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The Poisson Binomial Distribution—
Old & New1

Wenpin Tang and Fengmin Tang

Abstract. This is an expository article on the Poisson binomial distribution.
We review lesser known results and recent progress on this topic, includ-
ing geometry of polynomials and distribution learning. We also provide ex-
amples to illustrate the use of the Poisson binomial machinery. Some open
questions of approximating rational fractions of the Poisson binomial are pre-
sented.

Key words and phrases: Distribution learning, geometry of polynomials,
Poisson binomial distribution, Poisson/normal approximation, stochastic or-
dering, strong Rayleigh property.

1. INTRODUCTION

The binomial distribution is one of the earliest exam-
ples a college student encounters in his/her first course
in probability. It is a discrete probability distribution of
a sum of independent and identically distributed (i.i.d.)
Bernoulli random variables, modeling the number of oc-
currence of some events in repeated trials. An integer-
valued random variable X is called binomial with param-
eters (n,p), denoted as X ∼ Bin(n,p), if P(X = k) =( n

k

)
pk(1 − p)n−k , 0 ≤ k ≤ n. It is well known that if n

is large, the Bin(n,p) distribution is approximated by the
Poisson distribution for small p’s, and is approximated
by the normal distribution for larger values of p. See, for
example, [63] for an educational tour.

Poisson [87] considered a more general model of
independent trials, which allows heterogeneity among
these trials. Precisely, an integer-valued random vari-
able X is called Poisson binomial, and denoted as X ∼
PB(p1, . . . , pn) if

X
(d)= ξ1 + · · · + ξn,

where ξ1, . . . , ξn are independent Bernoulli random vari-
ables with parameters p1, . . . , pn. It is easily seen that the
probability distribution of X is

P(X = k) =
∑

A⊂[n],|A|=k

(∏

i∈A

pi

∏

i /∈A

(1 − pi)

)
,(1)
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where the sum ranges over all subset of [n] := {1, . . . , n}
of size k.

The Poisson binomial distribution has a variety of ap-
plications such as reliability analysis [18, 59], survey
sampling [29, 107], finance [40, 95], and engineering
[44, 103]. Though this topic has been studied for a long
time, the literature is scattered. For instance, the Poisson
binomial distribution has different names in various con-
texts: Pólya frequency (PF) distribution, strong Rayleigh
distribution, convolutions of heterogenous Bernoulli, etc.
Researchers often work on some aspects of this subject,
and ignore its connections to other fields. In late 1990s,
Pitman [84] wrote a survey on the Poisson binomial dis-
tribution with focus on probabilizing combinatorial se-
quences. Due to its applications in modern technology
(e.g., machine learning [25, 93], causal inference (Exam-
ple 2)) and links to different mathematical fields (e.g.,
algebraic geometry, mathematical physics), we are mo-
tivated to survey recent studies on the Poisson binomial
distribution. While most results in this paper are known in
some form, several pieces are new (e.g., Section 4). The
aim of this paper is to provide a guide to lesser known
results and recent progress of the Poisson binomial distri-
bution, mostly post 2000.

The rest of the paper is organized as follows. In Sec-
tion 2, we review distributional properties of the Poisson
binomial distribution. In Section 3, various approxima-
tions of the Poisson binomial distribution are presented.
Section 4 is concerned with the Poisson binomial distribu-
tion and polynomials with nonnegative coefficients. There
we discuss the problem of approximating rational frac-
tions of Poisson binomial. Finally in Section 5, we con-
sider some computational problems related to the Poisson
binomial distribution.
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2. DISTRIBUTIONAL PROPERTIES OF POISSON

BINOMIAL VARIABLES

In this section, we review a few distributional prop-
erties of the Poisson binomial distribution. For X ∼
PB(p1, . . . , pn), we have

μ := EX = np̄,

σ 2 := VarX = np̄(1 − p̄) −
n∑

i=1

(pi − p̄)2,
(2)

where p̄ :=
∑n

i=1 pi/n. It is easily seen that by keeping
EX (or p̄) fixed, the variance of X is increasing as the
set of probabilities {p1, . . . , pn} gets more homogeneous,
and is maximized as p1 = · · · = pn. There is a simple
interpretation in survey sampling: fixing the sample size
from different communities (stratified sampling) provides
better estimates of the overall probability than simple ran-
dom sampling from the entire population.

The above observation motivates the study of stochas-
tic orderings for the Poisson binomial distribution. The
first result of this kind is due to Hoeffding [55], claiming
that among all Poisson binomial distributions with a given
mean, the binomial distribution is the most spread out.

THEOREM 2.1 ([55] Hoeffding’s inequalities). Let

X ∼ PB(p1, . . . , pn), and X̄ ∼ Bin(n, p̄).

1. There are inequalities

P(X ≤ k) ≤ P(X̄ ≤ k) for 0 ≤ k ≤ np̄ − 1

and

P(X ≤ k) ≥ P(X̄ ≤ k) for np̄ ≤ k ≤ n.

2. For any convex function g : [n] →R in the sense that

g(k + 2) − 2g(k + 1) + g(k) > 0, 0 ≤ k ≤ n − 2, we have

Eg(X) ≤ Eg(X̄),

where the equality holds if and only if p1 = · · · = pn = p̄.

