
Delay Wreaks Havoc on Your Smart Home:

Delay-based Automation Interference Attacks

Haotian Chi1∗, Chenglong Fu1∗, Qiang Zeng2, Xiaojiang Du3

1 Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
2 Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29201, USA

3 Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
∗ The first two authors contributed equally to this work.

Email: {htchi, chenglong.fu}@temple.edu, zeng1@cse.sc.edu, xdu16@stevens.edu

AbstractÐWith the proliferation of Internet of Things (IoT)
devices and platforms, it becomes a trend that IoT devices
associated with different IoT platforms coexist in a smart home,
demonstrating the following characteristics. First, a smart home
may use more than one platform to support its devices and
automation. Second, IoT devices of a home may transmit mes-
sages over different paths. By selectively delaying IoT messages,
our study finds that two issues, inconsistency and disorder,
can be exacerbated by attackers significantly. We then explore
how these issues can be exploited and present seven types of
exploitation, collectively referred to as Delay-based Automation
Interference (DAI) attacks. DAI attacks cause home automation
to yield incorrect interaction results, placing the IoT devices
and smart home in insecure, unsafe, or unexpected states. It
is worth highlighting that DAI attacks do not depend on any
IoT implementation vulnerabilities or leaked keys/tokens, and
they do not trigger alarms at any layers of the IoT protocol
stack. To demonstrate and evaluate the new attacks, we set up
two real-world testbeds, where commercial IoT devices and apps
are deployed. The week-long experiments from both testbeds
show that an attacker has adequate opportunities to launch DAI
attacks that cause security or safety issues.

I. INTRODUCTION

Rapid development of Internet of Things (IoT) has led to

flourishing smart environments, (e.g., smart homes, offices,

and laboratories). IoT platforms, such as Apple HomeKit [1],

Samsung SmartThings [2], and Amazon Alexa [3], enable

configurations of automation rules for interactions between

IoT devices in a home, also known as home automation. For

example, users can create automations on SmartThings, or

routines on Alexa, to have their devices automatically react

to sensor measurements, device status, time, etc.1

When multiple rules interplay in a physical environment,

they may interfere with each other and cause unexpected

automation. The cross-rule interference (CRI) problem has

been intensively studied (on individual platforms) [4], [5],

[6], [7], [8], [9], [10], [11], [12], [13]. However, existing

work that studies the CRI problem makes the following two

assumptions: (1) They assume that all rules run on the same

platform [6], [7], [9], [10], [5], [12], [13], [8] (or rules on

different platforms do not interact with one another and can

be analyzed separately [11]); (2) They also assume that all IoT

1We refer to automations and routines as automation rules or rules.

Fig. 1: An example showing a unique CRI problem. If the trans-
mission of the button-pressed event (which sets ªAwayº mode) to
Platform B suffers a non-negligible delay due to the DAI attack, the
rule on Platform B will fail to lock the door.

messages are transmitted with identical delays. For example,

the first systematic categorization of CRI [4], [5] assumes both.

The assumptions, however, do not necessarily hold true in

real-world systems. Due to the fragmented IoT ecosystem [14],

[15], different platforms are compatible with different subsets

of IoT devices. When users cannot find a single platform

to work with all their devices, they need to use multiple

platforms. Furthermore, different devices use heterogeneous

communication technologies and transmit messages through

different paths. For example, a ZigBee device talks with a

platform A’s server via an IoT hub, while a WiFi-based device

talks with its vendor’s cloud B, which then delegates access

to the device to the platform A. The communication paths are

different and thus have different transmission delays. Worse,

such delays can be manipulated by attackers without relying

on any implementation vulnerabilities (Section II-C).

We thus consider a more general and realistic smart home

system, where (1) users may use more than one platform to

support their devices and install automation, and (2) IoT de-

vices can transmit messages via more than one communication

path. We classify smart home systems into three categories:

single-platform single-path (SPSP) systems, single-platform

multi-path (SPMP) systems, and multi-platform (MP) systems,

which certainly contain multiple paths (Section III describes

the three categories in details). By incorporating message

transmission delays as a factor, we study two issues which do

not exist in SPSP (where the two assumptions aforementioned

hold): disorder and inconsistency. Disorder occurs when two

285

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Haotian Chi. Under license to IEEE.
DOI 10.1109/SP46214.2022.00146

2
0
2
2
 I

E
E

E
 S

y
m

p
o
si

u
m

 o
n
 S

ec
u
ri

ty
 a

n
d
 P

ri
v
ac

y
 (

S
P

)
| 9

7
8
-1

-6
6
5
4
-1

3
1
6
-9

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/S

P
4
6
2
1
4
.2

0
2
2
.9

8
3
3
6
2
0

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

IoT events (or commands) arrive at platforms (or devices) in

an order different from their actual occurrence order, while

inconsistency arises when two platforms have inconsistent

observations on the state of the same device.

We then re-examine cross-rule interference (CRI) in SPMP

and MP systems, and reveal a new family of attacks that

are overlooked by previous work, referred to as Delay-based

Automation Interference (DAI) attacks, which exploit the in-

teraction of automation rules in SPMP or MP systems. Fig. 1

illustrates an example. If the button-pressed event (which sets

the home mode on both platforms to ªAwayº) sent to Platform

B is delayed by an attacker, the automation rule on Platform

A succeeds in closing garage door when the homeowner’s

car leaves, but the rule on Platform B fails to lock the front

door. We utilize two attack primitives [16], selective event

delaying and selective command delaying (which leverage

TCP hijacking attacks to significantly delay IoT events and

commands without requiring session keys or triggering any

alarms), as a building block to realize the DAI attacks. In

short, an attacker exacerbates the inconsistency and disorder

issues to launch DAI attacks, which exploit new CRI patterns

and cannot be detected by existing work on CRI [6], [7], [8],

[9], [10], [5], [11], [12], [13].

To demonstrate and evaluate the new attacks, we set up

two real-world testbeds in two apartments. In the testbeds, we

examine a variety of IoT devices, six cloud-based platforms

and two local platforms. We validate all of the new attacks

in the testbeds and verify that the attacks put the devices

into insecure, unsafe or unexpected states. The one-week

data from both testbeds also demonstrate that the attackers

have adequate opportunities to launch the attacks. Finally, we

discuss countermeasures. Our contributions are as follows:

• Given the fragmented IoT ecosystem, we present a much

more general and realistic smart home model, where mul-

tiple IoT devices associated with multiple IoT platforms

interact in the same physical space. Under this model, we

study the disorder and inconsistency issues and leverage

delay-attack primitives to exacerbate them.

• Compared to existing work on CRI [4], [5], we are the first

to incorporate the delay factor into analyzing CRI problems.

We are thus able to reveal new CRI patterns and build Delay-

based Automation Interference attacks that are overlooked

by existing work. These attacks do not rely on any leaked

tokens or implementation vulnerabilities. Unlike jamming

or discarding packets, the attacks do not trigger alarms at

any layers of the IoT protocol stack.

• We evaluate the proposed attacks in two real-world testbeds,

where commercial off-the-shelf (COTS) IoT devices and

multiple popular platforms are used. It is demonstrated that

the attacks can cause various problematic home automations

and put the IoT devices and home in hazardous states.

II. BACKGROUND AND ATTACK MODEL

A. Smart Home Systems

In modern smart homes, various components (e.g., IoT

devices, IoT hubs, home router, and IoT platforms) interact

Fig. 2: Architecture of a smart home ecosystem. The arrows (labeled
with circled numbers) denote the paths and directions of event flows.
Command flows follow the same paths but in reverse directions.

in the same physical space. We show the architecture of a

modern smart home ecosystem in Fig. 2.

Devices and Hubs: IoT devices consist of sensors and actua-

tors. A sensor (e.g., temperature sensor) simply reports mea-

surements of a physical property, while an actuator (e.g., smart

lock) can receive and execute commands (e.g., unlock/lock) to

change its status and report that after executing a command.

The sensor measurements and actuator statuses are sent to an

IoT platform via events. The current sensor measurement or

actuator status is called the device’s state. A device’s state at

a platform is updated by the device’s latest event.

IoT devices employ a variety of techniques (e.g., WiFi, Zig-

Bee, Z-Wave, Bluetooth) to send events or receive commands.2

Devices that use WiFi (e.g., LIFX bulbs, Amazon Echo

speakers) can connect to the home router directly 1 ; those

that use non-IP protocols (e.g., ZigBee, Z-Wave, Bluetooth,

etc.) usually require a hub. The hub converts non-IP payloads

from IoT devices 2 to IP-based payloads, which can be sent

to the home router 3 . The home router then forwards the

IP-based payloads to cloud servers 4 or to other devices in

the local area network (LAN) 5 for further processing. A

local platform (e.g., HomeKit) can connect non-IP devices

directly (6). Multiple IoT hubs may be deployed in a home

to accommodate their supported devices.

Platforms: Cloud-based IoT platforms may be classified into

three types: endpoint, service, and hybrid. An endpoint plat-

form is a messaging cloud that mediates communication be-

tween IoT devices and service platforms. It may be maintained

by a device manufacturer or a third-party service provider

(e.g., AWS IoT [17]). A service platform such as IFTTT (If

This Then That) is a cloud that runs automation rules and

usually obtains access to devices from endpoint platforms,

via a cloud-to-cloud integration 7 . A hybrid platform is a

combination of an endpoint and a service platform. Many

popular smart home platforms, such as Amazon Alexa and

SmartThings, belong to this category. In contrast to the

aforementioned cloud-based platforms, a local platform (e.g.,

HomeKit, openHAB) is usually hosted on a local device (e.g.,

PC, laptop, HomePod speaker) in the home area network, and

2For the sake of brevity, we mainly discuss event flows. Command flows
follow the same paths but in the reverse direction.

2286

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

can connect with IoT devices directly, via non-IP protocols

(e.g., ZigBee, Z-Wave, Bluetooth) 6 or via LAN 1 → 5 .

A local platform can also access devices that have been

connected to an IoT hub (2 → 3 → 5) or an endpoint/hybrid

platform (1 → 4 → 9 → 5 or 1 → 4 → 7 → 8 → 5), by using

the APIs provided by the hub (e.g., Hue bridge) or the

endpoint/hybrid platform (e.g., LIFX cloud), respectively. For

the sake of brevity, in this paper, we collectively use the term

platforms to denote all service, hybrid, and local platforms

that can run automation rules.

Automation: An automation rule is a reactive app that follows

a trigger-condition-action paradigm. A rule’s trigger specifies

a constraint that a certain type of event (termed as trigger

event) must satisfy to activate the rule. Before an action in

a rule is taken, its condition is checked to verify whether

states (e.g., devices states, time) have satisfied the predefined

constraints. Different platforms may have distinct supports

for defining rule conditions. For instance, SmartThings allows

using both device states and time to define rule conditions,

Philips Hue only allows the usage of time in conditions, and

Amazon Alexa only supports trigger-action rules.

B. Inferring Home Configuration from Encrypted Traffic

Recent work has illustrated the effectiveness of inferring

smart home configuration information (i.e., device types,

automation apps, the app-device bindings, etc.) from en-

crypted network traffic. Side-channel attacks can utilize the

metadata in the traffic, such as source/destination IP/MAC

addresses, DNS, packet lengths, frequencies, etc., to identify

device information (e.g., manufacturer, model) [18], [19], [20],

[21], [22], [23], [24] and recognize events/commands in real

time [25], [26], [27], [28], [29], [30]. By analyzing a sequence

of accurately-recognized IoT events/commands, routines and

automation rules can also be inferred [26], [31], [32], [30].

For instance, the device identification [18] and [19] achieve an

accuracy of 0.91 and 0.81, respectively. The average accuracy

for inferring events [29] is 0.97. The precision and F1 score

for inferring automation rules [26] are 1 and 0.96, respectively.

This work utilizes side-channel attacks to infer smart home

configuration information and build attacks.

C. Selective Event/Command Delaying

In smart home systems, most communication paths (see

Fig. 2) between an IoT device/hub and a platform go through

a home router.3 On IP/TCP links, events and commands are

typically transmitted using the SSL/TLS protocol, which runs

on top of the transport layer. Each pair of an IoT device/hub

and a cloud establishes a unique TLS session. IoT events and

commands are conveyed in a specific type of TLS record, i.e.,

Application record, whose type field in header is ª0x17º.

Although TLS provides the confidentiality and order-

preserving features, neither TLS nor the upper application-

layer protocols used by smart home systems, such as HTTP

3An exception is the communication between non-IP devices and a local
platform (6).

and MQTT, have a strict liveness checking on messages. IoT

devices and clouds usually exchange TLS-protected heartbeat

(a.k.a., keep-alive) messages periodically. If an IoT device/-

cloud cannot receive a heartbeart request/reply or an event/-

command ack from the other side within a pre-defined time

period (usually tens of seconds; see Section V-B), i.e., a

timeout occurs, it will actively disconnect the TCP connection

and try to reconnect. If an attacker succeeds in performing

a TCP hijacking attack (see Section II-D) between an IoT

device/hub and a platform, he can establish a TCP connection

with each side, becoming a relay node in the middle. Although

the MITM attacker cannot decrypt TLS-protected messages, he

can delay forwarding the messages. Delaying messages cannot

be detected by the IoT protocol stack as long as it does not

trigger a timeout. An attacker can recognize IoT events and

commands from the encrypted packets through side-channel

analysis (Section II-B) and selectively delay a specific event

or command, which is referred to as two attack primitives:

selective event delaying and selective command delaying. Our

prior work [16] discussed the two attack primitives in detail.

