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A Spiking Neuromorphic Architecture Using Gated-RRAM

for Associative Memory
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This work reports a spiking neuromorphic architecture for associative memory simulated in a SPICE environ-

ment using recently reported gated-RRAM (resistive random-access memory) devices as synapses alongside

neurons based on complementary metal-oxide semiconductors (CMOSs). The network utilizes a Verilog A

model to capture the behavior of the gated-RRAM devices within the architecture. The model uses param-

eters obtained from experimental gated-RRAM devices that were fabricated and tested in this work. Using

these devices in tandem with CMOS neuron circuitry, our results indicate that the proposed architecture can

learn an association in real time and retrieve the learned association when incomplete information is pro-

vided. These results show the promise for gated-RRAM devices for associative memory tasks within a spiking

neuromorphic architecture framework.
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1 INTRODUCTION

Artificial intelligence is a field of science that receives more understanding with each passing
day. As the field increased in complexity throughout the 20th century, demand for a method of
executing artificial intelligence algorithms and structures increased. As the end of the century ap-
proached, the concept of the “neural network” became more mainstream within the field of artifi-
cial intelligence. Once research involving neural networks began to mature, a topic of study called
“neuromorphic computing” emerged with an aim to execute artificial neural networks directly in
hardware.
Neuromorphic computing in its history has exploredmany types of methods of executing neural

networks. Some architectures have primarily focused on implementing fast execution of typical
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artificial neural networks [1], while others have attempted to explore bio-inspired implementation
methods [2–4]. One of the primary approaches for creating bio-inspired neuromorphic hardware
is the spiking neural network (SNN). This type of design focuses on temporal learning by either
using the timing between specific spikes emitted by neurons in the network or the rate at which
neurons within the network spike for learning [5].
Not only has neuromorphic computing studied methods of implementing neural networks but

it has also studied designing architectures to specifically implement different types of neural net-
works. Based on different training datasets and applications, several types of neural networks exist,
including feed-forward networks, radial basis function networks, recurrent neural networks, and
so forth. [6]. Each network species has its purpose and application space. One application space of
interest is the area of associative memory. Associative memory is a concept that focuses on neural
networks that can relate certain pre-identified objects, ideas, concepts, and actions with one an-
other [7]. This association capability allows the network to relate complex pieces of information
with one another for later use. These stored relations between information can be later used to
perform tasks such as pattern completion when only partial information is available in order to
form complete memories. For example, this capability could allow a robot with a sensor suite that
includes a camera to potentially navigate an environment it previously explored while its camera
is not operating, or could allow an object-detection system to develop a concept of object perma-
nence when an object disappears from view but still is able to perceive other evidence that the
object is nearby [8]. This type of behavior exhibited by associative memory is also often attributed
to a similar concept called content-addressable memory in which information within a system can
be recalled via partial pieces of information [9].
A primary method of implementing associative memory within a neural network is the Hop-

field network [10]. This is a subspecies of recurrent networks in which information can be inserted
into the network and then recalled later by giving direct input to some of the neurons within the
Hopfield net [10]. Although the Hopfield network is decades old (originally defined in the 1980s),
it is still a popular topic of study in a volume of contemporary work through various studies that
have implemented versions of it within neuromorphic hardware [11–13]. Milo et al. focused on
the concept of spike-time dependent plasticity (STDP) when implementing their network [11],
while Hu et al. focused on demonstrating their network’s capability for holding multiple mem-
ories simultaneously [12]. Other work, such as Yang et al., focused on reducing the number of
switches and inverters needed to implement the architecture [13]. These designs vary, but all ac-
complish the basic goal of implementing a Hopfield network within hardware and being able to
recall information from the network after it has been previously provided input.
Although the Hopfield network is still a popular topic of study, one of its major drawbacks is

its memory capacity. Studies were done in the years after the Hopfield network was defined on
its memory capacity that all show a memory capacity in the realm of 0.12 n to 0.15 n, where n

is the number of neurons within the network [14, 15]. Recently, a new type of network like the
Hopfield net but with greater memory capacity has been defined, called the Segmented Attractor
Network (SAN) [16]. Not only does this network exhibit larger memory capacity than the Hopfield
net (e.g., the largest memory capacity shown in [16] is 0.375 n), but the capacity of the network
scales non-linearly with the size of the network [16].
Despite recent progress in the development of associative memory in neuromorphic architec-

tures, there is still a critical need for implementing more convenient synaptic devices within
these architectures for real-time associative memory formation. Although currently explored two-
terminal devices can be used in architectures, they are not particularly suitable due to convo-
luted read and write paths. This issue creates difficulty when programming the devices during
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Fig. 1. Diagram showing the basic anatomy of a gated-RRAM device. Device analysis normally occurs via

using the current passing from the top to bottom electrode, while the device’s state is manipulated by ap-

plying voltage to the gate. The isolation and gate isolation layers can either be made of similar or different

materials depending on the device design.

times when processing of information is also occurring via neurons in asynchronous, spiking
architectures.
In this work, we report a novel neuromorphic architecture that implements the SAN previously

mentioned. This architecture utilizes gated-RRAM (resistive random-access memory) devices for
forming associative memory in real time. This work will begin by defining the gated-RRAM device
and then show experimental results for such a device fabricated for this work. Next, the device will
be modeled within a SPICE simulation. Finally, it will be utilized within a SPICE simulation of an
SAN to form associative memories in real time.