The part (2) in Theorem 2.1 indicates that among all
Poisson binomial distributions, the binomial is the largest
one in convex order. The original proof of Theorem 2.1
was brute-force, and it was soon generalized by using
the idea of majorization and Schur convexity, see Theo-
rem 2.2(1). This result was also extended to the multidi-
mensional setting [11], and to nonnegative random vari-
ables [10], Proposition 3.2. See also [76] for interpreta-
tions. Next, we give several applications of Hoeffding’s
inequalities.

EXAMPLE 1.

1. Monotonicity of binomials. Fix λ > 0. By tak-
ing (p1, . . . , pn) = (0, λ

n−1 , . . . , λ
n−1), we get for X ∼

Bin(n − 1, λ
n−1) and X′ ∼ Bin(n, λ

n
),

P(X ≤ k) < P
(
X′ ≤ k

)
for k ≤ λ − 1,

and

P(X ≤ k) > P
(
X′ ≤ k

)
for k ≥ λ.

Similarly, by taking (p1, . . . , pn) = (1, λ−1
n−1 , . . . , λ−1

n−1),

we get for X ∼ Bin(n − 1, λ−1
n−1) and X′ ∼ Bin(n, λ

n
),

P(X ≤ k − 1) < P
(
X′ ≤ k

)
for k ≤ λ − 1,

and

P(X ≤ k − 1) > P
(
X′ ≤ k

)
for k ≥ λ.

These inequalities were used in [5] to derive the mono-
tonicity of error in approximating the binomial distribu-
tion by a Poisson distribution. By letting X ∼ Bin(n,p)

and Y ∼ Poi(np), they proved P(X ≤ k) − P(Y ≤ k) is
positive if k ≤ n2p/(n+ 1) and is negative if k ≥ np. The
result quantifies the error of confidence levels in hypoth-
esis testing when approximating the binomial distribution
by a Poisson distribution.

2. Darroch’s rule. It is well known that a Poisson bino-
mial variable has either one, or two consecutive modes.
By an argument in the proof of Hoeffding’s inequalities,
Darroch [32], Theorem 4, showed that the mode m of the
Poisson binomial distribution differs from its mean μ by
at most 1. Precisely, he proved that

(3) m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k if k ≤ μ < k +
1

k + 2
,

k or k + 1

if k +
1

k + 2
≤ μ ≤ k + 1 −

1

n − k + 1
,

k + 1

if k + 1 −
1

n − k + 1
< μ ≤ k + 1.

This result was reproved in [94]. See also [62] for a simi-
lar result concerning the median.

3. Azuma–Hoeffding inequality. One of the most fa-
mous result of Hoeffding is the Azuma–Hoeffding in-
equality [7, 56]: for independent random variables ξ1, . . . ,

ξn with 0 ≤ ξi ≤ 1,

P

(
n∑

i=1

ξi ≥ t

)
≤

(
μ

t

)t(n − μ

n − t

)n−t

for t > μ,(4)

where μ :=
∑n

i=1 Eξi . We show how to derive the devi-
ation inequality (4) via Hoeffding’s inequalities (Theo-
rem 2.1). In fact, ξi is sub-Bernoulli [109] in the sense that
its moments are all bounded by those of Bernoulli vari-
ables with the same mean. Thus, the moments of

∑n
i=1 ξi

are bounded by those of the Poisson binomial variable
PB(Eξ1, . . . ,Eξn). By Theorem 2.1(2) with g(x) = xk ,
k ≥ 1, the moment generating function of

∑n
i=1 ξi is

bounded by that of the binomial variable Bin(n,μ/n).
It then suffices to apply the Chernoff bound to get the
Azuma–Hoeffding inequality (4).
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To proceed further, we need some vocabularies. Let
{x(1), . . . , x(n)} be the order statistics of {x1, . . . , xn}.

DEFINITION 1. The vector xxx is said to majorize the
vector yyy, denoted as xxx 	 yyy, if

k∑

i=1

x(i) ≤
k∑

i=1

y(i) for k ≤ n − 1 and

n∑

i=1

x(i) =
n∑

i=1

y(i).

See [72] for background and development on the theory
of majorization and its applications. The following theo-
rem gives a few lesser known variants of Hoeffding’s in-
equalities.

THEOREM 2.2. Let X ∼ PB(p1, . . . , pn) and X′ ∼
PB(p′

1, . . . , p
′
n), and Y ∼ Bin(n,p).

1. [49, 107] If (p1, . . . , pn) 	 (p′
1, . . . , p

′
n), then

P(X ≤ k) ≤ P
(
X′ ≤ k

)
for 0 ≤ k ≤ np̄ − 2,

and

P(X ≤ k) ≥ P
(
X′ ≤ k

)
for np̄ + 2 ≤ k ≤ n.

Moreover, Var(X) ≤ Var(X′).
2. [86] If (− logp1, . . . ,− logpn) 	 (− logp′

1, . . . ,

− logp′
n), then X is stochastically larger than X′, that

is, P(X ≥ k) ≤ P(X′ ≥ k) for all k.
3. [19] X is stochastically larger than Y if and only if

p ≤ (
∏n

i=1 pi)
1
n , and X is stochastically smaller than Y

if and only if p ≥ 1 − (
∏n

i=1(1 − pi))
1
n . Consequently, if

(
∏n

i=1 pi)
1
n ≥ 1 − (

∏n
i=1(1 − p′

i))
1
n then X is stochasti-

cally larger than X′.

