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ABSTRACT

We present FLEX-SDK: an open-source software development kit
that allows creating a social robot from two simple tablet screens.
FLEX-SDK involves tools for designing the robot face and its facial
expressions, creating screens for input/output interactions, con-
trolling the robot through a Wizard-of-Oz interface, and scripting
autonomous interactions through a simple text-based programming
interface. We demonstrate how this system can be used to replicate
an interaction study and we present nine case studies involving
controlled experiments, observational studies, participatory design
sessions, and outreach activities in which our tools were used by re-
searchers and participants to create and interact with social robots.
We discuss common observations and lessons learned from these
case studies. Our work demonstrates the potential of FLEX-SDK to
lower the barrier to entry for Human-Robot Interaction research.
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1 INTRODUCTION

Social robots have become increasingly ubiquitous in a wide range
of applications from healthcare to education. A number of large
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Figure 1: FLEX-SDK consists of browser-based tools for (i)
creating interaction content for a social robot, (ii) rendering
such content on the robot, (iii) direct user control of the ro-
bot (Wizard-of-Oz), and (iv) programming the robot to au-
tonomously interact with users.

companies and start-ups have recently created impressive social ro-
bot products, while more research platforms have become available
at lower price points. Despite this rapid growth, social robots are
still far from being accessible to anyone who can think of a good
application for them. Creating a social robot application currently
requires committing to a robot platform with a specific form factor
and learning robot-specific programming tools. These tools often
require software development expertise and restrict the level of
customization possible. As a result, the community of social robot
application developers is still small and exclusive, and the variation
of social robots used in research and practice is limited [6]. Our
goal is to address this problem.

We aim to enable anyone who can envision a social robot to be
able to create it without having to purchase a specific hardware
platform and without having to install and learn complex software
frameworks. To that end, we developed FLEX-SDK: an open-source
software development kit for creating social robots. FLEX-SDK in-
volves tools for (i) creating interaction content for a social robot, (ii)
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rendering that content on a social robot, (iii) controlling the robot
through a Wizard-of-Oz style interface, and (iv) programming the
robot to operate autonomously. Although FLEX-SDK can be used
with many different types of social robots, its canonical use assumes
that the robot has one screen for displaying the robot’s face and
another touch-screen for input/output interactions with the user.

In this paper we first describe the system and its implementation,
and we demonstrate how it can be used to create different social
robots and human-robot interactions. We then present nine case
studies in which FLEX-SDK was used to create robots as part of an
HRI research and outreach. We distill some observations across the
different case studies and discuss the potential impact of FLEX-SDK
if adopted by the Human-Robot Interaction (HRI) community.

2 RELATED WORK

In this section, we review the different efforts made within industry
and research labs to make programming accessible.

2.1 Programming Commercial Robots

All programmable social robots on the market come with a software
development kit. SoftBank’s NAO! and Pepper?, two of the most
widely used social robots, are programmed through a software tool
called Choregraphe [24], which allows block-based programming
primarily focused on moving the robot through different poses and
is extensible through a Python application programming interface
(API) and a custom dialog specification language. The small Cozmo?
robot has a Python based API with fixed interaction content (e.g.,
facial expressions, expressive movement animations). Misty?, which
is advertised a robot development platform, has a JavaScript SDK
involving a suite of tools similar to the ones in FLEX-SDK, such as a
browser based command center, API explorer, and skill runner.

2.2 Programming Social Robots

Several efforts within the HRI research community share our goal
of making it easier to program social robots and have contributed
new systems for programming existing root platforms. For example,
Lourens et al. developed TiViPE to enable rapid programming of
the NAO robot for robot-assisted autism therapy [19, 20]. Rietz et al.
created an accessible interface only for the Pepper robot, enabling
non-programmers to conduct WoZ experiments [25]. Datta et al.
created RoboStudio for programming interactions with a health-
care robot [11]. Interaction Composer [13, 14] is a system with
a flow-based interface for programming HRI applications on the
social mobile Robovie platform. Saupe et al. developed Interaction
Blocks [26], also for the NAO robot, to provide a faster way of
designing human-robot interactions based on common interaction
patterns. The RoVer system by Porfirio et al. build on this work
to automatically verify that an interaction composed of interation
blocks satisfies selected interaction norms, such as “the robot should
not interrupt the human’s speech while the human has the speaking
floor" [23]. Another recent system called Interaction Flow Editor

INAO Robot: https://www.softbankrobotics.com/emea/en/nao
ZPepper Robot: https://www.softbankrobotics.com/emea/en/pepper
3Cozmo Robot: https://ankicozmorobot.com/