In this paper, we use the two primitives as a building block.

D. Attack Model

Who Can Launch the Attacks? We are concerned with an

attacker who can eavesdrop and delay the encrypted traffic

between IoT devices/hubs and the IoT cloud/local platforms.

For example, he can compromise the WiFi router in the victim

home, or perform ARP spoofing attacks [33], [34] from a

local IoT device (e.g., compromised by Mirai attacks [35],

[36]). When the attacker and the victim share a WiFi (e.g.,

at a company, hospital, or facility campus), the attacker

can launch sniffing and ARP spoofing from his own device

conveniently. If an attacker has compromised an ISP router, he

can launch attacks at scale against many homes that use cloud-

based platforms. Through the attack, the attacker obtains two

capabilities: (1) passively analyzing traffic; and (2) actively

delaying events/commands.

Passive Observation. For this purpose, sniffing attacks are

sufficient (i.e., TCP hijacking is not needed). Specifically, the

attacker has access to headers of the data link, network and

transport layers (such as device MAC addresses, IP addresses

and ports), and the type and length of TLS records. The

attacker utilizes the techniques discussed in Section II-B to

obtain knowledge of the victim home and recognize events/-

commands from the traffic.

Active Delaying. The attacker selectively delays events/com-

mands transmitted over a hijacked TCP session. To evade

detection, the attacker does not discard any events/commands

or delay them for an excessive period. The delay range

(without being detected) depends on the type of IoT devices

and platforms (more details are given in Table IV).

III. EVENT/COMMAND DISORDER AND INCONSISTENCY

In a smart home where all IoT devices use the same TCP/IP

communication path to exchange events and commands with

a single platform, as shown in Fig. 3, two properties hold:

3287

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Single-platform single-path device connection.

Fig. 4: Single-platform multi-path device connection.

• Same Order. All events arrive at the IoT platform in the

same order as they arrived at the hub. This holds for all

events that are transmitted on the same TLS session (i.e.,

the hub-platform path), as each TLS record includes a

Message Authentication Code that checks data integrity and

the sequence number [37]. Likewise, a command sent earlier

by the platform arrives at the hub earlier.

• Consistency. The executions of all automation rules are

based on a consistent observation about the smart home,

because the same database maintained by the platform is

queried for data (e.g., device states, home mode, etc.).

Although existing research on CRI [38], [39], [6], [7], [8],

[26], [9], [40], [5] considers or implicitly assumes the single-

platform single-path (SPSP) deployment model, it does not

reflect the reality. Over time, users may purchase a variety

of IoT devices and connect them with multiple platforms.

Therefore, the following two deployment models are common

in reality: the single-platform multi-path (SPMP) model and

the multi-platform (MP) model. According to our online

survey (see Appendix A for details) including 85 realistic

smart homes, SPSP, SPMP and MP deployments account for

17.6%, 20.0% and 62.4%, respectively.

A. Single-Platform Multi-Path: Disorder

When IoT devices use multiple TCP/IP paths to exchange

messages with a platform, the same order property will not

hold true. Fig. 4 shows an example. Assuming that device A’s

transmission path (i.e., the TLS between device A and the

platform) is delayed, even if events from A are generated

earlier, its events may arrive at the platform later than those

of device B. We refer to this issue as a disorder. Note that this

issue could also happen to commands.

B. Multi-Platform: Disorder and Inconsistency

In multi-platform systems, there exist multiple TCP/IP paths

between IoT devices and platforms. Therefore, the disorder

issue certainly exists. Plus, when an IoT device is connected

to two or more platforms, the platforms may have different

observations on the same device’s state. This is because a

new event from the device may have different delays when

transmitted to the platforms (via different paths). As shown

in Fig. 5, a WeMo smart plug communicates with the WeMo

cloud (a.k.a., an endpoint cloud) through the Internet, and talks

in the local area network with a HomePod that hosts HomeKit

or with a SmartThings hub which forwards communication

Fig. 5: WeMo smart plug connected to three platforms: WeMo,
SmartThings, and HomeKit.

to the SmartThings cloud. Thus, the WeMo smart plug uses

three different paths to connect with the three platforms. The

transmission delays could create a time window, during which

platforms have inconsistent observations on the state of the

plug (i.e., ON/OFF). We refer to this issue as inconsistency.

In non-adversarial scenarios where the network delays are

usually small, e.g., less than one second, the disorder and

inconsistency issues are not severe. However, in the presence

of an attacker who intentionally delays events/commands, the

disorder and inconsistency issues may be manipulated by the

attacker to cause serious security and safety threats to a smart

home (e.g., leaving the front door unlocked when the owners

are not home), and this is discussed in Section IV.

IV. DELAY-BASED AUTOMATION INTERFERENCE ATTACKS

We consider an attacker who launches selective event/com-

mand delaying attacks to cause disorder and inconsistency

issues in order to interfere with home automation, leading

to incorrect, unexpected, and hazardous automation. These

attacks are collectively referred to as Delay-based Automation

Interference (DAI) attacks. Different from the well-studied

cross-rule interference problems (e.g., [5], [6], [7], [9]) due

to mis-programming or mis-configuration, DAI attacks ex-

ploit CRI problems in SPMP and MP systems that cannot

be detected by existing work. To systematically study and

categorize of DAI attacks, we use a formal approach process

calculus [41], [42] to model smart home deployments and

extend a notion of observation equivalence for identifying CRI

problems in a smart home. With the theoretic basis, we param-

eterize the configurations (including the message-transmission

delay) of a smart home system and enumerate the possible

configurations as well as the attacker’s strategies to find all

possible DAI attacks. Due to the page limits, we briefly present

the basic idea of the utilization of observation equivalence in

Section IV-A, and defer the complete formalization part to

Appendices B and C. The rest of this section is focused on

presenting the discovered attacks.

A. CRI Resistance Modeling

A smart home’s physical environment is denoted as E, and it

has two automation rules R1 and R2 that run on two platforms

L1 and L2, respectively (L1 and L2 may refer to the same or

different platforms). We use Sys = E◦(R1[D1▷L1] ∥R2[D2▷
L2]) to denote this smart home system, where D1 and D2

are the sets of devices involved in R1 and R2, respectively.

Communication paths between devices and platforms in Sys

suffer from delay attacks. Suppose a specification system

4288

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

Room RID Rule description (Format: When [trigger], if [condition], [action])

Garage

1 When the hall door is closed, if away mode, close garage door and set home mode. (arriving)
2 When the away button is pressed, set to away mode. (leaving)
3 When the hall door is closed, if home mode, open the garage door. (leaving)
4 When the car leaves, if away mode, close the garage door.
5 When the garage door is closed, if away mode, lock the front door and hall door.

Kitchen

6 When the user arrives, unlock the front door.
7 When the front door is unlocked, turn on the indoor camera.
8 When the front door is opened, if away mode, turn on all smart plugs.
9 When cook time (12pm, 7pm), if motion is active, turn on the heater in the kitchen.

10 When power high, if motion is inactive, turn off smart plug (that connects kettle, heater, etc.).
11 When door is unlocked, if the user is away, sound the alarm and call the police.

Living
Room

12 When motion is detected, turn on the humidifier and TV.
13 When the luminance drops below 20 lux, if motion is active, turn on the lights.
14 When the luminance exceeds 20 lux, if motion is inactive, turn off the lights.

Bedroom

15 When motion is detected, if user is at home, turn off camera.
16 When motion is detected, if user is away, ring alarm and send live video to security company.
17 When motion is detected, turn on the ceiling lamp.
18 When motion is detected, if luminance is below 20 lux, turn on the floor lamp.

Fig. 6: A smart home illustrating part of the deployed IoT devices and automation rules.

Sys∗ = E ◦ (R1[D1 ▷ L∗] ∥R2[D2 ▷ L∗]), where all devices

D1 ∪ D2 are connected to an oracle platform L∗, both rules

R1 and R2 run on L∗, and all its communication paths incur

identical delays. That is, Sys∗ runs the same rules and devices

in the same environment as Sys but suffers no DAI attacks.

Observation equivalence is a property that two or more

concurrent systems are indistinguishable regarding their ob-

servable implications (e.g., the states of sensors and actuators).

Therefore, if the real system Sys (with DAI attacks) and

specification system Sys∗ (without DAI attacks) are obser-

vationally equivalent while they evolve, i.e., the automation

results (resultant device states) are always the same no matter

how rules are triggered the same way in both systems, we say

that the two automation rules R1 and R2 in the deployment

Sys are CRI-resistant to DAI attacks. With this notion, we

not only can verify if rules are CRI-resistant after formalizing

a given smart home deployment, but also find all possible

types of DAI attacks by traversing different attack strategies

(i.e., which communication paths to delay). Due to the page

limit, we defer full details of the formal modeling, and the

methodology for observation equivalence analysis and DAI

attack categorization, to Appendices B and C, respectively.

B. An Example Smart Home

To help present DAI attacks, we first describe an example

smart home with multiple IoT devices and automation rules

deployed, as shown in Fig. 6. Regarding Rules 1-3, note

that whether a person enters or leaves, the resulting door

event sequence is the same (e.g., ªunlocked → open →
closed → lockedº), and therefore cannot be used to infer

whether the homeowner enters or leaves the home; to distin-

guish arriving/leaving behaviors, a mode with possible values,

such as home and away, can be set by the user manually

(like using a mobile companion app or an ADT system [43])

or automatically (based on a presence sensor or automation),

which then can be used to, e.g., open/close the garage door

correctly. The example will be used to present the new DAI

attacks in a more concrete fashion.

C. DAI Attacks

We summarize seven types of DAI attacks in Table I. For

each type, Table I lists the attack name, the section interpreting

Fig. 7: Condition overlapping attack. The conditions of Rules i and
j are satisfied when the device state is 0 and 1, respectively. Here, 0
and 1 broadly denote the values of a binary attribute, e.g., inactive
and active of a motion sensor.

Fig. 8: A scenario of condition overlapping attack (action conflict).

it, the rule pattern describing the attack, the message(s) that

should be delayed, the issue exploited and the consequence.

1) Condition Overlapping Attack: Existing works [6], [7],

[9], [10], [5], [11], [12], [13] assume that rules do not run

simultaneously if their conditions are exclusive, (e.g., ªif

motion sensor is activeº vs. ªif motion sensor is inactiveº). As

shown in Fig. 7, suppose the conditions of Rules i and j check

the state of a device, and this device has two possible states

0 and 1. When there are no attacks, the condition-satisfaction

period during which Rule i’s condition (e.g., ªif the state is 0º)

is satisfied has no overlap with that of Rule j, (e.g., ªif the state

is 1º). However, if Rules i and j run on two different platforms

A and B, respectively, by delaying the arrival of event 1 on

platform A and/or the arrival of event 0 on platform B (see

Fig. 7), the condition-satisfaction periods of the two rules will

have overlaps. As a result, if both rules are triggered during

the overlapping period, they will be executed during the same

period, violating the expectation that they are mutually ex-

clusive. We collectively define condition-overlapping attacks

(COA) as attacks that exploit inconsistency issues to cause

rules with exclusive conditions to run simultaneously. Under

this attack, rules that are considered interference-free by prior

5289

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Summary of DAI attacks. The DAI attacks are derived from a systematic categorization show in Appendix C. The Rule Pattern
column shows the pattern of victim rules targeted by each DAI attack. Ri = (Ti, Ci, Ai), i = 1, 2 denotes two victim rules, where Ti,
Ci, Ai are the trigger, condition, and action, respectively. ⊥ denotes ªmutually exclusiveº; ∧ denotes ªoverlapsº; ¬ denotes that ªmutually
contradictoryº; ⇒ and ⇏ denotes ªenablesº and ªdisablesº, respectively; <≈ denotes ªis close but precedent toº; ⊣ denotes ªrequiresº; ⊎
denotes ªguarded byº.

Attack Section # Rule Pattern What to Delay?1 Issue Exploited Consequence

(1) Condition Overlapping Attack (COA) IV-C1

(1.1) COA - Action Conflict T1 = T2 , C1 ⊥ C2 , A1 = ¬A2 C1 → R2 (C2 → R1) Inconsistency Action A1 (A2) Nullified

(1.2) COA - Infinite Loop A1 ⇒ T2 , A2 ⇒ T1 , C1 ⊥ C2 C1 → R2 (C2 → R1) Inconsistency Infinite Loop

(1.3) COA - Chained Execution A1 ⇒ T2 , C1 ⊥ C2 C1 → R2 Inconsistency Chained Execution

(2) Trigger-Cond. Overlapping Attack IV-C2 A1 ⇒ T2 , T1 ⊥ C2 T1 → R2 Inconsistency Chained Execution

(3) Condition Diverging Attack (CDA) IV-C3

(3.1) CDA - Disabled Parallel Execution T1 = T2 , C1 = C2 C1 → R2 Inconsistency Action A2 Suppressed

(3.2) CDA - Disabled Chained Execution A1 ⇒ T2 , C1 = C2 C1 → R2 Inconsistency Action A2 Suppressed

(4) Action Disordering Attack IV-C4 T1 <≈ T2 , C1 ∧ C2 , A2 ⊣ A1 T1 → R1 and/or A1 Disorder Actions Disordered

(5) Condition Disabling Attack IV-C5 T1 = T2 , A1 ⇏ C2 T2 → R2 Disorder Action A2 Suppressed

(6) Condition Enabling Attack IV-C6 T1 = T2 , A1 ⇒ C2 T2 → R2 Disorder Unexpected Action A2

(7) Action Delaying Attack (ADA) IV-C7

(7.1) ADA - Delayed Parallel Execution T1 = T2 , C1 ∧ C2 , A1 ⊎ A2 T2 → R2 or A2 Delay Action A2 lags behind A1

(7.2) ADA - Delayed Chained Execution A1 ⇒ T2 , C1 ∧ C2 , A1 ⊎ A2 T2 → R2 or A2 Delay Action A2 lags behind A1

1 Delaying a trigger T(·) or condition C(·) to a destined rule R(·) is achieved by delaying the event, checked by T(·) or C(·), to the platform where R(·) runs. For instance,

C1 → R2 denotes that an event (e.g., motion active) which makes the condition C1 (e.g., ªif the motion is detectedº) true should be delayed when it is transmitted to the

platform hosting the rule R2. Delaying an action A(·) is realized by delaying the command issued by A(·) when the command is sent to the destined device.

work become problematic. Below, we present three sub-types

of the attack and use concrete examples to demonstrate how

they lead to incorrect automation results.

