options and equipped with an initial personal evalua-

tion for them according to different criteria called attributes. For

example, a student who needs to choose a main course among those

offered by the cafeteria will have in mind an initial evaluation of the

options in terms of how tasty and healthy they look. More formally,

MDFT, in its basic formulation [15], is composed of:

Personal Evaluation: We assume a set of options {𝑜1, . . . , 𝑜𝑛}
and a set of attributes {𝐴1, . . . , 𝐴𝐽 }. The subjective value of option
𝑜𝑖 on attribute 𝐴 𝑗 is denoted by 𝑚𝑖 𝑗 and stored in matrix M for

all options and attributes. In our example, let us assume that the

cafeteria options for main course are Salad (S), Burrito (B) and
Vegetable pasta (V) and that the attributes considered are Taste and
Health. Matrix M containing the student’s initial preferences for

the three options according to the two attributes could be defined

as follows:

M =


1 5

5 1

2 3


In this matrix the rows correspond to the options in order (𝑆, 𝐵,𝑉 )
and the columns to the attributes 𝑇𝑎𝑠𝑡𝑒 and 𝐻𝑒𝑎𝑙𝑡ℎ. For example,

we can see that 𝐵𝑢𝑟𝑟𝑖𝑡𝑜 has a high preference in terms of taste but

low in terms of nutritional value.

AttentionWeights: Attention weights are used to express how

much attention is allocated to each attribute at each particular time

𝑡 during the deliberation process. We denote them by a one-hot

column vector W(𝑡) where𝑊𝑗 (𝑡) is a value denoting the atten-

tion to attribute 𝑗 at time 𝑡 . We adopt the common simplifying

assumption that, at each point partial, the decision maker attends

to only one attribute. Thus,𝑊𝑗 (𝑡) ∈ {0, 1},∀𝑡, 𝑗 . In our example,

where we have two attributes, at any point in time 𝑡 , we will have

W(𝑡) = [1, 0], or W(𝑡) = [1, 0], representing that the student is

attending to, respectively,𝑇𝑎𝑠𝑡𝑒 or𝐻𝑒𝑎𝑙𝑡ℎ. In general, the attention

weights change across time according to a stationary stochastic

process with probability distributionw, where𝑤 𝑗 is the probability

of attending to attribute𝐴 𝑗 . In our example, defining𝑤1 = 0.55 and

𝑤2 = 0.45would mean that at each point in time, the student will be

attending 𝑇𝑎𝑠𝑡𝑒 with probability 0.55 and 𝐻𝑒𝑎𝑙𝑡ℎ with probability

0.45. In other words, 𝑇𝑎𝑠𝑡𝑒 matters slightly more to this particular

student than 𝐻𝑒𝑎𝑙𝑡ℎ.

Contrast Matrix: Contrast matrix C is used to compute the

advantage (or disadvantage) of an option with respect to the other

options. For example, C can be defined by contrasting the initial

evaluation of one alternative against the average of the evaluations

of the others. In this case, for three options, we have:

C =


1 −1/2 −1/2

−1/2 1 −1/2
−1/2 −1/2 1


At any moment in time, each alternative in the choice set is

associated with a valence value. The valence for option 𝑜𝑖 at time

𝑡 , denoted 𝑣𝑖 (𝑡), represents its momentary advantage (or disadvan-

tage) when compared with other options on some attribute under

consideration. The valence vector for 𝑛 options 𝑜1, . . . , 𝑜𝑛 at time 𝑡 ,

denoted by column vector V(𝑡) = [𝑣1 (𝑡), . . . , 𝑣𝑛 (𝑡)]𝑇 , is formed by:

V(𝑡) = C ×M ×W(𝑡) (1)

In our example, the valence vector at any time point in which

W(𝑡) = [1, 0], is V(𝑡) = [1 − 7/2, 5 − 3/2, 2 − 6/2]𝑇 .
Preferences for each option are accumulated across the itera-

tions of the deliberation process until a decision is made. This is

done by using Feedback Matrix S, which defines how the accu-

mulated preferences affect the preferences computed at the next

iteration. This interaction depends on how similar the options are

in terms of their initial evaluation expressed inM. Intuitively, the

new preference of an option is affected positively and strongly by

the preference it had accumulated so far, while it is inhibited by

the preference of similar options. This lateral inhibition decreases

as the dissimilarity between options increases. In our example, by

following the standard method of defining the S matrix described

in [8], we obtain S matrix:

S =


+0.9000 −0.0000 −0.0405
−0.0000 +0.9000 −0.0047
−0.0405 −0.0047 +0.9000


At any moment in time, the preference of each alternative is

calculated by

P(𝑡 + 1) = S × P(𝑡) + V(𝑡 + 1) (2)

where S×P(𝑡) is the contribution of the past preferences andV(𝑡+1)
it the valence computed at that iteration. Usually the initial state

P(0) is defined as 0, unless defined otherwise due, for example, to

prior knowledge on past experiences.

Given an MDFT model, one can simulate the process of delib-

erating among the options by accumulating the preferences for a

number of iterations. The process can be stopped either by setting



AIES ’22, August 1–3, 2022, Oxford, United Kingdom. Andrea Loreggia, Nicholas Mattei, Taher Rahgooy, Francesca Rossi, Biplav Srivastava, and Kristen Brent Venable

a threshold on the preference value and selecting whichever option

reaches it first or, by fixing the number of iterations and then se-

lecting the option with highest preference at that point. In general,

different runs of the sameMDFTmodel may return different choices

because of the uncertainty on the attention weights distribution.

In this way, MDFT induces choice distributions over set of options

and is capable of capturing well know behavioral effects such as

the compromise, similarity, and attraction effects that have been

observed in humans and that violate rationality principles [6].

4 ORCHESTRATING GOALS AND
CONSTRAINTS

Often humans are confronted with decisions that require making

trade-offs between collective norms and personal objectives [12, 17].

In this section, we investigate different methods for combining

policies 𝜋𝑛 for the nominal MN
and 𝜋𝑐 for the constrained MC

.

For every state action pair (𝑠, 𝑎), we consider vectors ⟨𝑠𝑞𝑛 (𝑠, 𝑎)⟩
and ⟨𝑠𝑞𝑐 (𝑠, 𝑎)⟩ with 𝑖 ∈ {1, . . . , 𝑘} where 𝑠𝑞𝑛 (𝑠, 𝑎) (resp. 𝑠𝑞𝑐 (𝑠, 𝑎))
represents the probability of choosing action 𝑎 in state 𝑠 according

to policy 𝜋𝑛 (resp. 𝜋𝑐 ). For example, if 𝜋𝑛 and 𝜋𝑐 are learned using

VI or Q-learning, then, such probabilities are obtained by taking the

softmax of the Q-values for each policy. We define the following

orchestrating policies:

Greedy Orchestrator G-O: uses policy 𝜋𝐺 , where 𝜋𝐺 (𝑠) = 𝑎,

selects an action 𝑎 with overall highest 𝑠𝑞-value:

𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈A𝑠

𝑚𝑎𝑥{𝑠𝑞𝑐 (𝑠, 𝑎), 𝑠𝑞𝑛 (𝑠, 𝑎)}.

Weighted Average Orchestrator WA-O: is defined by policy

𝜋𝑊𝐴 . Given weight vector (𝑤𝑛,𝑤𝑐 ) with𝑤𝑛 ,𝑤𝑐 ∈ [0, 1] and
𝑤𝑐 +𝑤𝑛 = 1, action 𝑎 = 𝜋𝑊𝐴 (𝑠) is chosen according to prob-

ability distribution 𝑝𝑊𝐴 (𝑎𝑖 ) = 𝑤𝑛𝑠𝑞𝑛 (𝑠, 𝑎𝑖 ) +𝑤𝑐𝑠𝑞𝑐 (𝑠, 𝑎𝑖 ).
MDFT Orchestrator MDFT-O: chooses actions according to pol-

icy 𝜋𝑀𝐷𝐹𝑇 . Action 𝑎 = 𝜋𝑀𝐷𝐹𝑇 (𝑠) is chosen via an MDFT

model where: M is a 𝑘 × 2 matrix where rows (i.e., options)