2 GATED-RRAM DEVICES

One of the primary decisions in creating neuromorphic hardware is determining how synapses
are represented within the architecture. When implementing neuromorphic synapses, one of the
primary devices used to implement them is the two-terminal memristor. Originally realized in the
late 2000s, the two-terminal memristor demonstrated great promise as a synaptic device due to be-
ing able to retain a resistive state after being programmed [17]. Another term for memristors often
used in research literature is resistive random-access memory (RRAM) [18, 19]. This alternative term
for memristors is often used when referring to the basic form of device that relies on the original
design and functionality of the two-terminal memristor (e.g., Strukov et al. [17]). More recently,
however, the design theory of RRAM has begun to expand. Within the past few years, the two-
terminal RRAM concept has become more elaborate [20–23]. By adding a gate terminal onto the
RRAMdevice, one can electricallymanipulate the conductive state of the device via the gate instead
of the channel terminals. Thanks to this increased capability, gated-RRAM can then be used more
seamlessly in certain architectures due to the benefits of programming the device from the gate.
A gated-RRAM device (along with other devices that operate in ahighly similar manner) typi-

cally has two channel terminals, like a typical two-terminal RRAM device. The gate for the device
is then capacitively coupled to the device’s channel (Figure 1). Voltage can then be applied to the
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Fig. 2. Chart that depicts the differences between read and write operations in a two-terminal versus gated-

RRAM device. Write operations on a two-terminal device can occur in either direction if the voltage drop

across the device is sufficiently high, while write operations always occur on the gate of a gated-RRAM

device. The write power dissipation of a gated-RRAM device is much more efficient than a two-terminal

device due to the current from the gate to either of the other two terminals being negligible [20–23].

gate terminal to manipulate the concentration of defects, vacancies, dopants, and so on, within the
device channel in order to adjust the conductance level of the device between the top and bottom
electrodes. In many cases, positive bias on the gate increases the conductance of the device, while
negative bias on the gate decreases conductance [20–22]. This polarity for potentiation/depression
of the device’s conductance can be flipped, however, if the device is designed correctly [23].

Various facets of gated-RRAM devices were studied in previous work [20–23]. However, one
aspect that has not been studied extensively is the transient decay of a device’s conductive state
with time once potentiated. This phenomenon is shown in previous device work [22, 23], but it is
not sufficiently explored in how it could be utilized. Even though state volatility in a device might
initially be considered detrimental, there are some application spaces where it could be useful.
Specifically, this feature can be beneficial in forming associative memory within the segmented
attractor network discussed in this work.
Gated-RRAM devices provide two critical benefits over typical two-terminal devices typically

used within neuromorphic architectures: simultaneous read and write capabilities and more
power-efficient write operations. Both benefits are due to the extra terminal on the device and
how it is connected to the device channel.
The first benefit that gated-RRAM devices provide is one that appears at the system level. Being

able to simultaneously read through the top to bottom electrode and write to the device via the
gate allows for the architecture to never worry about swapping between read and write operation
modes while processing information. In many two-terminal RRAM architecture implementations,
the devices are used in a layout called 1T1R (1-Transistor 1-Resistor/RRAM) [24–26]. This layout
is shown in Figure 2. It has the RRAM device placed on either the source or drain of the transistor.
The other two terminals of the transistor then act as select lines (e.g., word line and bit line) to
access the RRAM for read and write operations. To perform write actions such as SET or RESET,
the voltage applied to the transistor gate should be ON and a voltage bias is applied in one of two
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directions across the RRAM channel path (see Figure 2). Read operations (also shown in Figure 2)
require the gate to be ON while a different read voltage is applied to the RRAM device. In this
configuration, the gate terminal of the transistor simply acts as an enable signal to access the
two-terminal RRAM device. In order to physically read or write to the RRAM device, both of the
other terminals on the cell must be used. If a write operation is being performed using those two
terminals, a read cannot be performed at the same time. This same rule can be applied to other
methods using two-terminal RRAM devices in which a single operation requires usage of both
terminals, leaving no space for the other operation to occur simultaneously [27, 28].
In a gated-RRAM device, the read and write processes occur in a different manner. The gate

of the device now acts as the sole write terminal for the device instead of an enable signal. Read
operations are always conducted via the two device channel terminals (top and bottom electrodes).
Examples of these two processes can be seen in Figure 2. In this setup, the write process is separate
from the read process thanks to the extra device terminal. This separation allows both reads and
writes to the device to occur in parallel, which is of great benefit to neuromorphic architectures
in which asynchronous operations happen constantly within the network, such as SNNs [29, 30].
Since the gate of the RRAM device is separated from the device channel, this naturally leads

to the second benefit of the gated-RRAM device: more power-efficient write operations. Typical
two-terminal memristors are limited to using the same conduction channel for write operations as
reads. In gated-RRAM devices, however, write operations take place via the gate terminal, which
can be designed to be electrically isolated from the memristive device channel [22]. This isolation
reduces the power consumption of write operations in gated-RRAM by reducing the write current
andmaking it independent of the resistive state of the device, which is not possible in two-terminal
devices. The current that does flow from the gate to either device channel terminal is often insignif-
icant enough for previously published gated-RRAM devices to not report them [20, 21, 23] or, in
the rare case, they are reported be a small fraction with respect to the device channel current (i.e.,
one order of magnitude or greater difference) [22]. This means that the write power to a gated-
RRAM device relies on Igate and not Ich, making the write operations much more efficient than
what is often required in a write operation for a two-terminal device (see Figure 2). If one were to
plot the write power consumed in a two-terminal versus a gated device over time, the efficiency of
the gated-RRAM becomes apparent (Figure 3). Based on the work of Herrmann et al. [22], one can
see that as voltage is applied to the device over time to increase the conductivity between top and
bottom electrodes, the current from the gate to the channel remains low. This observation can be
translated into comparing write energies between two-terminal and gated-RRAM. This behavior
shows that as conductance increases, the amount of energy saved during write operations scales
to greater than an order of magnitude in difference between the two devices.