Action Conflict. Through the condition overlapping attack, an

attacker can cause an action conflict. Consider Rules 15 and

16 (in Fig. 6) which protect user’s privacy and detect burglary

respectively, based on the user’s presence when motion is

detected in the bedroom. As shown in Fig. 8, if they are

installed on different platforms A and B, the attacker can delay

the user-away event from a presence sensor to platform A.

Thus, when triggered by the motion-active event, Rules 15 and

16 have different observations on the user’s presence: ªuser is

at homeº and ªuser is awayº, from the databases of platforms

A and B, respectively, and perform conflicting actions. Con-

sequently, Rule 15 turns off the camera, preventing Rule 16

from recording live videos.

Infinite Loop. Rules 13 and 14 are configured to control

lights in the living room, based on luminance and user motion.

According to the recent research [6], [5], [9], the two rules

have no interference, since their conditions, ªif motion is

activeº and ªif motion is inactiveº, are mutually exclusive.

Specifically, when Rule 13 turns on the lights and brightens

the room (which means the motion is active), Rule 14 is

activated but its condition is not satisfied; thus, Rules 13

and 14 cannot trigger each other according to existing work.

However, when the rules run on two different platforms, the

condition overlapping attack can delay the most recent motion-

active event sent to the platform hosting Rule 14. As a result,

when Rule 13 turns on the lights, Rule 14 will be triggered

to turn them off, which triggers Rule 13 once again; during

the period the motion-active event is delayed, an infinite loop

will make the lights continuously flash on and off.

Chained Execution. Chained execution of rules [5] (also

referred to as interaction chain [40], rule chains [44], or feature

chaining [45]) is a well-studied CRI pattern, which occurs

when the action of one rule activates the trigger of another

rule. Let’s consider Rule 9 in Figure 6, which turns on an

Internet-connected space heater (such as [46]) during cooking

time (12pm and 7pm). For energy-saving and safety reasons,

Rule 10 turns off the smart plug when appliances connected to

it increase power consumption over a threshold if nobody is in

the kitchen. Rule 9 uses a condition, ªif motion is activeº, to

avoid chaining with Rule 10, whose condition is ªif motion is

inactiveº. Without attacks, the coexistence of Rules 9 and 10

will not cause chained execution. However, if Rules 9 and 10

run on different platforms, A and B, respectively, the attacker

can delay a motion-active event being sent to platform B,

causing Rule 10’s condition to be kept true. This way, when

Rule 9 is activated at cooking time, an unexpected chained

execution of Rule 10 occurs to turn off the smart plug.

2) Trigger-Condition Overlapping Attack: Some automa-

tion rules avoid chained execution by making the trigger of

one rule and the condition of another mutually exclusive.

However, the exclusiveness is broken by delaying a trigger

event. Consider Rules 6 and 11 in Fig. 6. Rule 6 unlocks the

front door when the user arrives home (detected by a presence

sensor); Rule 11 automatically sounds an alarm and call the

police when it detects a possible break-in: the front door is

unlocked while the user is not present. Rules 6 and 11 play

their own roles and do not chain when they have consistent

observations on the presence sensor. Suppose Rules 6 and 11

run on two platforms, A and B, respectively. If a user-present

event sent to platform B is delayed by the attacker, Rule 11

uses outdated information (i.e., the user is not present) to

evaluate its condition when it is triggered by the door-unlocked

event (caused by Rule 6’s action). As a result, it causes a false

burglar alarm.

3) Condition Diverging Attack: In contrast to the condition

overlapping attack, which causes rules with exclusive condi-

tions to interact, the condition diverging attack prevents rules

with overlapping rules from interacting. Although chained

execution is recognized as a CRI pattern, it is sometimes an

important feature for grouping rules for specific goals if it is

utilized properly. For example, Rules 4 and 5 use this feature to

6290

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

(a) By delaying trigger event

(b) By delaying command

Fig. 9: Action disordering attack.

close the garage door and lock the doors in a row, which do not

cause any problem if they run on the same platform. However,

the condition diverging attack can disable the desired chained

execution. Suppose Rules 4 and 5 run on different platforms,

A and B, respectively. The attack can desynchronize the mode

on platforms A and B by delaying the ªawayº message sent

to B. Thus, when the user drives away, Rule 4 is executed to

close the garage door, while Rule 5’s condition is not satisfied,

failing to lock the front and hall doors.

4) Action Disordering Attack: This attack changes the

arrival order of commands issued by different rules. Consider

Rules 8 and 12 in Fig. 6: Normally, a user first enters her

home through the door and then her motion in the living

room is detected; as a result, Rule 8 is first triggered by

the door-open event to turn on smart plugs, and then Rule

12 is triggered, which turns on the humidifier and TV. This

order is presumably ensured by the order of physical activities.

However, if the command due to Rule 8 is delayed by attacks,

Rule 12 will fail to turn on the humidifier and TV.

More generally, an action disordering attack can be achieved

by delaying the trigger event, command, or both. Assume that

Rule i is supposed to take its action before Rule j (assume

neither rule involves the use of timers). As shown in Fig. 9(a),

when Rule i’s trigger event is delayed for a sufficient period,

Rule i is executed after Rule j. Fig. 9(b) shows another

attack strategy: an attacker can delay the command of Rule

i and make it arrive at the destined device later than the

command of Rule j, even though Rule i executes before Rule

j. Alternatively, the attacker can delay both the trigger event

and command of Rule i to increase the total delay.

5) Condition Disabling Attack: If a rule’s action changes a

device’s state to a value that dissatisfies the condition of an-

other rule, it is called Condition Block [9] CRI. Prior work [5]

empirically demonstrates that, if the two rules subscribe to the

same trigger event and run on the same platform, Condition

Block is unlikely to happen. However, as shown in Fig. 10,

when the two rules are on different platforms, a condition

disabling attack becomes possible, because the attacker can

delay the trigger event sent to the platform hosting Rule i, such

that Rule j changes the device state (green), which disables

Fig. 10: Condition disabling attack.

the condition of Rule i.
Let’s consider Rules 17 and 18. When a user enters the

bedroom, Rule 17 on platform A turns on the ceiling lamp;

if the room is too dark, Rule 18 turns on the floor lamp as

well. If Rule 18 is also installed on platform A, the two

rules ensure that when the user enters the bedroom, either

(1) only the ceiling lamp is turned on if initially there is at

least 20 lux luminance, or (2) both lamps are turned on if

luminance is below 20 lux. However, as platform A (such

as Amazon Alexa) does not support defining rule conditions,

Rule 18 is installed on another platform B. The automation

now becomes vulnerable to the condition disabling attack. An

attacker can delay the motion-active event to platform B. Thus,

when motion is detected, Rule 17 first turns on the ceiling

lamp, increasing the measurement of the luminance sensor to

a higher value, say 22 lux. The new luminance value will then

be sent to platform B. When the delay attack ends, Platform B
receives the motion-active event and Rule 18 is triggered. As

Rule 18 now observes the new illuminance value, the condition

disabling attack disables Rule 18 to take its action.

6) Condition Enabling Attack: This attack materializes an-

other CRI pattern Condition Bypass which happens when Rule

j’s action changes a device’s state to one that satisfies Rule i’s
condition. Similar to Condition Block, Condition Bypass can

hardly happen when Rules i and j run the same platform, but

becomes possible if they are on different platforms.

For example, Rules 1 and 3 in Fig. 6, which are used for

controlling the garage door. Suppose the home mode is ªawayº

when both rules are triggered by the hall door-closed event.

If they run on the same platform, it is impossible for Rule 1’s

action (set to ªhomeº mode) to have any impact on Rule 3’s

condition, since Rules 1 and 3 are triggered simultaneously.

However, if Rules 1 and 3 run on different platforms A and

B, respectively, the condition-enabling attack can be launched

by selectively delaying the door-closed event to the platform

B. When Rule 3 receives the delayed door-closed event, the

mode has been set to ªhomeº on platform B. As a result, Rule

3 will pass its condition checking and leave the garage door

open, which causes safety issues.

7) Action Delaying Attack: Some rules are configured to

run together for certain purposes, i.e., they are usually trig-

gered in parallel by the same event, or in a row through a

chained execution, and one rule’s action can safeguard another.

For instance, a user installs Rule 6 (see Fig. 6) to unlock the

garage door when he arrives home. However, he is concerned

that this rule is unsafe because the presence sensor (based on

the location of a smartphone or specialized device) usually has

a low precision, i.e., Rule 6 may unlock the door even when

the user just passes by or is approaching but still far away

7291

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

from his home, leaving a chance for burglary. To secure Rule

6, Rule 7 is installed to monitor the door with a surveillance

camera when the door is unlocked. Rules 6 and 7 run one after

another because the action of Rule 6 triggers Rule 7. However,

the action delaying attack can delay the action of turning on

the camera in Rule 7 for a sufficiently-long period, such that

Rule 7 fails to secure Rule 6. Similar to an action disordering

attack, an action delaying attack can be realized by delaying

the target rule’s trigger event, command, or both.

D. Factors Affecting Attack Successes

Rules are vulnerable to a certain type of attack if they

satisfy the corresponding Rule Pattern and Deployment Model

(see Table I). An attacker launches attacks by delaying the

events/commands as shown in What to Delay? (in Table I).

Given a pair of vulnerable rules and the applicable attack

type, whether an attack can succeed depends on two factors:

(1) allowed message delay length, and (2) user behaviors. A

larger delay gives a wider time window for delaying a trigger

event/a command that enables or disables a rule condition.

The allowed delay length, denoted as ∆Tallowed, depends on

the IoT device and platform (see the Delay Range testing in

Section V-B1).

User behaviors affect the order and time interval the vulner-

able rules are triggered. Consider the action disordering attack

on Rules 8 and 12 in Section IV-C4 as an example. Rules 8 and

12 are triggered by two user activities: opening the front door

and entering the living room, which generate door-open and

motion-active events, respectively. The interval between the

two activities is denoted as ∆Tinterval. If the user approaches

the motion sensor in the living room within ∆Tallowed after

she opens the front door (i.e., ∆Tallowed > ∆Tinterval; note

that we have ignored the difference between the transmission

time for sending the two trigger events, as it is usually

negligible when there are no attacks), Rule 12 will be triggered

earlier than Rule 8 (i.e., the execution order is reversed),

leading to a successful attack. Otherwise, the attack fails.

While user behaviors change time by time, there usually

exists a pattern and the pattern can be learned from his-

torical events and commands, which can be inferred using

side channel attacks [27], [30], [31] (see Section II-B). If

the attacker finds that the user never goes to the living

room within ∆Tallowed after she opens the front door (i.e.,

∆Tallowed < ∆Tinterval), he chooses not to perform an action

disordering attack on Rules 8 and 12 since it will never

succeed. If ∆Tinterval is smaller than ∆Tallowed with a high

probability, then the attack success rate is also high. Note that

failed DAI attack attempts remain stealthy since the delay does

not trigger alarms at any layers of the IoT protocol stack.

V. EVALUATION

In Section V-A, we describe the deployment details of two

real-world smart home testbeds used for evaluating DAI. In

Section V-B, we validate DAI attacks in the two testbeds. In

Section V-C, we evaluate the attack opportunities and success

rates of DAI attacks on a daily life basis.

A. Smart Home Testbeds and Attack Implementation

There are no public datasets of smart homes (including

devices, rule sets, and configuration). Thus, like previous work

on IoT security research [8], [26], [47], we set up smart home

testbeds, denoted as T1 and T2, which are in two real homes

to evaluate the DAI attacks. We received the IRB approval

(see Appendix D for details). There are two persons (a male

graduate student and a female graduate student in their 30s

and 29s, respectively) living in testbed T1, and one person in

T2 (a 27-year-old male graduate student). None of the testbed

members are the authors. The smart home layouts and the

IoT devices in each smart home are given in Fig. 11 and

Table II, respectively. In total, 36 automation rules are installed

on 4 automation platforms to interact with 55 IoT devices. The

automation rules, which are listed in Table III, are chosen from

the official app stores [48] or open-source datasets [49], and

the final configurations are based on the discussion between

the researchers and the residents living in the testbeds. Each

testbed has a WiFi router, providing a WiFi access point and

a few Ethernet ports for the deployed IoT devices.