The proof of Theorem 2.2 relies on the fact that xxx 	 yyy

implies the components of xxx are more spread out than
those of yyy. For example in part (1), it boils down to prov-
ing if k ≤ np̄ − 2, P(X ≤ k) is a Schur concave function
in ppp, meaning its value increases as the components of ppp

are less dispersed. Part (3) gives a sufficient condition of
stochastic orderings for the Poisson binomial distribution.
A simple necessary and sufficient condition remains open.
See also [17, 18, 20, 54, 96, 108] for further results.

3. APPROXIMATION OF POISSON BINOMIAL

DISTRIBUTIONS

In this section, we discuss various approximations of
the Poisson binomial distribution. Pitman [84], Section 2,
gave an excellent survey on this topic in the mid-1990s.
We complement the discussion with recent developments.
In the sequel, L(X) denotes the distribution of a random
variable X.

Poisson approximation. Le Cam [70] gave the first error
bound for Poisson approximation of the Poisson binomial
distribution. The following theorem is an improvement of
Le Cam’s bound.

THEOREM 3.1 ([8]). Let X ∼ PB(p1, . . . , pn) and

μ :=
∑n

i=1 pi . Then

1

32
min

(
1,

1

μ

) n∑

i=1

p2
i ≤ dTV

(
L(X),Poi(μ)

)

≤
1 − e−μ

μ

n∑

i=1

p2
i ,

(5)

where dTV(·, ·) is the total variation distance.

The proof of Theorem 3.1 relies on the Stein–Chen
identity: by writing X =

∑n
i=1 ξi with ξ1, . . . , ξn in-

dependent Bernoulli random variables with parameters
p1, . . . , pn,

E
(
μf (X + 1) − Xf (X)

)

=
n∑

i=1

p2
i E

(
f (X − ξi + 2) − f (X − ξi + 1)

)
,

where f is any real-valued function on the nonnegative
integers. The inequalities (5) are then obtained by a suit-
able choice of f . It is easily seen from (5) that the Pois-
son approximation of the Poisson binomial is good if∑n

i=1 p2
i 


∑n
i=1 pi , or equivalently μ − σ 2 
 μ. There

are two cases:

• For small μ, the upper bound in (5) is sharp. In particu-
lar, for μ ≤ 1, by taking p1 = μ and p2 = · · · = pn = 0,
we have

dTV
(
L(X),Poi(μ)

)
= μ

(
1 − eμ)

=
1 − e−μ

μ

n∑

i=1

p2
i .

• For large μ, the approximation error is of order∑n
i=1 p2

i /
∑n

i=1 pi .

As pointed out in [61], the constant 1/32 in the lower
bound can be improved to 1/14. See [9] for a book-length
treatment, and [90] for sharp bounds. A powerful tool to
study the approximation of the sum of (possibly depen-
dent) random variables is Stein’s method of exchangeable
pairs, see [26]. For instance, a simple proof of the upper
bound in (5) was given in [26], Section 3.

The Poisson approximation can be viewed as a mean-
matching procedure. The failure of the Poisson approx-
imation is due to a lack of control in variance. A typi-
cal example is where all pi’s are bounded away from 0,
so that μ is large and

∑n
i=1 p2

i /
∑n

i=1 pi is of constant
order. To deal with these cases, Röllin [89] considered a
mean/variance-matching procedure. To present further re-
sults, we need the following definition.

DEFINITION 2. An integer-valued random variable X

is said to be translated Poisson distributed with parame-
ters (μ,σ 2), denoted as TP(μ,σ 2), if X −μ+σ 2 +{μ−
σ 2} ∼ Poi(σ 2 + {μ − σ 2}), where {·} is the fraction part
of a positive number.
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It is easy to see that a TP(μ,σ 2) random variable has
mean μ, and variance σ 2 +{μ+σ 2} which is between σ 2

and σ 2 + 1. The following theorem gives an upper bound
in total variation between a Poisson binomial variable and
its translated Poisson approximation.

THEOREM 3.2 ([89]). Let X ∼ PB(p1, . . . , pn), and

μ :=
∑n

i=1 pi and σ 2 :=
∑n

i=1 pi(1 − pi). Then

(6) dTV
(
L(X),TP

(
μ,σ 2))

≤
2 +

√∑n
i=1 p3

i (1 − pi)

σ 2
,

where dTV(·, ·) is the total variation distance.

Theorem 3.2 is a consequence of a more general result
of Stein’s exchangeable pairs for translated Poisson ap-
proximation. Note that if all pi ’s are bounded away from
0 and 1, the approximation error is of order 1/

√
n which

is optimal and is comparable to the normal approximation
error (see Theorem 3.4(2)). See [77] for the most up-to-
date results of the Poisson approximation. Now we give
an application of translated Poisson approximation in ob-
servational studies.

EXAMPLE 2. Sensitivity analysis. In matched-pair
observational studies, a sensitivity analysis assesses the
sensitivity of results to hidden bias. Here we follow a
modern approach of Rosenbaum [92], Chapter 4. More
precisely, the sample consists of n matched pairs in-
dexed by k = 1, . . . , n, and units in each pair are in-
dexed by i = 1,2. The pair k is matched on a set of ob-
served covariates xxxk1 = xxxk2, and only one unit in each
pair receives the treatment. Let Zki be the treatment as-
signment, so Zk1 + Zk2 = 1. Common test statistics for
matched pairs are sign-score statistics of the form: T =∑n

k=1 dk(ck1Zk1 +ck2Zk2), where dk ≥ 0 and cki ∈ {0,1}.
Here cki represents the potential outcome which depends
on the response (r11, r12, . . . , rn1, rn2). For instance, in
the Wilcoxon’s signed rank test: ck1 = 1 if rk1 > rk2 and
ck1 = 0 otherwise, and similarly, ck2 = 1 if rk2 > rk1 and
ck2 = 0 otherwise, so ck1 = ck2 = 0 if rk1 = rk2. For sim-
plicity, we take dk = 1 and the statistics of interest are