3 GATED-RRAM DEVICE EXPERIMENTAL DEMONSTRATION

The gated-RRAM device fabricated for this work used the basic structure shown in Figure 1 with
niobium oxide as the channel material. The device was fabricated by first growing a 100-nm SiO2

layer via dry oxidation on the surface of a 4” p-silicon wafer. Next, a 50-nm bottom electrode (BE)
of titanium nitride (TiN) was deposited via RF sputtering of a Ti target in an Ar/N2 environment
at room temperature. Then, a 20-nm insulator layer of Si3N4 was deposited via plasma-enhanced
chemical vapor deposition at 250°C. This is then capped with a 40-nmW TE via RF sputtering of a
W target in an Ar environment at room temperature. The TE (top electrode)/Insulator/BE is then
coated with AZ 1518 photoresist (PR) and spin-coated and patterned with an EVG 620mask aligner
to pattern the TE probe pads and expose the global BE. The W TE is then etched via wet etching
with tungsten etchant. Next, the Si3N4 layer is etched via reactive ion etching (RIE) with a CF4:O2

plasma at low power (75W). The PR is stripped, and a new pattern is applied to create the channel.
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Fig. 3. Plot that depicts a general comparison between write energy consumption of a gated-RRAM and a

two-terminalmemristive device. The numbers here are extrapolated from current and voltage values reported

in Herrmann et al. [22], where a gate voltage of 1V (to program the device) and drain voltage of 1V (to read

the device) was used during a write process. These values can change from device to device for both gated-

RRAM and two-terminal devices but portrays the general benefit that gated-RRAM provides via its gate

write operation.

To etch the channel, theWwet etch and Si3N4 dry etch are repeated, followed by an additional RIE
process using CF4:O2 plasma at high power (300W). The PR is stripped again and a new deposition
of 40 nm of Nb2O5 is deposited via DC sputtering of anNb target in anAr/O2 environment at 400°C.
Next, a 20-nm Si3N4 layer is deposited via RF sputtering of a Si target in an Ar/N2 environment at
room temperature. Finally, a 40-nm W gate electrode is deposited via DC sputtering of a W target
in an Ar environment at room temperature. The new stack is patterned to mask the channel region
of the device. A final set of W wet etching followed by Si3N4 RIE with CF4:O2 plasma (75 W) and
wet etching of Nb2O5 with Ti TFT etchant finishes the pattern. Devices were electrically tested
via a Cascade probe station using a Keithley 4200 SCS fitted with a 4225 Pulse Measurement unit.
There were variance in the devices; thus, some devices were more conductive, with high-resistance
state read currents of around 70 pA and maximum read currents of around 4 mA and some with
high-resistance state and maximum read currents of 10 pA and 0.7 mA, respectively. The read
current in the high-resistance state for the tested device was approximately 50 pA while the read
current in the device’s lowest resistance state was almost 1 mA. Figure 4 shows top-view scanning
electron microscopy (SEM) of gated-RRAM device arrays with a cross-section schematic diagram
showing various layers.
To study the gate-controlled changes in the conductance between TE and BE, write (also referred

to as potentiating) voltage pulses are applied on gate (G) while TE and BE are grounded. Thereafter,
the conductance between TE and BE was measured by applying read bias on TE and grounding
the BE. The G was left floating during a read. Figure 5(a) shows read current between the TE and
BE (TE-BE Imax) immediately after removal of write pulses on the G versus number of write pulses
on the G. Figure 5(b) shows current-voltage (I-V) sweep characteristics between the TE and BE
by sweeping read bias on the TE between –0.5 V to 0.5 V while grounding the BE after potenti-
ating the device by applying write bias on the G. In Figure 5(a), more than five orders of change
in conductance can be observed after potentiating the gate with 2 V after 10,000 pulses, which
is remarkable. The same changes in conductance between the TE and BE can be obtained with a

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 36. Pub. date: December 2021.



A Spiking Neuromorphic Architecture Using Gated-RRAM for Associative Memory 36:7

Fig. 4. Top-view scanning electron microcopy (SEM) of gated-RRAM devices and cross-section schematic

showing the material stack.

Fig. 5. (a) Read current from top electrode (TE) to bottom electrode (BE) immediately after device is potenti-

ated by applying a certain number of write pulses on gate electrode (G). Legend shows the amplitude write

pulses on the gate. The pulses applied to the gate had a width of 1 ms, a period of 1.2 ms, a frequency of

833.3 Hz, and a duty cycle of 83.3%. The read bias was a constant 0.5 V applied to the TE. (b) Dual voltage

sweeps as a device is potentiated. The voltage sweep began at –0.5 V, went to 0.5 V, and returned to 0.5 V in

0.05-V steps and was applied to the TE while the BE was grounded and the G was left floating. The voltage

sweeps were done after 5-V 1-ms pulses were applied to the gate with the TE and BE grounded.

relatively lower number of potentiating pulses on the G if the write pulse amplitude is increased.
The gradual change in conductance with each potentiating pulse (as shown in Figure 5(a)) is ben-
eficial; thus, the potentiation of gated-RRAM devices does not occur via spurious spikes or noise
within the programming signal to the device. Only signals that persist for a period of significant
time should program the device. The gradual change in conductance could also be utilized in im-
proving the accuracy of neural networks, as slower learning rates (i.e., conductance changes) have
been shown to improve a network’s accuracy [31]. One can also observe the analog nature of con-
ductance changes between the TE and BE as a function of the number of potentiating pulses on
the G, which is another merit of this device. After a change of approximately five orders of magni-
tude in the device’s conductance (with respect to the virgin state for all potentiating conditions),
the conductance saturates. This behavior demonstrates a self-limiting nature for these devices
that is not seen in many two-terminal devices. Filamentary, two-terminal RRAM devices require a
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Fig. 6. Top to bottom electrode read current after the device is potentiated by applying write pulses on gate.