A Raspberry Pi 4 Model B with a 2GB RAM and a

32GB MicroSD card is placed in each testbed to simulate

a device compromised by the attacker. It is worth noting

that if the attacker and the victim share a WiFi (e.g., at

a factory, company, hospital, or university), or the attacker

has stolen the WiFi password, the attacker can launch the

attacks directly from his device. Plus, an attacker who has

compromised the smart home router or has physical contact

with the cable can also launch attacks without relying on ARP

spoofing. Note ARP spoofing is decades-old mature attacks

for hijacking traffic. A famous tool, IoT Inspector [50], has

demonstrated that ARP spoofing can hijack a large amount

of IoT traffic without causing network instability. We use the

ARP spoofing-based technique to turn the Raspberry Pi into a

relay node that can examine and delay the traffic between IoT

devices/hubs and the WiFi router, or between IoT devices and

hubs. By configuring the firewall rules through iptables,

all traffic forwarded by the Raspberry Pi is under the control

of our attack script. The attack script uses the approach

in [29] to recognize events/commands from encrypted traffic.

The approach [29] constructs packet-level signatures of IoT

events and commands based on source & destination IPs and

payload lengths in an offline phase, and then detects events

and commands with the signatures in runtime with an accuracy

over 97%. The attack script utilizes a DFA matching approach

[26] to infer automation rules from the event and command

logs of a couple of days (one week in our experiment),

achieving an accuracy of 94%. DAI attacks are performed

based on the inferred home configuration.

B. Validation of Attacks

We present the methodology and results for validating the

DAI attacks in the two testbeds.

1) Methodology: To ease the validation, we ask the testbed

members to assist in triggering the automation rules by behav-

ing in controlled patterns. The given instructions incorporate

8292

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

TABLE II: IoT devices and their connections to platforms in T1 and T2. d-ID: device ID. Acronyms: SmartThings (ST), Philips Hue (PH).

Testbed T1 Testbed T2

d-ID Device Connection Path to Platform1 d-ID Device Connection Path to Platform

± SmartThings hub • ⇌ST cloud ± SmartThings hub • ⇌ST cloud

± Apple HomePod2
• ⇌iCloud ± Philips Hue bridge • ⇌PH cloud

± Aqara hub • ⇌Aqara Cloud; • ⇌HomePod ± Apple HomePod • ⇌iCloud

± Philips Hue bridge • ⇌PH cloud; • ⇌HomePod ± Alexa Echo Flex • ⇌Alexa Cloud

± Alexa Echo Dot • ⇌Alexa Cloud 1 ST presence sensor4
• ⇌ST hub⇌ST cloud

1 Aqara Mini switch • ⇌Aqara hub⇌HomePod 2 Kwikset door lock • ⇌ST hub⇌ST cloud⇌Alexa cloud

2 First Alert smoke sensor • ⇌ST hub⇌ST cloud; • ⇌ST hub⇌Homebridge⇌HomePod 3 Arlo Essential camera • ⇌Arlo cloud⇌ST cloud

3 4 SmartThings outlet • ⇌ST hub⇌ST cloud 4 PH motion sensor • ⇌ST hub⇌ST Cloud

5 6 Wemo smart plug • ⇌WM cloud⇌Alexa cloud;

• ⇌ST hub⇌ST cloud
5 - 7 PH motion sensor • ⇌ST hub⇌ST Cloud;

• ⇌ST hub⇌Homebridge⇌HomePod

7 - 9 PH motion sensor • ⇌ST hub⇌ST Cloud; • ⇌ST hub⇌Homebridge⇌HomePod 8 PH motion sensor • ⇌PH bridge⇌HomePod

10 11 ST multipurpose sensor • ⇌ST hub⇌ST cloud 9 - 11 Philips Hue bulb • ⇌PH bridge⇌ST hub⇌ST Cloud;

• ⇌PH bridge⇌PH cloud⇌Alexa Cloud

12 13 Kwikset door lock • ⇌ST hub⇌ST cloud 12 WeMo smart plug • ⇌HomePod

14 VOCOlinc humidifier • ⇌HomePod 13 - 15 WeMo smart plug • ⇌ST hub⇌ST cloud; • ⇌HomePod

15 - 19 Philips Hue bulb • ⇌PH bridge⇌HomePod;

• ⇌PH bridge⇌ST hub⇌ST cloud⇌Alexa cloud
15 WeMo smart plug • ⇌ST hub⇌ST cloud⇌Alexa cloud

20 Eve Energy triple outlet3 • ⇌HomePod 16 VOCOlinc humidifier • ⇌HomePod

21 Garadget door opener • ⇌Garadget cloud⇌ST cloud;

• ⇌Garadget cloud⇌ST cloud⇌ST hub⇌Homebridge⇌HomePod
17 WeMo smart plug • ⇌ST Hub⇌ST cloud

22 ST water sensor • ⇌ST hub⇌ST cloud 18 First Alert smoke sensor • ⇌ST hub⇌ST cloud;

• ⇌ST hub⇌Homebridge⇌HomePod

23 WeMo smart plug • ⇌HomePod 19 WeMo smart plug • ⇌HomePod

24 WeMo smart plug • ⇌ST hub⇌ST cloud 20 ST motion sensor • ⇌ST hub⇌ST cloud

25 PH motion sensor • ⇌PH bridge⇌HomePod 21 ST multipurpose sensor • ⇌ST hub⇌ST cloud

1 • denotes the device itself. For simplicity, router is omitted in the connection path. 2 HomePod is the hub of HomeKit. HomeKit automations run on HomePod, not

on iCloud. 3 Connected by a smart heater switch 3 , a non-smart microwave and a non-smart oven. 4 Carried with a person.

(a) T1 (b) T2

Fig. 11: The floor plans and device placement in the two testbeds,
T1 and T2. For brevity, personal devices (e.g., smartphones, tablets,
laptops) and IoT hubs are not marked in the floor plans.

certain daily activities such as leaving/entering home through

the garage door, entering a specific room, etc. In particular,

when triggering Rules 14, 15 in T1 and Rules 8, 9 in T2, which

are triggered by smoke or water leaks, we ask the testbed

members to physically trigger the smoke and water sensors

in a safe manner. Also, due to the physical restrictions on

installing the water valve and sprinkler in the testbeds, we

use these rules to control smart switches instead of the real

water valve and sprinkler. Although the victim rules are being

triggered by the testbed members, our attack script runs to

attack the victim rules by delaying the actual device events

(e.g., smoke) or commands (see Table IV). To obtain the

ground truth for validating if the attacks are successful, we

repeat the above process for two days. On the first day, we

set the delay period to 0 for all events and commands, i.e.,

no attacks are conducted. On the second day, we perform

DAI attacks by setting some specific time periods to delay

the target event or command of the victim rules. We collect

the event and command logs for analyzing automation results.

The automation result on the first day is used as the ground

truth for comparison. We compare the automation result of

each pair of victim rules on the second day (with attack) with

those from the first day (without attack). If the results are the

same, the rules are not attacked on the second day. Otherwise,

the rules may be attacked. To confirm, we manually check

whether the automation result on the second day is consistent

with the expected attack result; if so, the attack is validated.

Device Logs. Device logs are needed to evaluate the

correctness of automation. Among the nine platforms

deployed in the testbeds, three of them (i.e., SmartThings,

HomeKit, and Alexa) are used as non-endpoint platforms

which have access to a broader range of device types.

Alexa does not provide a convenient logging tool. Therefore,

we choose to use the built-in logging functions on the

SmartThings mobile app and on a third-party mobile app,

Home+ 4, that can access and export the HomeKit data.

Since the Alexa devices in the two testbeds can be accessed

by SmartThings and/or HomeKit, all device events in the

testbeds can be collected by at least one of the two methods.

Note that we do not collect logs of hub devices since they are

not used in automation rules. For the convenience of analysis,

we convert the raw event logs from the SmartThings and

Home+ 4 apps, denoted as EST , EHK , to a uniform format.

Each element (event) in the reformatted logs is a tuple:

⟨TestbedID, DeviceID, Attribute, Value, Timestamp⟩,
where the combination of TestbedID, DeviceID,

Attribute and Value uniquely identifies an event type.

For example, a motion active event sent by device 7 in

testbed T1 can be denoted as ⟨1, 7 ,motion, active⟩. An event

type may have multiple instances at different Timestamps.

The new event log is sorted by Timestamp. Note that

the timestamps of events are the time instances when the

platforms receive the events, which may have been delayed

by an attack. This is the reason why we use events on the

first day, in the absence of attacks, as ground truth. Based on

the event logs EST and EHK on both days, we can easily

track the execution of rules as in existing work [26], [51].

9293

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Installed rules in all testbeds. RID: rule ID.

Testbed RID Rule Description and Device Binding Platform

T1

1 When 6pm, if motion 7 is active in living room, turn on the ceiling light 16 . HomeKit

2 When 6pm, if no motion 7 in living room, toggle ceiling light 16 every 15 minutes to simulate occupancy. Press an app button to stop. SmartThings

3 When the hall door 11 is closed, if the home is in away mode, close garage door 21 , turn on outlets 4 5 6 and set to home mode. SmartThings

4 When the hall door 11 is closed, if the home is in home mode, open the garage door 21 . HomeKit

5 When the button 1 is pressed, set to away mode. HomeKit

6 When the user (smartphone as presence sensor) leaves, if the home is in away mode, close the garage door 21 . HomeKit

7 When the garage door 21 is closed, if the home is in away mode, lock the front door 12 and hall door 13 . SmartThings

8 When kitchen time (12pm, 7pm), if motion 9 is active in the kitchen, turn on the heater switch 3 . SmartThings

9 When power 20 exceeds 2500W, if motion 7 - 9 is inactive in all rooms, turn off the outlet 20 . HomeKit

10 When the front door 10 is opened, if the home is in away mode, turn on outlets 4 5 6 and set to home mode. SmartThings

11 When motion 7 is detected in living room, turn on the humidifier 14 , ceiling lamp 16 and floor lamp 15 . HomeKit

12 When motion 8 is detected in bedroom, if luminance 25 is below 15 lux, turn on the ceiling lamp 17 and floor lamp 18 . HomeKit

13 When motion 8 is detected in bedroom, turn on the ceiling lamp 17 . Philips Hue

14 When smoke 2 is detected in kitchen, if the user (smartphone as presence sensor) is off, turn on the sprinkler 24 . SmartThings

15 When water leak 22 is detected in kitchen, if no smoke 2 is detected, close the water valve 23 . HomeKit

16 When the user (smartphone as presence sensor) leaves, turn off the humidifier 14 , lights 15 16 17 18 19 , and plugs 4 5 6 . HomeKit

17 When 11pm, turn off the humidifier 14 . HomeKit

18 Say ªAlexa, good morningº to turn on light 17 . Alexa

19 Say ªAlexa, good nightº to turn off the lights 15 16 17 18 19 . Alexa

T2

1 When user 1 arrives, unlock the front door lock 2 . SmartThings

2 When the door lock 2 is unlocked, turn on the surveillance camera 3 ; when the lock 2 is locked, turn off the camera 3 . SmartThings

3 When luminance 5 exceeds 20 lux, if motion 8 is inactive, turn off the living room light 9 . HomeKit

4 When luminance 5 drops below 20 lux, if the user 1 is at home, turn on the living room light 9 . SmartThings

5 When front door 21 is opened, if motion 4 is active, turn on outlets 13 14 . SmartThings

6 When motion 7 is detected in study room, turn on the humidifier 16 . HomeKit

7 When user 1 leaves, close the water valve 17 and lock the door 2 . SmartThings

8 When smoke 18 is detected, open the water valve 17 . SmartThings

9 When smoke 18 is detected, open the sprinkler 19 . HomeKit

10 When 6pm, turn on the heater switch 12 . HomeKit

11 When temperature 6 exceeds 75◦F , if the user 1 is at home, open the window 15 . SmartThings

12 When motion 20 is detected in bathroom, turn on the bathroom light 10 . SmartThings

13 When no motion 20 is detected in bathroom, turn off the bathroom light 10 . SmartThings

14 When the user leaves (smartphone as presence sensor), turn off the humidifier 16 and outlets 12 13 14 . HomeKit

15 Say ªHey Siri, turn off the heaterº to turn off the heater outlet 12 . HomeKit

16 Say ªHey Siri, turn off the humidifierº to turn off the humidifier 16 . HomeKit

17 Say ªAlexa, good nightº to turn off the lights 9 10 11 and close the window 15 . Alexa

TABLE IV: A summary of the details for attacking the victim rules in the testbeds, including delayed devices and events/commands, the
channels which are utilized to realize the delay, and the delay range that have been tested. COA: Condition Overlapping Attack.

Testbed Victim Rules1 Attack Type Event/Command to Delay?2 Which Channel to Delay? Delay Range (seconds)

T1

1 & 2 COA (Action Conflict) motion active event from 7 SmartThings hub → router 16-47

3 & 4 Condition Enabling Attack door closed event from SmartThings Homebridge → HomePod 10-Unbounded3

6 & 7 Condition Diverging Attack away mode event from HomeKit Homebridge → SmartThings hub 10

8 & 9 COA (Chained Execution) motion active event from 9 Homebridge → HomePod 10±Unbounded

10 & 11 Action Disordering Attack door open event from 10 SmartThings hub → router 16-47

12 & 13 Condition Disabling Attack motion active event from 8 Philips Hue bridge → HomePod 10±Unbounded

14 & 15 Trigger-Condition Overlapping Attack smoke event from 2 Homebridge → HomePod 10±Unbounded

T2

1 & 2 Action Delaying Attack turn on command to 3 router → Arlo camera 120-600

3 & 4 COA (Infinite Loop) motion active event from 8 Philips Hue bridge → HomePod 10±Unbounded

5 & 6 Action Disordering Attack door open event from 21 SmartThings hub → router 16-47

8 & 9 Action Delaying Attack switch on event from 17 SmartThings hub → router 16-47

1 See Table III for the rules referred by the given RIDs. 2 See Table II for the devices referred by the given device IDs. 3 The upper bound is non-deterministic because

it depends on the HomePod’s dynamic behavior in runtime.