T =
n∑

k=1

(ck1Zk1 + ck2Zk2),(7)

where ck1Zk1 + ck2Zk2 is Bernoulli distributed with pa-
rameter pk := ck1πk + ck2(1 − πk) with πk := P(Zk1 =
1). So T ∼ PB(p1, . . . , pn). For 1 ≤ k ≤ n, let �k :=
πk/(1 − πk), which equals to 1 if there is no hidden bias.

The goal is to make inference on T with different
choices of (π1, . . . , πn) and understand which choices ex-
plain away the conclusion we draw from the null hypoth-
esis (i.e., there is no hidden bias). Thus, we are interested
in the set

R(t, α) :=
{
(π1, . . . , πn) : P(T ≥ t) ≤ α

}
,

on the boundary of which the conclusion assuming no hid-
den bias is turned over. However, direct computation of
R(t, α) seems hard. A routine way to solve this problem
is to approximate R(t, α) by a regular shape. To this end,
we consider the following optimization problem:

max�,

s.t. max
πππ∈C�

P
(
T (π1, . . . , πn) ≥ t

)
≤ α,

(8)

where C� is a constraint region. For instance, C� := {πππ :
1

1+�
≤ πk ≤ �

1+�
} corresponds to the worst-case sensitiv-

ity analysis. By the translated Poisson approximation, the
quantity maxπππ∈C� P(T (π1, . . . , πn) ≥ t) can be evaluated
by the following problem which is easy to solve:

min
A∈{0,...,K}

min
πππ∈C�

K∑

k=0

λke−λ

k!

s.t. K = t − A,λ =
n∑

k=1

pk − A,

A ≤
n∑

k=1

p2
k < A + 1.

(9)

Normal approximation. The normal approximation of
the Poisson binomial distribution follows from Lyapunov
or Lindeberg central limit theorem, see, for example, [13],
Section 27. Berry and Esseen independently discovered
an error bound in terms of the cumulative distribution
function for the normal approximation of the sum of in-
dependent random variables. Subsequent improvements
were obtained by [79, 82, 97, 105] via Fourier analysis,
and by [27, 28, 75, 104] via Stein’s method.

Let φ(x) := 1√
2π

exp(−x2/2) be the probability density

function of the standard normal distribution, and 	(x) :=∫ x
−∞ φ(y) dy be its cumulative distribution function. The

following theorem provides uniform bounds for the nor-
mal approximation of Poisson binomial variables.

THEOREM 3.3. Let X ∼ PB(p1, . . . , pn), and μ :=∑n
i=1 pn and σ 2 :=

∑n
i=1 pi(1 − pi).

1. [85], Theorem 11.2, There is a universal constant

C > 0 such that

max
0≤k≤n

∣∣∣∣P(X = k) − φ

(
k − μ

σ

)∣∣∣∣ ≤
C

σ
.(10)

2. [97] We have

max
0≤k≤n

∣∣∣∣P(X ≤ k) − 	

(
k − μ

σ

)∣∣∣∣ ≤
0.7915

σ
.(11)

Other than uniform bounds (10)–(11), several authors
[16, 50, 88] studied error bounds for the normal approx-
imation in other metrics. For μ, ν two probability mea-
sures, consider:
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• Lr metric

dr(μ, ν) :=
(∫ ∞

−∞

∣∣μ(−∞, x] − ν(−∞, x]
∣∣r dx

) 1
r

,

• Wasserstein’s r metric

Wr(μ, ν) := inf
π

(∫ ∞

−∞

∫ ∞

−∞
|x − y|rπ(dx dy)

) 1
r

,

where the infimum runs over all probability measures
π on R×R with marginals μ and ν.

Specializing these bounds to the Poisson binomial distri-
bution, we get the following result.

THEOREM 3.4. Let X ∼ PB(p1, . . . , pn), and μ :=∑n
i=1 pn and σ 2 :=

∑n
i=1 pi(1 − pi).

1. [83], Chapter V, There exists a universal constant

C > 0 such that

dr

(
L(X),N

(
μ,σ 2))

≤
C

σ
for all r ≥ 1.(12)

2. [16, 88] For each r ≥ 1, there exists a constant Cr >

0 such that

Wr

(
L(X),N

(
μ,σ 2))

≤
Cr

σ
.(13)

Goldstein [50] proved Lr bound (12) for r = 1 with
C = 1 via zero bias transformation. The general case fol-
lows from the inequality dr(μ, ν)r ≤ d∞(μ, ν)r−1d1(μ,

ν) together with L1 bound and the uniform bound
(11). By the Kantorovich–Rubinstein duality, d1(μ, ν) =
W1(μ, ν). So the bound (13) holds for r = 1 with C1 = 1.
For general r , the bound (13) is a consequence of the fact
that for Z =

∑n
i=1 ξi with ξi ’s independent, Eξi = 0 and∑n

i=1 Var(ξi) = 1,

Wr

(
L(Z),N (0,1)

)
≤ Cr

(
n∑

i=1

E|Zi |r+1

) 1
r

.

