

1 **Structural basis for tRNA methylthiolation by the radical SAM enzyme MiaB**

2

3 **Authors:** Olga A. Esakova^{1,*}, Tyler L. Grove^{2,*}, Neela H. Yennawar⁴, Arthur J. Arcinas^{3,6}, Bo
4 Wang¹, Carsten Krebs^{1,3}, Steven C. Almo², and Squire J. Booker^{1,3,5*}

5

6 **Affiliations:** The ¹Department of Chemistry, the ³Department of Biochemistry and Molecular
7 Biology, ⁴The Huck Institutes of the Life Sciences, and the ⁵Howard Hughes Medical Institute,
8 The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

9

10 The ²Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York

11 ⁶Present address: AGC Biologics, Seattle, WA

12

13 Corresponding authors: squire@psu.edu, oae3@psu.edu, and tylergrove223@gmail.com

14

15

16 **One Sentence Summary:** First X-ray crystal structures of a methylthiotransferase that acts on
17 tRNA

18

19 **Summary Paragraph**

20 Numerous post-transcriptional modifications of transfer RNAs (tRNAs) play vital roles in
21 translation. The 2-methylthio- N^6 -isopentenyladenosine (ms^2i^6A) modification occurs at position
22 37 (A37) in tRNAs that contain adenine in position 36 of the anticodon, and serves to promote
23 efficient A:U codon-anticodon base-pairing and to prevent unintended base-pairing by near
24 cognates, thus enhancing translational fidelity.¹⁻⁴ The ms^2i^6A modification is installed onto
25 isopentenyladenosine (i^6A) by MiaB, a radical S-adenosylmethionine (SAM)
26 methylthiotransferase (MTTase). As a radical SAM protein, MiaB contains one $[Fe_4S_4]_{RS}$ cluster
27 used in the reductive cleavage of SAM to form a 5'-deoxyadenosyl 5'-radical (5'-dA \bullet), which is
28 responsible for removing the C² hydrogen of the substrate.⁵ MiaB also contains an auxiliary
29 $[Fe_4S_4]_{aux}$ cluster, which has been implicated in sulfur transfer to C² of i^6A37 .⁶⁻⁹ How this
30 transfer takes place is largely unknown. Herein, we present several structures of MiaB from
31 *Bacteroides uniformis* (*BuMiaB*). These structures are consistent with a two-step mechanism, in
32 which one molecule of SAM is first used to methylate a bridging μ -sulfido ion of the auxiliary
33 cluster. In the second step, a second SAM molecule is cleaved to a 5'-dA \bullet , which abstracts the
34 C² hydrogen of the substrate, but after C² has undergone rehybridization from sp² to sp³. This
35 work advances our understanding of how enzymes functionalize inert C–H bonds with sulfur.

36

37

38

39 **Introduction**

40 MiaB catalyzes the final step in the biosynthesis of the hypermodified nucleoside ms²i⁶A,
41 which is the attachment of a methylthio (–SCH₃) group at C² of i⁶A37 in tRNAs that contain
42 adenine in position 36 of the anticodon (**Fig. 1a**).³ The human ortholog, CDK5RAP1, is
43 mitochondrially located and responsible for modifying Ser^(AGN), Phe, Tyr, and Trp of
44 mitochondrial tRNAs at nucleotide i⁶A37.^{10,11} It also regulates the activity of the cyclin-
45 dependent kinase 5 and is linked to functions of the central nervous system. Moreover, it is
46 implicated in a number of cancers.^{12,13} Another related class of methylthiotransferases
47 (MTTases), designated MtaB-like^{14,15}, acts on C² of N⁶-(threonylcarbamoyl)adenosine (t⁶A),
48 also found at position 37, but in tRNA^{Lys(UUU)} (**Fig. 1b**). The loss of function or downregulation
49 of one such MTTase, CDKAL1, is one of the greatest risk factors across all ethnic groups for the
50 development of type 2 diabetes.¹⁶ Lastly, RimO is the only known MTTase that targets a protein,
51 which in *E. coli*, is C³ of Asp89 of protein S12 of the 30S subunit of the bacterial ribosome (**Fig.**
52 **1c**).¹⁷⁻¹⁹

53 MiaB, like other known MTTases, contains an [Fe₄S₄]_{RS} cluster and an [Fe₄S₄]_{aux} cluster,
54 both of which are required for its function. The [Fe₄S₄]_{RS} cluster is responsible for the reductive
55 cleavage of SAM to afford the 5'-dA•, while the [Fe₄S₄]_{aux} cluster is believed to be involved in
56 sulfur incorporation. Biochemical studies suggest that a methyl group from SAM is first
57 transferred to an undetermined sulfur species associated with the [Fe₄S₄]_{aux} cluster. Subsequently,
58 the nascent methylthio group is transferred intact to C² of i⁶A37 in a radical-dependent
59 reaction.^{6,20,21} Despite the importance of tRNA methylthiolation in human health,¹⁶ how these
60 MTTases accomplish this difficult reaction is largely unknown.

61 **BuMiaB domain architecture**

62 *BuMiaB* is composed of three domains (**Fig. 2a and Extended Data Table 1**): an N-
63 terminal MTTase domain, an RS domain, and a C-terminal TRAM domain. The MTTase domain
64 (residues 1 to 139, **Fig. S1a**) contains Cys27, Cys63 and Cys97, which coordinate three of the
65 irons of the $[\text{Fe}_4\text{S}_4]_{\text{aux}}$ cluster (**Extended Data Fig. 3a**), while the RS domain (residues 162-396,
66 **Fig. S1b**) exhibits a conserved core fold that consists of a shortened $(\beta\alpha)_6$ triosephosphate
67 isomerase (TIM) barrel. The RS domain contains Cys171, Cys173 and Cys178, which coordinate
68 three of the irons of the $[\text{Fe}_4\text{S}_4]_{\text{RS}}$ cluster. The C-terminal TRAM domain (residues 397-457, **Fig.**
69 **S1c**), which was proposed to play an important role in RNA binding, is composed of a twisted
70 antiparallel five-stranded β -sheet that is positioned over the RS domain.^{22,23} The overall
71 architecture of *BuMiaB* is similar to that of RimO from *Thermotoga maritima* (*TmRimO*;
72 **PDB:4JC0**) (**Extended Data Fig. 1**). The structure of *BuMiaB* in the absence of substrates
73 shows that the $[\text{Fe}_4\text{S}_4]_{\text{aux}}$ and $[\text{Fe}_4\text{S}_4]_{\text{RS}}$ clusters are connected by a pentasulfide bridge (**Extended**
74 **Data Fig. 1a**), as was observed in the *TmRimO* structure.⁸

75

76 RNA interactions and binding specificity

77 In the structures of *BuMiaB* complexed with a 13-mer (nucleotides 29-41) or a 17-mer
78 (nucleotides 27-43) RNA substrate surrogate derived from the *Bacteroides uniformis* (*Bu*)
79 tRNA^{Phe} anticodon stem loop (ACSL) sequence, all three domains of the protein interact with the
80 RNA (**Extended Data Fig. 2b**). One structure, determined to 1.5 Å resolution (**Extended Data**
81 **Table 1 and Table S1**), contains *BuMiaB* in the presence of 5'-deoxyadenosine plus methionine
82 (5'dAH+Met) and the 13-mer. This structure shows that the central part of the enzyme contains a
83 deep cleft (~26 Å) formed at the interface of all three domains. Two positively charged regions
84 in the cleft are in close contact with the phosphates of the RNA backbone, forming strong

85 electrostatic interactions (**Extended Data Fig. 2c**). In addition, the surface of the cleft, where the
86 13-mer RNA is bound, contains many highly conserved amino acids (**Extended Data Fig. 2d**).

87 RNA bases 33 to 37 form the anticodon loop (**Extended Data Figs. 3, 4**). This loop is
88 supported by a canonical double-stranded region exhibiting base-pairing between nucleotides 29
89 to 32 from the 5'-side of the RNA with nucleotides 41 to 38 on the 3'-side, respectively. This
90 base-pairing is similar to that of full-length tRNA^{Phe} in complex with MiaA (**PDB: 2ZM5**),
91 suggesting that the tRNA maintains its native secondary structure in complex with *BuMiaB*
92 (**Extended Data Figs. 3a, 4a**). The RNA backbone from nucleotides 29 to 32 is contacted by a
93 loop spanning amino acid residues 408–413 of the TRAM domain. Lys409 and Arg410 from this
94 loop are within H-bonding distance of the RNA (**Fig. 2b, Extended Data Fig. 3b**). Arg410
95 supports a turn of the RNA between nucleotides G30 and C32 by electrostatic interactions with
96 the phosphate oxygens of C32 and U33 (**Figs. 2b, 2c**). Ser446 from another loop of the TRAM
97 domain is within H-bonding distance of the phosphate oxygen of C32. MiaB in complex with the
98 13-mer RNA has induced a U-turn that is not seen in the full-length tRNA in complex with
99 MiaA (**Fig. 2b, Extended Data Figs. 3a, 4a**).²⁴

100 U33 is conserved in all tRNAs, and our structures show a unique binding mode of this
101 nucleotide with MiaB's TRAM domain, demonstrated to be important for substrate selection^{23–}
102²⁵. The U33 base is immersed in a positively charged pocket lined by Lys409, Arg410 and
103 Lys451, conserved residues that provide selectivity for the U33 base (**Extended Data Fig. 2d**).
104 Other residues from the pocket include Ser408 and Gln414, both of which coordinate to N³ of
105 U33 through a water molecule. The amide backbone nitrogen atoms of Lys409 and Arg410 form
106 H-bonds with the C² oxygen atom of U33. C⁵ and C⁶ of U33 are in a hydrophobic interaction

107 with the side-chain of Val426 and the methyl group of Thr449. The side-chain of Arg410 covers
108 the U33 binding pocket en route to interacting with the phosphate backbone (**Figs. 2b, 2c**).

109 Sequence analysis of tRNAs possessing ms^2i^6A37 shows a conserved adenosine at
110 position 36, the last nucleotide of the anticodon.^{15,26,27} The recognition motif for A36 is located
111 in the β 27 strand of the RS domain and includes Phe348 and Phe350, both of which form van der
112 Waals interactions with A36. Phe348 forms an edge-to-face interaction with C⁶ of A36, and
113 Phe350 forms an edge-to-edge interaction with C² of A36 (**Figs. 2d, 2e**). As seen in structures of
114 other RNA/protein complexes that recognize an adenine,^{28,29} the interaction between Phe350 and
115 C² of A36 may be important for base recognition. Unlike adenine, the other bases have
116 hydrophilic groups attached to C² (i.e., O for C, NH₂ for U and G), which can disrupt van der
117 Waals interactions. A36 points towards the stem of the ACSL and participates in base-stacking
118 interactions with A38. In contrast to A36 and i⁶A37, nucleotides 34 and 35, which are the first
119 and second nucleotides of the anticodon, are not conserved in tRNAs that possess ms^2i^6A37 and
120 do not show base-specific interactions (**Extended Data Figs. 5a, 5b**).

121 The immediate base after the anticodon, i⁶A37, is recognized as the substrate by its
122 isopentenyl group, which explains why MiaB only acts on A37 that has been isopentenylated.³⁰
123 The isopentenyl group makes hydrophobic contacts with the methyl groups of Thr251 and
124 Thr252, which are connected by a cis-peptide bond needed to support these interactions
125 (**Extended Data Fig. 5c**). The methylene groups of Cys27 and Met29 from the MTTase domain,
126 and Leu213 and Gln215 from the RS domain, complete the hydrophobic pocket for the
127 isopentenyl group. The only direct H-bond interaction is between the carbamoyl oxygen of
128 Gln28 and N⁶ of i⁶A37. A model of *Bu*MiaB in complex with the full-length of tRNA^{Phe} was
129 constructed, revealing two regions in the MTTase domain that are potentially involved in tRNA

130 engagement: the highly conserved residues Gln71 and Lys72, and the positively charged loop
131 from residues 84 to 88 (KKKKR) (**Extended Data Fig. 6**).