4Misty Robot: https://www.mistyrobotics.com/
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Figure 2: Examples of robots that were created or augmented
with FLEX-SDK. The top row shows robots that have only
one screen used as a face: (a) and (b) are non-actuated robots,
while (c) is an existing mobile robot platform (Turtlebot 2)
and (d) is an existing mobile manipulation platform (Fetch)
augmented with a simple social face for human interactions.
The bottom row has robots with two screens: (e) and (g) have
the second screen attached to the robot, while (f) has the
user holding it. While (e) and (f) are non-actuated, (g) has a
4-degree-of-freedom neck-and-base mechanism that is also
controlled through FLEX-SDK.

(IFE) was developed for the Jibo platform and is intended for rapid
prototyping of interactions.

Our work shares the goal of these systems and has many shared
features, but it is unique in that it is not designed for an existing
robot platform but rather for creating a new platform or augmenting
an existing one. The explicit separation of content creation and
programming is a property of FLEX-SDK that is shared with fewer
existing systems.

2.3 Programming Robots

Researchers in the HRI community have also contributed program-
ming systems for robots that are not necessarily social or designed
for interaction. The task of programming and testing the robot
is itself a key interaction that end-users of functional robots who
have varying technical expertise might need to engage in. Such sys-
tems include ROS Commander [21], RoboFlow [2], and Code3 [16]
designed for the PR2 robot; CoStar [15, 22] designed for a collabo-
rative Kuka industrial robot; and iCustomPrograms designed for
Savioke’s hotel delivery robot [10, 17]. Other related work includes
a WoZ system intended for participatory design of interactions, for
capturing data from the operator to learn autonomous programs
[27]. A recent literature survey by Ajaykumar et al. provides details
on many of these systems as well as a framework for how they
can be categorized and evaluated [1]. While the development of
programming systems that are not social/interactive is important
for certain robotics applications, such as manufacturing, the work
we present in this paper targets social robotics.
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Figure 3: Screenshot of the FaceEdit tool in FLEX-SDK show-
ing the different face attributes (continuous, color, or binary)
that can be changed.

3 SYSTEM DESCRIPTION

FLEX-SDK consists of software tools for creating interaction content,
rendering the content on the robot, controlling the robot through
a Wizard-of-Oz interface, and programming the robot to operate
autonomously (see Fig. 1). In this section, we describe the different
tools that are part of this system.

3.1 Robot Embodiment

FLEX-SDK is intended for interactive social robots that have a screen-
based rendered face, as it provides ways to design digital robot
faces and programmatically control it. In addition to the face, the
robot may also have a second screen for displaying information
and/or getting input from the user. The second screen can either be
attached to the robot or external. Figure 2 shows examples of robots
with various embodiments that were created and programmed using
versions of FLEX-SDK, including ones with one or two tablets with
different configurations of the second tablet.

3.2 Content Creation Tools

Rather than providing a fixed set of robot screens or requiring
programmers to set the content of screens completely programmat-
ically, FLEX-SDK provides tools for designing two screens (robot
face or input/output) through direct manipulation.

3.2.1 FaceEdit. The FaceEdit tool in FLEX-SDK allows users to cre-
ate social robot faces from basic face elements like eyes and mouth.
A survey of existing screen-based robot faces by Kalegina et al.
identified the different elements that such faces can include, as
well as the different parameters of each element that can be varied
[18]. Figure 3 shows a screenshot of the FaceEdit tool. The tool has
radio buttons for binary parameters (e.g., hasMouth?, hasPupil?)
and sliders for continuous parameters (e.g., vertical eye position,
distance between eyes, pupil size). In addition, it has color selectors
for changing the color of the different elements. The tool includes
a preview rendering of the face that changes as the programmer
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Figure 4: Examples of commercial robots with screen-based
faces and faces recreated using the FaceEdit tool in FLEX-
SDK, showing the expressivity of our tool.

interacts with the attribute controls. The programmer can name
the faces they create and browse previously created faces to edit,
copy, or delete them through FaceEdit.

With 28 attributes that can be modified, FaceEdit allows creating
a wide range of robot faces. To demonstrate this variety, we recre-
ated the faces of six popular social robots that have screen-based
robot faces, as shown in Figure 4.