This result was proved in [88] for 1 ≤ r ≤ 2, and general-
ized to all r ≥ 1 in [16].

Binomial approximation. The binomial approximation
of the Poisson binomial is lesser known. The first result
of this kind is due to Ehm [41] who proved that for X ∼
PB(p1, . . . , pn),

dTV
(
L(X),Bin(n,μ/n)

)

(14)

≤
1 − (μ/n)n+1 − (1 − μ/n)n+1

(n + 1)(1 − μ/n)μ/n

n∑

i=1

(pi − μ/n)2.

Elm’s approach was extended to a Krawtchouk expan-
sion in [91]. The advantage of the binomial approximation
over the Poisson approximation is justified by the follow-
ing result due to Choi and Xia [31].

THEOREM 3.5. Let X ∼ PB(p1, . . . , pn), and μ :=∑n
i=1 pn. For m ≥ 1, let dm := dTV(L(X),Bin(m,μ/m)).

Then for m > max{ μ2


μ�−1−(1+{μ})2 , n},

dm < dm+1 < · · · < dTV
(
L(X),Poi(μ)

)
,(15)

where 
·� is the integer part and {·} is the fractional part

of a positive number.

It is easily seen from Theorem 3.5 that for μ ≥ 6 and

n ≥ (
μ�+1)2


μ�−5 , the Bin(n,
μ
n
) approximation is strictly bet-

ter than the Poisson approximation. It was also conjec-
tured that the best Bin(m,

μ
m

) approximation is achieved

for m = 
 μ2
∑n

i=1 p2
i

� by a mean/variance matching argu-

ment. See also [9, 80] for multiparameter binomial ap-
proximations, and [98] for the Pólya approximation of the
Poisson binomial distribution.

4. POISSON BINOMIAL DISTRIBUTIONS AND

POLYNOMIALS WITH NONNEGATIVE COEFFICIENTS

In this section, we discuss aspects of the Poisson bi-
nomial distribution related to polynomials with nonnega-
tive coefficients. For X ∼ PB(p1, . . . , pn), the probability
generating function (PGF) of X is

f (u) := EuX =
n∏

i=1

(piu + 1 − pi).(16)

It is easy to see that f is a polynomial with all nonnega-
tive coefficients, and all of its roots are real negative. The
story starts with the following remarkable theorem, due to
Aissen, Endrei, Schoenberg and Whitney [2, 3].

THEOREM 4.1 ([2, 3]). Let (a0, . . . , an) be a se-

quence of nonnegative real numbers with an > 0. The

associated generating polynomial is f (z) :=
∑n

i=0 aiz
i .

Then the following conditions are equivalent:

1. The polynomial f (z) has only real roots.
2. The sequence (a0/f (1), . . . , an/f (1)) is the prob-

ability distribution of a PB(p1, . . . , pn) distribution for

some pi > 0. The real roots of f (z) are −(1 − pi)/pi .
3. The sequence (a0, . . . , an) is a Pólya frequency (PF)

sequence. That is, the Toeplitz matrix (aj−i : 0 ≤ i, j ≤ n)

(with convention ak = 0 for k < 0) is totally nonnegative:
every minor of (aj−i : 0 ≤ i, j ≤ n) has nonnegative de-

terminant.

See [6] for background on total positivity. For an n × n

matrix there are
∑n

i=1
( n

i

)2 =
( 2n

n

)
− 1 minors, but for

the Toeplitz matrix (aj−i : 0 ≤ i, j ≤ n) many minors
are zero. From a computational aspect, the condition (3)
boils down to solving a system of n(n − 1)/2 polyno-
mial inequalities by matrix elimination [42, 46]. Theo-
rem 4.1 justifies the alternative name “PF distribution” for
the Poisson binomial distribution. Standard references for
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PF sequences are [24, 100]. See also [84] for probabilis-
tic interpretations for polynomials with only negative real
roots, and [57] for various extensions of Theorem 4.1 by
linear algebra.

EXAMPLE 3. Hypergeometric distribution. As an ap-
plication of Theorem 4.1, we present a lesser known fact
that the hypergeometric distribution is Poisson binomial.
This result is due to Vatutin and Mikhailov [106]. The hy-
pergeometric distribution HyperGeo(n,K,N) describes
the probability of a number of successes in n draws with-
out replacement from a population of size N that con-
tains K successes in total. It is straightforward from this
definition that a hypergeometric random variable can be
written as a sum of identically distributed but dependent
Bernoulli’s. It is less obvious that a hypergeometric ran-
dom variable can also be expressed as a sum of indepen-
dent but not identically distributed Bernoulli’s. We follow
a simple argument in [66].

For X ∼ HyperGeo(n,K,N), the probability mass
function of X is

P(X = k) =
(
K
k

)(
N−K
n−k

)
(
N
n

) for 0 ≤ k ≤ K.(17)

By simple algebra, the probability mass function (17) can
also be written as

P(X = k) =
( n

k

)(
N−n
K−k

)
(
N
K

) for 0 ≤ k ≤ K,

thus, the PGF of X is

f (z) =
1

(
N
K

)
K∑

k=0

(
n

k

)(
N − n

K − k

)
zk.(18)

The key idea is to relate the PGF (18) to the Jacobi poly-
nomials defined by

P
a,b
K (x) :=

1

2K

K∑

k=0

(
K + a

k

)(
K + b

K − k

)

(19)
× (x − 1)K−k(x + 1)k,

for −1 < x < 1, where a, b > −1. It is well known that
for any fixed a, b, the family (P

a,b
K ,K ≥ 0) form or-

thogonal polynomials, and hence each polynomial P
a,b
K

has K real roots in (−1,1). By setting a = n − K , b =
N − n − K , we have

f (z)

(z − 1)K

∣∣∣∣
z= x+1

x−1

=
1

(
N
n

)P a,b
K (x).(20)

The identity (20) implies that the PGF f has K roots in
(−∞,0), and the conclusion then follows Theorem 4.1.