The write pulses had a width of 1 ms, a period of 1.2 ms, a frequency of 833.3 Hz, and a duty cycle of 83.3%.

The read bias was a constant 0.5 V applied to the TE.

reset event (e.g., by choosing the amplitude of applied voltage or pulse-width) or set event (e.g., by
choosing the compliance current in 1T1R structures) to achieve conductance modulation. These
events in two-terminal devices can be sudden and lead to shorted devices.
Since analog changes in conductive states were observed, it was important to characterize the

retention of these states. Figure 6 shows changes in read current (TE-BE I) measured over time after
the devices were potentiated by applying different write pulses on the G. Clearly, some decay in
state could be observed initially though states were distinct even after 8 minutes. One can observe
that retention of state is a function of the number of pulses and amplitude of pulses that was used
to potentiate. More conductive states (obtained using a greater number of write pulses or higher
amplitude of write pulses) tend to retain longer while intermediate states tend to decay faster.
Understanding the underlying cause of these device-level observations is very important and

will require further studies. At this juncture, we propose two hypotheses that can explain these
observations. Our first hypothesis involves resorting back to oxygen vacancies (Vo

2+) transport in
NbOx. When positive bias is applied to the G terminal with the TE and BE grounded, Vo

2+ can mi-
grate from the NbOx/SiN/G interface to the TE/NbOx and BE/NbOx interfaces. An increase in the
concentration of Vo

2+ at these interfaces can reduce the contact resistivity between TE/NbOx/BE,
leading to an increase in the conduction between the TE and BE via NbOx. The decay in con-
ductance can be explained by back diffusion of Vo

2+ towards the NbOx/SiN/G interface when no
potentiating bias is applied on the G [32].
Our second hypothesis is based on Vo

2+-based trap states at the TE/NbOx and BE/NbOx in-
terfaces. The charge state of Vo

2+ based on trapping or de-trapping of electrons can govern the
effective doping density at the TE/NbOx and BE/NbOx interfaces [33]. When no bias is applied
on the G. then Vo

2+ at these interfaces trap electrons, leading to a net lower doping concentration
and higher contact resistivity. When positive bias is applied to the G terminal with the TE and BE
grounded, then Vo

2+ can de-trap electrons, leading to an increase in effective doping density at
these interfaces that results in a net lower contact resistivity. The lowering of contact resistivity
governs the increase in the conductance between the TE and BE via NbOx when potentiated with
write bias on the G. Note that when gate bias is removed, these Vo

2+ traps will re-trap electrons
based on the trapping constant, which leads to a decay in the conductive state over time (shown
in Figure 6). A residual increase in conductive state that does not decay even after 8 minutes can
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Table 1. Model Hyperparameter Values Used to Obtain Figures 7 to 9

Description Figure 7
Values

Figure 8
Values

Figure 9
Values

gmin Minimum conductance (S) 1e-11 3e-11 2e-10
gmax Maximum conductance (S) 8e-6 8e-8 4e-6
tset Ideal set time of device (s) 5 2 5
vt Gate threshold voltage (V) 0.999 0.999 0.999
brev Reverse-bias diode constant 0.00 0.00 0.00
rstp Rate of short-term decay 5e-3 5e-3 5e-3
gc Transient conductance evolution constant 0.95 0.95 0.95

namp Depression amplification constant 1 1 1
oc Channel voltage influence constant 0 0 0
tc Soft/hard threshold control constant 1 1 1
qltp Strength of long-term potentiation 0.02 0.02 0.02
rltp Rate of long-term decay 1e-7 1e-7 1e-7

be explained by the creation of new Vo
2+ or generation of other deep traps with higher time con-

stants when the device is stressed with more aggressive write pulses (i.e., higher amplitude and/or
higher number of pulses). While further device-level studies are needed to develop a better un-
derstanding of these mechanisms, we report that these device-level dynamics are important and
need to be modeled in computer-aided-design (CAD) compatible languages that can be utilized to
develop diverse neuromorphic networks.

4 GATED-RRAM MODEL DEVELOPMENT

With the experimental verification of the gated-RRAM device, it can have its behavior extracted
and placed into amodel that is usedwithin a simulation framework. The behavior of this model can
be replicated by a behavioral device model specifically designed to encapsulate behaviors observed
by gated devices intended for synaptic use (including gated-RRAM devices) [34]. With this behav-
ioral model, many of the device’s conductive characteristics can be described by the list of user-
defined parameters that capture many higher-level behaviors of the device with respect to time.
The list of user-defined parameters within the model can be found in Table 1. In order to fit

the model to the previously demonstrated experimental results of the gated-RRAM device, three
different sets of slightly varying parameters can also be found in Table 1. These three sets of
parameters will fit to the previously shown Figures 5(a), 5(b), and 6. The fitting process focused
on matching as many critical points from each experiment as possible while also attempting to
capture the general behavior of each device.
The basic premise of the model described in [34] centers around a few key equations that dictate

the device’s channel current, conductance, degree of potentiation, and rate of decay at any given
time.
The first equation from the model describes the channel current of the device at any given time

as a piecewise equation

Ich =
⎧⎪⎨
⎪
⎩

ΔV ≥ 0, дsynΔV

ΔV < 0, br evдchΔV + (1 − br ev ) дch
(
eΔV − 1

) (1)