132

133 **Active site and reaction mechanism**

134 Two molecules of SAM are expended for each cycle of MiaB catalysis, resulting in one
135 molecule of SAH and one molecule each of 5'-dAH and Met. The first molecule of SAM binds
136 to the $[\text{Fe}_4\text{S}_4]_{\text{RS}}$ cluster (**Extended Data Fig. 7a**) and donates its methyl group to an acceptor,
137 forming SAH in the process (**Fig. 4, step 1**). The most likely acceptor is a μ_2 -sulfido ion from the
138 auxiliary cluster, given its close proximity to the sulfur of SAH (4.3 Å) in the SAH-bound
139 structure with the 13-mer RNA substrate (**Fig. 3a**), or the methyl group of SAM (3.4 Å) in the
140 SAM-bound structure with the 17-mer (**Fig. 3b**).

141 The structure of *BuMiaB* with SAM and the 17-mer represents the next snapshot in
142 catalysis (**Fig. 3b**), which takes place after SAH leaves the active site and is replaced by a second
143 molecule of SAM (**Fig. 4, steps 2 and 3**). The structure, obtained from crystals grown in the
144 presence of excess SAM and the 17-mer, was determined to a resolution of 2.24 Å (**Extended**
145 **Data Table 1, Table S1**). The $[\text{Fe}_3\text{S}_4]_{\text{aux}}$ cluster does not show extra density that can be
146 attributed to a transferred methyl group, although this density would be difficult to discern at this
147 resolution. C^2 of i^6A is 5.6 Å from the closest sulfide of the $[\text{Fe}_3\text{S}_4]_{\text{aux}}$ cluster. However, the
148 position of i^6A changes in the structure of *BuMiaB* co-crystallized with the 13-mer and 5'-
149 dAH+Met. This complex mimics the step in which SAM is reductively cleaved to form the 5'-
150 dA• and Met (**Fig. 4, steps 4, 5 and 6**). In the structure of *BuMiaB* with the 17-mer and SAM,
151 Arg66 is H-bonded to N^3 of i^6A (**Fig. 3b**), while in the structure with the 13-mer and 5'-
152 dAH+Met (**Fig. 3c, Extended Data Fig. 7b**), N^3 of i^6A loses its direct interaction with Arg66

153 and interacts through a water molecule. The electron density around N³ of i⁶A appears to be
154 extended in the direction of the water molecule in the structure of *BuMiaB* with 5'-dAH+Met and
155 the 13-mer, suggesting that N³ moves slightly out of the plane of adenosine (**Fig. 3c**).

156 In the structure of *BuMiaB* with the 13-mer and 5'-dAH+Met, C² of i⁶A sits between C^{5'}
157 of 5'-dAH and a μ_2 -sulfido ion of the [Fe₃S₄]_{aux} cluster at distances of 3.1 and 3.3 Å, respectively
158 (**Fig. 3c, Extended Data Fig. 7b**). The angle between C^{5'} of 5'-dAH and C² is 108 \pm 1.5° (1.5 Å
159 resolution) and more suitable for H-atom abstraction from an sp³-hybridized carbon (109.5°)
160 than from an sp²-hybridized carbon (120°). The suggested change in hybridization at C² may be
161 promoted by protonation of N³ of i⁶A by Arg66 through an intervening water molecule or by
162 polarization of the adenine ring π -system mediated by H-bonding. Consistent with this role in
163 catalysis, replacement of Arg66 with Gln does not inhibit methyl transfer from SAM to the
164 cluster in solution (**Extended Data Fig. 8a**), but it does completely abolish formation of
165 ms²i⁶A37 (**Extended Data Fig. 8b-e**).

166 An additional structure (1.4 Å resolution) of *BuMiaB* in the presence of 5'-dAH+Met and
167 the 13-mer was also determined at 1.4 Å resolution, but after pre-methylating *BuMiaB* with
168 SAM (**Extended Data Table 1, Table S1**). As in the previous structure of non-pre-methylated
169 *BuMiaB* with 5'-dAH+Met and the 13-mer, the pre-methylated *BuMiaB* structure demonstrates
170 distorted electron density around N³ of i⁶A (**Extended Data Fig. 9a**). We also observe extended
171 electron density on one of the sulfides of the [Fe₃S₄]_{aux} cluster, which we posit is the transferred
172 methyl group (**Fig. 3d, Extended Data 9b**). Such a localization of the methyl group, which
173 might be driven by a steric clash with the i⁶A substrate, necessitates that iron dissociate from the
174 auxiliary cluster, as has recently been demonstrated spectroscopically.⁷ After abstraction of the
175 C² hydrogen atom, the resulting unpaired electron at C² is transferred into the auxiliary cluster

176 with concomitant rearomatization of i^6A37 (Fig. 4, steps 7 and 8). This step would result in
177 reduction of an Fe^{3+} to Fe^{2+} and dissociation of the methylthio group from the fragmented
178 auxiliary cluster, which is suggested to be $[Fe_3S_3]^{1+}$.

179

180 **Discussion**

181 We have, for the first time, determined structures of an MTTase in the presence of its
182 macromolecular substrate. *BuMiaB* shows exquisite selectivity for i^6A37 , and various elements
183 of the structure detail how this selectivity is achieved. Although all three domains of the protein
184 contribute to RNA binding, the TRAM domain contributes conserved amino acids that select for
185 U33, which is conserved in all tRNAs. A36 is found in all tRNAs that undergo the ms^2i^6A
186 modification, and is recognized by two Phe residues contributed by the RS domain, which also
187 select against all other nucleotides at this position. Importantly, i^6A37 is recognized
188 predominantly by its isopentenyl modification, which is consistent with *MiaB*'s inability to
189 modify A37 that is not isopentenylated.

190 The *MiaB* reaction takes place in two distinct half-reactions, and it appears that one SAM
191 binding site supports both of these steps, as has been observed for the class A RS methylases
192 RlmN and Cfr.³¹ The structure of *BuMiaB* with bound SAM plus the 17-mer RNA substrate
193 shows that SAM binds to the $[Fe_4S_4]_{RS}$ cluster with its methyl group positioned 3.4 Å from a
194 bridging μ_2 -sulfido ion of an $[Fe_3S_4]_{aux}$ cluster, an arrangement that is consistent with
195 methylation of the $[Fe_3S_4]_{aux}$ cluster by a standard S_N2 mechanism. In the second half-reaction,
196 an intact methylthio group is transferred to C^2 of i^6A37 in a radical-dependent reaction. The
197 structure of *BuMiaB* in the presence of the 13-mer RNA substrate and 5'-dAH+Met provides
198 insight into how this unusual reaction takes place. C^2 of the adenine base is sandwiched between

199 the methylated sulfide ion of the $[\text{Fe}_3\text{S}_4]_{\text{aux}}$ cluster and the 5'-carbon of 5'-dAH at angles of
200 $\sim 108.5^\circ$, suggestive of tetrahedral geometry. The structure suggests that the C^2 hydrogen is
201 abstracted upon C^2 rehybridization from sp^2 to sp^3 , which would circumvent the unfavorable
202 homolytic bond-dissociation energy associated with cleaving the $\text{C}^2\text{--H}$ bond,^{32,33} and also satisfy
203 the spatial constraints associated with subsequent functionalization. This rehybridization is
204 suggested to be promoted through attack at C^2 by the methylated sulfide ion of the auxiliary
205 cluster. Our studies herein provide unprecedented insight into the mechanism of tRNA
206 methylthiolation. A better understanding of the reaction catalyzed by RimO, and in particular
207 how its TRAM domain is used to recognize a protein substrate, awaits better X-ray structures of
208 that enzyme.

209

210 REFERENCES

211 1 Connolly, D. M. & Winkler, M. E. Genetic and physiological relationships among the miaA gene,
212 2-methylthio-N6-(delta 2-isopentenyl)-adenosine tRNA modification, and spontaneous
213 mutagenesis in *Escherichia coli* K-12. *J. Bacteriol.* **171**, 3233-3246 (1989).

214 2 Connolly, D. M. & Winkler, M. E. Structure of *Escherichia coli* K-12 *miaA* and characterization of
215 the mutator phenotype caused by *miaA* insertion mutations. *J. Bacteriol.* **173**, 1711-1721 (1991).

216 3 Esberg, B., Leung, H.-C. E., Tsui, H.-C. T., Björk, G. R. & Winkler, M. E. Identification of the *miaB*
217 gene, involved in methylthiolation of isopentenylated A37 derivatives in the tRNA of *Salmonella*
218 *typhimurium* and *Escherichia coli*. *J. Bacteriol.* **181**, 7256-7265 (1999).

219 4 Urbonavicius, J., Qian, Q., Durand, J. M. B., Hagervall, T. G. & Björk, G. R. Improvement of
220 reading frame maintenance is a common function for several tRNA modifications. *EMBO J.* **20**,
221 4863-4873 (2001).

222 5 Arcinas, A. J. *Mechanistic Studies of the radical S-adenosyl-L-methionine (SAM) tRNA*
223 *Methylthiotransferase MiaB* Ph.D. thesis, The Pennsylvania State University, (2016).

224 6 Landgraf, B. J., Arcinas, A. J., Lee, K.-H. & Booker, S. J. Identification of an intermediate methyl
225 carrier in the radical S-adenosylmethionine methylthiotransferases RimO and MiaB. *J. Am.*
226 *Chem. Soc.* **135**, 15404-15416 (2013).

227 7 Zhang, B. *et al.* First step in catalysis of the radical S-adenosylmethionine methylthiotransferase
228 MiaB yields an intermediate with a [3Fe-4S](0)-like auxiliary cluster. *J Am Chem Soc* **142**, 1911-
229 1924, doi:10.1021/jacs.9b11093 (2020).

230 8 Forouhar, F. *et al.* Two Fe-S clusters catalyze sulfur insertion by radical-SAM
231 methylthiotransferases. *Nat. Chem. Biol.* **9**, 333-338 (2013).

232 9 Hernández, H. L. *et al.* MiaB, a bifunctional radical-S-adenosylmethionine enzyme involved in the
233 thiolation and methylation of tRNA, contains two essential [4Fe–4S] clusters. *Biochemistry* **46**,
234 5140-5147 (2007).

235 10 Reiter, V. *et al.* The CDK5 repressor CDK5RAP1 is a methylthiotransferase acting on nuclear and
236 mitochondrial RNA. *Nuc. Acids Res.* **40**, 6235–6240 (2012).

237 11 Wei, F. Y. *et al.* Cdk5rap1-mediated 2-methylthio modification of mitochondrial tRNAs governs
238 protein translation and contributes to myopathy in mice and humans. *Cell Metab.* **21**, 428-442,
239 doi:10.1016/j.cmet.2015.01.019 (2015).

240 12 Adami, R. & Bottai, D. S-adenosylmethionine tRNA modification: unexpected/unsuspected
241 implications of former/new players. *Int J Biol Sci* **16**, 3018-3027, doi:10.7150/ijbs.49302 (2020).

242 13 Dhaven, R. & Tsai, L.-H. A decade of CDK5. *Nat. Rev. Mol. Cell Biol.* **2**, 749–759 (2001).