A polynomial is called stable if it has no roots with pos-
itive imaginary part, and a stable polynomial with all real
coefficients is called real stable [21, 22]. In [23], a discrete

distribution on a subset of nonnegative integers is said to
be strong Rayleigh if its PGF is real stable. It was also
shown that the strong Rayleigh property enjoys all virtues
of negative dependence. The following result is a simple
consequence of Theorem 4.1.

COROLLARY 4.2. A random variable X ∼ PB(p1,

. . . , pn) for some pi if and only if X is strong Rayleigh

on {0, . . . , n}.

In the sequel, we use the terminologies “Poisson bino-
mial” and “strong Rayleigh” interchangeably. Call a poly-
nomial f (z) =

∑n
i=0 aiz

i with ai ≥ 0 strong Rayleigh if
it satisfies one of the conditions in Theorem 4.1.

For n ≥ 5, it is hopeless to get any “simple” necessary
and sufficient condition for a polynomial f to be strong
Rayleigh due to Abel’s impossibility theorem. The most
obvious necessary condition for a polynomial f to be
strong Rayleigh is the Newton’s inequality:

a2
i ≥ ai−1ai+1

(
1 +

1

i

)(
1 +

1

n − i

)
,

1 ≤ i ≤ n − 2.

(21)

The sequence (ai;0 ≤ i ≤ n) satisfying (21) is also said
to be ultra-logconcave [81]. Consequently, (ai;0 ≤ i ≤
n) is logconcave and unimodal. A lesser known sufficient
condition is given in [60, 68]:

a2
i > 4ai−1ai+1, 1 ≤ i ≤ n − 2.(22)

See also [51, 64] for various generalizations. As observed
in [65], the inequality (22) cannot be improved since the
sequence (mi; i ≥ 0) defined by

mi := inf
{

a2
i

ai−1ai+1
;f is strong Rayleigh

}
,

decreases from m1 = 4 to its limit approximately 3.2336.
Recently, determinantal point processes (DPPs) have

become a useful tool to model the phenomenon of neg-
ative dependence in data diversity [48, 69], sampling [4,
78] and machine learning [1, 67]. More precisely, a DPP is
a simple point process on a suitably nice space �, whose
correlation functions at (x1, . . . , xn) ∈ �n (i.e., the proba-
bility densities of having random points at x1, . . . , xn) are

ρ(x1, . . . , xn) = det
[
K(xi, xj )

]
1≤i,j≤n,

for some kernel K : � × � → R. In the context of rec-
ommender systems, let � be a universe of items. The
negative dependence is captured by the kernel K which
defines a measure of similarity between pairs of items, so
that similar items are less likely to co-occur. That is, DPPs
assign higher probability to sets of items that are diverse:
DPPs recommend items covering various aspects of user
demands rather than proposing the most popular ones.

There is a growing interest in understanding statistical
properties of DPPs (see, e.g., [48]), and one of the most
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important quantities is the occupation counts of DPPs.
For S

(n)
1 , . . . , S

(n)
d disjoint Borel sets indexed by n ≥ 1,

let Xn,i be the number of points of the DPP in S
(n)
i ,

1 ≤ i ≤ d . It was proved in [99] that under fairly general
conditions on the kernel K and S

(n)
1 , . . . , S

(n)
d , the vec-

tor of counts (Xn,1, . . . ,Xn,d) has a multivariate Gaussian
limit after suitable scaling. This is equivalent to the con-
vergence in law:

(23)

∑d
i=1 αiXn,i −E(

∑d
i=1 αiXn,i)

Var(
∑d

i=1 αiXn,i)

d−→ N (0,1),

for any real numbers α1, . . . , αd . The proof of the conver-
gence in law (23) relies on the fact that the kth cumulant
of the left side in (23) goes to 0 for all k > 2. But this
proof is quite specific to the determinantal structure, and
is hard to generalize to other point processes.

Let
f (z1, . . . , zd)

:= E

d∏

i=1

z
Xi

i

=
∑

ki∈{0,1,...,}
P(Xi = ki,1 ≤ i ≤ d)

n∏

i=1

z
ki

i ,

(24)

be the multivariate PGF of the counts (X1, . . . ,Xd) of a
DPP. It is well known that if each Xi is bounded, f is real
stable in the sense that f = 0 has no solution (z1, . . . , zd)

with each zi having positive imaginary part. Similar to the
univariate case, a nonnegative integer-valued random vec-
tor (X1, . . . ,Xd) with real stable PGF is said to be strong
Rayleigh. Thus, the occupation counts of DPPs are strong
Rayleigh. A natural idea is to extend the multivariate CLT
of the occupation counts of DPPs to those of more general
point processes which satisfy the strong Rayleigh prop-
erty. This program was carried out in [47], which we call
the Ghosh–Liggett–Pemantle (GLP) principle.

GLP PRINCIPLE. Strong Rayleigh vectors have mul-
tivariate Gaussian limits.