Delay Range. Although larger event/command delays usually

create larger time windows for performing DAI attacks, the al-

lowable delay length (without causing timeouts) is determined

by the implementation of the IoT devices and/or platforms.

Delaying the communication for too long will usually trigger

timeout behaviors from either the device or platform side.

We obtain the allowable delay range of device events and

commands by reviewing the specification [52] and analyzing

the traffic patterns on the target channels shown in Table IV.

We find that the allowable delay range is typically deter-

mined by three factors: (1) the interval of periodical messages

between an IoT device/hub and a platform, e.g., keep-alive

requests (a.k.a., heartbeat) or platform-initiated requests; (2)

the maximum allowable delay of keep-alive reply; (3) the

maximum allowable delay of event/command reply.

The SmartThings hub sends a keep-alive request to the

SmartThings cloud if it has not sent any keep-alive request

or device events to the cloud (i.e., the session is idle) for

31 seconds. Then, it sets a timer for 16 seconds and waits

for the keep-alive reply. If the hub does not receive a keep-

alive reply when the timer fires, it will trigger a timeout and

disconnect the TCP connection with the cloud. On the other

hand, the cloud also listens to the session. If the session is

idle for 31 seconds, it will also set a 16-second timer. The

cloud disconnects the TCP connection with the hub if it does

not receive any message from the hub when the timer fires.

The actual maximum delay of an event in runtime is dynamic

because it also depends on the timing of the event, i.e., the

temporal distance between the event and the last message on

the session. An attacker needs to release the event (as well as

10294

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

other messages in the message queue) if he finds that the hub

or cloud is about to trigger a timeout. Therefore, the delay

range is predictable (between 16-47 seconds) but the attacker

needs to dynamically adjust the actual delay length to avoid

causing timeout behaviors which may trigger alarms. Philips

Hue bridge/Homebridge and HomePod (hosting HomeKit) do

not exchange periodic keep-alive messages. Homepod only

occasionally initiates a request to query the states of devices

that are connected to the bridge and allows for 10-second delay

for the reply. According to the HomeKit Accessory Protocol

(HAP [52], used by HomeKit), devices, after sending an event

message, do not get a reply from HomeKit (on HomePod).

Thus, we can delay the events from a Philips Hue bridge or

Homebridge until HomeKit requests the device’s state (which

requires a reply within 10 seconds). Thus, the delay range

has a lower bound of 10 seconds and an unbounded upper

bound since the HomeKit-initiated request is unpredictable.

According to our tests, events can be delayed by more than

10 minutes. In similar ways, we obtain the delay range for

other channels. The results are presented in the last column of

Table IV.

2) Verifying Results: All attacks listed in Table IV are

successfully verified, as shown in Table V. The automation

results also show that successful attacks lead to annoyance,

inconvenience, and even severe safety threats to the smart

home owners. Aside from the verification of the testbeds, we

also verify the attack results in a controlled environment, by

observing the physical states of devices instead of the IoT

events/commands. All the cases in Table IV are physically

verified, except for Rules 10 and 11 in testbed T1 and Rules

5 and 6 in testbed T2. During the attack, the humidifiers and

lights are offline and cannot receive the turn-on command from

Rule 11 in T1 (or Rule 6 in T2) because their outlets are still in

OFF status. When the outlets are turned on, the humidifiers and

lights will not receive another turn-on command. As a result,

Rule 11 in T1 (or Rule 6 in T2) fails to work. The humidifiers

were indeed not turned on. Interestingly, we observe that the

lights (bulbs) are forced to turn on when the connecting outlets

turn on. Thus, the attack does not disable the bulbs from being

turned on, but only delays them for several seconds.

C. Attack Opportunities

As discussed in Section IV, some of the DAI attacks are

opportunistic and can only be successful when a homeowner

behaves in certain manners. To evaluate the possibility of DAI

attacks on smart homes, we run the two testbeds on a natural

daily basis for one week, without providing any guidelines

or restrictions on the daily activities to the testbed members.

Infrequent automation rules, i.e., Rules 14 & 15 in T1 and

Rules 8 & 9 in T2, are excluded in this experiment since

they are hardly ever triggered (the triggers are either smoke

or water leaks). With the experiment, we aim to answer this

question: ªWhat are the opportunities an attacker has to attack

the victim rules and what is the success rate of the attack, when

the testbed members behave in a natural way?º

1) Methodology: We run both testbeds for one week and

collect the device events, without performing any attacks.

The collected event logs are transformed to a uniform format

⟨TestbedID, DeviceID, Attribute, Value, Timestamp⟩
(same format as in Section V-B). By traversing the

event logs, we are able to track the executions of each

automation rule. We record each execution instance as a

tuple ⟨TestbedID,RuleID,Timestamp⟩. By doing this,

we obtain the collection of execution tuples of every rule.

Generally speaking, DAI attacks can only be performed

when victim rules are triggered by users. To find out attack

opportunities in the week, we perform a case-by-case analysis

on the combination of the event log and the execution tuples

of every pair of victim rules (listed in Table IV). Consider

the victim rules 6 and 7 in testbed T1. For each execution

tuple of Rule 6 in testbed T1 (i.e., ⟨1, 6, t1⟩), we examine if

there is an execution tuple of Rule 7 (i.e., ⟨1, 7, t2⟩), such that

0 ≤ t2 − t1 ≤ 2 (in seconds), and if there is a door-closed

event of the garage door 21 (i.e., ⟨1, 21 , door,closed, t3⟩)
in the event log, such that t1 ≤ t3 ≤ t2. If true, it means

that Rule 6 closed the garage door, which in turn triggered

the execution of Rule 7, which is an interaction that can be

attacked by the DAI attacks; we mark the executions of both

rules as an attack opportunity.

As discussed in Section IV, to successfully launch an attack,

the attacker need to delay specific events by a sufficient period.

For Rules 6 and 7, we trace back the event logs to find the most

recent away mode event (denoted as ⟨1,N/A,mode, away, t4⟩).
If the time difference between t2 and t4 is smaller than a

threshold ∆T ′ (i.e., the maximum allowable delay of the away

mode event), i.e., t2− t4 < ∆T ′, Rules 6 & 7 can be attacked

successfully; otherwise, the attack fails. In this way, we obtain

the number of attack opportunities and successful attacks for

every victim rule pair.

Note that, in order to evaluate attack opportunities (i.e.,

number of successful attacks), we choose not to perform real

attacks on the testbeds, for two major reasons. First, real

attacks can cause severe safety issues to the testbed members.

Second, the attacks against different victim rule pairs may have

conflicts in delaying a specific channel.

2) Results: In Table VI, we present the number of attack

opportunities and successful attacks over a week. The victim

rule pairs are triggered between 3 to 12 times, creating suffi-

cient opportunities for the attacks. The numbers of successful

attacks that took place each day are also presented.

The average success rate of all attacks is 0.864. Most attacks

have a success rate of 1.00, i.e., they can successfully cause

CRI on the victim rules. The attacks on Rules 6 & 7, 8 & 9 in

testbed T1 and Rules 5 & 6 in T2 fail several times due to the

restriction of the allowed delay ∆Tallowed (see Section IV-D

about factors affecting attack successes). For example, an

attack attempts to change the execution order of Rules 5 & 6

in T2 by delaying the door-open event. Assuming the interval

between the time she opens the door and that she enters

the study room is ∆Tinterval, if ∆Tinterval > ∆Tallowed,

the attack fails, because it cannot delay the door-open event

11295

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Results of attack validation. See Table II for the definition of device IDs.

Testbed
Victim

Rules

Automation Result on Day 1

(without attack)

Automation Result on Day 2

(with attack)

Attack

Validated?

T1

1 & 2 Light 16 turns on once. Light 16 turns and off alternately about every 15 minutes. ✓

3 & 4 Garage door 16 is closed. Garage door 16 is closed and then opened. ✓

6 & 7 Locks 12 and 13 are locked. Locks 12 and 13 are NOT locked. ✓

8 & 9 Outlet 20 remains on when heater 3 turns on. Outlet 20 turns off 2 seconds after heater 3 turns on. ✓

10 & 11 Outlets 4 5 6 and then (humidifier 14 , lights 15 16) turn on. Only outlets 4 5 6 turn on. ✓

12 & 13 Both lights 17 18 turn on. Only 17 turns on. ✓

14 & 15 Sprinkler 24 turns on and water valve 23 remains opened. Water valve 23 is closed after Sprinkler 24 turns on. ✓

T2

1 & 2 Camera 3 turns on immediately after lock 2 is unlocked. Camera 3 turns on 538 seconds after lock 2 is unlocked. ✓

3 & 4 Light 9 turns on. Light 9 turns on and off alternately for 141 seconds. ✓

5 & 6 Outlets 13 14 turn on and then humidifier 16 turns on. Only outlets 13 14 turn on. ✓

8 & 9 Water valve 17 and Sprinkler 19 are turned on within 1 second. Water valve 17 turns on 58 seconds after sprinkler 19 turns on. ✓

TABLE VI: Results of attack opportunities and success rates during a week. No: the total number of attack opportunities over the week.
Ns: the total number of successful attacks over the week. COA: Condition Overlapping Attack.

Testbed Victim Rules Attack Type No Ns
Number of Successful Attacks on Each Day

Success Rate
Mon. Tue. Wed. Thu. Fri. Sat. Sun.

T1

1 & 2 COA (Action Conflict) 3 3 0 1 0 0 0 1 1 1.00

3 & 4 Condition Enabling Attack 6 6 1 1 1 1 1 0 1 1.00

6 & 7 Condition Diverging Attack 6 3 0 1 1 0 0 0 1 0.50

8 & 9 COA (Chained Execution) 7 4 0 1 1 0 0 2 0 0.57

10 & 11 Action Disordering Attack 2 2 0 0 0 0 1 0 1 1.00

12 & 13 Condition Disabling Attack 11 11 1 1 2 1 1 3 2 1.00

T2

1 & 2 Action Delaying Attack 9 9 1 1 1 2 1 1 2 1.00

3 & 4 COA (Infinite Loop) 12 12 2 2 1 1 1 2 3 1.00

5 & 6 Action Disordering Attack 7 5 0 1 0 1 1 1 1 0.71

TABLE VII: Results of applying jamming techniques to replicate
the attacks in Table IV.

Testbed Victim Rules Replicable? Victim Rules Replicable?

T1

1 & 2 ✓ 3 & 4 ✗

6 & 7 ✓ 8 & 9 ✓

10 & 11 ✗ 12 & 13 ✓

14 & 15 ✓

T2
1 & 2 ✗ 3 & 4 ✓

5 & 6 ✗ 8 & 9 ✗

(which triggers Rule 5) as much as until the user enters the

study room (which triggers Rule 6). Note that DAI attacks are

independent in general, unless two concurrent attacks require

different delays on the same event(s) or command(s). When an

attack fails, no TCP session is disconnected and the attacker

can make attempts to perform other attacks seamlessly.

In short, the results in Table VI show that the attacker has

sufficient opportunities to launch attacks, raising severe safety

and security concerns.

D. Comparison with Jamming Attacks

Jamming does not require the victim home’s WiFi password.

We thus evaluate whether jamming can be used to construct

DAI attacks. Two jamming techniques are investigated. The

first one is WiFi micro-jamming [53], which can slightly

delay the wireless communications by switching on and off

transmitting disruptive signals in high frequency. The test

result shows that the introduced delay (10 millisecond or so)

is too short to conduct effective attacks. Another technique

[54] jams wireless communication by cramming the wireless

medium with random frames. Following this technique, we use

an Alfa AWUS036NHA wireless adapter that is powered by the

open-source code [55] to jam WiFi frames. For each attack

listed in Table IV, we use jamming to discard (i.e., infinitely

delay) the events/commands listed in the Event/Command to

Delay? column and observe the consequences.

The results in Table VII show that jamming replicates some

of the attacks on the victim rule pairs (6 out of 11). This

indicates jamming, as a low-level attack method alternative

to TCP hijacking and ARP spoofing, can be used to attain

the same effect of some DAI attacks, which is alarming. The

differences of the two attack methods are as follows. First, the

TCP-hijacking based method only delays events/commands

but does not discard them, while jamming that discards

messages can only construct some of the attack types. For

example, if a trigger event is discarded (rather than delayed),

the subscribing rule will not be triggered. Second, general

jamming frequently causes TCP timeout and disconnection

alerts. We discuss reactive jamming that does not discard

messages or cause disconnection in Section VI-B.

VI. DISCUSSION

A. Countermeasures Against DAI Attacks

First, the smart home end users can raise the bar for

attackers to intrude into the IoT network by using strong WiFi

passwords and setting up an isolated sub-network for IoT if

they share a WiFi network with other people. Also, vendors of

IoT devices/hubs and WiFi routers should enhance the security

of their products. For example, we find that many IoT devices

and home routers are not resistant to ARP spoofing (also

verified in the IoT Inspector project [50]), although effective

defenses against ARP spoofing exist. One possible reason that

explains the wide feasibility of ARP spoofing is that TLS gives

the illusion of ªsufficientº protection under traffic hijacking

12296

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

attacks, while our work illustrates the contrary. We estimate

there is a long way to go to eliminate ARP spoofing attacks.