correspond to actions and columns (i.e., attributes) corre-

spond toMN
andMC

. The 𝑖-th element of the respective

world column is 𝑠𝑞𝑛 (𝑠, 𝑎𝑖 ) (resp., 𝑠𝑞𝑐 (𝑠, 𝑎𝑖 )), i.e., we are using
the probability of choosing an action as a proxy of its prefer-

ence. The weight vector (𝑤𝑛,𝑤𝑐 ) is defined as for 𝜋𝑊𝐴 , and

serves as probability distribution w defining how attention

shifts between attributes during deliberation. Matrices C and

S are defined in the standard way as described in Section

3. When reaching state 𝑠 , an MDFT deliberation process is

launched to decide which action should be chosen. At each

step the focus is shifted toMN
orMC

according to probabil-

ity distribution (𝑤𝑛,𝑤𝑐 ), and the preferences of the actions

according to the selected attribute are accumulated as per

Section 3.

Informally, G-O is a deterministic approach that takes the most

promising action, WA-O allows the agent to compromise between

the pursuit of the goal state and satisfying constraints via a new

policy obtained by considering the weighted average of the nomi-

nal and constrained distributions, and the MDFT-based orchestra-

tor, MDFT-O, uses MDFT to chose at each step an action using a

psychology-grounded simulation of how humans deliberate.

5 THEORETICAL COMPARISON OF
ORCHESTRATION METHODS

We first compare theoretically the expressive power of the three

orchestrators, G-O, Weighted WA-O and MDFT-O. We focus on a

single state 𝑠 and consider how the policies compare in terms of

being able to model a given distribution over the actions available

in 𝑠 . We start by considering G-O that is deterministic and will pick

a fixed action 𝑎 in state 𝑠 . Both WA-O and MDFT-O can model the

Greedy policy by shifting all the weight to the environment where

the maximum value is obtained and zeroing all preferences except

for that of action 𝑎. More formally:

Theorem 1. Consider state 𝑠 . Any choice probability distribution
over the actions available in 𝑠 that can be WA-O approaches.

Proof.We can model the (degenerate) probability distribution

induced by G-O via an MDFT with as many options as the actions

available in 𝑠 , two attributes with weights set to any random pair of

values, and preferences in the M matrix all equally to 0 except for

those in the row associated with 𝑎 which are set to 1. Matrices C
and S can be defined in the standard way described in Section 3 and

deliberation can be halted after one deliberation step. In fact, when

deliberation is launched, an attribute will be selected. Regardless of

which one is selected, action 𝑎 will be chosen given that it is the

only one with non-zero preference.

Similarly, we can model the G-O distribution using a WA-O

where𝑤𝑛 = 𝑤𝑐 = 1/2, and 𝑠𝑞𝑛 (𝑠, 𝑎) = 𝑠𝑞𝑐 (𝑠, 𝑎) = 1 and 𝑠𝑞𝑛 (𝑠, 𝑎′) =
𝑠𝑞𝑐 (𝑠, 𝑎′) = 0, ∀𝑎′ ≠ 𝑎. □

This observation, along with the fact that MDFT-O and WA-O

are non-deterministic, allows us to conclude that G-O is strictly

less expressive than the other two orchestrators.

Turning to the comparison between MDFT-O and WA-O, we can

prove the following statement.

Theorem 2. Given any state 𝑠 , there exist choice probability distri-
butions over the actions available in 𝑠 that can be modeled by MDFT-O
but not by WA-O.

Proof. We use an instance of the well known compromise ef-

fect [5] according to which a compromising alternative tends to be

chosen more often by humans than options with complementary

preferences with respect to the attributes. Consider the case of

state 𝑠 with three actions 𝑎1, 𝑎2 and 𝑎3. Let us assume that, for

example, 𝑠𝑞𝑛 (𝑠, 𝑎1) = 1/6, 𝑠𝑞𝑛 (𝑠, 𝑎2) = 1/3 𝑠𝑞𝑛 (𝑠, 𝑎3) = 1/2 and

𝑠𝑞𝑐 (𝑠, 𝑎1) = 1/2, 𝑠𝑞𝑐 (𝑠, 𝑎2) = 1/3 𝑠𝑞𝑐 (𝑠, 𝑎3) = 1/6. According to

the compromise effect humans will tend to choose 𝑎2 more of-

ten than 𝑎1 and 𝑎3. Such a choice distribution over the actions

can be modeled by an MDFT defined over option set {𝑎1, 𝑎2, 𝑎3},
with two attributes and weights 𝑤𝑛 = 0.55 and 𝑤𝑐 = 0.45 [5].

