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ABSTRACT KEYWORDS

Many real-life scenarios require humans to make difficult trade-
offs: do we always follow all the traffic rules or do we violate the
speed limit in an emergency? In general, how should we account
for and balance the ethical values, safety recommendations, and
societal norms, when we are trying to achieve a certain objective?
To enable effective Al-human collaboration, we must equip Al
agents with a model of how humans make such trade-offs in envi-
ronments where there is not only a goal to be reached, but there
are also ethical constraints to be considered and to possibly align
with. These ethical constraints could be both deontological rules on
actions that should not be performed, or also consequentialist poli-
cies that recommend avoiding reaching certain states of the world.
Our purpose is to build Al agents that can mimic human behavior
in these ethically constrained decision environments, with a long
term research goal to use Al to help humans in making better moral
judgments and actions. To this end, we propose a computational
approach where competing objectives and ethical constraints are
orchestrated through a method that leverages a cognitive model
of human decision making, called multi-alternative decision field
theory (MDFT). Using MDFT, we build an orchestrator, called MDFT-
Orchestrator (MDFT-O), that is both general and flexible. We also
show experimentally that MDFT-O both generates better decisions
than using a heuristic that takes a weighted average of competing
policies (WA-O), but also performs better in terms of mimicking
human decisions as collected through Amazon Mechanical Turk
(AMT). Our methodology is therefore able to faithfully model hu-
man decision in ethically constrained decision environments.

CCS CONCEPTS

+ Theory of computation — Reinforcement learning;
Markov decision processes; Sequential decision making; -
Computing methodologies — Theory of mind; + Human-
centered computing — HCI design and evaluation methods.
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1 INTRODUCTION

Implicit and explicit constraints are present in many decision mak-
ing scenarios, and they force us to make difficult decisions: do we
always satisfy all constraints, or do we violate some of them in
exceptional circumstances? These decisions are especially difficult
when such constraints model ethics or safety-related principles and
policies, since violating such constraints may be perceived as our
inability to live by our moral principles or to take care of our safety.
We believe that machines can help humans improve their moral
and safety decisions, by alerting them when they predict that they
will probably make unethical moves in their decision environment
[2-4, 9, 10, 14, 16]. The first step to achieve this vision is to build
machines that are able to make these predictions with high accu-
racy. In this paper, we propose an approach to build an Al agent
that can accurately mimick human decision making in an ethically
constrained environment.

We model our environment as a Markov Decision Process (MDP).
In particular, we consider a transition system with states and ac-
tions that allow an agent to transition from one state to another
one. Each task has an initial state and a goal state, to be reached
through a sequence of actions while minimizing the length of the
sequence and the number of constraint violations. The constraints
we consider model ethical and safety rules and policies in a compre-
hensive way, by including both constraints on actions, that model
deontological rules such as "don’t kill" or "don’t drive too fast", and
constraints over states, that model consequentialist policies such as
"any action is possible, but make sure you don’t end up in a certain
situation". Moreover, state constraints can refer to specific states
(such as in "make sure to avoid having a too high blood pressure") or
also classes of states (such as in "avoid any situation where people
are in danger"). In this constrained decision environment, we build
an Al agent that finds trade-offs between reaching the goal with
the shortest sequence of moves and satisfying the constraints.
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Many techniques can be used to build Al agents that rationally
minimize constraint violations while achieving a given goal [12, 20].
However, here the aim is to mimic human behavior, and it is well
known that humans are not rational, especially when confronted
with decisions that require making trade-offs between collective
norms and personal objectives, where they often reason by employ-
ing heuristics and approximations which are subject to bias and
noise [4, 5]. Therefore, techniques that employ optimal rationality
are not suitable to mimick human behavior [14]. For this reason,
our Al agent is inspired by a cognitive theory of human deliber-
ation, called "multi-alternative decision field theory" (MDFT) [5].
MDFT is a psychological theory of how humans make decisions
that has been shown to be able to capture deviations from ratio-
nality observed in humans, making trade-offs between competing
objectives in a human-like way. Here we use MDFT to decide on
each individual action in the sequence from the initial to the goal
state, providing all the possible actions (both constrained and not)
at each step. MDFT also includes a way to focus attention on indi-
vidual features of the options. We use this to allow our Al agent to
focus on either reaching the goal state or satisfying the constraints.
Given that our Al agent effectively orchestrates between these two
competing desires, we call it MDFT-O (for MDFT-Orchestrator).