Second, device vendors and platform providers can reduce

the intervals of TLS-protected heartbeat (a.k.a., keep-alive)

messages and enforce two-way liveness checking of event

and command messages, which can significantly reduce the

allowed delays. However, this requires IoT vendors to modify

their protocols and device firmware. Plus, more frequent

heartbeat messages lead to a higher overhead, which should

be considered carefully in the IoT design.

Third, there are known synchronization and recovery tech-

niques for handling inconsistency and disorder issues in dis-

tributed systems [56], [57], [58]. A challenge to deploy such

techniques in IoT is the lack of a central entity that has a global

view and control on heterogeneous IoT devices and multiple

proprietary IoT platforms, or a mechanism for distributed

platforms to collaboratively synchronize correct observations

on devices in the fragmented IoT ecosystem.

Fourth, researchers can design approaches to detecting

potential DAI attacks. Various techniques in the state-of-

the-art works [6], [47], [26], [5] can be utilized to extract

deployment information (such as devices, rules, and platforms)

from a given smart home system. After incorporating the

extracted information into our formal model, the observation

equivalence based technique (described in Section IV-A and

Appendix C) can be used to detect potential DAI attacks

by verifying whether any pair of rules are not CRI-resistant

in the presence of delay attacks. The detection result can

be presented to the user, who can then re-configure the

rules. An alternative mitigation strategy is to enforce security

properties/goals, which prevent devices from transitioning into

unsafe states [8].

B. Other Approaches to Introduce Delay

TCP hijacking and ARP spoofing are not the only way

to introduce delays. A more sophisticated jamming, reactive

jamming, is another promising approach. A reactive jammer

can recognize events or commands from encrypted IEEE

802.11 traffic [29] and jam selective events/commands in a

smart manner, although it requires specific hardware; that is,

by exploiting the retransmission mechanism of TCP protocol,

the jammer could block the first N − 1 retransmissions of a

target event/command and let the N -th retransmission pass,

such that TCP timeout is not triggered due to the failed

first N − 1 retransmissions but will be triggered if the N -

th retransmission also fails. Thus, a delay equal to the elapsed

time from the first to the N -th retransmission is injected to the

transmission process. Different from ARP spoofing, which can

be launched from an ordinary WiFi device, reactive jamming

needs dedicated hardware with high sensitivity and computa-

tion capability to recognize and jam the target event/command

before it is delivered to the receiver. We leave the reactive-

jamming based implementation as the future work.

VII. RELATED WORK

A. Synchronization in IoT

Synchronization is critical in smart home IoT systems since

IoT devices, platforms and mobile apps interact closely with

each other in smart homes. Zhou et al. [59] identify that the

working state transitions of devices, mobile apps, and clouds

are not properly safeguarded. By triggering and exploiting the

out-of-synchronization bugs, attackers can remotely harm the

system, including taking over devices and replacing them with

fake ones. This paper studies a different topic: delaying the

transmission of IoT events/commands and the exploitation.

OConnor et al. [60] utilize the design flaws in the telemetry of

IoT devices to block the delivery of sensor measurements to

IoT servers or commands to actuators, causing synchronization

problems between devices and clouds. In contrast to the

jamming or discarding-message based attacks [60], our work

exploits delays, and does not raise alarms at any layers of the

IoT protocol stack or rely on implementation bugs.

B. IoT Security and Privacy

IoT Security and privacy have been studied in various

aspects, such as platforms, apps, devices, and data. Fernandes

et al. [61] and Mi et al. [62] unveil the vulnerabilities on

prominent IoT platforms, SmartThings and IFTTT, respec-

tively. The IoT app-level security is intensively studied by

recent work [63], [38], [39], [64], [65]. Regarding IoT devices,

solutions are proposed to enhance the authentication [66], [67],

access control [68], [69], etc. Researchers also employ data-

driven techniques to detect device anomalies [70], [71], [72].

Fu et al. [72] design HAWatcher, which utilizes rich semantic

information to mine correlations in smart environments, and

achieves highly-accurate and explainable anomaly detection.

A number of approaches [73], [51], [74], [75] are designed

to protect privacy-sensitive IoT data. Chi et al. [51] propose

PFirewall, which enforces data-minimization policies to sig-

nificantly reduce the disclosure of IoT data and protect users’

privacy from IoT platforms, without changing IoT devices or

platforms. Despite the vast amount of work, little research

has been done to uncover the unique threats in multi-platform

systems. Yuan et al. [76] reported the flaws in IoT device

access delegation across multiple IoT clouds. We are the

first to study unique delay-derived security threats in multi-

platform systems.

C. Cross-Rule Interference Problems

Cross-Rule Interference (CRI) problems have attracted

much attention of IoT security researchers. A lot of works

are engaged to categorize [5], [9], understand [40] and de-

tect [5], [6], [7], [9], [77], [8], [10] the CRI problems. Our

prior work [4], [5] is the earliest one that comprehensively

categorizes and formally describes CRI threats. In these works,

CRI problems are caused by users who misconfigure the

automation rules for their own smart homes. However, all these

works only consider CRI in single-platform systems, implicitly

assuming consistent and order-preserving observations on the

device states. Although IoTGuard [8] and IoTIE [11] configure

13297

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

rules on two platforms, SmartThings and IFTTT, for evalua-

tion, they do not take multi-platform or its unique features into

consideration, while analyzing the CRI problems. Moreover,

both works convert IFTTT rules into equivalent SmartThings

apps, and use SmartThings to run all the rules; essentially, they

still make the same assumptions. Our work is the first that

studies CRI problems in more complex but realistic system

models, where multiple event/command transmission paths

and/or multiple platforms coexist. Our work is also the first

that introduces the delay factor into the investigation of the

CRI problem, and it reveals and demonstrates a family of new

attacks that are ignored by existing CRI detection solutions.

VIII. RESPONSIBLE DISCLOSURE

We have reported the event/command delay attacks and

possible exploits to IoT vendors: Google, SimpliSafe, Ap-

ple (HomeKit), Ring and SmartThings. Google, SimpliSafe

and Ring acknowledged the problem. Google and SimpliSafe

expressed they would conduct a bug/vulnerability fixing pro-

cedure with the product team. Ring said they had planned a

mitigation that make side channel attacks more difficult. Apple

regards the reported attacks as ªexpected behavior and working

as designedº, although Apple’s HomeKit allows the longest

delay window (tens of minutes or even longer).

IX. CONCLUSION

We studied unique cross-rule interference (CRI) problem

due to the inconsistency and disorder issues in single-platform

multi-path and multi-platform smart home systems. We un-

covered that selective messages delay attacks have detrimental

impacts on smart home automation, causing various CRI prob-

lems that cannot be detected by existing detectors. We revealed

seven categories of such attacks, referred to as Delay-based

Automation Interference (DAI) attacks, which were analyzed

and demonstrated using two smart homes. The evaluation

results show that DAI attacks of all the seven categories can

be launched, and an attacker can conduct DAI attacks with

a high success rate, without raising alerts in any layer of the

current IoT protocol stack.

ACKNOWLEDGEMENT

This work was supported in part by the US National

Science Foundation (NSF) under grants CNS-1828363, CNS-

2204785, CNS-2205868, CNS-1856380, CNS-2016415, and

CNS-2107093.

REFERENCES

[1] ªApple HomeKit,º https://www.apple.com/ios/home/, 2020.
[2] ªSmartThings,º https://www.smartthings.com/, 2020.
[3] ªAmazon Alexa,º https://developer.amazon.com/en-US/alexa/devices/

smart-home-devices, 2020.
[4] H. Chi, Q. Zeng, X. Du, and J. Yu, ªCross-app interference threats in

smart homes: Categorization, detection and handling,º arXiv preprint

arXiv:1808.02125, 2018.
[5] ÐÐ, ªCross-app interference threats in smart homes: Categorization,

detection and handling,º in 50th Annual IEEE/IFIP International Con-

ference on Dependable Systems and Networks (DSN), 2020.
[6] Z. B. Celik, P. McDaniel, and G. Tan, ªSoteria: Automated iot safety

and security analysis,º in Usenix Security Symposium, 2018.

[7] D. T. Nguyen, C. Song, Z. Qian, S. V. Krishnamurthy, E. J. Colbert,
and P. McDaniel, ªIotsan: fortifying the safety of iot systems,º in ACM

CoNEXT, 2018.

[8] Z. B. Celik, G. Tan, and P. McDaniel, ªIoTGuard: Dynamic enforcement
of security and safety policy in commodity iot,º in NDSS, 2019.

[9] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter,
ªCharting the attack surface of trigger-action iot platforms,º in ACM

CCS, 2019.

[10] K.-H. Hsu, Y.-H. Chiang, and H.-C. Hsiao, ªSafechain: Securing trigger-
action programming from attack chains,º IEEE Transactions on Infor-

mation Forensics and Security, 2019.

[11] Z. Chen, F. Zeng, T. Lu, and W. Shu, ªMulti-platform application
interaction extraction for iot devices,º in IEEE International Conference

on Parallel and Distributed Systems (ICPADS), 2019.

[12] M. Balliu, M. Merro, and M. Pasqua, ªSecuring cross-app interactions
in iot platforms,º in IEEE CSF, 2019.

[13] M. Alhanahnah, C. Stevens, and H. Bagheri, ªScalable analysis of
interaction threats in iot systems,º in ACM SIGSOFT International

Symposium on Software Testing and Analysis, 2020.

[14] ªA comprehensive guide to smart home device compatibility,º https:
//www.adt.com/resources/smart-home-device-compatibility, 2021.

[15] ªFragmentation in IoT ± one roadblock in IoT deployment,º https://www.
cleantech.com/fragmentation-in-iot-one-roadblock-in-iot-deployment/,
2017.

[16] C. Fu, Q. Zeng, H. Chi, X. Du, and S. L. Valluru, ªIot phantom-delay
attacks: Demystifying and exploiting iot timeout behaviors,º in Technical

Report, 2021.

[17] ªAWS IoT,º https://docs.aws.amazon.com/iot/latest/developerguide/
what-is-aws-iot.html, 2021.

[18] L. Yu, B. Luo, J. Ma, Z. Zhou, and Q. Liu, ªYou are what you broadcast:
Identification of mobile and iot devices from (public) wifi,º in USENIX

Security Symposium, 2020.

[19] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, ªIot sentinel: Automated device-type identification for
security enforcement in iot,º in IEEE ICDCS, 2017.

[20] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray,
ªIotsense: Behavioral fingerprinting of iot devices,º arXiv preprint

arXiv:1804.03852, 2018.

[21] A. K. Dalai and S. K. Jena, ªWdtf: A technique for wireless device type
fingerprinting,º Wireless Personal Communications, vol. 97, no. 2, pp.
1911±1928, 2017.

[22] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer,
J. D. Guarnizo, and Y. Elovici, ªDetection of unauthorized iot devices
using machine learning techniques,º arXiv preprint arXiv:1709.04647,
2017.

[23] M. R. Shahid, G. Blanc, Z. Zhang, and H. Debar, ªIot devices recogni-
tion through network traffic analysis,º in IEEE International Conference

on Big Data (Big Data), 2018.

[24] K. Yang, Q. Li, and L. Sun, ªTowards automatic fingerprinting of iot
devices in the cyberspace,º Computer Networks, vol. 148, pp. 318±327,
2019.

[25] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and N. Feam-
ster, ªSpying on the smart home: Privacy attacks and defenses on
encrypted iot traffic,º arXiv preprint arXiv:1708.05044, 2017.

[26] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu, ªHomonit:
Monitoring smart home apps from encrypted traffic,º in ACM CCS, 2018.

[27] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and S. Uluagac, ªPeek-a-boo: I see your smart
home activities, even encrypted!º in ACM Conference on Security and

Privacy in Wireless and Mobile Networks, 2020.

[28] T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and P. Mohapatra,
ªIotgaze: Iot security enforcement via wireless context analysis,º in
IEEE INFOCOM, 2020.

[29] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky,
ªPacket-level signatures for smart home devices,º NDSS, 2020.

[30] T. Gu, Z. Fang, A. Abhishek, and P. Mohapatra, ªIotspy: Uncovering
human privacy leakage in iot networks via mining wireless context,º in
IEEE International Symposium on Personal, Indoor and Mobile Radio

Communications, 2020.

[31] A. Subahi and G. Theodorakopoulos, ªDetecting iot user behavior and
sensitive information in encrypted iot-app traffic,º Sensors, vol. 19,
no. 21, p. 4777, 2019.

14298

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

[32] Y. Luo, L. Cheng, H. Hu, G. Peng, and D. Yao, ªContext-rich privacy
leakage analysis through inferring apps in smart home iot,º IEEE

Internet of Things Journal, 2020.

[33] ªARP spoofing,º https://www.veracode.com/security/arp-spoofing, 2021.

[34] S. Whalen, ªAn introduction to arp spoofing,º Node99 [Online Docu-

ment], April, 2001.

[35] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., ªUnderstanding the mirai botnet,º in USENIX Security Symposium,
2017.

[36] ªThe Mirai IoT botnet holds strong in 2020,º https://searchsecurity.
techtarget.com/feature/The-Mirai-IoT-botnet-holds-strong-in-2020,
2020.

[37] ªThe Transport Layer Security (TLS) Protocol Version 1.3,º https://tools.
ietf.org/html/rfc8446, 2018.

[38] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao,
and A. Prakash, ªContexiot: Towards providing contextual integrity to
appified iot platforms,º in NDSS, 2017.