[34], where ΔV is the voltage difference between the channel nodes (top/bottom electrodes), gch
is the conductance of the channel, and brev controls whether the behavior of the channel is that
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of a linear resistor (brev = 1), a diode (brev = 0), or anything between during reverse bias. The
conductance of the channel, gch, is defined by the equation

дch = max (1 − 2дc , 0)
(
дranдe

(
1 − e−px )

)
+ (−abs (2дc − 1) + 1) (дranдex + дmin )

+max (2дc − 1, 0)
дmax

1 + e−mx+s
(2)

[34], where gc controls the general shape of the conductance curve with respect to time and other
parameters such as s, m, and p are pre-calculated fitting parameters [34] that have their values
based off the values given in the parameter list shown in Table 1. The variable x within Equation
(2) describes the current conductive state of the device, and can be changed at any timestep by Δx
(if the gate voltage is >vt) given by

Δx = xscale
(
Vef f − siдn(Vef f )tcvt

)
− dstp (3)

[34], where xscale dictates how much x can change by at any given time (dictated by the timestep)
and Veff is the effective voltage applied to the gate of the device. The parameters vt and tc are the
gate threshold voltage and threshold influence constant, respectively. The purpose of the tc term is
to allow the model to distinguish between hard and soft threshold values that can be seen within
devices [34].
The variable x also has a term dstp that is removed from x at every timestep of the model simula-

tion. The term dstp represents state decay of the device’s conductance and is state based in nature.
This term is defined by

dstp = rstptset (x − xmin ) Δt (4)

[34], where Δt is how much time has passed in the simulation since the device was last updated.
The parameters rstp and tset are the degree of short-term decay and expected ideal set time of the
device when not considering decay, respectively. The variable xmin is the lowest value that x can
drop to at any given time. Its default value is zero but can be increased/decreased if the term qltp
is defined as greater than zero.
The first fit to the gated-RRAM device is matching Ich to the number of programming pulses

applied to the gate over time at different voltage levels as previously shown in Figure 5(a). Voltage
pulses of identical width and period were applied to the device model in order to properly fit
the model to the measured results. The results of this fit can be seen in Figure 7. One of the key
takeaways from Figure 7 is that the model potentiates much more quickly and consistently than
what is shown in the experimental results in the 1 to 10 pulse range. After this earlier range
of pulses, the model and results begin to more closely align. The exclusive lack of potentiation
when applying 1V potentiation pulses to the device’s gate suggests that a gate threshold voltage
exists that is close in proximity to the 1V pulse magnitude. In order to implement this behavior, a
vt = 0.999V was used for the device.
The second fit to the gated-RRAM device is against the Ich versus VTE curves previously shown

in Figure 5(b) (while VBE is grounded). In Figure 8, the second set of parameters from Table 1 can
be seen fitting the model to the device’s measured results.
The final results being fit to the experimental model is how the device retains its state with

respect to time as previously shown in Figure 6. Just as in the previous experiment, the device is
programmed via the gate using identical voltage pulses with identical periods. The device then has
its channel current observed with respect to time to gauge the rate of conductance decay. Multiple
terms within the model play a role in dictating the shape of this curve, including rstp (short-term
decay), rltp (long-term decay), and qltp (quality of long-term potentiation). The results of the model
versus the experiment can be seen in Figure 9. The model does predict slightly faster state decay
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Fig. 7. Fit of the channel current versus pulse count using the model from [34] to the gated-RRAM device

demonstrated in Figure 5(a). Logarithmically intermediate pulse count values shown here vary to a degree

for mid-range gate voltage values. Later pulse counts do not show this mismatch, however.

Fig. 8. Fit of the IV sweep at different pulse counts to the device’s gate using the model from [34] to the

gated-RRAM device demonstrated in Figure 5(b).

than what is seen in the experiment but to a minor degree. The experiment also showed very slight
decay of the device’s conduction after no pulses were applied, which does not happen in themodel.

5 NEUROMORPHIC SAN ARCHITECTURE

A gated-RRAM device such as the one shown here could be useful in a variety of neuromorphic
environments. An example of one of these neuromorphic environments would be in the realm of
the segmented attractor network as shown in Jones et al. [16]. The segmented attractor network
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Fig. 9. Fit of the decay over time curves at various pulse counts using the model from [34] to the gated-

RRAM device demonstrated in Figure 6. The intermediate pulse count of 100 is off by 1 order of magnitude.

However, the model properly captures the other remaining decay rates.

(SAN) was designed to be implemented in a spiking neural network framework that uses recur-
rent connections along with basic concepts from content-addressable memory in order to form a
neuromorphic architecture capable of creating associative memory [16].
The design of the SAN makes it an ideal associative memory architecture for applications in

which various forms of categorized input are given to a neural network that need to be associ-
ated with one another. The application space for the SAN spans any situation in which finding
relationships between categorical data assist in further understanding a problem. One example of
such a situation is a system that relies on a sensor suite for navigation purposes to solve a problem
such as simultaneous localization and mapping (SLAM) [35]. When solving the SLAM problem,
a map of an entity’s environment needs to be formed by associating coordinates or location data
obtained via sensors with landmark data derived from camera or audio information.
In order to accomplish the task of forming associative memory, the SAN operates using an

array of neurons that are segmented into different categorical sets [16]. One set of neurons might
be allocated to coordinates, for example, while another set is used for tracking another category
of data, such as observed landmarks or time (Figure 10). Within each set of neurons, each neuron
is specified to track a certain feature or value of that set. For example, each neuron within the
coordinate set could be designated as a certain coordinate value or each neuron for the landmark
set could represent a different observed object.
To create an entire SAN in hardware using the gated-RRAMdevice, an architecturewas designed

as shown in Figure 11. This demonstration of an architecture consists of an array of six neurons,
24 gated-RRAM devices, and a dozen AND gates. Each neuron also possesses a resistive diode on
its external input line. The neuron circuits within the architecture are divided into three distinct
sets, where each set possesses two features (or neurons). The SPICE simulations conducted in this
work consider these specific device components but not their geometric VLSI layout.
Each neuron receives input for its integration and fire operation from the post-synaptic connec-

tions of synapses within the architecture along with its external input line. Each synapse within
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Fig. 10. A schematic diagram of how a SAN is structured within a simple application example of SLAM.