243 14 Arragain, S. *et al.* Identification of eukaryotic and prokaryotic methylthiotransferase for
244 biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. *J. Biol. Chem.* **285**,
245 28425-28433 (2010).

246 15 Anton, B. P. *et al.* Functional characterization of the YmcB and YqeV tRNA
247 methylthiotransferases of *Bacillus subtilis*. *Nucleic Acids Res.* **38**, 6195–6205 (2010).

248 16 Landgraf, B. J., McCarthy, E. L. & Booker, S. J. Radical S-adenosylmethionine enzymes in human
249 health and disease. *Annu. Rev. Biochem.* **85**, 485–514, doi:10.1146/annurev-biochem-060713-
250 035504 (2016).

251 17 Anton, B. P. *et al.* RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88
252 residue of ribosomal protein S12 in *Escherichia coli*. *Proc. Natl. Acad. Sci. USA* **105**, 1826–1831
253 (2008).

254 18 Landgraf, B. J. & Booker, S. J. Stereochemical course of the reaction catalyzed by RimO, a radical
255 SAM methylthiotransferase. *J Am Chem Soc* **138**, 2889-2892, doi:10.1021/jacs.5b11035 (2016).

256 19 Arragain, S. *et al.* Post-translational modification of ribosomal proteins: Structural and functional
257 characterization of RimO from *Thermotoga maritima*, a radical S-adenosylmethionine
258 methylthiotransferase. *J. Biol. Chem.* **285**, 5792–5801 (2010).

259 20 Agris, P. F., Armstrong, D. J., Schafer, K. P. & Soll, D. Maturation of a hypermodified nucleoside in
260 transfer RNA. *Nucleic Acids Res.* **2**, 691-698 (1975).

261 21 Molle, T. *et al.* Redox Behavior of the S-Adenosylmethionine (SAM)-Binding Fe-S Cluster in
262 Methylthiotransferase RimO, toward Understanding Dual SAM Activity. *Biochemistry* **55**, 5798-
263 5808, doi:10.1021/acs.biochem.6b00597 (2016).

264 22 Lee, T. T., Agarwalla, S. & Stroud, R. M. A unique RNA Fold in the RumA-RNA-cofactor ternary
265 complex contributes to substrate selectivity and enzymatic function. *Cell* **120**, 599-611,
266 doi:10.1016/j.cell.2004.12.037 (2005).

267 23 Anantharaman, V., Koonin, E. V. & Aravind, L. TRAM, a predicted RNA-binding domain, common
268 to tRNA uracil methylation and adenine thiolation enzymes. *Fems Microbiol Lett* **197**, 215-221,
269 doi:10.1111/j.1574-6968.2001.tb10606.x (2001).

270 24 Chimnaronk, S. *et al.* Snapshots of dynamics in synthesizing N(6)-isopentenyladenosine at the
271 tRNA anticodon. *Biochemistry* **48**, 5057-5065, doi:10.1021/bi900337d (2009).

272 25 Anantharaman, V., Koonin, E. V. & Aravind, L. Comparative genomics and evolution of proteins
273 involved in RNA metabolism. *Nucleic Acids Res* **30**, 1427-1464, doi:10.1093/nar/30.7.1427
274 (2002).

275 26 Nishimura, S. *Transfer RNA: Structure, Properties, and Recognition*. 59-29 (Cold Spring Harbor
276 Laboratory, 1979).

277 27 Boccaletto, P. *et al.* MODOMICS: a database of RNA modification pathways. 2017 update.
278 *Nucleic Acids Res* **46**, D303-D307, doi:10.1093/nar/gkx1030 (2018).

279 28 Ellis, J. J., Broom, M. & Jones, S. Protein-RNA interactions: structural analysis and functional
280 classes. *Proteins* **66**, 903-911, doi:10.1002/prot.21211 (2007).

281 29 Jones, S., Daley, D. T., Luscombe, N. M., Berman, H. M. & Thornton, J. M. Protein-RNA
282 interactions: a structural analysis. *Nucleic Acids Res* **29**, 943-954, doi:10.1093/nar/29.4.943
283 (2001).

284 30 Pierrel, F., Douki, T., Fontecave, M. & Atta, M. MiaB protein is a bifunctional radical-S-
285 adenosylmethionine enzyme involved in thiolation and methylation of tRNA. *J. Biol. Chem.* **279**,
286 47555-47653 (2004).

287 31 Grove, T. L., Radle, M. I., Krebs, C. & Booker, S. J. Cfr and RlmN contain a single [4Fe-4S] cluster,
288 which directs two distinct reactivities for S-adenosylmethionine: methyl transfer by S_N2
289 displacement and radical generation. *J. Am. Chem. Soc.* **133**, 19586-19589 (2011).

290 32 Kim, S., Meehan, T. & Schaefer, H. F., III. Hydrogen-atom abstraction from the adenine-uracil
291 base pair. *J. Phys. Chem. A.* **111**, 6806-6812 (2007).

292 33 Zierhut, M., Roth, W. & Fischer, I. Dynamics of H-atom loss in adenine. *Phys. Chem. Chem. Phys.*
293 **6**, 5178-5183 (2004).

294

295 FIGURE LEGENDS

296 **Fig. 1.** Reactions catalyzed by MTTases. **a**, MiaB (CDK5RAP1). **b**, MtaB (CDKAL1). **c**, RimO.
297 Each reaction requires two molecules of SAM, one of which is converted to SAH, and one of
298 which is converted to 5'dAH + Met.

299 **Fig. 2.** RNA binding to *BuMiaB*. **a**, Domains of *BuMiaB* in complex with the 13-mer and 5'-
300 dAH+Met in three different perspectives. The color code is the following: MTTase domain, tan;
301 radical SAM domain, grey; TRAM domain, green. **b**, RNA recognition motifs in *BuMiaB*. Fo-Fc
302 omit map contoured at 3.5 σ showing electron density for U33 in the recognition pocket. **c**,
303 Electrostatic potential of the U33 binding pocket. **d**, Fo-Fc omit map (1.5 Å resolution),
304 contoured at 3.5 σ , showing the electron density for A36 interacting with conserved Phe348 and
305 Phe350 from the radical SAM domain. **e**, Electrostatic potential in the vicinity of A36.

306 **Fig. 3.** *BuMiaB* active site in the presence of RNA substrates. **a**, 13-mer + SAH (1.86 Å). **b**, 17-
307 mer + SAM (2.25 Å). **c**, 13-mer + 5'dAH+Met (1.5 Å). Fo-Fc omit maps are contoured at 2.5 σ
308 in **a** and **b**, and at 3.5 σ in **c**. **d**, Active site of pre-methylated *BuMiaB* in the presence of the 13-

309 mer RNA and 5'dAH+Met. The electron density is a Polder map contoured at 3.0σ and shown in
310 gray for atoms of the cluster and green for the methyl group. Panels **a**, **b**, and **c** are all distinct
311 views; however, panel **b** is rotated clockwise $\sim 90^\circ$ from panel **a**, and panel **c** is rotated clockwise
312 $\sim 120^\circ$ from panel **b**. Residues from the MTTase domain are colored tan, while those from the
313 radical SAM domain are colored gray.

314 **Fig. 4.** Proposed mechanism for the MiaB reaction. One molecule of SAM binds to the $[\text{Fe}_4\text{S}_4]_{\text{RS}}$
315 cluster and transfers a methyl group to a bridging μ_2 sulfido ion of the auxiliary cluster (**1**). SAH
316 dissociates and another molecule of SAM binds to the $[\text{Fe}_4\text{S}_4]_{\text{RS}}$ cluster (**2**), which is followed by
317 tRNA binding (**3**). The methylated sulfur of the $[\text{Fe}_3\text{S}_4]_{\text{aux}}$ attacks C2 of the substrate, forming a
318 tetrahedral intermediate (**4**). Reduction of the $[\text{Fe}_4\text{S}_4]_{\text{RS}}$ cluster (**4**) promotes formation of the 5'-
319 dA \bullet (**5**), which abstracts the C2 hydrogen (**6**). Loss of an electron and rearomatization of the
320 adenine ring (**7**) leads to an $[\text{Fe}_3\text{S}_3]^{1+}$ cluster containing a methylthio ligand, which dissociates
321 (**8**) to give the final product.

322

323 EXTENDED DATA FIGURE LEGENDS

324 **Extended Data Fig. 1. Comparison of *BuMiaB* and *TmRimO* structures.** **a**, Cartoon overlay
325 of the structures of *BuMiaB* (blue) and *TmRimO* (**PDB:4JC0**) (gray). **b**, Electrostatic surface
326 potential of *TmRimO* (blue is positive, red is negative, and gray is neutral). **c**, Amino acid
327 sequence alignment of *BuMiaB* and *TmRimO*. The overall architecture of *BuMiaB* is similar to
328 that of *TmRimO*, with RMSDs of 1.5 and 1.6 Å for the two independent RimO molecules over
329 324 and 329 C α s, respectively (**Table S1**). In the RimO X-ray crystal structure, the two $[\text{Fe}_4\text{S}_4]$
330 clusters are 7.3 Å apart (nearest ion in each cluster) and are connected by a pentasulfide bridge

331 spanning the unique (non-cysteinyl-ligated) irons of each cluster. This same pentasulfide bridge
332 is observed in the *BuMiaB* structure, wherein the clusters are 6.8 Å apart (see **Extended Data**
333 **Fig. 2a**).

334 **Extended Data Fig. 2. RNA binds to all three domains in *BuMiaB*.** **a**, Cartoon representation
335 of the active site of *BuMiaB* with a pentasulfide bridge spanning the two [Fe₄S₄] clusters.
336 MTTase domain, tan; radical SAM domain, gray; TRAM domain, green. **b**, Cartoon of *BuMiaB*
337 crystallized in the presence of the 13-mer RNA substrate and 5'dAH+Met and showing the
338 binding of the 13-mer (purple) at the interface of the three domains. **c**, Electrostatic surface
339 potential (blue is positive, red is negative, and gray is neutral) indicates a positively charged
340 active-site region promoting binding of the 13-mer. **d**, Conservation of amino acids in the active-
341 site region as deduced from the CONSURF server.³⁴

342 **Extended Data Fig. 3. Comparison of ACSL structure in 13-mer bound to *BuMiaB* with**
343 **full-length tRNA^{Phe} bound to *TmMiaA*.** **a**, Cartoon overlay of the 13-mer (nucleotides 29-41)
344 structure in the complex with *BuMiaB* and 5'-dAH+Met (purple color), with that of *Tm* tRNA^{Phe}
345 in complex with MiaA (tan color) (**PDB ID: 2ZM5**). **b**, Schematic diagram of hydrogen bonds
346 formed between the 13-mer and *BuMiaB*.

347 **Extended Data Fig. 4. Comparison of ACSL structure in 17-mer bound to *BuMiaB* with**
348 **full-length tRNA^{Phe} bound to *TmMiaA*.** **a**, Cartoon overlay of the 13-mer (purple color) and
349 17-mer (nucleotides 27-43) (green color) structures in complex with *BuMiaB* plus 5'-dAH+Met
350 (13-mer) or *BuMiaB* with SAM (17-mer), with that of *Tm* tRNA^{Phe} in complex with MiaA (tan
351 color) (**PDB ID: 2ZM5**). **b**, Schematic diagram of the H-bonds formed between the 17-mer and
352 *BuMiaB*.