3.2.2 IOEdit. To enable interactions through a second input/output
tablet, FLEX-SDK provides the IOEdit tool which allows designing
interaction screens that can involve a combination of large and
small text, a slider, an image, buttons, and checkboxes (see Figure 5).
The tool provides predefined templates with a different combination
of elements. Each element can be directly edited while a rendering
of the screen, and the way it would look on the robot screen is
updated. The process of creating I/O screens closely resembles the
creation of slides (e.g., Powerpoint, Keynote). IOEdit allows the
user to name their screens and to browse the different screens they
created to edit or delete them.

3.3 Additional Robot Capabilities

3.3.1 Actions. In addition to setting the visual displays, FLEX-SDK
enables the use of speakers on the robot screens for making sounds
or using text-to-speech to say something. For robots that have ad-
ditional actuators (e.g., the 4 Degree-of-Freedom robot shown in
Fig 2(g)), FLEX-SDK is further extended to provide a control inter-
face, in the same way screen-based actions are controlled, both
programmatically and through the WoZ interface (see section 3.7).

3.3.2  Perception. To enable robust, error-free social interactions
with users, FLEX-SDK relies on obtaining user input thorough a
touch screen via the input elements added to the I/O screen with
IOEdit. In addition, we take advantage of the microphone available
on most tablet screens to enable speech input from users. Program-
mers can define a fixed set of commands that can be recognized
and used as part of the robot’s interaction.
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Figure 5: Screenshot of the IOEdit tool in FLEX-SDK showing
the list of available screen templates.

3.4 Rendering Tools

The robot face and I/O screens created by the programmer are
rendered on two separate screens on the robot. The face renderer
automatically animates the designed faces by adding natural eye
blinking. In addition, it can modify the gaze direction of the robot’s
eyes by moving the inner part of the eye relative to the outer part.
The gaze direction can be set programmatically or through the WoZ
interface (see section 3.7).

In addition to the facial features, the face can have text displayed
at the top of the screen, appearing like a speech bubble. This text is
similarly set programmatically or through the WoZ interface. The
face rendering tool also produces the commanded robot sounds
and utterances. The I/O screen rendering tool displays the designed
I/O screens and detects when a user input is provided through
the screen. It receives commands to enable and disable speech
recognition and detects when a speech command is received.

In addition to rendering the face and I/O screens on two separate
screens on a robot, as in the examples shown in Figure 2, FLEX-SDK
provides a virtual social robot by rendering the two screens onto
a simple digital robot image (see Figures 1, 13, 8). This acts as a
simulation of the social robot and allows easy testing and debugging
on a single computer, simply by opening the virtual robot renderer
on a separate browser window.

3.5 Application Programming Interface (API)

The combination of capabilities described in the previous sections
results in a rich set of functions for creating interactions with so-
cial robots created in FLEX-SDK. These functions are collectively
referred to the application programming interface (API) of the
system. FLEX-SDK has a dynamic API that evolves as the program-
mer creates additional content for their robot. The basic set of
functions in the API includes: setFace(facelndex), setSpeechBub-
ble(text), setScreen(screenlndex), setLargelnstruction(screenlndex,
text), (sliderValue) getSliderValue(), (buttonName) waitForButton(),
(commandName) waitForSpeech(), speak(text), playSound(sound-
Index), and sleep(duration).

Alves-Oliveira and Mihata, et al.
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Figure 6: Text-based programming tool in FLEX-SDK.

3.6 Programming Tool

The programming tool in FLEX-SDK allows creating text based pro-
grams with functions in the API (see section 3.5). The programming
language is JavaScript. Although many programs can be a simple
scripted sequence of robot commands from the API, allowing the
use of a general purpose programming language like JavaScript
enables the programmer to create programs with arbitrary com-
plexity. This includes ability to create variables and lists, loops and
conditionals, as well as functions that can be key to creating more
intricate programs for not just enabling a particular interaction, but
also automating parts of an HRI user study. All functions in the API
that correspond to robot actions are non-blocking; i.e., the function
call in the program only starts the action and does not wait for
the action to be complete before moving onto the next line in the
program. To capture the end of an action, the program needs to
explicitly involve an ‘await’ command with the associated waiting
function, e.g., ‘waitForSpeakEnd()’. Event-based user inputs such
as pressing a button are similarly captured with ‘await’ commands.

The programming tool allows the user to browse and copy ex-
isting programs, edit their own programs in a syntax-highlighted
editor, and run the program on a robot. The tool also has a button
“Show robot functions” that displays the robot API with a descrip-
tion of each function and its parameters, including an example. The
shown API is automatically adapted to include the user created
content (faces, screens, sounds) that has been added onto the robot.
A screenshot of the programming tool is shown in Figure 6.