[39] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, ªFear and logging in
the internet of things,º in Proceedings of The Network and Distributed

System Security Symposium, 2018.

[40] W. Ding and H. Hu, ªOn the safety of iot device physical interaction
control,º in ACM CCS, 2018.

[41] R. Lanotte and M. Merro, ªA calculus of cyber-physical systems,º in
Springer International Conference on Language and Automata Theory

and Applications, 2017.

[42] M. Hennessy and T. Regan, ªA process algebra for timed systems,º
Information and computation, vol. 117, no. 2, pp. 221±239, 1995.

[43] ªADT security systems,º https://www.adt.com/, 2021.

[44] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia, ªSome
recipes can do more than spoil your appetite: Analyzing the security
and privacy risks of ifttt recipes,º in International Conference on World

Wide Web, 2017.

[45] M. Palekar, E. Fernandes, and F. Roesner, ªAnalysis of the susceptibility
of smart home programming interfaces to end user error,º in IEEE

Security and Privacy Workshops, 2019.

[46] ªAtomi smart tower heater,º https://atomismart.com/product/
smart-black-tower-heater/, 2021.

[47] W. Ding, H. Hu, and L. Cheng, ªIoTSafe: Enforcing safety and security
policy with real iot physical interaction discovery,º in NDSS, 2021.

[48] ªSmartthings public github repository,º https://github.com/
SmartThingsCommunity/SmartThingsPublic, 2020.

[49] ªIoTBench test suite,º https://github.com/IoTBench/IoTBench-test-suite,
2019.

[50] ªIoT Inspector,º https://iotinspector.org/, 2021.

[51] H. Chi, Q. Zeng, X. Du, and L. Luo, ªPFirewall: Semantics-aware
customizable data flow control for smart home privacy protection,º in
NDSS, 2021.

[52] ªHomekit accessory protocol,º https://developer.apple.com/support/
homekit-accessory-protocol/, 2020.

[53] R. Ogen, K. Zvi, O. Shwartz, and Y. Oren, ªSensorless, permissionless
information exfiltration with wi-fi micro-jamming,º in 12th USENIX

Workshop on Offensive Technologies (WOOT), 2018.

[54] M. Vanhoef and F. Piessens, ªAdvanced wi-fi attacks using commodity
hardware,º in ACSAC, 2014.

[55] ªAdvanced wi-fi attacks using commodity hardware,º https://github.com/
vanhoefm/modwifi, 2020.

[56] D. P. Reed and R. K. Kanodia, ªSynchronization with eventcounts and
sequencers,º Communications of the ACM, vol. 22, no. 2, pp. 115±123,
1979.

[57] R. Strom and S. Yemini, ªOptimistic recovery in distributed systems,º
ACM Transactions on Computer Systems (TOCS), vol. 3, no. 3, pp. 204±
226, 1985.

[58] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz, ªDistributed
synchronization in wireless networks,º IEEE Signal Processing Maga-

zine, vol. 25, no. 5, pp. 81±97, 2008.

[59] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and Y. Zhang,
ªDiscovering and understanding the security hazards in the interactions
between iot devices, mobile apps, and clouds on smart home platforms,º
in USENIX Security Symposium, 2019.

[60] T. OConnor, W. Enck, and B. Reaves, ªBlinded and confused: uncov-
ering systemic flaws in device telemetry for smart-home internet of
things,º in ACM WiSec, 2019.

[61] E. Fernandes, J. Jung, and A. Prakash, ªSecurity analysis of emerging
smart home applications,º in IEEE Symposium on Security and Privacy

(SP), 2016.
[62] X. Mi, F. Qian, Y. Zhang, and X. Wang, ªAn empirical characterization

of ifttt: ecosystem, usage, and performance,º in Internet Measurement

Conference, 2017.
[63] L. Luo, Q. Zeng, B. Yang, F. Zuo, and J. Wang, ªWestworld: Fuzzing-

assisted remote dynamic symbolic execution of smart apps on iot
cloud platforms,º in Annual Computer Security Applications Conference

(ACSAC), 2021.
[64] I. Bastys, M. Balliu, and A. Sabelfeld, ªIf this then what?: Controlling

flows in iot apps,º in ACM CCS, 2018.
[65] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel,

and A. S. Uluagac, ªSensitive information tracking in commodity iot,º
in USENIX Security Symposium, 2018.

[66] X. Li, F. Yan, F. Zuo, Q. Zeng, and L. Luo, ªTouch well before use:
Intuitive and secure authentication for iot devices,º in ACM MobiCom,
2019.

[67] X. Li, Q. Zeng, L. Luo, and T. Luo, ªT2pair: Secure and usable pairing
for heterogeneous iot devices,º in ACM CCS, 2020.

[68] S. Lee, J. Choi, J. Kim, B. Cho, S. Lee, H. Kim, and J. Kim,
ªFact: Functionality-centric access control system for iot programming
frameworks,º in Proceedings of the 22nd ACM on Symposium on Access

Control Models and Technologies. ACM, 2017, pp. 43±54.
[69] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. A. Gunter, X. Zhou,

and M. Grace, ªHanguard: Sdn-driven protection of smart home wifi
devices from malicious mobile apps,º in ACM Conference on Security

and Privacy in Wireless and Mobile Networks, 2017.
[70] J. Choi, H. Jeoung, J. Kim, Y. Ko, W. Jung, H. Kim, and J. Kim,

ªDetecting and identifying faulty iot devices in smart home with context
extraction,º in IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), 2018.
[71] S. Birnbach, S. Eberz, and I. Martinovic, ªPeeves: Physical event

verification in smart homes,º in ACM SIGSAC Conference on Computer

and Communications Security (CCS), 2019.
[72] C. Fu, Q. Zeng, and X. Du, ªHAWatcher: Semantics-aware anomaly

detection for appified smart homes,º in USENIX Security Symposium,
2021.

[73] R. Xu, Q. Zeng, L. Zhu, H. Chi, X. Du, and M. Guizani, ªPrivacy
leakage in smart homes and its mitigation: Ifttt as a case study,º IEEE

Access, vol. 7, pp. 63 457±63 471, 2019.
[74] X. Liu, Q. Zeng, X. Du, S. L. Valluru, C. Fu, X. Fu, and B. Luo,

ªSniffmislead: Non-intrusive privacy protection against wireless packet
sniffers in smart homes,º in 24th International Symposium on Research

in Attacks, Intrusions and Defenses, 2021, pp. 33±47.
[75] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and

A. Prakash, ªFlowfence: Practical data protection for emerging iot
application frameworks.º in USENIX Security Symposium, 2016, pp.
531±548.

[76] B. Yuan, Y. Jia, L. Xing, D. Zhao, X. Wang, D. Zou, H. Jin, and
Y. Zhang, ªShattered chain of trust: Understanding security risks in
cross-cloud iot access delegation,º in USENIX Security Symposium,
2020.

[77] J. L. Newcomb, S. Chandra, J.-B. Jeannin, C. Schlesinger, and M. Srid-
haran, ªIoTA: a calculus for internet of things automation,º in ACM

SIGPLAN International Symposium on New Ideas, New Paradigms, and

Reflections on Programming and Software, 2017.
[78] R. Focardi and F. Martinelli, ªA uniform approach for the definition

of security properties,º in Springer International Symposium on Formal

Methods, 1999.
[79] R. Milner, Communicating and mobile systems: the pi calculus. Cam-

bridge university press, 1999.

APPENDIX

A. Online Study on Statistics of Smart Home Deployments

We conduct an online user study on Amazon Mechanical

Turk to investigate the pervasiveness of different smart home

deployment categories in the wild, including single-platform

single-path (SPSP), single-platform multi-path (SPMP) and

multi-platform (MP) ones. In this study, we follow the ac-

ceptable use policy of Amazon Mechanical Turk.

15299

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

Methodology. We design a survey asking people who have

experience with IoT devices and automation to provide infor-

mation of their own deployments. Specifically, we ask them

to answer simple questions such as the number of devices

and mobile/web companion apps in their home, and more

complex questions by writing down the list of their devices,

companion apps, and automation rules. The survey questions

and responses are made publicly available at

https://github.com/HaotianChi/SH-survey.git

Results. We receive 85 responses from the survey participants.

Through a qualitative analysis on the collected information

of devices, companion apps and automation rules, we rebuild

the deployment of each participant’s home. The result shows

that the number of SPSP, SPMP and MP deployments are

15 (17.6%), 17 (20.0%) and 53 (62.4%), respectively. Among

the 53 MP deployments, 36 use two platforms, 11 use three,

5 use four and 1 uses five. A total of 82.4% deployments in

the survey are SPMP or MP deployments. The results show

that the testbed setup in Section V is realistic.

B. Formal Modeling of Smart Home Systems

We use the process calculus [41] to formally model multi-

path multi-platform smart home systems and delay-based at-

tacks. The process calculus extends the timed process calculus

[42] with two action prefixes: reading sensor values and

writing values to actuators.

Physical Environment. Let F̂ ⊂ F be a set of physical

features (e.g., temperature), Ŝ ⊂ S a set of sensors, Â ⊂ A
a set of actuators. Note that in this paper, each actuatable

device (e.g., a lock) is conceptually split into an actuator that

executes commands and a sensor that measures the device

state. For a set of names N , we define R
N as the set

of functions that assign a real value (broadly, integers and

Booleans are replaceable with reals) to each name in N . A

physical environment E is a 5-tuple ⟨ξf , ξa, evol, ξs,meas⟩:

− ξf ∈ R
F̂∪Â is the state (i.e., physical features or actuator

values) function that returns the value of the state;

− ξa ∈ R
Â is the actuator function that returns the current

value of an actuator;

− evol : RF̂∪Â × R
Â → R

F̂∪Â is the evolution function,

which returns the next state function upon changes of

actuators;

− meas : R
F̂∪Â → R

Ŝ is the measurement function that

returns the reading of a sensor.

In addition to physical features, we include actuators in the

state function to model the dependence between actuators. For

example, a smart microwave, even turned on, cannot function

if its power cable is connected to a smart plug that is OFF. It

is not the focus of this paper to precisely model the physical

evolution laws. For the simplicity of analysis, we assume

that the evolution function evol only takes as input the state

function ξf and actuator function ξa to determine a new state

function.4 Also, we assume the sensors S measures physical

4In reality, a physical feature (i.e., temperature) may be influenced by other
factors (e.g., outdoor temperature, humidity) and has uncertainty.

features (i.e., the meas function) without errors. Local hub

devices are omitted since they only forward messages.

IoT Processes. Processes are defined in the following syntax:

P,Q ::= nil | idle.P | π.P | P\c | P ∥ Q |

π1.P + π2.Q | if (b) {P} else {Q} | H⟨w̃⟩

π, π1, π2 ::= snd c̄⟨v⟩ | rcv c(x) | read s(x) |

read a(x) | wrt ā(v) | τ

Terminated process is written as nil. The process idle.P
continues as P after sleeping for one time unit. Action prefixes

(ranged over π, π1, and π2) contain six actions: sending

values to channels (snd c̄⟨v⟩), receiving values from channels

(rcv c(x)), reading new sensor measurements (read s(x)),
reading new actuator states (read a(x)), and writing values

on actuators (wrt ā(v)) and unobservable action (τ). P\c
behaves as P but the channel name c is restricted to P and can

only be used for communications between components within

P . We use P{v/x} to denote the substitution of the variable

x with the value v in P . The process π1.P + π2.Q is called

summations (or sums) and can enact either π1.P or π2.Q. The

process P ∥Q denotes the parallel composition of concurrent

processes P and Q. The process if (b) {P} else {Q}
is a standard conditional statement. H⟨w1, · · · , wk⟩ denotes

a recursive process and can be considered as an invocation,

with actual parameters w1, · · · , wk, of the process definition

H(x1, · · · , xk) = P .

Each platform L has access to a subset of all sensors S̃ ⊂ Ŝ
and actuators Ã ⊂ Â. The database on the platform maintains

a function ξ′s ∈ R
S̃ that returns the current state of each sensor.

For convenience, we define two database primitives: a function

value in db that returns the values of specified devices x̃ and

a meta-process update db that updates the value of a sensor:
− value in db(x̃) = {ξ′s(xi) : xi ∈ x̃};
− update db(x, v) → ξ′s(x) = v.

Example. We use an automation rule (when the homeowner

arrives, unlock the door) on platform A and another one (when

the user says ªI am homeº, if the door is unlocked, lock it)

on platform B as a running example to concretize a system.