To be more precise, for (Xn,1, . . . ,Xn,d) ∈ {0, . . . , n}d
a sequence of strong Rayleigh vectors, let 
n be its
covariance matrix, and σ 2

n be the �2-norm of 
n. It
was proved in [47] that under the conditions σn → ∞,


n/σ
2
n → 
∗ and σn/n

1
3 → ∞,

(Xn,1, . . . ,Xn,d) −E(Xn,1, . . . ,Xn,d)

σn

d−→ N
(
0,
∗)

,

(25)

where N (0,
∗) denotes the multivariate Gaussian distri-
bution with mean 0 and covariance matrix 
∗. The con-
vergence in law (25) is a multivariate CLT, and its univari-
ate counterpart was used to prove the asymptotic normal-
ity in some combinatorial problems [52, 106]. By a ver-
sion of the Crámer-Wold device (see [47], Corollary 6.3’),

it boils down to proving that for any positive rational num-
bers q1, . . . , qd , the linear combination

∑d
i=1 qiXn,i has

a Gaussian limit law. This follows from the fact that the
PGF of the random variable

∑d
i=1 qiXn,i has no zeros

near 1, which is a consequence of the strong Rayleigh

property of (Xn,1, . . . ,Xn,d). The condition σn/n
1
3 → ∞

(i.e., the variance grows fast) is purely technical, and it
has been removed later in [73, 74]. However, these works
rely heavily on analytical tools in complex analysis.

Here we outline a probabilistic argument to prove the
multivariate CLT (25), which motivates the study of ra-
tional multiples of strong Rayleigh, or Poisson binomial
variables. In light of [52, 106], the proof is complete if one
can approximate

∑d
i=1 qiXn,i by a strong Rayleigh vari-

able. We consider the univariate subcase by taking qi = 0,
i ≥ 2: if X is strong Rayleigh, how well can one approx-
imate jX/k for each j, k ≥ 1 by a strong Rayleigh vari-
able? A good approximation may serve as a starting point
to a probabilistic proof of the multivariate CLT (25) for
strong Rayleigh distributions. The case j = 1 was solved
in [47].

THEOREM 4.3 ([47]). Let X be strong Rayleigh. Then


X
k
� is strong Rayleigh for each k ≥ 1.

The key to the proof of Theorem 4.3 is that for f

a polynomial of degree n and k ≥ 1, write f (z) =∑k−1
j=0 xjgj (z

k), with gj a polynomial of degree 
n−j
k

�.
The theorem asserts that if f is strong Rayleigh, then
each gi is real-rooted, and their roots are interlaced in the
sense that if the set of all n − k + 1 roots zj of the gi’s
are placed in increasing order zn−k < · · · < z1 < z0 < 0,
then the roots of gi are zi, zi+k, zi+2k . . . In fact, the real-
rootedness follows from the fact that (an;n ≥ 0) is a PF
sequence implies (akn+j ;n ≥ 0) is a PF sequence for each
k ≥ 1 and 0 ≤ j < k. This result is well known, see [2,
24]. But the root interlacing seems less obvious by PF
sequences.

A natural question is whether 
jX/k� is strong
Rayleigh for each j, k ≥ 1. It turns out that 
2X/3� can
be far away from being strong Rayleigh. In fact, one can
prove that for X ∼ Bin(3n,1/2), and zi being the roots

of the PGF of 
2X/3�, maxi{�(zi)} ≥
√

9n2−9n−1
2 where

�(z) is the imaginary part of z. The reason why some
roots of the PGF of 
2X/3� have large positive imagi-
nary parts is due to the unbalanced allocation of proba-
bility weights to even and odd numbers: P(
2X

3 � = 2k) =( 3n+1
3k+1

)
while P(
2X

3 � = 2k + 1) =
( 3n

3k+2

)
. So the New-

ton’s inequality (21) is not satisfied. In the Supplementary
Materials [102], we formulate the problem of approxi-
mating rational fractions of Poisson binomial via optimal
transport, and provide some analysis of 2X

3 for X a bino-
mial random variable.

Recently, Liggett proved an interesting result of 
2X/3�
for X a strong Rayleigh variable.
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THEOREM 4.4 ([71]). Let X be strong Rayleigh. Then

the PGF of 
2X/3� is Hurwitz stable. That is, all its roots

have negative real parts.

The idea is to write the PGF of 
2X/3� as g0(x
2) +

xg1(x
2), where g0 and g1 have interlacing roots. By the

Hermite–Biehler theorem [12, 53], such polynomials are
Hurwitz stable. This means that the PGF of 
2X/3� can
be factorized into polynomials with positive coefficients
of degrees no greater than 2. Thus, 
2X/3� is a Poisson
multinomial variable, that is the sum of independent ran-
dom variables with values in {0,1,2}. The following re-
sult is conjectured.

CONJECTURE 4.5. Let X be strong Rayleigh. Then


jX/k� is the sum of independent random variables with

values in {0,1, . . . , j}. Equivalently, the PGF of 
jX/k�
can be factorized into polynomials with positive coeffi-

cients of degrees no greater than j .

5. COMPUTATIONS OF POISSON BINOMIAL

DISTRIBUTIONS

In this section, we discuss a few computational issues of
learning and computing the Poisson binomial distribution.