3.7 Wizard-of-Oz Tool

In addition to the programming tool, commands can be issued to
the robot directly through the Wizard-of-Oz tool in FLEX-SDK. This
tool allows programmers to get familiar with the API and test the
content that they have created as part of an interaction. It also en-
ables WoZ studies to be performed before doing any programming
or as an alternative when programming is not possible. For instance,
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Figure 7: Wizard-of-Oz (WoZ) tool in FLEX-SDK.

if the interaction requires the robot to perceive the environment or
understand human speech at a level that is currently not possible
to do reliably with autonomy.

The WoZ tool involves different interface elements for command-
ing the various API functions. For example, it displays the set of
faces that have been added to a robot and the operator ("wizard")
can set the robot’s current face simply by clicking on the desired
face. They can set the I/O screen by clicking on a button with the
corresponding name for each screen. The operator can also make
the robot speak or set the text in the speech bubble on the robot
face by typing the text and pressing a button. In addition, the WoZ
interface includes buttons for setting the gaze direction of the robot,
which has the options none (looking straight), up, down, left, right,
and random (periodically changing to look in a different direction).
The interface has also been extended to include sliders to control
robot joints for the actuated robot neck shown in Figure 2(g). A
preview of the robot is shown in the interface for awareness of the
operator.

4 DEMONSTRATION

To give a better understanding of how FLEX-SDK can be used to
create social robot interactions, we present a walk through of a
particular use case. The chosen use case is to create a social robot
and program it for a user study replication. In particular, we chose
the study by Gillet et al. [12] which won the award for “best HRI user
study paper” at the ACM/IEEE International Conference on Human-
Robot Interaction (HRI) 2021. The study involves a non-articulated
robot head with a back-projected face (Furhat® robot). It investigates
how the robot’s gaze behavior impacts human participation in an
interaction involving two humans collaborating in a game. The
two participants play the game called “with other words” which
involves describing a given word to the robot without saying the
word. The robot listens to the humans and tries to guess the word
based on what they say. As part of its listening, it shifts its gaze

SFurhat Robot: https://furhatrobotics.com/
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Figure 8: Screenshots of the robot face and user tablet in the
replication study demonstration described in section 4.

between the two humans. The study involves manipulating the
gaze shifting behavior across the different conditions.

Step 1 - Create robot faces — The key robot actions required for
the study are shifting gaze to look at the two participants and
speaking to guess the word being described. The face that we
designed to replicate the study therefore has large human-
like eyes that make gaze shifts noticable (see Figures 7 and
8). This is achieved through the FaceEdit tool by reducing
the inner eye parameter which specifies the ratio of the iris
relative to the outer eye size. The color of the face is chosen
to be similar to the one in the original study and the default
facial expression is neutral-to-positive. Two additional faces
were created: one with the speech bubble to augment the
robot speech when guessing, and another more positive face
with a smile and raised cheeks for when the robot correctly
guesses the word.

Step 2 - Create I/0 screens — The study involved giving partic-
ipants an iPad which displayed the word that they had to
describe to the robot, together with an image of the word that
was displayed for a few seconds in case the less proficient
speaker did not know the meaning of the word. The image
was removed 8 seconds later to avoid distracting participants.
The screen also had a timer counting down 60 seconds for
each word. We used the robot’s I/O screen to enable this
interaction. We created different screens for the introduction
of the study, for displaying the word with and without the
image and for transitioning to the next word after a timeout
or correct guess. Examples are included in Figures 5 and 8.

Step 3 - Wizard of Oz test — Asin the pilots of the original study,
we can recreate the game playing interactions through the
WoZ interface once the contents in the first two steps have
been created. The screenshot of the WoZ tool shown earlier
(see Figure 7) is in fact what it looks like as part of this
replication study. For this study the operator would need to
use the buttons to set the faces and the different I/O screens,
the text entry for guessing the words with speech and the
speech bubble, and the gaze direction buttons to shift gaze
based on the strategy they are emulating. Despite the rather
fast pace of the game our tests indicate that WoZ is feasible
for this study with the tool provided in FLEX-SDK.