We study MDFT-O both theoretically and experimentally, show-
ing that our architecture is theoretically more expressive and ob-
tains better empirical performance compared to other orchestrators
across a range of metrics. We also compare the action sequences
generated by MDFT-O with those generated by humans and ob-
tained via data collected through Amazon Mechanical Turk (AMT),
showing that MDFT-O generates human-like trajectories much
better than other orchestrators.

Summarizing, our contribution in this paper are as follows:

o We define a constrained decision environment which models
both deontological and consequentialist ethics policies;

e We build an Al orchestrator agent that acts in this decision
environment by making trade-offs between reaching the
goal and satisfying the constraints;

e We prove theoretically that our agent is strictly more general
than other orchestrators;

e We also prove experimentally that it generates better action
trajectories than other orchestrators, and that it can faithfully
mimic human trajectories.

2 MARKOYV DECISION PROCESSES AND
CONSTRAINTS

In order to define and test MDFT-O, we use Markov Decision Pro-
cesses (MDPs) to model the decision environment where actions
involving trade-offs take place. MDPs are a general model of deci-
sion making widely used in artificial intelligence and robotics [19].
Formally, a finite-horizon Markov Decision Process (MDP) M is
a model for sequential decision making over time steps t € T is
defined by a tuple (S, A, P, Dy, ¢, y, R) [19] where:

e S is a finite set of discrete states;

o {As} C Ais aset of actions available at state s;

e P :SXAXS — [0,1] is a model of the environment

given as transition probabilities where P(s¢41]s¢, ar) is the
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probability of transitioning to state sy1 from state s; after
taking action a; € {As,} at time t;

e Dy :S — [0,1] is a distribution over start states;

¢ p:SXAXS — RFisa mapping from the transitions to
a k-dimensional space of features; y € [0, 1) is a discount
factor; and

o R: SXAxS — Risascalar reward received by the agent
for being in one state (s;) and transitioning to another state
(st+1) at time ¢, written as R(sy, a, S¢+1)-

Within the environment defined by the MDP, agents gener-
ate a sequence of actions called a trajectory of length ¢t. Let 7 =
((s1,a1,52), oo (St—1, ar—1,51)) € (S X A x S)t. We evaluate the
quality of a particular trajectory in terms of the amount of re-
ward accrued over the trajectory, subject to discounting, R(7) =
Zle Y'R(s;, ai, si+1). A policy, 7 : S — P(A) is a map of proba-
bility distribution to actions for every state such that (s, a) is the
probability of taking action a in state s. The probability of a trajec-
tory 7 under a policy is 7 (7). The goal is to find 7* that maximizes
the expected reward, J() = E,~;[R(7)] [11]. Classical tabular
methods can be used to find 7%, e.g, value iteration (VI). Such a
method finds an optimal policy by estimating the expected reward
for taking an action a in a given state s, i.e., the Q-value of pair
(s, a), written q(s, a) [19].
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Figure 1: Example environment for our agents. The agent
must move from Sy to Sg while not violating various con-
straints (black squares). Constraints can be over actions (top
right, black squares), state features (green and blue color,
bottom right), or state occupancy (black squares in the grid,
left). Violating a constraint incurs a penalty.

A Constrained MDP M€ is a nominal MDP M” with an addi-
tional cost function C : SXAXS — R and abudget a > 0. We can
then define the cost of a trajectory to be ¢(7) = Zle c(si, ai, Si+1)
[1, 11]. Setting a = 0 is enforcing hard constraints, i.e., we must
never trigger constrained transitions. Under a soft constraints par-
adigm, each constraint comes with a real-valued penalty/cost and
the goal is to minimize the sum of penalties incurred by the agent.
We consider three very general types of constraints, illustrated in
Figure 1, which could arise from ethical or moral considerations:
Action Constraints: An agent should not perform some (set of)

action a;;
Occupancy Constraints: An agent should not occupy a (set of)
states s;;
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Feature Constraints: Given a feature mapping of transitions ¢,
an agent should not perform an (set of) action in presence
of specific state features.