However, if we now consider WA-O, we can see that there is

no way to define weights (𝑤𝑛,𝑤𝑐 ) such that the corresponding

weighted average probability satisfies𝑤𝑛𝑠𝑞𝑛 (𝑠, 𝑎2) +𝑤𝑐𝑠𝑞𝑐 (𝑠, 𝑎2) >
𝑚𝑎𝑥{𝑤𝑛𝑠𝑞𝑛 (𝑠, 𝑎1)+𝑤𝑐𝑠𝑞𝑐 (𝑠, 𝑎1),𝑤𝑛𝑠𝑞𝑛 (𝑠, 𝑎3)+𝑤𝑐𝑠𝑞𝑐 (𝑠, 𝑎3)}. Thus,
this distribution over actions cannot be modeled by the WA-O. □

On the other hand, if we consider MDFTs in general, i.e. with-

out the restriction of having two attributes, we can model any

distribution.
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Theorem 3. Given state 𝑠 and the set A𝑠 of actions available in 𝑠 ,
consider a probability distribution 𝑝 defined over A𝑠 . We can define
an MDFT model where the set of options corresponds to A𝑠 and the
induced choice probability distribution coincides with 𝑝 .

Proof. Consider the MDFT model defined as follows:

• Matrix M is the 𝑘 × 𝑘 identity matrix;

• Weight vectors W are defined as in Section 3 and select

a single attribute at each iteration. Probability distribution

over attributesw is defined in a way such that the probability

of selecting the 𝑗-th attribute, is 𝑝 (𝑎 𝑗 ).
• MatricesC and S are defined in the standardway as described
in Section 3.

• The deliberation time for the model is fixed at one iteration.

It is easy to see that running the model induces a choice probability

over the actions which corresponds to 𝑝 . In fact, in every run,

which consists of a single iteration, an attribute 𝐴ℎ will be sampled

according to probability 𝑝 . Given how M is defined and the fact

that the initial value of the accumulated preference P(0) = 0, action

𝑎ℎ will be chosen. Thus, the probability of action 𝑎ℎ being selected,

given the MDFT model, coincides with 𝑝 (𝑎ℎ). □
As a consequence, MDFT-O is general enough to express the

probability distributions induced over the actions by WA-O.

Whether this is true also in the case of MDFTs with only two at-

tributes, as used by MDFT-O, remains an open theoretical question.

However, we verify this experimentally. In Rahgooy and Venable

[13], the authors propose an RNN-based approach that starts from

samples of a choice distribution and recovers parameters of an

MDFT model, minimizing the divergence between the original and

MDFT-induced choice distributions. We adapt their code
1
and gen-

erate 100 instances of WA-O distributions starting from random

𝑠𝑞𝑛 and 𝑠𝑞𝑐 distributions and (𝑤𝑛,𝑤𝑐 ) weights. For each of these

instances we generate 100 samples (i.e, chosen actions). We fix

the 𝑠𝑞𝑛 and 𝑠𝑞𝑐 values as parameters for the M matrix and learn

the attention weight distribution w using 300 learning iterations.

We use the learned MDFT model to generate a choice distribution

over the actions with a stopping criteria of 25 deliberations steps.

The observed average JS divergence between the original WA-O

distributions and the ones induced by learned MDFT is 0.024 with

standard error 0.0013. This shows experimentally that we can learn

weights for an MDFT model to replicate any choice distribution of

WA-O.

6 EXPERIMENTAL COMPARISON OF
ORCHESTRATION METHODS

We now compare the G-O, WA-O, and MDFT-O orchestrators em-

pirically to test if the orchestration techniques can be leveraged

to create agents that trade-off between conflicting objectives like

humans. We first compare the orchestrators on synthetic data and

then collect decision making data from humans and compare the or-

chestrators on how well they mimic the choices of human decision

makers.