Step 4 - Programming the interaction — The last step in creat-
ing an autonomous interaction is to write a program with
the API functions using the programming tool. Figure 6
shows a program created for the replication study, with a
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Figure 9: Pictures of robots created with FLEX-SDK being
used as part of case studies: (a) Robot and WoZ console for a
user study investigating how a social robot’s disclosure im-
pacts the participant’s response; (b) a participant interacting
with the robot in CS-1; (c) a participant interacting with the
robot created with FLEX-SDK for a study investigating user
preferences for interaction modalities, comparing the phys-
ical robot to a robot on a screen and in VR in CS-2; (d) a par-
ticipant interacting with a robot created with FLEX-SDK; (e)
another participant operating the robot through FLEX-SDK
WoZ tool in a participatory design study investigating how
a robot should respond while listening to a user talk about
their stress in CS-3; (f) a participant in CS-3 working with
the FaceEdit tool to design a robot face that would feel most
attentive and welcoming to them.

few simplifications. In particular, the exact replication of
the functions getNextGazeTarget() and getNextWordGuess()
would require additional functionalities (e.g., getting speech
separately from each speaker, computing distance between
words using Word2Vec embeddings) which are possible but
beyond the scope of this illustrative demonstration. Instead
simpler, randomized versions of these functions were imple-
mented for illustration. Screenshots of the simulated robot
and the I/O tablet from running this program are shown
in Figure 8, illustrating how the robot can look at the two
participants on different sides and how the I/O tablet can
guide the participants’ interaction as part of the study.

5 SYSTEM IMPLEMENTATION

5.1 Overview

FLEX-SDK is browser based and implemented with HTML, CSS, and
JavaScript. The core of the system is a real-time database that con-
tains all information of the users and robots. Each tool is a web
page that runs on a browser and communicates with the database to
receive data and update the database based on the user or program-
mer input. The browsers on the robot screens run the two rendering
tools, while the browser on the programmer’s computer run one
of the other tools. All content that is created by the programmer
(faces, I/O screens, programs) are pushed to the database and are
continuously updated during the editing process. They are initially
stored under user data but can be copied over to a particular robot
entry in the database through a setup tool.

Alves-Oliveira and Mihata, et al.

Figure 10: Robots created by participants using the FaceEdit
tool in FLEX-SDK as part of CS-4.

In addition to the added content, each robot entry in the database
has parameters associated with its current state, e.g., the index of
the current face or screen that it is displaying, current gaze direction,
or the text currently displayed in its speech bubble. The face and
I/O screen rendering tools use this state information as part of its
rendering process. When a robot program executes a command or
a command is issued through the WoZ interface, the command is
transmitted to the robot through these robot state entries in the
database. The programming or WoZ tools write onto the realtime
database, which immediately pushes this change to the rendering
tool, triggering a re-rendering to reflect the state change.

5.2 Implementation Details

FLEX-SDK is completely open source and lives in a GitHub reposi-
tory®. The tools are hosted directly through GitHub Pages’. The
realtime database used for implementation is Firebase®. When a pro-
grammer opens the tool in a new browser, they are automatically
authenticated on Firebase with an anonymous user id, allowing
them to already create content, render a robot, and interact with
the robot. For continuity across devices, programmers can log in
with a Google account. FLEX-SDK is currently tested only with a
Chrome browser. The robot screen renderings are tuned assuming
proportions of a Nexus 7 tablet.

5.3 Documentation

The GitHub page of FLEX-SDK has a wiki® describing the system and
guiding the programmer through the use of the various tools. It is
populated with instructional materials to allow a new programmer
to create robot programs completely on their own. This includes
tutorials for (1) starting and testing a robot, (2) remotely controlling
a robot, (3) running existing programs on a robot, (3) configuring
a robot and managing content, (4) creating new robot faces, (5)
creating new robot I/O screens, and (6) writing new programs.
In addition, the wiki involves documentation to help experienced
programmers to contribute to FLEX-SDK software, to fix bugs and
implement new features.

®FLEX-SDK code: https://github.com/mayacakmak/emarsoftware
7FLEX-SDK tools: https://mayacakmak.github.io/emarsoftware/
8Firebase: https://firebase.google.com/

9FLEX-SDK wiki: https://github.com/mayacakmak/emarsoftware/wiki
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Table 1: A summary of the nine case studies in which FLEX-SDK was used for research and outreach.