For example, the task of driving to a destination under time
pressure, the nominal world M” would correspond to the un-
constrained environment, where we can reach our goal along any
path, regardless of its safety or compliance with traffic regulations.
On the other hand, in the constrained world M€ we would have
action constraints preventing wrong-way driving, occupancy con-
straints discouraging driving on sidewalks, and feature constraints
deterring from using any lane reserved for public transport.

The optimal policies for M~ and M€, denoted with 7, and
7Te, can, thus, be seen as representing optimal strategies in terms
reaching the destination as quickly as possible and driving safely,
respectively.

3 MULTI-ALTERNATIVE DECISION FIELD
THEORY (MDFT)

In this paper, we propose using a cognitive model of decision
making to orchestrate between pursuing goals and satisfying con-
straints. Decision field theory (DFT) is a dynamic-cognitive ap-
proach that models human decision making based on psychological
principles [5]. DFT models the preferential choice as an accumu-
lative process in which the decision maker attends to a specific
attribute at each time to derive comparisons among options and
update his preferences accordingly. Ultimately the accumulation of
those preferences forms the decision maker’s choice. DFT has been
extended by [15] to multialternative preferential choice (denoted
MDFT, for Multialternative DFT), where an agent is confronted
with multiple options and equipped with an initial personal evalua-
tion for them according to different criteria called attributes. For
example, a student who needs to choose a main course among those
offered by the cafeteria will have in mind an initial evaluation of the
options in terms of how tasty and healthy they look. More formally,
MDFT, in its basic formulation [15], is composed of:

Personal Evaluation: We assume a set of options {o1,...,0,}
and a set of attributes {A1,...,A ]}. The subjective value of option
o; on attribute A; is denoted by m;; and stored in matrix M for
all options and attributes. In our example, let us assume that the
cafeteria options for main course are Salad (S), Burrito (B) and
Vegetable pasta (V) and that the attributes considered are Taste and
Health. Matrix M containing the student’s initial preferences for
the three options according to the two attributes could be defined

as follows: 1 s
M=|5 1
2 3

In this matrix the rows correspond to the options in order (S, B, V)
and the columns to the attributes Taste and Health. For example,
we can see that Burrito has a high preference in terms of taste but
low in terms of nutritional value.

Attention Weights: Attention weights are used to express how
much attention is allocated to each attribute at each particular time
t during the deliberation process. We denote them by a one-hot
column vector W(t) where Wj(t) is a value denoting the atten-
tion to attribute j at time ¢t. We adopt the common simplifying
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assumption that, at each point partial, the decision maker attends
to only one attribute. Thus, Wj(t) € {0,1},Vt, j. In our example,
where we have two attributes, at any point in time ¢, we will have
W(t) = [1,0], or W(¢) = [1,0], representing that the student is
attending to, respectively, Taste or Health. In general, the attention
weights change across time according to a stationary stochastic
process with probability distribution w, where wj is the probability
of attending to attribute A;. In our example, defining wy = 0.55 and
wy = 0.45 would mean that at each point in time, the student will be
attending Taste with probability 0.55 and Health with probability
0.45. In other words, Taste matters slightly more to this particular
student than Health.

Contrast Matrix: Contrast matrix C is used to compute the
advantage (or disadvantage) of an option with respect to the other
options. For example, C can be defined by contrasting the initial
evaluation of one alternative against the average of the evaluations
of the others. In this case, for three options, we have:

1 -1/2 -1/2
c=|-12 1 -1/2
-1/2 -1/2 1

At any moment in time, each alternative in the choice set is
associated with a valence value. The valence for option o; at time
t, denoted v; (¢), represents its momentary advantage (or disadvan-
tage) when compared with other options on some attribute under

consideration. The valence vector for n options o1, ..., 0y, at time ¢,
denoted by column vector V(t) = [01(1), ...,0,(£)]7, is formed by:
V() =CxMXW(t) (1)

In our example, the valence vector at any time point in which
W(t) =[1,0],is V() = [1-7/2,5-3/2,2 - 6/2]T.