1
Available at https://github.com/Rahgooy/MDFT

6.1 Synthetic Experiments
For our synthetic experiments, we adopt a similar gridworld setup

that has been used in many recent studies of decision making

in constrained MPDs [7, 18]. An example of navigating in this

gridworld task is depicted in Figure 2.

No color
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s0 sG50

40

30

20

10

0

10

Figure 2: Example environment for the synthetic experi-
ments. The red trajectory depicts an agent that goes directly
to the goal and ignores any constraints while the blue line
attempts to navigate to the goal while still respecting the
constraints.

For bothMN
andMC

, we adopt a similar gridworld setup as

Scobee and Sastry [18] (see Figure 2): we set an action penalty of

−4 for the cardinal directions, −4 ×
√
2 for taking the diagonal,

and a reward of 10 for reaching the goal state. For MC
, we also

fix the constraint costs on the generated grids for states, actions,

and features to be −50. Throughout, we assume non-deterministic

worlds with a 10% chance of action failure, resulting in a random

action.

We start by generating 100 different non-deterministic nominal

worlds, MN
and corresponding constrained worlds. We learn, via

value iteration on bothMN
andMC

, the optimal policy for that

world denoted 𝜋𝑛 and 𝜋𝑐 , respectively, along with the associated q

values for each state under the optimal policy: 𝑞𝑛 and 𝑞𝑐 .

Both the MDFT-O and WA-O agents can vary the weight that

each places on 𝑞𝑛 and 𝑞𝑐 . Hence to compare them, and in each of

our tests, we sweep these weighting values from (0, 1) in steps of

0.1. This gives us a pair (𝑛, 𝑐) where the value for 𝑛 means that

more weight is placed on the 𝑞𝑛 values and the value for 𝑐 is the

weight for the 𝑞𝑐 values. To avoid issues with the differing scales of

rewards, we first apply a softmax to the 𝑞 values before combining

them as applying the softmax forces the 𝑞 values to a probability

distribution that is comparable.

For all our results, we generated 200 trajectories for each step

and method (including 𝜋𝑛 and 𝜋𝑐 , denoted as Nominal and Con-

strained in Fig. 3), and for each of the 100 random worlds. For each

world, we compute the probability distribution over the transitions

(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) counting the number of times a transition occurs in a

generated trajectory. We first test to ensure that the trajectories gen-

erated by MDFT-O andWA-O are statistically significantly different.

To do this, we perform a Kolmogorov-Smirnov test and confirm

that the two techniques induce statistically significantly different

https://github.com/Rahgooy/MDFT
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choice distributions, rejecting the null at every weight step with

𝑝 ≤ 0.01.

In what follows, we normalize the values in order to have com-

parable plotted values; the results of our experiments are shown in

Figure 3. For comparison, we ran a q-learning agent to find the opti-

mal policy for both the nominal world and the learned constrained

world. These are shown in our results as the red and blue dashed

lines. Note that at (1, 0) (resp. (0, 1)) WA-O is equivalent to 𝜋𝑛 (resp.

𝜋𝑐 ), and that in both cases MDFT-O becomes deterministic, picking

the action with highest Q-value.

Figure 3 (top left) shows the average length of trajectories pro-

duced by the orchestrators, normalized so that 1.0 is the shortest

path between the start and goal state; (top right) the average nor-

malized penalty for trajectories inMC
, lower is better; (bottom left)

the average number of violated constraints. Across all these metrics,

MDFT-O is performing better than WA-O by always reaching the

goal in a smaller number of steps no matter the configuration of

the orchestrator. We can also see that MDFT-O agent violates fewer

constraints and accumulates lower penalties.

Finally, in Figure 3 (bottom right) we show the JS Divergence

between the trajectories generated by 𝜋∗C∗ and the trajectories

generated by MDFT and WA, as the weight vector varies. Given

two sets of trajectories, we compute the Jensen–Shannon (JS) di-

vergence between the two distributions induced by the policies:

𝑑𝑖𝑣 𝑗𝑠 (𝑝, 𝑞) = (𝐷 (𝑝 | |𝑚)+𝐷 (𝑞 | |𝑚))/2, where𝑚 is the pointwise mean

of 𝑝 and 𝑞 and 𝐷 is the Kullback-Leibler divergence. This metric

allows us to quantify the similarity between the two distributions

and thus to define the similarity between the orchestrator and the

demonstrations.