Study name & citation Year Study type Programmers Users Tools used
CS-1 Disclosure [7] 2018 Controlled experi- Undergrad researchers Participants (N=36) FaceEdit, WoZ
ment (N=2)
CS-2 Robot vs. XR [8] 2019 Controlled  experi- Undergrad/grad re- Participants (N=66) FaceEdit, IOEdit,
ment searchers (N=3) WoZ
CS-3  Teen operators [9] 2019 Observational Participants (N= 20) same participants FaceEdit, WoZ
CS-4  Isolation companion [4] 2020 Participatory design  Participants (N=16) same participants FaceEdit
CS-5  Intervention design [5] 2020 Participatory design ~ Undergrad researchers Participants (N=30) FaceEdit, [OEdit, pro-
(N=3) gramming
CS-6  Robot vs. workbook [5] 2021 Controlled experi- Undergrad researchers Participants (N=19) FaceEdit, [OEdit, pro-
ment & observational (N=2) gramming
CS-7  Embodiment kit [3] 2021 Participatory design ~ Undergrad researchers Participants (N=41) FaceEdit, IOEdit,
(N=2) WoZ
CS-8 CS Women outreach, learning 2019 Rapid prototyping Participants (N=8) same participants FaceEdit, IOEdit,
user-centered design WoZ
CS-9  High-school outreach, learning 2019 Rapid prototyping Participants (N=8) same participants FaceEdit, IOEdit, pro-

basic programming

gramming

6 CASE STUDIES

In this section we demonstrate how FLEX-SDK has been used as part
of real human robot interaction studies and in outreach activities
across nine case studies. Table 1 summarizes these case studies
indicating which subset of FLEX-SDK tools were used in the study,
the type of study in which the tools were used (e.g., participatory
design session, observational study, controlled experiment, out-
reach), and who the programmers using FLEX-SDK tools and the
users interacting with the created robots were. In the following we
describe each case study in more detail and present observations
about how FLEX-SDK was used in each of them.

Case Study 1. The first study involved designing a simple social
robot (see Figure 9(a)) and using it to investigate how a user re-
sponds to different amounts and types of disclosure by the robot
(see Figure 9(b)). The robot was operated through the WoZ interface
populated with preset utterances (provided through the FLEX-SDK
set up tool) to avoid typing during the study. The programmers
who used FLEX-SDK were two undergraduate researchers (one from
Psychology and other from Informatics) working on the project
over the summer. The participants who interacted with the robot
were recruited from a college population (N=36).

Case Study 2. The second case study involved another controlled
experiment comparing the simple interactions with a mental health
support robot with a virtual version of the robot on a screen or in
Virtual Reality (VR). The physical robot was designed with FLEX-
SDK content creation tools and controlled through the WoZ tool
during the experiment.

Case Study 3. The third case study involved co-design sessions
with teens to investigate how a robot listener should behave while
a teen user shares their stressors with it. Teen participants acted as

both the robot operator (see Figure 9(e)) and the user (see Figure
9(d)) to enact the dialog between the robot and the user. The opera-
tors used the WoZ tool to choose from a set of preset utterances
or type their custom response. Participants who had extra time
at the end also used the FaceEdit tool to design a face for the ro-
bot listener that would be welcoming and attentive (see Figure 9(f)).

Case Study 4. The next case study involved teen participants dur-
ing the COVID-19 lockdown working to design a simple social
robot companion in their home. Participants received a small tripod
and used simple fabrication materials to create a robot embodiment
around it. They used the FaceEdit tool to design the face of their
robot. A variety of robots they created is shown in Figure 10.

Case Study 5. The fifth study involved participatory design of
mental health support robots based on established evidence-based
interventions, including Dialectic Behavioral Therapy (DBT) and
Acceptance-Commitment Therapy (ACT). Three undergraduate
researchers used tools in FLEX-SDK to create robot interactions that
involve exercises from DBT and ACT. They iteratively refined the
robot design and the interactions with feedback from teenagers
over Zoom after they interacted with the virtual robot. Examples of
virtual robot screens for different activities are shown in Figure 13.

Case Study 6. The next case study was a controlled experiment
comparing the effect of a selected list of activities designed in CS-5,
with worksheet-based activities that are currently used in practice.
Participants had access to 10 different activities on a virtual robot
during the course of a week and could freely interact with it.

Case Study 7. The seventh case study focused on the embodiment
design for an actuated 4 Degrees-of-Freedom (DoF) robot core with
two tablets. Participants from target user groups across three appli-
cation areas (education, healthcare, community engagement) used
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Figure 11: (a) Three children using the FaceEdit tool in FLEX-
SDK to design a robot that would help them learn English
as part of CS-7 and (b) two others showing their design. (c)
Robot embodiment examples designed for different appli-
cations in CS-7 where participants used the FaceEdit and
IOEdit tools to create the face and belly screens of their
robots.

fabrication materials to design the robot embodiment and used the
FaceEdit tool in FLEX-SDK to create the robot face that completes the
robot’s look. Figure 11(a) shows children who are English learners
using the FaceEdit tool, and Figure 11(b) shows an example robot
created by a pair of participants. Other robots created in this study
are shown in Figure 11(c). In addition to designing robot faces, and
in some cases I/O screens, the WoZ tool in FLEX-SDK was used as
part of this case study to control the robot’s motors so participants
could see the robot animated and test its range of motion.