353 **Extended Data Fig. 5. Active site interactions of *BuMiaB* with nucleotides 34 and 35 of the**

354 **anticodon.** The structure of *BuMiaB* with the 13-mer RNA and 5'dAH+Met is shown in pink,

355 while the structure of *BuMiaB* with the 17-mer RNA and SAM is shown in maroon. **a**, Active

356 site interactions with G34. G34 is often modified, and its base inserts between the TRAM and RS

357 domains in a deep cleft, which provides space for modifications. In the structure of *BuMiaB* in

358 complex with 5'-dAH+Met and the 13-mer, N¹⁰ of G34 is within H-bonding distance to Ser388

359 of the RS domain. The 2' and 3' OH groups are H-bonded to two nitrogen atoms from the

360 guanidinium group of Arg418 from the TRAM-domain. In the structure of *BuMiaB* with SAM

361 and the 17-mer, the position of G34 is different, and the base no longer interacts with Ser388 and

362 Arg418 (**Extended Data Figs. 3b, 4b**). **b**, Active site interactions with A35. In the structure of

363 *BuMiaB* with 5'-dAH+Met and the 13-mer, the carboxylate oxygens of Asp319 are within H-

364 bonding distance to N⁶ of A35, while the side-chain of Gln28 is in H-bonding distance to the 2'

365 OH of A35. The A35 base is π -stacked between Phe348 on one side and the adenine ring of

366 i⁶A37 on the other. The position of A35 is shifted in the SAM-bound structure and is stabilized

367 by π -stacking with G34 on one side and Phe348 on the other. The rotation of Phe348 supports

368 two different orientations of A35 in the active site of the enzyme. **c**, Binding of i⁶A37 in the

369 active site of *BuMiaB* in the structure with the 13-mer and 5'dAH+Met, showing that the

370 isopentenyl group sits in a hydrophobic patch. All figures have the same color for the domains

371 and their associated residues: tan for MTTase, gray for radical SAM and green for TRAM.

372 **Extended Data Fig. 6. A Model for full-length tRNA binding to *BuMiaB*.** **a**, Conservation of

373 residues in *BuMiaB* as deduced from the CONSURF server. The color code is described in the

374 panel. **b**, Electrostatic surface potential, indicating positively charged regions that could stabilize

375 tRNA^{Phe}. **c**, A predicted model of interactions between the residues from the MTTase domain
376 and the full-length tRNA.

377 **Extended Data Fig. 7. Binding of SAM, SAH, and 5'-dAH to *BuMiaB*.** **a**, Overlay of SAM
378 (gray), SAH (aquamarine) and 5'dAH+Met (light violet) in their complexes with *BuMiaB* and
379 RNA substrates (17-mer for SAM, and 13-mer for SAH or 5'-dAH+Met). The adenine ring of
380 SAM, SAH and 5'dAH forms face-to-face π -stacking interactions with Phe321. This stacking is
381 further supported by edge-to-face interactions with two tyrosines (177, 352) and Phe350. N³ of
382 the adenine ring H-bonds with the conserved Arg66 (shown in **Fig. 3a**), and N⁶ forms three H-
383 bonds with the carbonyl groups of Ile65 (MTTase domain), and Tyr177 and Ser353 (RS
384 domain). The ribose moiety of SAM, SAH and 5'dAH H-bonds with Arg66, Gln281 and
385 Asp319. Methionine in the 5'dAH+Met structure or the methionine moiety of SAM (with the 17-
386 mer RNA) and SAH (with 13-mer RNA) in structures with those molecules bound shows the
387 canonical bidentate binding to the unique iron of the [Fe₄S₄]_{RS} cluster. **b**, Overlay of SAM (gray)
388 or 5'dAH+Met (light violet) in complex with *BuMiaB* and the 17-mer RNA (SAM) or 13-mer
389 RNA (5'-dAH+Met). The i⁶A37 base is in pink for the structure with 5'dAH+Met and maroon
390 for the structure with SAM. All figures have the same color for the domains and their associated
391 residues: tan for MTTase, gray for radical SAM and green for TRAM, except for Gln215 in the
392 structure with 5'dAH+Met (panel a), which rotates.

393 **Extended Data Fig. 8. Effect of Arg66→Gln substitution on *BuMiaB* activity.** **a**, Time
394 course for SAH formation upon incubating 25 μ M *BuMiaB* WT (black circles) or *BuMiaB* R66Q
395 (red circles) with 1 mM SAM in the absence of dithionite. **b-e**, Time course for formation of
396 SAH (**b**), 5'dAH (**c**), ms²i⁶A (**d**), and decay of i⁶A (**e**), after 30 min of initial incubation of 25 μ M
397 *BuMiaB* with 1 mM SAM followed by addition of 100 μ M i⁶A ACSL RNA and reaction

398 initiation with 1 mM dithionite. The black color corresponds to data obtained for *BuMiaB* WT in
399 the presence of the 17-mer RNA substrate; the blue color corresponds to data obtained in the
400 presence of the 13-mer; and the red color corresponds to data for *BuMiaB* R66Q in the presence
401 of the 17-mer. Error bars represent one standard deviation for reactions conducted in triplicate,
402 with the centre representing the mean.

403 **Extended Data Fig. 9. Stereoscopic representation of the active site electron density of pre-**
404 **methylated *BuMiaB* in the presence of the 13-mer RNA substrate and 5'dAH+Met.** The
405 structure of *BuMiaB* does not show any significant changes in the protein or RNA components
406 of the complex in the pre-methylated versus non-pre-methylated states [RMSD = 0.231 Å (C_α =
407 371 atoms) and 0.089 Å (C_α = 439 atoms) for pre-methylated subunits A and B, respectively,
408 versus non-pre-methylated subunit A; and 0.092 Å (C_α = 415 atoms) and 0.248 Å (C_α = 392
409 atoms) for pre-methylated subunits A and B, respectively, versus non-methylated subunit B]. **a**,
410 The extended electron density at N^3 . The gray mesh corresponds to an Fo-Fc omit map for i^6A
411 contoured at 3.5σ , and the green mesh to an Fo-Fc map contoured at 3.0σ after refinement with
412 i^6A . **b**, The extended electron density at the sulfur atom of the $[Fe_3S_4]$ cluster. The mesh
413 corresponds to an Fo-Fc omit map for the methyl group (green color) attached to the sulfur (gray
414 color) of the auxiliary cluster contoured at 3.5σ . **c**, In a map generated for the non-pre-
415 methylated auxiliary cluster, no extended density is observed. The mesh corresponds to an Fo-Fc
416 omit map for the sulfur atom of the auxiliary cluster contoured at 3.5σ . All residues have a
417 common color theme for the domains: tan for MTTase and gray for radical SAM.

418 **Extended Data Table 1. X-ray crystallographic data collection and refinement statistics.**

419 *Values in parentheses represent the highest-resolution shell.

420

421 **METHODS**

422 **Cloning of the gene encoding *BuMiaB* (native *BuMiaB* structure)**

423 The gene encoding *BuMiaB* (Uniprot: A7UYY7) was amplified from *Bacteroides*
424 *uniformis* (*strain ATCC 8492*) genomic DNA using the following forward and reverse primers,
425 respectively: 5'-TACTCCAATCCATGGAAAAAGTAACGGAGCAGAC-3' and 5'-
426 TATCCACCTTACTGTTAGCCGGCTACCTCTCCTTTC-3'. The PCR products were
427 purified with the Agencourt Ampure XP PCR clean-up kit (Beckman Coulter) using the
428 manufacturer's protocol. The pSGC vector was prepared for ligation-independent cloning (LIC)
429 by linearization with the restriction enzyme *Bsa*I. LIC sites were installed by adding T4 DNA
430 polymerase (New England Biolabs, NEB) to 10 µg linearized plasmid in a 50 µL reaction
431 containing 2.5 mM GTP, 1× NEB Buffer 2, and 1× bovine serum albumin (BSA) for 1 h at 22 °
432 C. T4 DNA polymerase was heat-inactivated by incubation at 75 °C for 20 min. 2 µL of the
433 PCR products were also treated with T4 DNA polymerase in a 10 µL reaction containing 2.5 mM
434 CTP, 1× NEB Buffer 2, and 1× BSA for 1 h at 22 °C. T4 DNA polymerase was heat inactivated
435 by incubation at 75 °C for 20 min. The LIC reaction was carried out by mixing 15 ng of digested
436 vector with ~40 ng of digested PCR product with a subsequent incubation at 22 °C for 10 min.
437 A 30 µL aliquot of DH10B cells (NEB) was used in a transformation along with 2 µL of the
438 above mixture using standard protocols. Cloning the genes into pSGC with this method adds a
439 hexahistidine tag with a TEV cleavage site to the N-terminus of the protein
440 (MHHHHHHSSGV~~D~~LGTE~~N~~LYFQS-protein). All final constructs were sequence-verified with
441 dideoxy sequencing performed by Genescrypt. For expression, *E. coli* BL21(DE3) cells
442 containing the pDB1282 plasmid were transformed with the above construct.³⁵ Transformants
443 were selected on an LB agar plate containing 50 µg/mL kanamycin and 100 µg/mL ampicillin. A

444 single colony was used to inoculate 20 mL of LB which, after overnight incubation, was used to
445 start 2 L of super broth expression media in a 2 L PYREX® media bottle. After 5 h of growth at
446 37 °C, cysteine and arabinose were added to final concentrations of 600 and 0.1 %, respectively.
447 The cultures were incubated for an additional hour before being cooled to 22 °C. After ~ 20 h,
448 the cells were harvested by centrifugation at 10,000 ×g, flash frozen, and stored in liquid
449 nitrogen until purification.

450

451 **Cloning and expression of the gene encoding *BuMiaB* (substrate-bound structures)**

452 The second gene encoding *BuMiaB* (**A0A174NUT3**) was synthesized by GeneArt Life-
453 technologies (www.lifetechnologies.com) (see supporting information for DNA and protein
454 sequence) and was provided in a pMAT-plasmid inserted using *Nde*I and *Eco*RI restriction sites.
455 The pMAT-*BuMiaB* plasmid was digested with *Nde*I and *Eco*RI and ligated into a similarly
456 digested pET-28a plasmid by standard procedures.³⁶ The correct construct, which encodes *MiaB*
457 containing an N-terminal hexahistidine tag separated from the native initial amino acid by a
458 spacer of 10 aa, was verified by sequencing at the Penn State (University Park) Huck Genomics
459 Core facility. The resulting expression vector, pET28-*BuMiaB*, was used along with plasmid
460 pDB1282 to transform *E. coli* BL21 (DE3) as previously described.^{35,37} The encoded protein
461 differs from the one used for the native *BuMiaB* structure by one amino acid change:
462 A0A174NUT3 contains His at position 363, while A7UYY7 contains Tyr.

463 Bacterial growth and gene expression were carried out at 37 °C in 16 L of LB media
464 distributed evenly among 4 Erlenmeyer flasks with moderate shaking (180 rpm). At an optical
465 density (OD) of 0.3 at 600 nm (OD₆₀₀), solid *L*-(+)-arabinose was added to each flask to a final
466 concentration of 0.2 % (w/v), while cysteine and ferric chloride were added to final

467 concentrations of 300 μ M and 50 μ M, respectively. At an OD₆₀₀ of 0.6, solid isopropyl β -D-
468 thiogalactopyranoside (IPTG) was added to each flask to a final concentration of 500 μ M.
469 Expression was allowed to take place for 16 h at 18 °C before the cells were harvested by
470 centrifugation at 7,000 \times g for 12 min at ambient temperature. The cell paste was frozen and
471 stored under liquid nitrogen.