Learning the Poisson binomial distribution. Distribu-
tion learning is an active domain in both statistics and
computer science. Following [36], given access to in-
dependent samples from an unknown distribution P , an
error control ε > 0 and a confidence level δ > 0, a
learning algorithm outputs an estimation P̂ such that
P(dTV(P̂ ,P ) ≤ ε) ≥ 1 − δ. The performance of a learn-
ing algorithm is measured by its sample complexity and
its computational complexity.

For X ∼ PB(p1, . . . , pn), this amounts to finding a vec-
tor (p̂1, . . . , p̂n) defining X̂ ∼ PB(p̂1, . . . , p̂n) such that
dTV(X̂,X) is small with high probability. This is often
called proper learning of Poisson binomial distributions.
Building upon previous work [14, 35, 89], Daskalakis, Di-
akonikolas and Servedio [34] established the following re-
sult for proper learning of Poisson binomial distributions.

THEOREM 5.1 ([34]). Let X ∼ PB(p1, . . . , pn) with

unknown pi’s. There is an algorithm such that given

ε, δ > 0, it requires:

• (sample complexity) O(1/ε2) · log(1/δ) independent

samples from X,
• (computational complexity) (1/ε)O(log2(1/ε)) ·O(logn ·

log(1/δ)) operations,

to construct a vector (p̂1, . . . , p̂n) satisfying P(dTV(X̂,

X) ≤ ε) ≥ 1 − δ for X̂ ∼ PB(p̂1, . . . , p̂n).

The proof of Theorem 5.1 relies on the fact each Pois-
son binomial distribution is either close to a Poisson bi-
nomial distribution whose support is sparse, or is close to
a translated “heavy” binomial distribution. The key to the

algorithm is to find subsets covering all Poisson binomial
distributions, and each of these subsets is either “sparse”
or “heavy.” Applying Birgé’s unimodal algorithm [14] to
sparse subsets, and the translated Poisson approximation
(Theorem 3.2) to heavy subsets give the desired algo-
rithm. Note that the sample complexity in Theorem 5.1
is nearly optimal, since �(1/ε2) samples are required to
distinguish Bin(n,1/2) from Bin(n,1/2 + ε/

√
n) which

differ by �(ε) in total variation. See also [37] for further
results on learning the Poisson binomial distribution, and
[33, 38, 39] for the integer-valued distribution.

Computing the Poisson binomial distribution. Recall
the probability distribution of X ∼ PB(p1, . . . , pn) from
(1). Given p1, . . . , pn, a brute-force computation of this
distribution is expensive for large n. Approximations in
Section 3 are often used to estimate the probability distri-
bution/CDF of the Poisson binomial distribution. Here we
focus on the efficient algorithms to compute exactly these
distribution functions. There are two general approaches:
recursive formulas and discrete Fourier analysis.

In [29], the authors presented several recursive algo-
rithms to compute (1). For 0 ≤ k ≤ m ≤ n, let

Rk,m := P(Xm = k), where Xm ∼ PB(p1, . . . , pm).

So P(X = k) = Rk,n for 0 ≤ k ≤ n. Two recursive algo-
rithms are proposed:

• [45] For 0 ≤ k ≤ m ≤ n,

Rk,m = (1 − pm)Rk,m−1 + pmRk−1,m−1,(26)

with the convention that R−1,m = Rm+1,m = 0 for 0 ≤
m ≤ n − 1, and R0,0 = 1.

• [30, 101] For i ≥ 1, let ti :=
∑n

j=1(
pj

1−pj
)i . Then

R0,n =
n∏

j=1

(1 − pj ),

Rk,n =
1

k

k∑

i=1

(−1)i+1tiRk−i,n, 1 ≤ k ≤ n.

(27)

The recursion (26) uses 1 addition and 2 multiplications
to compute Rk,m given Rk,m−1 and Rk−1,m−1. Thus, to
get the value of Rk,n for a general k, it requires 3k(n − k)

operations. For the recursion (27), if the values of ti are
available, it uses k − 1 additions and k + 1 multiplica-
tions to compute Rk,n given R0,n, . . . ,Rk−1,n. Moreover,
it takes n − 1 additions to get t1, and n − 1 additions and
n multiplications to get ti for i ≥ 2. As a result, it re-
quires approximately k2 + 2kn operations to get the value
of Rk,n for any k. So for small k’s, the recursion (27)
uses less operations than the recursion (26) to compute the
value of Rk,n. However, to output the whole sequence of
{R0,n, . . . ,Rn,n} (with memory being allowed), the recur-
sion (26) requires approximately 3n2/2 operations, and
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n in memory while the recursion (27) requires approxi-
mately 3n2 operations, and n in memory.

In another direction, [43, 58] used a Fourier approach
to evaluate the probability distribution/CDF of Poisson bi-
nomial distributions. They provided the following explicit
formulas:

P(X = k) =
1

n + 1

n∑

j=0

exp(−iωkj)xj ,(28)

and

(29) P(X ≤ k) =
1

n + 1

n∑

j=0

1 − exp(−iω(k + 1)j)

1 − exp(−iωj)
xj ,

where ω := 2π
n+1 and xj :=

∏n
k=1(1 − pk + pk exp(iωj)).

Note that it uses n operations to get x0, and 6(n − 1) op-
erations to get xj for j �= 0. Since xj and xn+1−j are
conjugate of each other, it requires approximately 3n2

operations to compute the sequence {x0, . . . , xn}. Fur-
ther, the r.h.s. of (28) is the discrete Fourier transform
of {x0, . . . , xn} which can be easily computed by Fast
Fourier Transform in O(n logn) operations. See also [15]
for a related approach.
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