Case Study 8. This outreach activity was a two-day workshop
designed for Women with disabilities who are studying CS and
was intended to introduce them to an area of research. Our activity
focused on design research and introduced the participants to meth-
ods in the human-centered design process, such as storyboarding,
body-storming, rapid prototyping, and observational user studies.
Participants in the workshop worked on designing robots that sup-
port mental health (similar to CS-6 an CS-7). They used FLEX-SDK
to design the face and I/O screens for their robot (see Figure 12(a))
and created robot embodiment using prototyping materials. Then
they used the WoZ tool to test the interactions that they designed
with other workshop participants and other novice users from the
workshop organization team (see Figure 12(b-c)).

Case Study 9. Our second outreach workshop was similar to CS-8,
but instead intended for high-school students with disabilities and
lasted a week. The participants designed a robot to support mental
health and tested their prototypes with other workshop partici-
pants (see Figure 12(d-e)). The additional time of the workshop
also allowed them to use the programming tool in FLEX-SDK as
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Figure 12: Case studies using FLEX-SDK as part of outreach
activities: (a) Students setting up their robot in CS-8: a two
day workshop for Women with disabilities in CS; (b) and (c)
show a novice user interacting with the robots designed by
students in CS-8; (d) and (e) show students testing robots that
they created in CS-9: a week-long workshop for high-school
students with disabilities.

they started learning basic programming constructs like loops and
conditionals.

6.1 Observations
We make the following observations across the case studies:

o Enabling HRI research. Our case studies demonstrate that
researchers with various backgrounds (including non-technical
areas) can use FLEX-SDK to create WoZ or autonomous user
studies to investigate HRI questions.

e An SDK for Rapid prototyping. Beyond their use by re-
searchers to create interactions, FLEX-SDK tools like FaceEdit,
IOEdit, and WoZ were used directly by participants to rapidly
prototype robot looks or behaviors as part of participatory
design studies or outreach activities.

o Faceeditor for all. Participants in our case studies including
children, teens, and adults, people with various disabilities,
and people with various backgrounds were able to use the
FaceEdit tool without any instruction. They were able to
tinker with different control elements in this tool and see the
impact on the rendered face. They were able to explore the
design space of faces to find the combination of parameters
the expressed the face that they had in mind. They produced
a wide range of robot faces that are very different from one
another and from the faces of existing robot platforms (see
Figures 10, 13, 11, 12).

o Levels of engagement. Across the different case studies we
also observed that users engaged at different levels with
operating and programming the robot: Level 1 - only using
the WoZ to control the robot with existing content; Level
2 — creating new content for the robot (new faces or I/O
screens); Level 3 — programming. This was not intentional
in the design of the system, but rather emerged from the
different use cases and the user experience levels.

e Simple programs. The use of the programming tool has
so far been limited (CS-5, CS-6, CS-9) with most programs
not taking full advantage of the available API and the ex-
pressivity of JavaScript. The example program given in Fig
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Figure 13: Screenshots of virtual robots created with FLEX-
SDK as part of CS-5 where participants co-designed robot-
based interventions for mental health, and CS-6 where the
interventions were compared to the current way those activ-
ities are performed with worksheets.

6 is substantially more complex than any of the programs
created by researchers and participants in our case studies.
For example, most programs developed in CS-5 (see Figure
13) involved the user walking through a series of screens
and associated faces in sequence. The programs for these
activities were simple scripts with a series of setScreen and
setFace commands, with few places where the user input
caused program branching through conditional statements
or loops.

7 DISCUSSION
7.1 Contributions

Our work contributes a new open-source software development
kit for designing and programming social robots. Although the
system achieves known functionality leveraging known techniques,
this functionality is not readily available to HRI researchers at
the moment. There are currently no alternative system that allow
turning two tablets in to a social robot within a matter of minutes.
Most existing systems comparable to FLEX-SDK were developed for
a particular robot system rather than an open-source, customizable
hardware. On the other hand, starting from scratch to program
two tablets to behave like a social robot, like the ones in our case
studies, would take weeks or months of work and would only be
possible with extensive programming expertise. Hence, we believe
that the system contribution of our work will be valuable to the
HRI community.