472

473 **Purification of *BuMiaB***

474 *BuMiaB* was purified under anoxic conditions in a Coy (Grass Lakes, MI) anaerobic
475 glovebox, which was filled with a mixture of N₂ (95%) and H₂ (5%) and maintained below 1
476 ppm O₂ using palladium catalysts. *BuMiaB* was purified by immobilized metal affinity
477 chromatography (IMAC) using Ni-NTA resin (Qiagen). 30 g cell paste was suspended in 100
478 mL lysis buffer (50 mM HEPES, pH 7.5, 300 mM KCl, 10 mM MgCl₂, 10 mM 2-
479 mercaptoethanol, 10 mM imidazole, 1 mg/mL lysozyme), placed in a metal cup, and incubated in
480 an ice-water bath for 30 min. The cells were then subjected to a series of bursts of sonic
481 disruption in the glovebox while maintaining the cell suspension at \leq 8 °C. The cell suspension
482 was transferred into sterile centrifuge tubes, which were subsequently sealed, removed from the
483 anaerobic chamber and centrifuged at 45,000 \times g for 1 h at 4 °C. The supernatant was loaded
484 onto a Ni-NTA column (30 ml), which was subsequently washed with an appropriate volume of
485 wash buffer (50 mM HEPES, pH 7.5, 300 mM KCl, 10 mM MgCl₂, 10 mM 2-mercaptopethanol,
486 20 mM imidazole). *BuMiaB* was eluted from the resin using elution buffer (50 mM HEPES, pH
487 7.5, 300 mM KCl, 10 mM MgCl₂, 10 mM 2-mercaptopethanol, 250 mM imidazole). Fractions
488 containing *BuMiaB*, distinguished by their dark brown color, were pooled and concentrated
489 using Amicon Ultracel – 10 K centrifugal filters (Millipore, Billerica, MA). The protein was

490 exchanged into storage buffer (50 mM HEPES, pH 7.5, 150 mM KCl, 20% glycerol, 10 mM
491 MgCl₂, 1 mM DTT), snap frozen in small aliquots in liquid nitrogen and stored under liquid
492 nitrogen.

493 To ensure complete Fe/S cluster content, *BuMiaB* (0.1 mM) was subjected to
494 reconstitution by incubating it with an 8-fold molar excess of FeCl₃ and Na₂S, at 4 °C overnight,
495 as described previously.^{35,37} The protein was concentrated using centrifugal filters and applied to
496 an S-200 size-exclusion column connected to an ÄKTA liquid chromatography system (GE
497 Biosciences) housed in an anaerobic glovebox. The column was equilibrated in storage buffer at
498 a flow rate of 0.5 ml/min before injecting the protein and eluting it at the same flow rate.
499 Fractions were chosen based on their brown color, elution time and having both an absorbance at
500 280 nm (protein) and at 400 nm (Fe/S cluster).

501

502 **Preparation of RNA substrates**

503 An oligoribonucleotide substrate corresponding to the 17-nucleotide (17-mer) anticodon
504 stem-loop (ACSL) of *Bu* tRNA^{Phe} (5'-AAGGACUGAAAAUCCUU-3') was synthesized by
505 Dharmacon Thermo Fisher Scientific (Lafayette, CO). Nucleotide A37, shown in bold, is the site
506 of modification by MiaA and MiaB. *E. coli* MiaA was used to transfer a dimethylallyl group
507 from dimethylallyl pyrophosphate to N⁶ of A37 as described previously.⁶ A 13-mer from the
508 ACSL of *Bu* tRNA^{Phe} (5'-GGACUGAA(i6)AAUCC-3') was also synthesized by Dharmacon
509 Thermo Fisher Scientific. In this instance, the i⁶A modified base was synthesized chemically, as
510 described previously,⁶ and then supplied to Dharmacon for incorporation into the
511 oligonucleotide.

512

513 **Crystallization of native *BuMiaB***

514 Diffraction-quality crystals of *BuMiaB* were obtained by the sitting-drop vapor diffusion
515 method at 20 °C in an anaerobic chamber maintained at < 0.1 ppm oxygen (MBraun, Stratham,
516 NH). Drops of 0.4 μL protein solution (TEV-cleaved *BuMiaB* diluted to 5 mg•mL⁻¹ in 10 mM
517 HEPES, pH 7.5, 10 mM DTT) were mixed with 0.4 μL precipitant (0.2 M potassium formate,
518 pH 7.3, 20% polyethylene glycol 3350) and equilibrated against a solution of 0.5 M LiCl. The
519 crystals were mounted directly from the drops with nylon loops and flash-cooled in liquid
520 nitrogen inside the anaerobic chamber, and stored in liquid nitrogen prior to data collection.
521 Diffraction data were collected at the Advanced Photon Source (Argonne National Laboratory,
522 Argonne IL) on beamline 23-ID-D (GMCA) at 100 K and were integrated and scaled using
523 HKL3000³⁸ A 2.06 Å resolution dataset was collected at a wavelength of 1.078 Å. Phases were
524 determined by molecular replacement using RimO (PDB 2QGQ) as the search model.⁸ This
525 initial model was then refined with rounds of automated model building performed by Phenix
526 AutoBuild,³⁹ interspersed with manual model building and refinement using Coot,⁴⁰
527 phenix.refine.⁴¹ The final model comprises a single polypeptide chain containing amino acid
528 residues 16 to 65 and 72 to 457 out of a total of 457 residues. The model also contains 2 [Fe₄S₄]
529 clusters, a Mg²⁺ ion, and a pentasulfide bridge. Validation of the model was performed with
530 MolProbity.⁴² The Ramachandran plot shows that 97.4% of residues are in favored regions, with
531 the remaining 1.6% in allowed regions. Full data processing, refinement, and validation details
532 are in **Extended Data Table 1**.

533

534 **Crystallization of *BuMiaB* in the presence of substrates**

535 *BuMiaB* (10 mg/mL), in a buffer containing 15 mM HEPES, pH 7.5, 100 mM KCl, 5
536 mM DTT and 10 mM MgCl₂, was incubated at room temperature first with 1 mM SAM for 30
537 min, and subsequently with a 1:1.3 ratio of *BuMiaB* to the 17-mer RNA substrate for 30
538 additional min. The solution of the protein/RNA complex was passed through a 0.2 µm sterile
539 centrifugal filter (EMD Millipore, Billerica, MA). Crystals of the complex were obtained from
540 100 mM Na-cacodylate, pH 5.5, 13% PEG 4000 and 3% (+/-)-2-methyl-2,4-pentanediol or 1%
541 of 1,2-butanediol as additives, which was also used in the well, with the exception of the (+/-)-2-
542 methyl-2,4-pentanediol or 1% of 1,2-butanediol. Diffraction datasets were collected at the
543 Advanced Photon Source (Argonne National Laboratory, Argonne IL) on beamline 23-ID-B
544 (GMCA) at 100 K and at a wavelength of 1.033 Å. The Ramachandran plot shows that 97.4% of
545 residues are in favored regions, with 3.4% in allowed regions and 0.2% as outliers.

546 To generate the *BuMiaB* complex with RNA+SAH, *BuMiaB* was first incubated with 1
547 mM SAH for 30 min, and subsequently with a 1:1.3 ratio of *BuMiaB* with the 17-mer or 13-mer
548 RNA RNA substrate for 30 additional min. Crystals exhibiting the best diffraction grew in three
549 days from the condition containing 100 mM Na-cacodylate, pH 5.5, 13% PEG 4000 and 3% 1,6-
550 hexanediol, which was also used in the well, with the exception of the 1,6-hexanediol.
551 Diffraction datasets were collected at the Advanced Photon Source (Argonne National
552 Laboratory, Argonne IL) on beamline 23-ID-B (GMCA) at 100 K and at a wavelength of 1.033
553 Å. The Ramachandran plot shows that 98.2% of residues are in favored regions, with the
554 remaining 1.8% in allowed regions.

555 The crystallization conditions for the complex of *BuMiaB* with the 13-mer and
556 5'dAH+Met were the same as those for the *BuMiaB* structure with SAM and the 17-mer.
557 *BuMiaB* was first incubated with methionine for 15 min, and subsequently with 5'-dAH for 30

558 min, before incubating it with a 1:1.3 ratio of the protein to the 13-mer for 30 min. Diffraction
559 datasets were collected at the Advanced Photon Source (Argonne National Laboratory, Argonne
560 IL) on beamline 23-ID-B (GMCA) at 100 K and at a wavelength of 1.033 Å. The Ramachandran
561 plot shows that 97.6% of residues are in favored regions, with the remaining 2.4% in allowed
562 regions.

563

564 **Crystallization of pre-methylated *BuMiaB***

565 *BuMiaB* (200 µM) was incubated with 1 mM SAM for 45 min, and then excess SAM
566 was removed by gel-filtration chromatography. This protein was then mixed with 5 mM Met, 1
567 mM 5'-dAH and the 13-mer RNA substrate (250 µM) for crystallization. Crystals formed in
568 three days in the same crystallographic conditions as for the non-methylated enzyme. Diffraction
569 datasets were collected at the Advanced Photon Source (Argonne National Laboratory, Argonne
570 IL) on beamline 23-ID-B (GMCA) at 100 K and at a wavelength of 1.033 Å. The structure of the
571 pre-methylated *BuMiaB* with 5'-dAH+Met and the 13-mer RNA was determined at a resolution
572 of 1.4 Å. A Ramachandran plot of the final model shows that 97.6% of residues are in favored
573 regions, with the remaining 2.4% in allowed regions (**Extended Data Table 1**). The structure
574 does not show any significant changes in the protein or RNA components of the complex in the
575 methylated versus unmethylated states [RMSD = 0.231 Å (C_α = 371 atoms) and 0.089 Å (C_α =
576 439 atoms) for methylated subunits A and B, respectively, versus unmethylated subunit A; and
577 0.092 Å (C_α = 415 atoms) and 0.248 Å (C_α = 392 atoms) for methylated subunits A and B,
578 respectively, versus unmethylated subunit B].

579

580 **Modeling of *BuMiaB* with full-length tRNA**

581 The crystal structures of *BuMiaB* with 5'-dAH+Met and the bound 13-mer RNA
582 substrate were used as a guide for building a model of the complex of *BuMiaB* with the full-
583 length tRNA. The structure of the tRNA-modifying enzyme *MiaA* in complex with tRNA^{Phe}
584 (**PDB: 2ZM5**) served as the starting model. The ACSL base-pairing within the helical stem of
585 the full-length tRNA was aligned onto the 13-mer RNA in the structure of *BuMiaB* with 5'-
586 dAH+Met. The model of the tRNA^{Phe}+*BuMiaB* complex was guided by conserved residues and
587 positive electrostatic surface potential favorable for the RNA phosphate backbone contacts (**Fig.**
588 **S7**).

589

590 **Generation of the Arg66Gln *BuMiaB* variant and subsequent activity measurements**

591 The Arg66Gln variant of *BuMiaB* was generated using the Stratagene Quikchange site-
592 directed mutagenesis kit according to the manufacturer's protocol. The pET28-*BuMiaB* construct
593 was used as a template in conjunction with a forward primer (5'-
594 GAATACCTGTAGCATTCAAGATAACGCCAACAG-3') and a reverse primer (5'-
595 CTGTTCGCGTTATCCTGAATGCTACAGGTATTC-3'). Activity measurements of *BuMiaB*
596 WT and *BuMiaB*-R66Q were conducted as previously described using the 17-mer or 13-mer
597 oligonucleotide substrate from the ACSL of *Bu* tRNA^{Phe} (**Fig. S9**).⁶

598

599 **ADDITIONAL REFERENCES**

600

601 34 Ashkenazy, H. *et al.* ConSurf 2016: an improved methodology to estimate and visualize
602 evolutionary conservation in macromolecules. *Nucleic Acids Res* **44**, W344-350,
603 doi:10.1093/nar/gkw408 (2016).