Preferences for each option are accumulated across the itera-
tions of the deliberation process until a decision is made. This is
done by using Feedback Matrix S, which defines how the accu-
mulated preferences affect the preferences computed at the next
iteration. This interaction depends on how similar the options are
in terms of their initial evaluation expressed in M. Intuitively, the
new preference of an option is affected positively and strongly by
the preference it had accumulated so far, while it is inhibited by
the preference of similar options. This lateral inhibition decreases
as the dissimilarity between options increases. In our example, by
following the standard method of defining the S matrix described
in [8], we obtain S matrix:

+0.9000 —0.0000 —0.0405
S =1-0.0000 +0.9000 —0.0047
—0.0405 —0.0047 +0.9000

At any moment in time, the preference of each alternative is
calculated by

P(t+1)=SxP(t) + V(t +1) @)

where SXP(t) is the contribution of the past preferences and V(+1)
it the valence computed at that iteration. Usually the initial state
P(0) is defined as 0, unless defined otherwise due, for example, to
prior knowledge on past experiences.

Given an MDFT model, one can simulate the process of delib-
erating among the options by accumulating the preferences for a
number of iterations. The process can be stopped either by setting
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a threshold on the preference value and selecting whichever option
reaches it first or, by fixing the number of iterations and then se-
lecting the option with highest preference at that point. In general,
different runs of the same MDFT model may return different choices
because of the uncertainty on the attention weights distribution.
In this way, MDFT induces choice distributions over set of options
and is capable of capturing well know behavioral effects such as
the compromise, similarity, and attraction effects that have been
observed in humans and that violate rationality principles [6].

4 ORCHESTRATING GOALS AND
CONSTRAINTS

Often humans are confronted with decisions that require making
trade-offs between collective norms and personal objectives [12, 17].
In this section, we investigate different methods for combining
policies mp, for the nominal M and . for the constrained MC.

For every state action pair (s, a), we consider vectors (sqn (s, a))
and (sqc(s,a)) with i € {1,...,k} where squ(s, a) (resp. sqc(s, a))
represents the probability of choosing action a in state s according
to policy 7y, (resp. 7c). For example, if 7, and 7. are learned using
VI or Q-learning, then, such probabilities are obtained by taking the
softmax of the Q-values for each policy. We define the following
orchestrating policies:

Greedy Orchestrator G-O: uses policy ng, where n5(s) = a,

selects an action a with overall highest sg-value:
a = argmaxmax{sqc (s, a), sqn(s,a)}.
acAs

Weighted Average Orchestrator WA-O: is defined by policy
7w A- Given weight vector (wp, wc) with wp,we € [0, 1] and
We +wp, = 1, action a = 4 (s) is chosen according to prob-
ability distribution py 4 (ai) = Wnsqn(s, ai) + wesqe (s, ai).

MDFT Orchestrator MDFT-O: chooses actions according to pol-
icy mapprT- Action a = myprr(s) is chosen via an MDFT
model where: M is a k X 2 matrix where rows (i.e., options)
correspond to actions and columns (i.e., attributes) corre-
spond to M and M. The i-th element of the respective
world column is sqy (s, a;) (resp., sqc (s, a;)), i.e., we are using
the probability of choosing an action as a proxy of its prefer-
ence. The weight vector (wp, wc) is defined as for myy 4, and
serves as probability distribution w defining how attention
shifts between attributes during deliberation. Matrices C and
S are defined in the standard way as described in Section
3. When reaching state s, an MDFT deliberation process is
launched to decide which action should be chosen. At each
step the focus is shifted to MY or M€ according to probabil-
ity distribution (wp, wc), and the preferences of the actions
according to the selected attribute are accumulated as per
Section 3.

Informally, G-O is a deterministic approach that takes the most
promising action, WA-O allows the agent to compromise between
the pursuit of the goal state and satisfying constraints via a new
policy obtained by considering the weighted average of the nomi-
nal and constrained distributions, and the MDFT-based orchestra-
tor, MDFT-O, uses MDFT to chose at each step an action using a
psychology-grounded simulation of how humans deliberate.
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5 THEORETICAL COMPARISON OF
ORCHESTRATION METHODS

We first compare theoretically the expressive power of the three
orchestrators, G-O, Weighted WA-O and MDFT-O. We focus on a
single state s and consider how the policies compare in terms of
being able to model a given distribution over the actions available
in s. We start by considering G-O that is deterministic and will pick
a fixed action a in state s. Both WA-O and MDFT-O can model the
Greedy policy by shifting all the weight to the environment where
the maximum value is obtained and zeroing all preferences except
for that of action a. More formally:

THEOREM 1. Consider state s. Any choice probability distribution
over the actions available in s that can be WA-O approaches.