Sensor data such as temperature, air pressure, and light intensity can have their values binned and assigned

to neurons within the SAN. The network then uses a matrix of associations to create relations between

simultaneously occurring values across different sets.

the SAN’s synaptic grid is responsible for forming a relationship between two external input val-
ues provided to the SAN via the AND gates within the architecture. The AND gates have their
output connected to the gate terminal of a gated-RRAM device to program/potentiate the device
when both given external inputs are provided simultaneously.
To implement the SAN within a spiking neuromorphic architecture hardware simulation in

SPICE, devices intended for synaptic use (such as gated-RRAM devices) are often used in combina-
tion with circuits designed tomimic the behavior of biological neurons. Most of these circuits often
operate on an “integrate and fire” principle in which the circuit integrates the current provided
to the input of the circuit [36, 37]. If the integration operation that the circuit is performing ever
crosses a threshold, the circuit emits a voltage spike on its output node and resets its current inte-
gration process. One such circuit is the self-resetting octopus retina neuron circuit from Jones et al.
[35]. This neuron circuit can be constructed using the 180-nm technology node from TSMCwithin
a SPICE simulation framework. A diagram of the neuron circuit can be seen in Figure 12(a). If this
circuit is provided VDD = 1.8V and Vb1 = Vb2 = 0.4V (bias voltages for the circuit), a frequency and
duty cycle profile can be obtained for the circuit based upon the amount of input current provided
to its input node. This profile can be seen in Figure 12(b) and will be a useful tool when implement-
ing the gated-RRAM device into a spiking neuromorphic architecture within a SPICE simulation.
Each feature neuron within the SAN receives input from an array of gated-RRAM devices

acting as synapses that correspond to the features within every other set within the network. In
the example shown in Figure 11, this means that neuron N11 receives input from four synapses
that relate N11 to the four neurons within the other two sets within the network (N21, N22, N31,
N32). N11 does not receive any input from a synapse that relates it to N12 since they are a part
of the same set, and the SAN architecture assumes that features within a single set cannot be
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Fig. 11. Diagram depicting an example of the SAN defined in [16] constructed in hardware. All external

inputs are routed through resistive diodes to their respective neuron circuits within the architecture. These

external inputs are also sent in a combinatorial fashion to an array of digital AND gates to program the

gated-RRAM devices acting as synapses within the architecture by applying the output of the AND gates

to the gate terminals of each synaptic device. Each AND gate has its output run to two synaptic devices per

the labels in the diagram. The neuron outputs are recurrently connected to the pre-synaptic terminals of the

synapses (the top electrodes) in the fashion described at the top of the diagram. The network’s decisions are

determined by measuring the maximum frequency from the output nodes of the neurons within each set.

Fig. 12. (a) Schematic of the neuron circuit used. Vb1 and Vb2 both were set to 0.4 V for all situations in this

work (although other values can be used to manipulate the circuit’s behavior and reset speed). (b) Frequency

and duty cycle profile of the self-resetting octopus retina neuron defined in [34] when built using the 180-nm

TSMC technology node. The neuron will continue to spike at a low-frequency rate even at very low values

of current, while at higher values of input current, the frequency eventually saturates.
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related to one another [16]. Every other neuron within the network receives a similar sequence
of synaptic input from four synapses in the example in Figure 11.
The pre-synaptic connections to each gated-RRAM synapse receive input from the output of

the neuron array within the SAN [16]. This connection scheme defines the SAN as a recurrently
connected network since it uses its own output as a form of input for analysis. The pre-synaptic
connections within the SAN are determined by the external input provided to the gate terminal
of the RRAM device that does not already have its corresponding feature neuron connected to its
post-synaptic terminal. For example, since the synapse at the top of Figure 11 relating N11 and N21

has its post-synaptic terminal connected to the input of the N11 neuron, the pre-synaptic terminal
of that synapse is connected to the output of neuron N21. This form of connection scheme is
common among other types of attractor networks [38–40].
The gated-RRAM device is ideal for use in an architecture such as the SAN. Not only will

write operations be more power efficient in a gated-RRAM version of this architecture, but the
capability of simultaneous read/write operations allows the network to not constantly swap
between read and write modes while in use. The recurrent connections within the SAN lend it
more towards asynchronous operation when performing analysis on each input set provided.
Analyzing data asynchronously means that swapping between read and write modes is not ideal
and performing both simultaneously would be optimal (which the gated-RRAM device allows).
Simultaneous read/write capability also means that not only can the architecture be used from the
typical neural network perspective of training the network via programming a set of associations
into its synapses and then testing the recall capability of the network afterwards, but it can also
be used for lifelong learning applications. In lifelong learning networks, the network does not go
through a strict process of being trained and then being tested but instead learns continuously
as it receives input throughout its lifespan [41]. This behavior means that every time the network
receives external input to analyze, that occurrence is both a training and evaluation point. If this
network were to be implemented using two-terminal technology, the more consistent potentiation
of synapses over time (i.e., write operations) would require increased power.