604 35 Lanz, N. D. *et al.* RlmN and AtsB as models for the overproduction and characterization of radical
605 SAM proteins. *Methods Enzymol.* **516**, 125-152, doi:10.1016/B978-0-12-394291-3.00030-7
606 (2012).

607 36 Sambrook, J., Fritsch, E. F. & Maniatis, T. *Molecular Cloning: A Laboratory Manual*. 2nd edn, Vol.
608 3 (Cold Spring Harbor Laboratory Press, 1989).

609 37 McCarthy, E. L. & Booker, S. J. Biochemical approaches for understanding iron-sulfur cluster
610 regeneration in *Escherichia coli* lipoyl synthase during catalysis. *Methods Enzymol* **606**, 217-239
611 (2018).

612 38 Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data
613 reduction and structure solution--from diffraction images to an initial model in minutes. *Acta
614 crystallographica. Section D, Biological crystallography* **62**, 859-866,
615 doi:10.1107/S0907444906019949 (2006).

616 39 Terwilliger, T. C. *et al.* Iterative model building, structure refinement and density modification
617 with the PHENIX AutoBuild wizard. *Acta crystallographica. Section D, Biological crystallography*
618 **64**, 61-69, doi:10.1107/S090744490705024X (2008).

619 40 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. *Acta
620 Crystallogr. D Biol. Crystallogr.* **66**, 486–501 (2010).

621 41 Afonine, P. V. *et al.* Towards automated crystallographic structure refinement with
622 phenix.refine. *Acta crystallographica. Section D, Biological crystallography* **68**, 352-367,
623 doi:10.1107/S0907444912001308 (2012).

624 42 Williams, C. J. *et al.* MolProbity: More and better reference data for improved all-atom structure
625 validation. *Protein Sci* **27**, 293-315, doi:10.1002/pro.3330 (2018).

626

627

628

629 **ACKNOWLEDGMENTS**

630 **Funding Sources**

631 This work was supported by NIH (GM-122595 to S.J.B; AI133329, to S.C.A. and T.L.G.; GM-
632 127079 to C.K.; and GM118393, GM093342, and GM094662 to S.C.A.), NSF (MCB-1716686
633 to S.J.B.), the Eberly Family Distinguished Chair in Science (S.J.B.), The Price Family
634 Foundation (S.C.A), and the Penn State Huck Institutes of the Life Sciences (N.H.Y.). S.J.B. is
635 an investigator of the Howard Hughes Medical Institute. This research used resources of the
636 Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility
637 operated for the DOE Office of Science by Argonne National Laboratory under Contract No.

638 DE-AC02-06CH11357. Use of GM/CA@APS has been funded in whole or in part with Federal
639 funds from the National Cancer Institute (ACB-12002) and the National Institute of General
640 Medical Sciences (AGM-12006). The Eiger 16M detector at GM/CA-XSD was funded by NIH
641 grant S10 OD012289. Use of the LS-CAT Sector 21 was supported by the Michigan Economic
642 Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000817).
643 This research also used the resources of the Berkeley Center for Structural Biology supported in
644 part by the Howard Hughes Medical Institute. The Advanced Light Source is a Department of
645 Energy Office of Science User Facility under Contract No. DE-AC02-05CH11231. The ALS-
646 ENABLE beamlines are supported in part by the National Institutes of Health, National Institute
647 of General Medical Sciences, grant P30 GM124169.

648

649 **Author contributions:** O.A.E., T.L.G., N.H.Y., and S.J.B. developed the research plan and
650 experimental strategy. O.A.E. and T.L.G. isolated and crystallized proteins and collected
651 crystallographic data. O.A.E., B.W., and A.J.A. performed biochemical experiments. O.A.E.,
652 T.L.G., N.H.Y., S.C.A. C.K. and S.J.B. analyzed and interpreted crystallographic data. O.A.E.,
653 T.L.G., N.H.Y., and S.J.B. wrote the manuscript, while all other authors reviewed and
654 commented on it.

655

656 The authors declare no competing interests

657

658 **Additional Information:** supplementary information is available for this paper.

659 Correspondence and requests for materials should be addressed to Squire J. Booker
660 (squire@psu.edu)

661

662 **Data Availability:** Atomic coordinates and structure factors for the reported crystal structures in
663 this work have been deposited to the Protein Data Bank (PDB) under accession numbers 7MJZ
664 (native structure with pentasulfide bridge), 7MJY (structure with SAH and 13-mer RNA), 7MJV
665 (structure with SAM and 17-mer RNA), 7MJX (structure with 5'-dAH+Met and 13-mer RNA),
666 and 7MJW (structure with pre-methylated *BuMiaB* and 5'-dAH+Met and 13-mer RNA).

667

668 **ORCID**

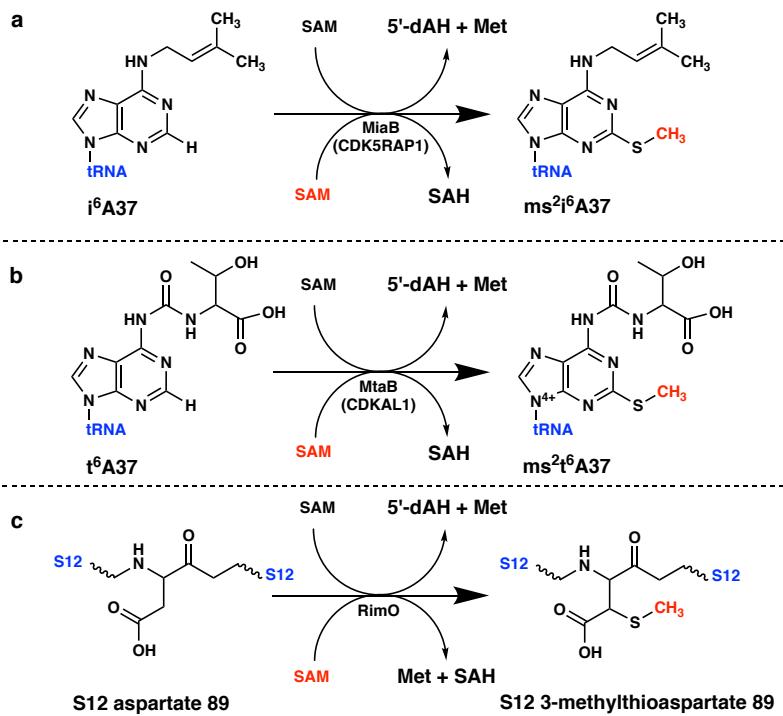
669 Squire J. Booker: 0000-0002-7211-5937

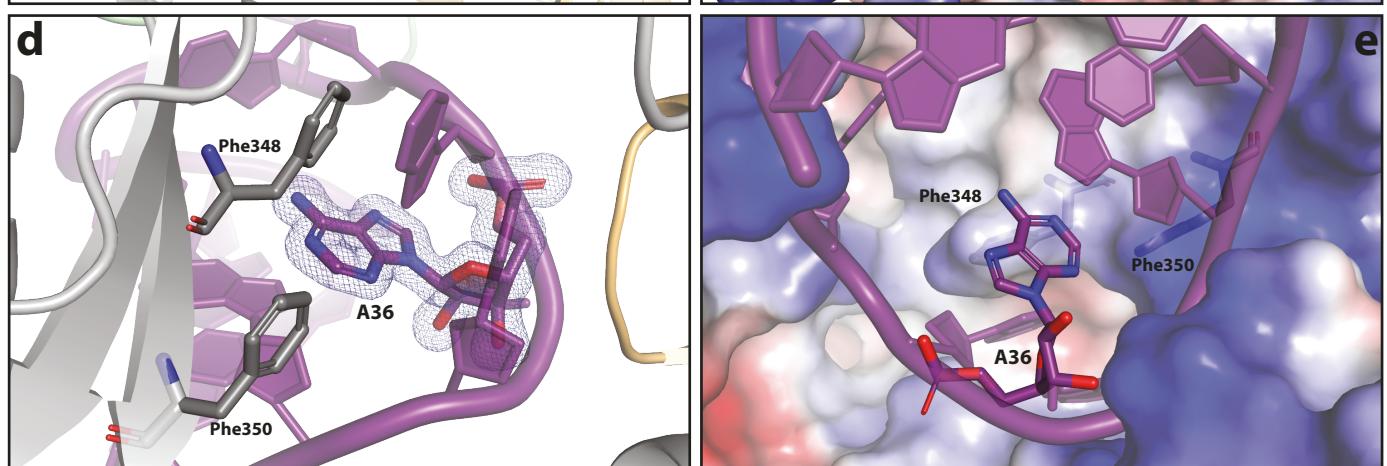
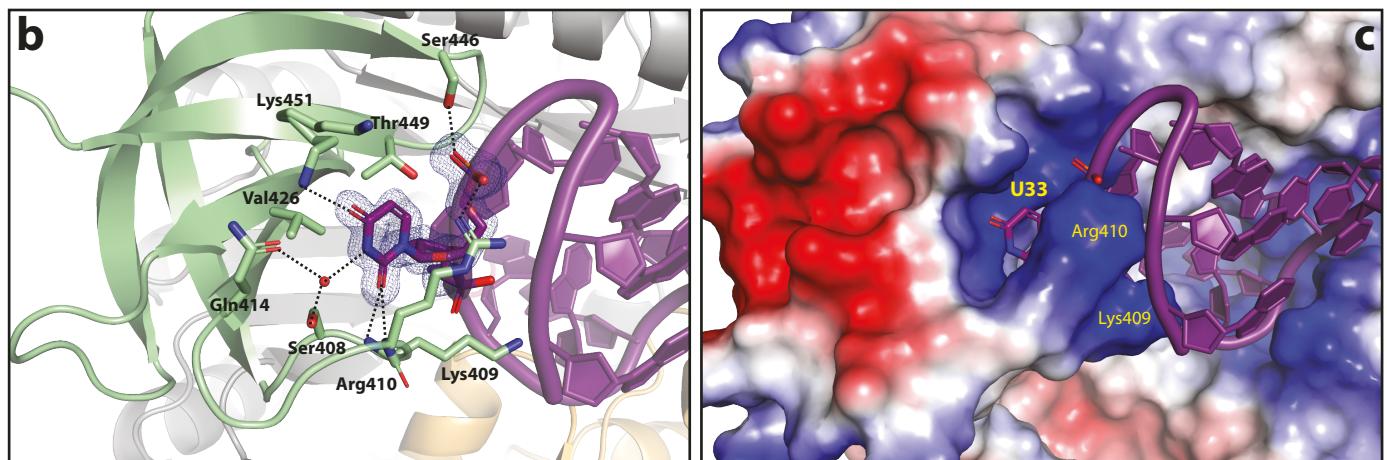
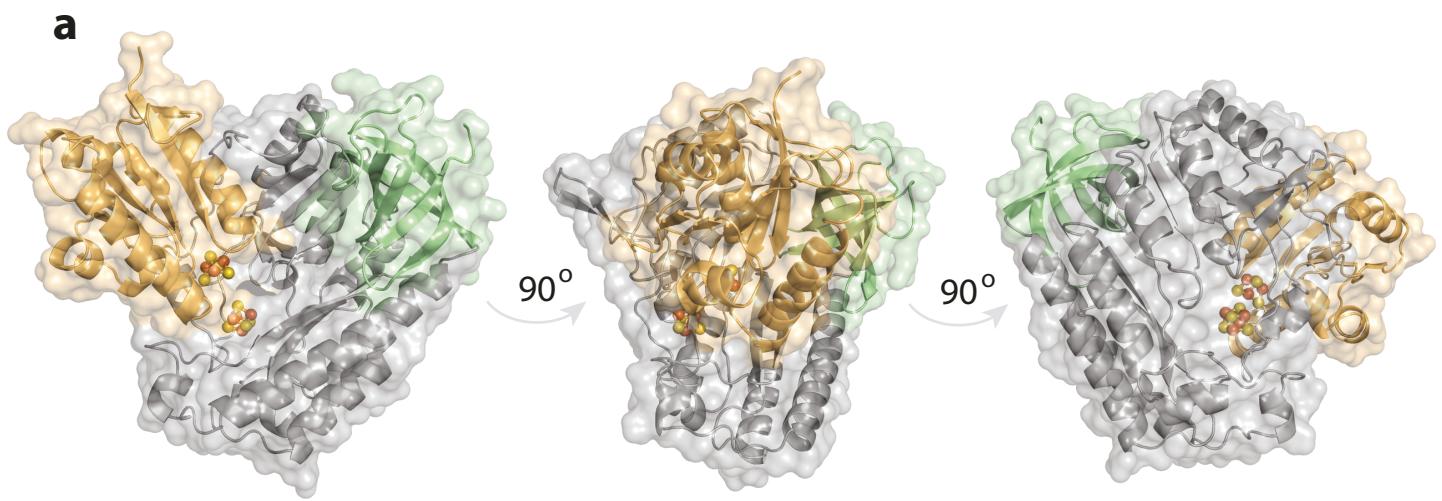
670 Olga A. Esakova: 0000-0001-8377-8368