Proof. We can model the (degenerate) probability distribution
induced by G-O via an MDFT with as many options as the actions
available in s, two attributes with weights set to any random pair of
values, and preferences in the M matrix all equally to 0 except for
those in the row associated with a which are set to 1. Matrices C
and S can be defined in the standard way described in Section 3 and
deliberation can be halted after one deliberation step. In fact, when
deliberation is launched, an attribute will be selected. Regardless of
which one is selected, action a will be chosen given that it is the
only one with non-zero preference.

Similarly, we can model the G-O distribution using a WA-O
where w, = we = 1/2,and sqn (s, @) = sqc(s,a) = 1and sqn(s,a’) =
sqc(s,a’) =0,Ya’ £ a.0

This observation, along with the fact that MDFT-O and WA-O
are non-deterministic, allows us to conclude that G-O is strictly
less expressive than the other two orchestrators.

Turning to the comparison between MDFT-O and WA-O, we can
prove the following statement.

THEOREM 2. Given any state s, there exist choice probability distri-
butions over the actions available in s that can be modeled by MDFT-O
but not by WA-O.

Proof. We use an instance of the well known compromise ef-
fect [5] according to which a compromising alternative tends to be
chosen more often by humans than options with complementary
preferences with respect to the attributes. Consider the case of
state s with three actions aq, as and as. Let us assume that, for
example, sqn(s,a1) = 1/6, sqn(s,a2) = 1/3 sqn(s,a3) = 1/2 and
sqc(s,a1) = 1/2, sqc(s,a2) = 1/3 sqc(s,a3) = 1/6. According to
the compromise effect humans will tend to choose az more of-
ten than a; and as. Such a choice distribution over the actions
can be modeled by an MDFT defined over option set {a1, az, a3},
with two attributes and weights w, = 0.55 and w, = 0.45 [5].
However, if we now consider WA-O, we can see that there is
no way to define weights (wp, wc) such that the corresponding
weighted average probability satisfies wy,sqn (s, a2) + wesqe (s, az) >
max{wnsqn (s, a1)+wcsqc (s, a1), wnsqn (s, as) +wesqc (s, as) }. Thus,
this distribution over actions cannot be modeled by the WA-O. O

On the other hand, if we consider MDFTs in general, i.e. with-
out the restriction of having two attributes, we can model any
distribution.
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THEOREM 3. Given state s and the set A of actions available in s,
consider a probability distribution p defined over As. We can define
an MDFT model where the set of options corresponds to As and the
induced choice probability distribution coincides with p.

Proof. Consider the MDFT model defined as follows:
e Matrix M is the k X k identity matrix;
e Weight vectors W are defined as in Section 3 and select
a single attribute at each iteration. Probability distribution
over attributes w is defined in a way such that the probability
of selecting the j-th attribute, is p(a;).
e Matrices C and S are defined in the standard way as described
in Section 3.
o The deliberation time for the model is fixed at one iteration.
It is easy to see that running the model induces a choice probability
over the actions which corresponds to p. In fact, in every run,
which consists of a single iteration, an attribute Ay will be sampled
according to probability p. Given how M is defined and the fact
that the initial value of the accumulated preference P(0) = 0, action
ap, will be chosen. Thus, the probability of action aj, being selected,
given the MDFT model, coincides with p(ay). O

As a consequence, MDFT-O is general enough to express the
probability distributions induced over the actions by WA-O.

Whether this is true also in the case of MDFTs with only two at-
tributes, as used by MDFT-O, remains an open theoretical question.
However, we verify this experimentally. In Rahgooy and Venable
[13], the authors propose an RNN-based approach that starts from
samples of a choice distribution and recovers parameters of an
MDFT model, minimizing the divergence between the original and
MDFT-induced choice distributions. We adapt their code! and gen-
erate 100 instances of WA-O distributions starting from random
sqn and sq. distributions and (wy, w.) weights. For each of these
instances we generate 100 samples (i.e, chosen actions). We fix
the sq, and sq. values as parameters for the M matrix and learn
the attention weight distribution w using 300 learning iterations.
We use the learned MDFT model to generate a choice distribution
over the actions with a stopping criteria of 25 deliberations steps.
The observed average JS divergence between the original WA-O
distributions and the ones induced by learned MDFT is 0.024 with
standard error 0.0013. This shows experimentally that we can learn
weights for an MDFT model to replicate any choice distribution of
WA-O.