6 RESULTS AND DISCUSSION

To demonstrate the operation of the network, simulation-based studies were conducted in which
the network received three “memories” during an association or training phase. The network
within the demonstration will utilize the aforementioned TSMC 180-nm neurons and AND gates
along with gated-RRAM devices that use the Figure 9 column of hyperparameters from Table 1.
After the memories were placed into the network, they were recalled afterward by giving only
partial information back to the SAN in the form of external input. This method of recall is useful
when trying to identify relationships between pieces of information that the network has previ-
ously seen to perform tasks such as pattern completion [42, 43].

The three memories that are placed into the SAN in this example are defined as an array of three
features, where each feature is from a unique set. From the neurons in the network in Figure 11,
N11 and N12 belong to the first set, N21 and N22 belong to the second set, and N31 and N32 belong
to the third set. The three memories will be placed into the network in sequence as follows:

• Memory #1: N11, N21, N31

• Memory #2: N12, N22, N32

• Memory #3: N11, N22, N31

During the association process, external input in the form of a DC voltage is provided to each
neuron’s input terminal through a diode, which converts the input voltage into a current that the
neuron begins to integrate. The external input ensures that a neuron spikes near its maximum
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Fig. 13. Running frequency response of the network shown in Figure 11 when having the three previously

mentioned memories programmed into its synapses. The slight variances in the timescale are due to how

the frequency is calculated during simulation.

frequency (as previously shown in Figure 12) as the output frequency of each neuron is the metric
used to determine the network’s response. Forcing external input tomake neurons fire atmaximum
frequency ensures that if a neuron within a set is receiving external input, its output in comparison
to all other neurons within the set is strongest so that it is always picked as the recalled value from
that set. The external stimulus via DC voltage via the AND gate connections to the gate terminals
of the synaptic devices potentiates the desired synapses to their high conductance value. Once
enough time has passed to allow the synapses to potentiate, the memory has been successfully
provided to the network. The next memory can then be presented.
The output response of the SAN architecture during training can be seen in Figure 13, which

shows a running frequency measurement of each neuron’s output (i.e., the frequency measured in
between each spike and the previous spike) versus time. It can be seen throughout Figure 13 that
whenever a neuron is receiving external input, it spikes at a very high frequency. When a neuron
receives no external input, it spikes at a low frequency or not at all. The exclusion that appears to
break this rule in Figure 13 is when the third memory is programmed into the network, where N12,
N21, and N32 begin to fire at a higher rate. This increase in fire rate is due to the neurons receiving
input via their synaptic connections during the third memory. N21 is receiving synaptic input from
two synapses that previously were potentiated during the first memory (the two synapses that
relate it to N11 and N31), which makes it spike at a higher rate. N12 and N32 are receiving synaptic
input from one synapse each that associates them with N22. This input causes the neurons to spike
but at a lower rate with respect to N22 (since N22 is getting more input current). Occurrences of
this phenomenon increase as more memories are placed into the network as the likelihood for
overlapping features between memories increases.
To take a closer look at the evolution of the potentiation of the gated-RRAM devices during

training, Figure 14 shows a series of snapshot maps of the gated-RRAM potentiation values as the
memories are introduced. One observation that can be made from Figure 14 is the effect of time on
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Fig. 14. Snapshot sequence of the conductive states of all gated-RRAM devices within the network as the

network is being programmedwithmemories. The areas covered by crosses are association combinations not

made by the synapses (as previously described and shown in Figure 11). As the association phase progresses,

certain synapses begin to see decay in their conductive state if they have not received a programming voltage

applied to their gate recently.

the potentiation of devices within the network. Once a memory is introduced and external input
is removed, the synapses begin to decay due to the state decay behavior seen in the gated-RRAM
devices. This might initially appear to be a detriment to the performance of the network in long-
term applications. However, if the decay is not too severe for the application space in which it is
used, it does not necessarily pose a problem to the network’s performance. Also, state decay of the
synapses within an application such as lifelong learning can be beneficial instead of detrimental.
In a lifelong learning environment, learning never ceases [41]. Networks will always have some
physical level of capacity and, given enough time, the network could become saturated with infor-
mation once it has seen enough information [16]. With the introduction of decay into synapses,
it allows the network to slowly forget things it does not normally see over time, making space
for new potentially more important memories to be introduced in the future. This phenomenon
additionally reduces the possibility of false associations being made by the network if too many
memories were to be introduced to the network over time.
If recall is performed on the network after the three memories have been introduced, the net-

work attempts to complete the memories it has previously seen given the input it is provided.
Figure 15 shows such a recall process in which each neuron within the SAN is given external in-
put in a sequential process (starting at N11 and ending at N32). As each external input is provided,
the network responds in a specific manner to the memories it has previously seen. The neuron
with the highest average running frequency among each set during the period that each external
input is provided can be determined to be the recalled feature from each set to form a completely
recalled memory. Table 2 shows these results, with the dominant frequencies within each set dur-
ing each external input provided to the network in bold print. Those dominant frequencies are
declared as the recalled features and form the memories previously shown to the network. The
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Fig. 15. Running frequency response of the network shown in Figure 11 during recall when programmedwith

the three memories shown in Figure 13. The slight variances in the timescale are due to how the running

frequency is calculated during simulation.