A presence sensor PS and a smart lock LK connect with a

platform A that runs R1, and a smart speaker SP and the smart

lock LK connect with platform B running R2. For the sake

of brevity, we omit all components (e.g., IoT hubs, routers,

endpoint clouds) that only forward messages. Thus, the smart

home is Sys = E 1P where the physical environment E =
⟨ξf , ξa, evol, ξs,meas⟩ is defined as

− ξf ∈ R{presence,voice,LK}, ξ0f (presence) = FALSE, ξ0f (voice) =

EMPTY, ξ0f (LK) = LOCKED

− ξa ∈ R{LK}, ξ0a(LK) = LOCKED

− evol(ξif , ξ
i
a) = {ξ : ξ(LK) = ξia(LK)}

− meas(ξif) = {ξ : ξ(LK) = ξif (LK), ξ(PS) = (if ξif (presence) =

TRUE DETECTED else CLEAR), ξ(SP) = (if ξif (voice) =

ªI am homeº DETECTED else CLEAR)}. The timestamp i =
0 · · ·n denotes the discrete time clock

and the process P is the parallel composition of the following

sub-processes;

16300

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

− SenPS = readPS(val).snd eventA(PS, val).idle.SenPS
− SenSP = readSP(val).snd eventB(SP, val).idle.SenSP
− SenLK = readLK(val).snd eventA(LK, val).snd eventB(LK, val)

.idle.SenLK

− ActLK = rcv cmdA(LK, val).wrtLK(val).idle.ActLK
+ rcv cmdB(LK, val).wrtLK(val).idle.ActLK

− SrvPltA = rcv eventA(id, val).sndupdateA(id, val)
.snd triggerR1(id, val).idle.SrvPltA
+ rcv actionR1(id, val).snd cmdA(id, val).idle.SrvPltA

− SrvPltB = rcv eventB(id, val).sndupdateB(id, val)
.snd triggerR2(id, val).idle.SrvPltB
+ rcv actionR2(id, val).snd cmdB(id, val).idle.SrvPltB

− RuleR1 = rcv triggerR1(id, val).if (id, val = PS,DETECTED)
{

snd actionR1(LK,UNLOCKED).idle.RuleR1
}

else
{

idle.RuleR1
}

− RuleR2 = rcv triggerR2(id, val).if (id, val = SP,DETECTED)
{

snd conditionR2(LK).τ.rcv resR2(value in db(LK)).
if (value in db(LK) = UNLOCKED) {snd actionR2(LK,LOCKED)
} else {idle.RuleR2}

}

else
{

idle.RuleR2
}

− DBA = rcvupdateA(id, val).update db(id, val).idle.DBA
− DBB = rcvupdateB(id, val).update db(id, val).idle.DBB

+ rcv conditionR2(id).τ.snd resR2(value in db(id)).idle.DB

Selective Event/Command Delaying Attack. As dis-

cussed in Section II-D, the attacker can hijack and se-

lectively delay specific events or commands on a chan-

nel. To model the attack, we write Delay (c, c′, id, val, t) =

rcv c(x, y).idlet.snd c̄′⟨x, y⟩.idle.Delay to denote a delay at-

tack process that delays the value-passing on channel c by t ∈
N time units. idlet.P is a shorthand for idle. · · · .idle.P
where idle appears t consecutive times. t is a positive integer

if the received data (x, y) from c is an event (command) which

is produced by (destined to) a device with identifier id and has

a value equal to val; otherwise, t is equal to 0. Thus, a smart

home system Sys = E 1P being attacked becomes Sys(t̃) =
E 1P (t̃), where P (t̃) = P (c̃ → c̃′) ∥Delay (c̃, c̃′, ĩd, ˜val, t̃).
Specifically, P (c̃ → c̃′) substitutes new channels c̃′ for ones

c̃ that are used by the rcv actions in P. The sub-processes

that read from the attacked channels c̃ are converted to ones

that read from the corresponding channels c̃′ maintained by

the delay attack processes.

Labelled Transition Semantics. A smart home system is

modelled as a labelled transition system (LTS) in the structural

operational semantics (SOS) style. The transitions are of kind

P
α
−→ Q for actions (a.k.a., labels) ranged over by α in the set

{idle, τ, snd c⟨v⟩, rcv c(x), read s(x), read a(x), wrt ā⟨v⟩}.

The transition rules are shown in Table VIII. Most of them

are the same as the standard ones [41], [42], except that

we distinguish the transition rules for parallel compositions

under delay-absent and delay-present situations where

(NoDelayCom) and (DelayCom) are used, respectively. For

brevity, we sometimes use the original notations Sys = E 1P
to denote a system under delay attacks, without rewriting the

attacked channels.

C. Formal Verification and Categorization of DAI Attacks

We use a shorthand Sys = E◦ R̃[D̃ ▷ L̃] to denote a system

where each rule Rj ∈ R̃ run on a platform Lj ∈ L̃ and

reads/writes a set of devices Dj ∈ D̃. To make a practical

sense, we only consider well-formed systems where every

platform has access to all devices used by the rules running

on it, i.e., Dj ⊂ (S̃ ∪ Ã). E denotes the physical environment.

Consider an attack-present system Sys = E ◦ (R1[(D1 ▷
L1] ∥R2[(D2 ▷ L2]) where two automation rules R1 and R2

are installed on two platforms L1 and L2, respectively. L1

and L2 can be the same or different platforms. We define

a specification system which runs R1 and R2 on an oracle

platform L which accesses devices without any delays, i.e.,

Sys∗ = E ◦ (R1[(D1 ▷ L∗] ∥R2[(D2 ▷ L∗]). Sys and Sys∗

describe the real system and the mentally expected system by

users, respectively.

Verification in SPSP Systems. A recent work [12] adopts

Generalized Non Deducibility on Composition (GNDC) [78]

to define a CRI-free system: a rule R1 does not interfere with

another rule R2 if the compositional runtime behavior of R1

and R2 does not differ from the behavior of R2 when running

along. Formally, R1 does not interfere with R2 under a hiding

weak bisimulation notion:

E ◦ (R1[(D1 ▷ L] ∥R2[(D2 ▷ L]) ≈HR1
E ◦ R2[(D2 ⊢ L)] (1)

for HR1
def
= obserable(R1) denoting a set of hidden actions of

R1 that yield to observable results. Two rules R1 and R2 are

CRI-free when R1 and R2 do not interfere with each other.

However, this only considers an SPSP scenario where all

automation rules run on a platform equivalent to an oracle

platform L∗ and can only detect CRI rooted from mis-

programming or mis-configuration, subject to the same lim-

itations of other existing work [5], [6], [7], [9].

Verification in SPMP and MP Systems. In this paper, we

aim to model the uncovered CRI scenarios in a situation where

two rules automation rules R1 and R2 may run on different

platforms and the communication channels suffer from delays.

In this sense, R1 and R2 are CRI-free if in addition to the

hiding weak bisimulation, a standard weak bisimulation holds:

E ◦ (R1[D1 ▷ L1] ∥ R2[D2 ▷ L2]) ≈ E ◦ (R1[D1 ▷ L
∗
] ∥ R2[D2 ▷ L

∗
]) (2)

Formula 2 ensures that the interactions between R1 and

R2 in the real system and specification system are equivalent

at every time unit. However, it is a sufficient but not nec-

essary condition. It is too strict to say that the real system

has a significant CRI problem if it only deviates from the

specification system at a specific time unit. For example, if

the attacker delays all communications evenly by one time

unit, the real system will lag behind the specification system

but may still produce the correct automation result. Thus,

verifying CRI with Formula 2 usually causes false alarms.

To address this problem, we define an idle-insensitive weak

bisimulation ≈idle. Let ⇒idle
def

=
{τ,idle}
−−−−−−→

∗

denote a sequence

of zero or more transitions each of which could be a τ or

idle transition. We replace the notion of an experiment
e
=⇒

in the definition of standard weak bisimulation [41], [79] with
e
=⇒

idle

def

=⇒idle
α1−→⇒idle · · · ⇒idle

α1==⇒⇒idle. Thus, the

interaction between R1 and R2 are said to be CRI-resistant,

if it holds that

17301

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII: LTS for processes. ⇒
def

=→∗ denotes a sequence of zero or more τ transitions
τ
−→.

α1···αn
=====⇒

def

=⇒
α1−−→⇒ · · · ⇒

α1==⇒⇒ denotes

interleaving a sequence of α transitions with any number of τ transitions.

(Out) ±

snd c⟨v⟩.P
snd c⟨v⟩
−−−−−→ P

(TimeNil) ±

nil
idle
−−−→ nil

(TimePar)
P

idle
−−−→ P ′ Q

idle
−−−→ Q′ P ∥ Q

τ

−⧸−→

P ∥ Q
idle
−−−→ P ′ ∥ Q′

(In) ±

rcv c(x).P
rcv c(v)
−−−−−→ P{v/x}

(WriteAct) ±

wrt a⟨v⟩.P
wrt a⟨v⟩
−−−−−−→ P

(ReadAct) ±

read a(x).P
read a(v)
−−−−−−→ P{v/x}

(Par)
P

α
−→ P ′ α ̸= idle

P ∥ Q
α
−→ P ′ ∥ Q

(Sum)
π1.P

α
−→ P

π1.P + π2.Q
α
−→ P

(ReadSen) ±

read s(x).P
read s(v)
−−−−−−→ P{v/x}

(Rec)
P{w̃/x̃}

α
−→ Q H(x̃) =P

H⟨w̃⟩
α
−→ Q

(IfTrue)
JbK = true P

α
−→ P ′

if (b) {P} else {Q}
α
−→ P ′

(NoDelayCom)
P

snd c⟨v⟩
−−−−−→ P ′ Q

rcv c(x)
−−−−−→ Q′

P ∥ Q
τ
−→ P ′ ∥ Q′{v/x}

(Elapse) ±

idle.P
idle
−−−→ P

(Else)
JbK = false Q

α
−→ Q′

if (b) {P} else {Q}
α
−→ Q′

(DelayCom)
P

snd c⟨v⟩
−−−−−→ P ′ Q

rcv c(x)
−−−−−→ Q′ Delay(c,c′,id,val,t)

P ∥ Q
idlet

====⇒ P ′ ∥ Q′{v/x}

E◦(R1[D1▷L1] ∥R2[D2▷L2]) ≈idle E◦(R1[D1▷L
∗] ∥R2[D2▷L

∗]) (3)

Provided a specific home deployment and attack strategy

(the target event/command), we can use Formula 3 to verify if

the system yields different automation results from a specifi-

cation system, or say if the real system has unique CRI issues

under the attack. We can easily prove that the two rules in the

running example always generate the correct result in SPSP

system even under delay attacks. However, when the two rules

run on different platforms, delaying the UNLOCKED value on

channel eventB results in a violation of Formula 3. Due to the

space limit, proofs are omitted.

Methodology for Systematic Categorization. To systemati-

cally and comprehensively discover possible DAI attacks that

cause CRI problems, we generalize a smart home deployment

and represent it as the smart home calculus parametric on

some enumerable factors (sensor measurements, automation

rules, attack strategies). We then enumerate these factors to

find violation scenarios of the CRI-free condition (Formula 3).

State explosion challenges exist since smart home deployments

are highly diverse and it is infeasible to enumerate all deploy-

ments and states. To address this challenge, we make several

assumptions or abstractions to reduce the complexity of smart

home deployments and the enumeration space.

First, we assume that the natural communication delays are

negligible compared to the injected delays by the attacker. We

omit the sub-processes that only forward messages, such as

hubs, endpoint clouds, routers, and add up the communication

delays on these channels (if any) to the end-to-end delay

between a device and a platform.

Second, we simplify the models of IoT devices and rules.

Note that automation rules follow a trigger-condition-action

paradigm. A rule’s trigger is actually a boolean expression

that checks a device value (e.g., when temperature exceeds

75◦F) and its condition is a set of such boolean expressions.

A rule action is not always binary (e.g., dim the light to 75%).

However, the interaction relation between a rule’s action and

another rule’s trigger, condition, or action is binary. For exam-

ple, one may ask if a rule R1’s action can control an actuator

(e.g., turn on lights) to a value that makes another rule R2’s

trigger (e.g., when the brightness is high) or condition (e.g., if

the lights are on) satisfied, or if the action is contradictory to

another rule R2’s action (i.e., turn off lights). Therefore, we

binarize the automation rules and device values. We consider

that each device has two values (0 and 1) and each rule deals

with binary values of devices. Without loss of generality, we

assume each rule condition only checks one device.

Third, we simplify the rule-device bindings. Without a

specific home deployment, one cannot know what devices

are bound to each rule. In our simplification, three devices

are granted to each rule for its trigger, condition and action,

respectively. Thus, two rules R1 and R2 choose from a set

of six devices D = {d1, d2, · · · , d6}. In practice, a rule’s

trigger and condition always check different devices. We

pick D1 = {d1, d2, dk|k ∈ {1, 2, 3}} for R1 and D2 =
{di, dj , dk|di, dj , dk ∈ D; i ̸= j;x < y if x > 3, y >
3, x ∈ {i, j}, y ∈ {j, k}} for R2. We only consider the

interactions between two automation rules R1 and R2 since

most, if not all, interactions among more than two rules contain

sub-interactions between two rules.

With the above abstractions, we enumerate the rules, rule-

device bindings, initial device states and the attacker’s target

events/commands and verify CRI in each configuration. In this

process, we observe that the attacks against some different

configurations essentially belong to the same category. There-

fore, we perform a manual qualitative analysis to combine the

similar attack scenarios and classify DAI attacks into seven

categories (see Section IV-B). Note that the above abstractions

are only for easing the exploration of possible attacks. Pro-

vided a specific deployment, our theoretic technique (calculus)

can verify CRI without the abstractions.

D. IRB Approval

We have received the approval from the Institutional Review

Boards (IRB) in the institution where all experiments are con-

ducted and all apartment residents (undergraduate and graduate

students) are affiliated with. The participants were recruited

following the IRB protocol and 500 USD was paid to the each

testbed. Devices and rules were furnished by the researchers.

Participants were informed of the possible outcomes caused

by the attacks and the experiments were monitored by the

researchers to avoid any hazards. The data collected from both

testbeds do not contain personally identifiable information and

are stored in a secure way. Only the researchers identified on

the IRB protocol have access to the data.

18302

Authorized licensed use limited to: George Mason University. Downloaded on December 18,2022 at 17:10:21 UTC from IEEE Xplore. Restrictions apply.