6 EXPERIMENTAL COMPARISON OF
ORCHESTRATION METHODS

We now compare the G-O, WA-O, and MDFT-O orchestrators em-
pirically to test if the orchestration techniques can be leveraged
to create agents that trade-off between conflicting objectives like
humans. We first compare the orchestrators on synthetic data and
then collect decision making data from humans and compare the or-
chestrators on how well they mimic the choices of human decision
makers.

! Available at https://github.com/Rahgooy/MDFT
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6.1 Synthetic Experiments

For our synthetic experiments, we adopt a similar gridworld setup
that has been used in many recent studies of decision making
in constrained MPDs [7, 18]. An example of navigating in this
gridworld task is depicted in Figure 2.

i ]|
0 =4
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No color
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Figure 2: Example environment for the synthetic experi-
ments. The red trajectory depicts an agent that goes directly
to the goal and ignores any constraints while the blue line
attempts to navigate to the goal while still respecting the
constraints.

For both M and M€, we adopt a similar gridworld setup as
Scobee and Sastry [18] (see Figure 2): we set an action penalty of
—4 for the cardinal directions, —4 X V2 for taking the diagonal,
and a reward of 10 for reaching the goal state. For M€, we also
fix the constraint costs on the generated grids for states, actions,
and features to be —50. Throughout, we assume non-deterministic
worlds with a 10% chance of action failure, resulting in a random
action.

We start by generating 100 different non-deterministic nominal
worlds, M/ and corresponding constrained worlds. We learn, via
value iteration on both M and MC, the optimal policy for that
world denoted 7, and 7., respectively, along with the associated q
values for each state under the optimal policy: g, and g..

Both the MDFT-O and WA-O agents can vary the weight that
each places on g, and g.. Hence to compare them, and in each of
our tests, we sweep these weighting values from (0, 1) in steps of
0.1. This gives us a pair (n, ¢) where the value for n means that
more weight is placed on the g, values and the value for c is the
weight for the g, values. To avoid issues with the differing scales of
rewards, we first apply a softmax to the g values before combining
them as applying the softmax forces the g values to a probability
distribution that is comparable.

For all our results, we generated 200 trajectories for each step
and method (including 7, and 7., denoted as Nominal and Con-
strained in Fig. 3), and for each of the 100 random worlds. For each
world, we compute the probability distribution over the transitions
(s¢, ar, st+1) counting the number of times a transition occurs in a
generated trajectory. We first test to ensure that the trajectories gen-
erated by MDFT-O and WA-O are statistically significantly different.
To do this, we perform a Kolmogorov-Smirnov test and confirm
that the two techniques induce statistically significantly different
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choice distributions, rejecting the null at every weight step with
p <0.0L

In what follows, we normalize the values in order to have com-
parable plotted values; the results of our experiments are shown in
Figure 3. For comparison, we ran a q-learning agent to find the opti-
mal policy for both the nominal world and the learned constrained
world. These are shown in our results as the red and blue dashed
lines. Note that at (1, 0) (resp. (0, 1)) WA-O is equivalent to , (resp.
7c), and that in both cases MDFT-O becomes deterministic, picking
the action with highest Q-value.

Figure 3 (top left) shows the average length of trajectories pro-
duced by the orchestrators, normalized so that 1.0 is the shortest
path between the start and goal state; (top right) the average nor-
malized penalty for trajectories in MC, lower is better; (bottom left)
the average number of violated constraints. Across all these metrics,
MDFT-O is performing better than WA-O by always reaching the
goal in a smaller number of steps no matter the configuration of
the orchestrator. We can also see that MDFT-O agent violates fewer
constraints and accumulates lower penalties.

Finally, in Figure 3 (bottom right) we show the JS Divergence
between the trajectories generated by 7[2,* and the trajectories
generated by MDFT and WA, as the weight vector varies. Given
two sets of trajectories, we compute the Jensen—-Shannon (JS) di-
vergence between the two distributions induced by the policies:
divjs(p,q) = (D(plim)+D(qlIm))/2, where m is the pointwise mean
of p and g and D is the Kullback-Leibler divergence. This metric
allows us to quantify the similarity between the two distributions
and thus to define the similarity between the orchestrator and the
demonstrations.