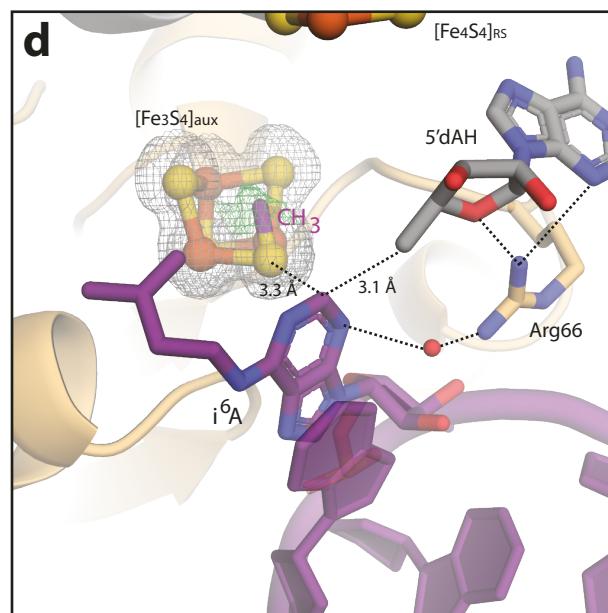
671 Tyler L. Grove: 0000-0002-4763-0646

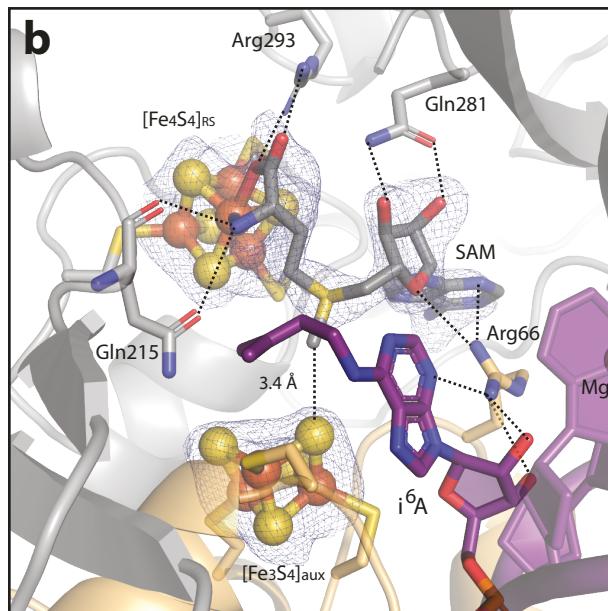
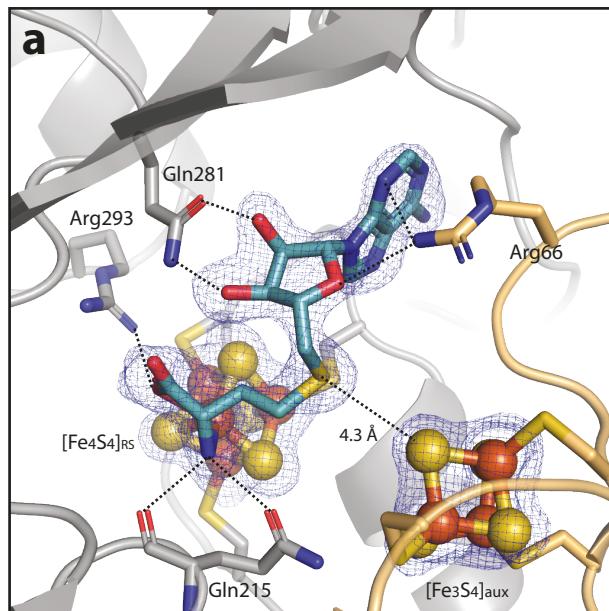
672 Arthur J. Arcinas: 0000-0003-4903-3500

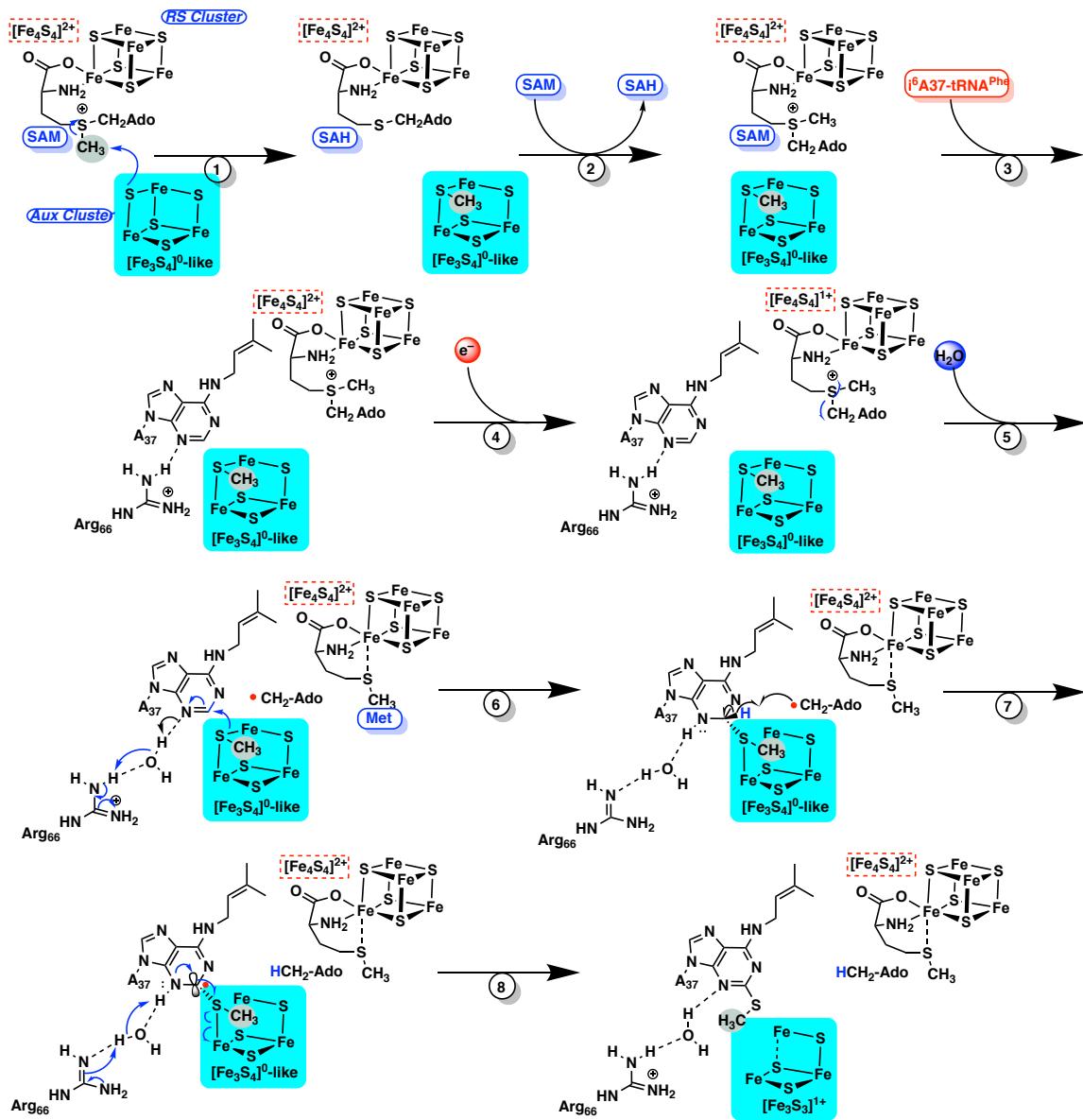
673 Steven C. Almo: 0000-0003-2591-5234


674 Bo Wang: 0000-0002-0381-3686




675 Neela H. Yennawar: 0000-0001-7278-659X





676 Carsten Krebs: 0000-0002-3302-7053


677

678

Supplementary Information for

“Structural basis for tRNA methylthiolation by the radical SAM enzyme MiaB”

Authors: Olga A. Esakova^{1,*}, Tyler L. Grove^{2,*}, Neela H. Yennawar⁴, Arthur J. Arcinas^{3,6}, Bo Wang¹, Carsten Krebs^{1,3}, Steven C. Almo², and Squire J. Booker^{1,3,5*}

Affiliations: The ¹Department of Chemistry, the ³Department of Biochemistry and Molecular Biology, ⁴The Huck Institutes of the Life Sciences, and the ⁵Howard Hughes Medical Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

The ²Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York

⁶Present address: AGC Biologics, Seattle, WA

Corresponding authors: squire@psu.edu, oaе3@psu.edu, and tylergrove223@gmail.com

Table of Contents

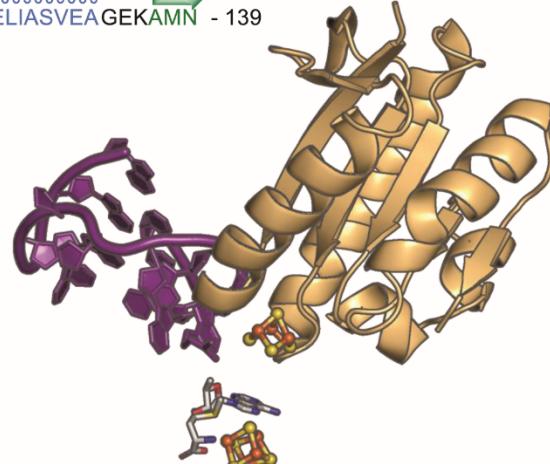
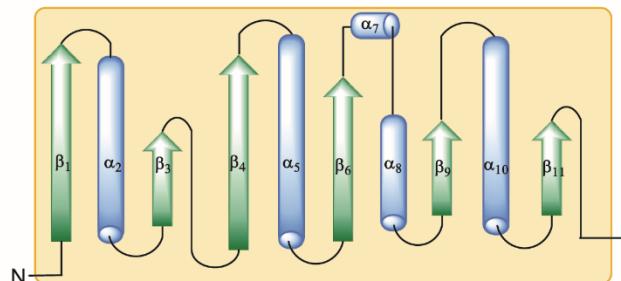
1. Table S1
2. Figure S1
3. Figure S2