For both agents, the divergence is small on the left and grows

moving to the right, as constraints become less important. This

is not surprising, since the reference trajectories are generated

using 𝜋∗C∗ . Furthermore, we note that the MDFT advantage is more

significant when𝑤𝑐 is larger, that is when constraints matter more.

An explanation for this is that a large value 𝑤𝑐 results in more

MDFT deliberation steps to be focused (exclusively) on preferences

relative to the constrained world. InWA, the averaging of the values

underlying the policies, although weighted, is not able to maintain

the importance of the constraints.

6.2 Human Experiments
We conducted an Amazon Mechanical Turk study to get inputs on

how humans may navigate the grid. For this purpose, questions

were posed for every cell in the grid shown in Figure 1. Each ques-

tion corresponded to the decision an agent may take at that location.

The questions were framed in terms of choosing different roads at

an intersection where each road is labeled with two values: the first

one representing how fast (but possibly unsafely) it will take the

respondent to destination and the other one representing how safe,

but possibly slower, the road is. The roads were used as proxies of

the actions on the grid and the scores presented to the participants

were obtained by multiplying the corresponding 𝑠𝑞𝑛 and 𝑠𝑞𝑐 values

by 100. An example of a question is shown in Figure 4.

For the complete 9x9 grid, there were 81 questions with a ques-

tion having a maximum of 8 solution choices (questions regarding

boundary cells had fewer). The questions were divided into 9 sub-

surveys consisting of 9 questions and a validation question (requir-

ing the sub-survey number to be entered). The participants were

given a common survey link and a participant could be assigned any

of the 9 sub-surveys
2
. A total of 185 participants responded and we

obtained an average of 21 responses per cell. We then used the fre-

quencies with which participants chose the different roads to obtain

a probability distribution over the actions of the corresponding cell.

Finally we generated trajectories by starting from the initial state

(at the bottom right of the grid depicted in Figure 1) and repeatedly

sampled actions according to the obtained distributions until we

reached the goal. In what follows, we will refer to these trajectories

as human trajectories. In Figure 5, we show the JS divergence be-

tween 200 trajectories generated by using respectively WA-O and

MDFT-O with different settings of the attention weights and 200

human trajectories. As it can be seen, MDFT-O outperforms WA-O

for every combination of weights thus confirming its superiority

in capturing human decision making even in this complex setting

with multiple options.

Moreover, we can see that MDFT-O trajectories generated are

closest to the human ones when attention weights are set to 0.2

for the nominal world and 0.8 for the constrained world (minimal

obtained JS-divergence is 0.262337). This suggests that, on average,

participants cared substantially more about safe driving than reach-

ing the destination at all costs. In Figure 6, we show a graphical

comparison of the human trajectories and the MDFT-O trajecto-

ries for the optimal attention weights to further illustrate their

similarity.

Summarizing, our results suggest that MDFT-O is a promising

tool for modeling how humans trade off between pursuing objec-

tives andminimizing constraint violations. Moreover, the model can

be used to fit behavioral data and to predict the priorities underlying

the orchestration.

7 CONCLUSIONS AND FUTUREWORK
We defined a constrained decision environment which models both

deontological and consequentialist ethical constraints, where the

considered task is to reach a goal state with the shortest path while

satisfying the ethical constraints. We have built an AI orchestrator

agent that acts in this decision environment by making trade-offs

between reaching the goal and satisfying the constraints, proving

that it is more general than other orchestrators and generates bet-

ter trajectories. We have also shown that our AI agent faithfully

mimicks human trajectories, thus providing a way to predict how

human would make decisions and possibly help them improve their

decision quality and satisfaction.
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Figure 3: Comparison of Greedy, WA, and MDFT on our synthetic datasets in terms of average path length (top left), normal-
ized penalty (lower is better, top right), average number of violated constraints (lower is better, bottom left), and average JS
Divergence between 𝜋𝑐 trajectories and orchestrators MDFT and WA (bottom right).

Figure 4: Example of survey question with five options.

Scholar Award. Biplav Srivastava is funded by a University of South
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Figure 5: Average JS Divergence between trajectories gener-
ated from the human subjects experiment and MDFT-O and
WA-O.
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