7.2 Potential Impact

The diversity of case studies presented in this paper demonstrates
the types of research that FLEX-SDK would enable within the HRI
community. By removing the need to purchase an expensive social
robot platform and to install and learn complex robot programming
software, FLEX-SDK can significantly lower the barrier to entry for
HRI research and diversify our community. While the research
enabled by FLEX-SDK has been largely focused on mental health,
the same methods and procedures could be used in a wide range
of applications of social robots. By giving full flexibility of robot
embodiments and ability to customize the robot look and behavior,
FLEX-SDK can allow the discovery of new use cases for social robots
and unexplored creative form factors (see [3] for examples).
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7.3 Limitations

The key limitation of FLEX-SDK, in terms of the types of autonomous
social robot programs that can be created with it, is in the use of per-
ceptual capabilities. Even the simplest robot that consists of a single
head tablet has a camera available, but FLEX-SDK currently does not
provide any API functions to take advantage of camera perception.
Since many HRI applications can benefit from such perception (e.g.,
face tracking and recognition) and given the growing availability
of browser-based image processing capabilities, extensions of the
API to include more perception is a high-priority for future work.
Many other extensions of FLEX-SDK are possible. We expect the new
features and tools in FLEX-SDK will be driven by new use cases as it
has been in the past three years and we hope that more members
of our community can contribute to its development.

7.4 Lessons Learned

FLEX-SDK has been under development for more than five years and
has gone through many revisions based on our experience using
it in our research. Next we discuss some of the lessons learned in
this process to inform future versions of the system as well as the
development of other similar systems.

What did users of FLEX-SDK have trouble with?

Although we observed that participants created a wide range of
robot faces using the FaceEdit tool (Section 6.1), they did not take
advantage of its full expressiveness. In the space of possible robot
faces, many participants’ faces seemed to stay close to the initial,
default face settings (e.g., Figure 10). In contrast, we recreated faces
of commercial robots, originally created by professional designers
with expert animation tools, spanning a much wider range of the
space (Figure 4).

Similarly, although our the programming tool gives full expres-
sivity of a general-purpose programming language (JS), programs
created across our case studies were very simple (Section 6.1). This
seemed to be a result of our system’s way of separating content
creation from programming. Programmers spent a lot of time cre-
ating different robot faces and I/O screens, but their programs
resulted in being simply sequentially going through the screens in
order. Although this pattern was not adopted intentionally in the
beginning, it was reinforced by the case studies. As a result of our
participants’ emphasis on content creation, we implemented more
features in content creation tools rather than expand the API, in
order to achieve a desired new functionality (e.g., ability to include
emojis on the screen).

What did users do that was different from what was expected?
The WoZ system served an unexpected purpose for programmers
in learning about the system’s API. Programmers who were not
introduced to the WoZ tool would learn about the different func-
tions in the API by writing single-line programs and running them
to observe the effect on the robot, and explore different parame-
ter settings. On the other hand, programmers who had used the
WoZ extensively before starting to program already had an intu-
itive grasp of the API. This observation points towards a broader
role that WoZ systems can have in learning to program robots.
Controlling the robot through WoZ allows people to quickly get
exposed to the full API, observe the robot in action, and get a sense
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of the impact of different parameters. Programmers typically learn
these while simultaneously trying to program. We hope to run a
controlled study in the future to better characterize the impact of
using WoZ in learning to program a robot.

What did users want that the system did not have? Our sys-
tem was designed to work on a browser to maximize accessibility
and reduce barriers to entry, and it used cloud functionality to have
different parts of the system to communicate. While programmers
appreciated the workflow enabled by this design, end-users consis-
tently stated that they would not want a robot that is connected to
the cloud for privacy and security reasons.

Robotics researchers who have used FLEX-SDK have been particu-
larly interested in extending the API with new actions and inputs to
allow for more autonomous behaviors. In extending the SDK with
new actions one insight from our studies is that we need to clearly
distinguish between (i) instantaneous actions like ’setFace()’ and (ii)
temporally extended actions like ’playSound()’ and allow a way to
catch the ending of such extended actions. Without this, we ended
up having programs where the programmers had to estimate the
duration of a sound and add sleep() statements to their programs.

In extending the SDK with new inputs we expect the key chal-
lenge will be making the programmer aware of possible values
of the input-this was already an issue with inputs such as ‘wait-
ForButton()’ where the user themselves named the buttons. It will
become a bigger challenge with camera or microphone input that
can return continuous values or infinitely many discrete values, or
can return with an error. As with actions, maintaining the distinc-
tion between waitFor_ and get_ statements is also important for
maintaining the intuitiveness with such input extensions.
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