Table 2. Recall Results of the Segmented Attractor Network

External Input Recalled Frequencies (MHz) Recalled Memory Pwr

(μW)s1 s2 s3 N11 N12 N21 N22 N31 N32 s1 s2 s3 #

N11 - - 26.8 3.65 8.36 6.21 8.12 3.67 N11 N21 N31 1 688
N12 - - 3.23 29.2 2.24 6.27 2.69 8.88 N12 N22 N32 2 645
- N21 - 5.65 3.35 28.0 5.15 5.51 3.07 N11 N21 N31 1 627
- N22 - 5.69 5.01 5.26 23.0 5.53 5.00 N11 N22 N31 3 615
- - N31 9.94 4.30 9.38 8.22 27.7 3.99 N11 N21 N31 1 755
- - N32 2.26 8.49 2.15 6.08 2.62 28.8 N12 N22 N32 2 624

number of each memory (as previously defined) is shown on the right side of Table 2. Also on the
right side of the table is the network’s average power consumption during each recall point pro-
vided to the network. This power consumption includes both VDD and the bias voltages provided
to the neurons (i.e., Vb1 and Vb2). However, the power consumption of the bias voltage within the
network is so small that it is negligible in the results presented.
With respect to the decay rate in the gated-RRAM, the read period to perform recall shown in

Figure 15 is short. The value during this period is virtually unchanged from start to finish of the
operation. The association period shown in Figure 13, however, occurs over a much longer period.
As can be seen in the progression of frames in Figure 14, state decay of synapses occurs between
training points during association. If the decay rate of synapses was increased, recall after the
association phase would be altered. To increase decay in the network, rstp was increased from 5e-3
(initial value) to 1e-2 to demonstrate how state decay affects recall. The tabularized results from
this decay simulation can be seen in Table 3, which shows how as decay increases, the network
begins to forget memories it hasnot seen in a while (such as the first memory).
Forgetting memories for the network does not happen instantaneously since decay of each

gated-RRAM device’s conductance happens gradually over time. As shown in Table 3, the first
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Table 3. Recall Results of the Segmented Attractor Network with Higher Decay

External Input Recalled Frequencies (MHz) Recalled Memory Pwr

(μW)s1 s2 s3 N11 N12 N21 N22 N31 N32 s1 s2 s3 #

N11 - - 27.9 3.78 6.12 7.72 10.0 3.76 N11 N22 N31 3 713
N12 - - 2.67 29.2 1.25 7.02 2.60 9.49 N12 N22 N32 2 642
- N21 - 3.77 2.99 28.9 7.18 3.79 1.79 N11 N21 N31 1 604
- N22 - 4.48 4.92 4.28 22.0 4.48 4.88 N12 N22 N32 2 570
- - N31 9.70 3.84 5.79 7.60 27.7 3.97 N11 N22 N31 3 706
- - N32 2.90 9.30 1.88 6.94 3.39 29.1 N12 N22 N32 2 655

Table 4. Average Power Consumption Comparison to Other Associative Memory Architectures

Category Architecture CMOS Node
Hit Power

Consumption
(Per Item)

Miss Power
Consumption
(Per Item)

[44] Traditional Analog HAM 45 nm 5.56 mW 5.56 mW

[45] Traditional Resistive Ternary CAM 45 nm 6.94 μW 2.61 mW

This Work Neural Network Gated-RRAM SNN 180 nm 109 μW 109 μW

memory is not completely forgotten when the decay rate of the devices in the network is in-
creased; instead, it is recalled in fewer cases. In addition to the first memory being recalled less,
N22 in Table 3 recalls the second memory instead of the third (as was recalled in Table 2). This
answer was given by the network once decay was increased due to other synapses associated
with the first memory feeding N11 and N31 being more decayed than before, hindering the overall
feedback provided to them. Previously, the higher feedback to N11 and N31 caused the network to
recall the third memory, but since the feedback to these neurons is overall lower for the results in
Table 3, N12 and N32 have superior frequency output.

As the network evolves over time, memories will slowly rotate into and out of the network
based upon what the network observes. The rate at which memories fade from the network can be
controlled via the decay rate of each device’s conductive state, which can be tuned via device engi-
neering (e.g., introduction of extra defects/dopants during fabrication, selecting different channel
bulk materials, etc.).
When comparing the average power consumption of the simulated architecture to other con-

temporary associativememory implementations that also usememristive devices, the spiking neu-
ral network implementation demonstrated here is superior. Table 4 shows the average power con-
sumption per item across each implementation for hits and misses. Imani et al. [44] compare a few
different associative memory approaches, of which the most optimal was an analog, hyperdimen-
sional associative memory (HAM). The power consumption values reported do not differentiate
between hits and misses. The architecture divides its bits into classes (i.e., items). The other ar-
chitecture proposed by Imani et al. [45] does have a large power consumptive difference between
a hit and miss. This architecture, known as ternary content addressable memory (CAM), defines
items as lines that are selectively activated to recall memories. The architecture shown in this
work represents each item as a neuron, and the power consumption does not vary between hits
and misses due to the innate behavior of a neural network. Given the more consistent power con-
sumptive behavior of the SNN demonstrated here and that it could be further improved by using
a smaller complementary metal-oxide semiconductor (CMOS) node, it has clear advantages over
other memristive designs.
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7 CONCLUSIONS

In this work, we report an SAN neuromorphic architecture that can be used for forming dense
associative memory between various inputs. Designed with gated-RRAM devices as synapses and
CMOS-based spiking neurons, the simulated network was able to learn and recall memories via
pattern completion. It was shown how an often deemed undesirable feature of the gated-RRAM
device, decay of its conductive state, could prove beneficial in the application of associative mem-
ory within an SAN. In tandem with CMOS-based neuron circuits, a gated-RRAM device provides
an extremely promising system for future spiking neuromorphic processing architectures. Within
the devices studied, further research is needed to understand the details of underlying mechanisms
and interplay between trapping/de-trapping, diffusion of defects, and transport mechanisms. Fur-
thermore, extensive study should be done on device-to-device and cycle-to-cycle variability and
how they affect the performance of the demonstrated associative memory architecture. Finally, the
architecture studied here should be scaled to a larger size and compared with other contemporary
solutions for associative memory in neuromorphic architectures.
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