Table S1: The root mean square deviation (RMSD) for each model against the structure of *BuMiaB* with a pentasulfide was calculated using The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC

Structure	PDB entry	Chain	RMSD (Å) <i>Main chain</i>
<i>Bacteroides uniformis</i> MiaB with pentasulfide bridge	7MJZ	A	reference
<i>Thermatoga maritima</i> RimO	4JC0	A	1.6
		B	1.5
<i>Bacteroides uniformis</i> MiaB co-crystallized with SAH and 13-mer ACSL tRNA ^{Phe}	7MJY	A	0.4
<i>Bacteroides uniformis</i> MiaB co-crystallized with SAM and 17-mer ACSL tRNA ^{Phe}	7MJV	A	0.4
<i>Bacteroides uniformis</i> MiaB co-crystallized with 5'dAH+Met and 13-mer ACSL tRNA ^{Phe}	7MJX	A	0.9
		B	1.0
Methylated <i>Bacteroides uniformis</i> MiaB co-crystallized with 5'dAH+Met and 13-mer ACSL tRNA ^{Phe}	7MJW	A	1.0
		B	0.9

a

1 - MEKVTGADFKSATAD **DNKKLFIETYGCQMNVADSEVIASVMQ** MAGYSVADTLEEADAVFMNT**CSIRDNAEQKILNRLEFF** - 80



18 25 28 42 46 48 57 62 66

β_1 α_2 β_3 β_4 α_5

81 - **HSLKKKKRGLIVGVLG** CMAERVKDDLTNHHVDLVVGPDAYLTLP **ELIASVEAGEKAMN** - 139

83 90 95 97 102 104 109 114 116 121 133 137 139

β_6 α_7 α_8 β_9 α_{10} β_{11}

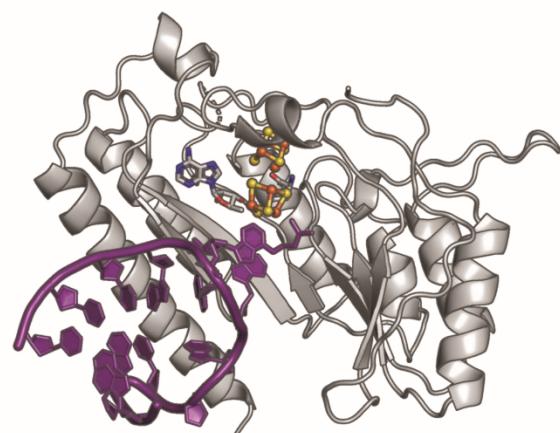
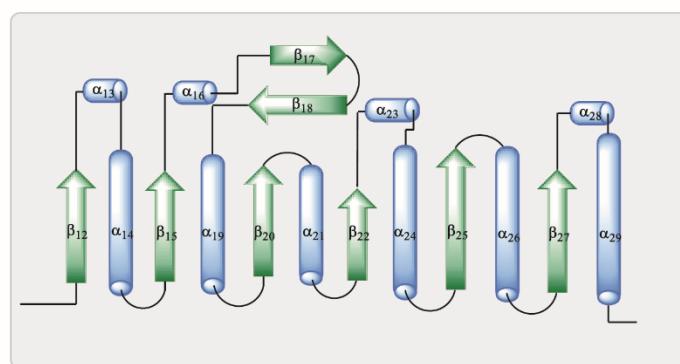
b

162 - SGFVSIMRGCNNFCTY**CIVPYTR**GRERSRDV**ESILNEADLVAK** GYKEV**TLLGQN**VNSYR**FEKPDGETIT**FPMLLRV**AEAA** - 243

166 179 184 193 205 209 213 217 219 224 227 231

β_{12} α_{13} α_{14} β_{15} α_{16} β_{17} β_{18} α_{19}

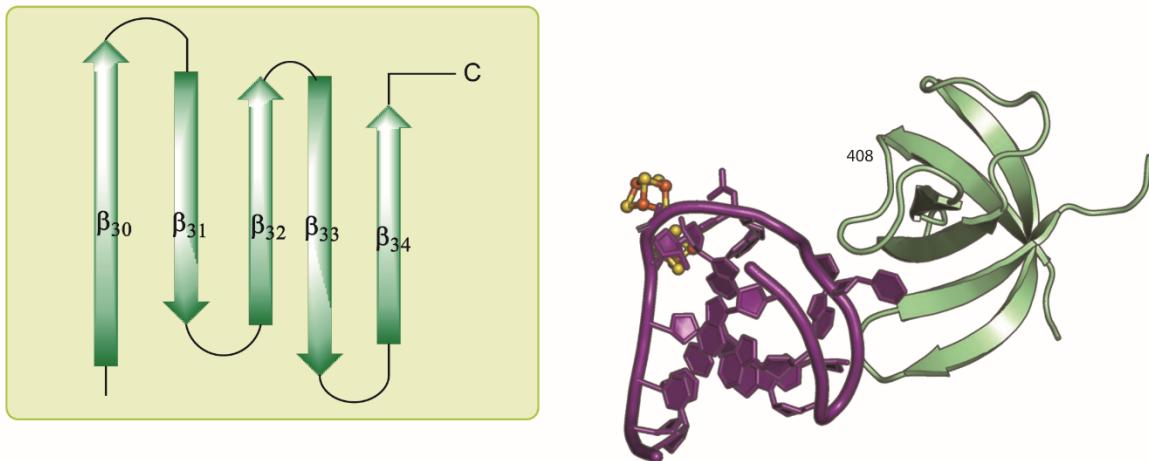
244 - PGVRI**RFTTSHPKDM**S**DET**LQVIADMPNVCK**I**HLPV**QSGSSRILKLMNRKY**D**REWYMDRVAIRRI**IPDCGLSTD**IFSGFHS** - 326



247 251 259 268 275 277 285 291 295 310 315

β_{20} α_{21} β_{22} α_{23} α_{24} β_{25}

327 - ETEEDHQLSLSLMEECGYDSAFMF**KYSERPGTHASKL**HPDDV**PEEV**KIRRLNEIIALQNRLSAEANARCV - 396

328 342 346 351 359 363 369 395


α_{26} β_{27} α_{28} α_{29}

C

β_{30} 407 β_{31} 414 419 422 β_{32} 428 β_{33} 435 β_{34} 446 449 454

397 - GKYEVVLVEGV**S**KRSRDQLFGRTEQN**R**RVVFDRGTHRVGDFVMVKVTESSSATLKGEEVAG - 457

Fig. S1. Sequence, secondary structure schematic, and cartoon of the three-dimensional fold of *BuMiaB*. **a**, N-terminal MTTase domain. **b**, radical SAM domain. **c**, C-terminal TRAM domain. Beta sheets and alpha-helices in the schematics are represented in green and blue colors respectively. The radical SAM domain exhibits a conserved core fold that consists of a shortened $(\beta\alpha)_6$ triosephosphate isomerase (TIM) barrel, and contains four short alpha helical extensions (α_{13} , α_{16} , α_{23} and α_{28}) that make interactions with the cluster binding loop (residues from 167 to 178), as well as a solvent-exposed two-stranded β -sheet (β_{17} - β_{18}). All figures have the same color scheme for the domains and their associated residues: tan for MTTase, gray for radical SAM and green for TRAM. The cysteine residues involved in coordination of the clusters are colored in red.

a.

DNA

ATGGAAAAAGTTACCGGTGCCGATTCAAAAGCGCAACCGCAGATGATAACAAAAAGCTTTATTGAAAC
CTACGGCTGCCAGATGAATGTTGCAGATAGCGAAGTTATTGCAAGCGTTATGCAGATGGCAGGTTATAGCG
TTGCGGATACCTGGAAAGAGGCAGATGCAGTTTATGAATACTGTAGCATTCCGATAACGCCAACAG
AAAATTCTGAATCGTCTGGATTTCACAGCCTGAAAAAAAGAAACCGGCTGTGATTGTTGGTCT
GGTTGTATGGCAGAACGTGTTAAAGATGATCTGATCACCAATCATCATGTGGATCTGGTTGGTCCGG
ATGCATATCTGACCTGCGGAACGTGATTGCCAGCGTTGAAGCCGGTAAAAAGCAATGAATGTGGAACGT
AGCACCACCGAAACCTATCGTGTGATTCCGAGCCGTATTGCGGTAAATCATATTAGCGGTTTGAG
CATTATGCGTGGCTGTAATAACCTTGACACCTATTGCAATTGTTCCGTATACACGTGGCTGAACTAGCC
GTGATGTTGAAAGCATTCTGAATGAAGTTGCCGATCTGGTGGCAAAAGGTTATAAGAAGTTACCTGCTG
GGTCAGAATGTGAATAGCTATCGTTTGAAAAACGGATGGTAAACCATACCTTCCGATGCTGCG
TACCGTTGCCGAAGCAGCACCGGTGTTCGTATTGTTTACCAACAGTCATCCGAAAGATATGAGTGTG
AAACCCCTGCAGGTTATGCAAGATATGCCGAATGTGTGCAAACATATTCATCTGCCGTTAGAGCGGTAGC
AGCCGTATTCTGAAACTGATGAATCGTAAATATGATCGCAGTGGTATATGGATCGTGTGAGCAATTG
TCGTATTATTCCGGATTGTTGGCTGAGCACCGATATCTTAGTGGTTTCATAGCGAAACCGAAGAAGATC
ATCAGCTGAGCCTGAGTGTGATGGAAGAATGTGGTATGATAGCGCCTCATGTCAAATATAGCGAACGT
CCGGGTACACATGCAAGCAAACATCTGCCTGATGATGTTCCGGAAAGAAGTTAAATCGTCGCTGAATGA
AATTATTGCCCTGCAAGATCGCCTGAGTGCAGAACATGCACTGTTGGTAAACCTATGAAGTTC
TGGTTGAAAGGTGTTAGCAAACGTTACGTGATCAGCTGTTGGCTGTACAGAACAGAACATGTGTTGTT
TTGATCGTGGCACCCATCGTGTGGTGATTTGTATGGTAAAGTGACCGAAAGCAGCAGCGCAACCCT
GAAAGGTGAAGAAGTTGCAGGTAA

b.

Protein:

MEKVTGADFKSATADDNKKLFIETYGCQMNVADSEVIASVMQMAGYSVADTLEEADAVFMNTCSIRDNAEQQKILNRLE
FFHSLKKKKRGLIVGVLGCMMAERVKDDLITNHHVDLVVPDAYLTLPELIASVEAGEKAMNVELSTTETYRDVIPSRI
CGNHISGFVSIMRCNNFCYICIVPYTRGRERSRDVESILNEVADILVAKGYKEVTLGQNVNSYRFEKPDGETITFPM
LLRTVAEAAPGVRIRFTTSHPKDMSDETQVIADMPNVCKHIHPVQSGSSRILKLMNRKYDREWYMDRVAIRRIIP
DCGLSTDIFSGFHSETEEDHQLSLSLMEECGYDSAFMFKYSERPGTHASKHLPDDVPEEVKIRRLNEIIALQNRLSAE
ANARCVGKTYEVLVEGVSKRSRDQLFGRTEQNRVVVFDRGTHRVGDFVMVKTESSSATLKGEVAG*

Fig. S2. *BuMiaB* DNA and protein sequences for structures with substrates. a, DNA sequence. b, Protein sequence. Note that His363 (shown in red) is Y363 in the native *BuMiaB* structure