For both agents, the divergence is small on the left and grows
moving to the right, as constraints become less important. This
is not surprising, since the reference trajectories are generated
using 77.'2,*. Furthermore, we note that the MDFT advantage is more
significant when w is larger, that is when constraints matter more.
An explanation for this is that a large value w, results in more
MDFT deliberation steps to be focused (exclusively) on preferences
relative to the constrained world. In WA, the averaging of the values
underlying the policies, although weighted, is not able to maintain
the importance of the constraints.

6.2 Human Experiments

We conducted an Amazon Mechanical Turk study to get inputs on
how humans may navigate the grid. For this purpose, questions
were posed for every cell in the grid shown in Figure 1. Each ques-
tion corresponded to the decision an agent may take at that location.
The questions were framed in terms of choosing different roads at
an intersection where each road is labeled with two values: the first
one representing how fast (but possibly unsafely) it will take the
respondent to destination and the other one representing how safe,
but possibly slower, the road is. The roads were used as proxies of
the actions on the grid and the scores presented to the participants
were obtained by multiplying the corresponding sq, and sq. values
by 100. An example of a question is shown in Figure 4.

For the complete 9x9 grid, there were 81 questions with a ques-
tion having a maximum of 8 solution choices (questions regarding
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boundary cells had fewer). The questions were divided into 9 sub-
surveys consisting of 9 questions and a validation question (requir-
ing the sub-survey number to be entered). The participants were
given a common survey link and a participant could be assigned any
of the 9 sub-surveys 2. A total of 185 participants responded and we
obtained an average of 21 responses per cell. We then used the fre-
quencies with which participants chose the different roads to obtain
a probability distribution over the actions of the corresponding cell.
Finally we generated trajectories by starting from the initial state
(at the bottom right of the grid depicted in Figure 1) and repeatedly
sampled actions according to the obtained distributions until we
reached the goal. In what follows, we will refer to these trajectories
as human trajectories. In Figure 5, we show the JS divergence be-
tween 200 trajectories generated by using respectively WA-O and
MDFT-O with different settings of the attention weights and 200
human trajectories. As it can be seen, MDFT-O outperforms WA-O
for every combination of weights thus confirming its superiority
in capturing human decision making even in this complex setting
with multiple options.

Moreover, we can see that MDFT-O trajectories generated are
closest to the human ones when attention weights are set to 0.2
for the nominal world and 0.8 for the constrained world (minimal
obtained JS-divergence is 0.262337). This suggests that, on average,
participants cared substantially more about safe driving than reach-
ing the destination at all costs. In Figure 6, we show a graphical
comparison of the human trajectories and the MDFT-O trajecto-
ries for the optimal attention weights to further illustrate their
similarity.

Summarizing, our results suggest that MDFT-O is a promising
tool for modeling how humans trade off between pursuing objec-
tives and minimizing constraint violations. Moreover, the model can
be used to fit behavioral data and to predict the priorities underlying
the orchestration.

7 CONCLUSIONS AND FUTURE WORK

We defined a constrained decision environment which models both
deontological and consequentialist ethical constraints, where the
considered task is to reach a goal state with the shortest path while
satisfying the ethical constraints. We have built an Al orchestrator
agent that acts in this decision environment by making trade-offs
between reaching the goal and satisfying the constraints, proving
that it is more general than other orchestrators and generates bet-
ter trajectories. We have also shown that our Al agent faithfully
mimicks human trajectories, thus providing a way to predict how
human would make decisions and possibly help them improve their
decision quality and satisfaction.
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eed along several roads. For each road, we provide you with two pieces of
mation:

good the road is in terms of getting you to your goal quickly, but perhaps

but Delay: The second number is a score between 0 and 100 representing
good the road is in terms of getting you to your goal safely, but perhaps
delays on the way. *

Road 1: Quick but Unsafe score: 67, Safe but Delay score: 0
Road 2: Quick but Unsafe score: 0, Safe but Delay score: 0

Road 4: Quick but Unsafe score: 2, Safe but Delay score: 92
Road 7: Quick but Unsafe score: 26, Safe but Delay score: 0

Road 8: Quick but Unsafe score: 0, Safe but Delay score: 0

Figure 4: Example of survey question with five options.
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