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ABSTRACT Many currently available hardware implementations of the unsupervised self-organizing
feature map (SOFM) algorithm utilize complementary metal–oxide–semiconductor (CMOS)-only circuits
that often compromise key behaviors of the SOFM algorithm due to complexity. We propose a neuromorphic
architecture harnessing the unique properties of ferroelectric field-effect transistors (FeFETs) and gated-
resistive random access memory (RRAM) for in-memory computing to implement the SOFM algorithm.
The FeFET-based synapse, organized in a novel circuit, is able to compute the input-weight Euclidean error
in memory via the saturation drain current. The self-decaying states of the gated-RRAM allow for a self-
decaying neighborhood and learning rate implementation to allow for convergence and lifelong learning. This
novel architecture is able to successfully cluster benchmarks (RGB colors and MNIST handwritten digits)
and real-life datasets, such as COVID-19 patient chest X-rays completely unsupervised. The architecture
also demonstrates a significant amount of robustness to device variability and damaged neurons. In addition,
the proposed architecture is completely parallelized and provides a power-efficient platform for implementing
the SOFM algorithm.

INDEX TERMS Ferroelectric field-effect transistor, neuromorphic, resistive random access memory
(RRAM), self-organizing feature map (SOFM), unsupervised.

I. INTRODUCTION

THE computational time and power required to imple-
ment deep neural networks (DNNs) prevent widespread

use in low-power real-time applications, such as wearable
devices, sensors, and the Internet of Things (IoT). The prob-
lem lies with the high memory bandwidth requirement for
DNNs and the Von Neumann bottleneck of current computer
architectures [5]. Field-programmable gate arrays (FPGAs)
and application-specific integrated circuits (ASICs) have
increased memory bandwidth via near- and in-memory
computing [5] to accelerate neural network training and
inferencing [1]–[3], [8]–[12]. Near-memory computing

couples the components that perform computation and mem-
ory devices in proximity. In-memory computing houses the
memory and computation inside the same unit, resulting in
higher memory bandwidth, lower circuit area, and power
consumption. Bioinspired neuromorphic architectures are
gaining interest for ultralow-power computing [1]–[3], [12].
Although many of the current implementations rely
on complementary metal–oxide–semiconductor (CMOS)
devices [1], [3], [8]–[11], there has been a significant interest
in incorporating emerging analog memory devices for more
bioinspired and energy-efficient computation [1], [2], [12].
However, a significant amount of research in developing
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ASICs for neural network acceleration has focused on super-
vised learning, which requires large amounts of labeled data
during training. Labeled data are a scarce resource in many
applications. This constraint has led to a larger demand for
DNNs using unsupervised learning, which requires little or
no labeled data [3], [4], [8]–[12]. Kohonen’s self-organizing
feature map (SOFM) is an example of an unsupervised
algorithm that has been investigated for implementation in
low-power architectures [6], [7].

In spite of its strengths, there has been limited research in
developing neuromorphic hardware for implementing SOFM
algorithms [8]–[12]. Many currently available hardware
implementations of the SOFM algorithm utilize CMOS-only
circuits that are penalized by the limitations of CMOS tech-
nology [8]–[11]. For example, CMOS memory devices store
a single bit, requiring multiple memory devices per synapse
to capture the analog nature of the incoming data. The use of
separate memory modules to store weights [8]–[10] results in
a lower memory bandwidth and higher energy consumption.
Moreover, updating the weights serially [11] further increases
computation time, especially for high-dimensional datasets
(i.e., the COVID-19 chest X-ray images [14]). The higher
computational time and energy requirements prevent real-
time application in domains where the rapid energy-efficient
computation of results is crucial (e.g., medical diagnosis and
autonomous vehicles).

Beyond computational challenges, some of these imple-
mentations often compromise key behaviors of the SOFM
algorithm. The omission of learning rate decay [8], [9],
[11], [12] may prevent the network from properly converging
depending on the application and prevents lifelong contin-
uous learning of the SOFM by overtraining the network.
In addition, many implementations may rely on external
circuitry for core behaviors costing computation time, cir-
cuit area, and power consumption [11]. These implementa-
tions also require preprocessing of the data for computation
(i.e., every input must be normalized [11], [12] or each fea-
ture must be trained independently and serially [12]). This
preprocessing increases computational time and may require
assumptions about the data that are not desired. In addition,
current hardware implementations of the SOFM algorithm
utilize dot-product similarity instead of pairwise Euclidean
distance or error [11], [12]. Pairwise Euclidean distance can
capture information on both magnitude and shape of the raw
data more accurately than dot-product similarity [13]. Using
the Euclidean error as the distance measure allows for the
SOFM to cluster the original data with little or no prepro-
cessing and prior assumptions—both of which are beneficial
for unsupervised learning.

Interestingly, near- and in-memory computing for DNNs
has led to a larger demand for programmable analog
memory devices such as resistive random access mem-
ory (RRAM) [15] and ferroelectric field-effect transis-
tors (FeFETs) that have been heterogeneously integrated with
CMOS neural network circuits [16]. These devices are able
to reduce the number of memory devices required by storing
nonbinary states.

In this article, we propose a neuromorphic architecture
that is able to harness the unique properties of FeFET and
gated-RRAM for in-memory computing to implement the
SOFM algorithm. With this architecture, we seek to provide

a low-power solution for local autonomous clustering of data
that can be integrated with sensors and IoT devices. This
architecture is referred to as NeuroSOFM. A combination of
FeFET and gated-RRAM in conjunction with CMOS circuits
allows for the efficient implementation of Euclidean error
calculations and learning rate decay that are central to the
SOFM algorithm. In addition, using these memory devices,
the architecture is completely parallelized and requires lit-
tle or no preprocessing and external circuitry. The remain-
der of this article is organized as follows. Section II is an
introduction to the SOFM algorithm. Sections III and IV
describe the implementation of the FeFET and gated-RRAM
memory devices, respectively. Section V details the overall
architecture and its behavior. Finally, Section VI illustrates
and discusses the results.

II. SELF-ORGANIZING FEATURE MAP
The SOFM is amap of interconnected neurons, which reflects
the topology of a learned dataset through competitive learn-
ing [6], [7]. The SOFM projects the dataset from a higher
dimensional input space into a lower dimensional neuron
space, allowing patterns in data to be visualized. Each neuron
in the SOFM is comprised of a weight vector of the same
dimension as the input space of the dataset, as shown in Fig. 1.

FIGURE 1. Illustration of SOFM network.

First, each neuron computes the Euclidean error
(εij = (xi − wij)2) between the each input (xi) and its corre-
sponding weight (wij). The total error input-weight Euclidean
error for each neuron is then calculated. The neuron with
the least total Euclidean error becomes the winning neuron
or best matching unit (BMU) the index of which is denoted
as jBMU. The BMU is the neuron best representing the input.
During learning, every neuron’s weight vector moves toward
the input vector in relation to a neuron’s position in the
neighborhood of the BMU. The BMU neighborhood (3j)
is often defined using the Gaussian distribution with respect
to the Euclidean distance between a neuron and the BMU
(e.g., neurons in proximity to BMU experience a larger
weight update) and the neighborhood rate (σ ). The weight
update is scaled by the learning rate (η) and input-weight
error. The learning rate and neighborhood undergo expo-
nential decay over time by their corresponding decay time
constant (τ ) until the network converges. The map captures a
topography (clusters) of the data based on feature similarity.
The computational simplicity of this algorithm allows for
low-power real-time hardware implementation. Although
computationally simple, the SOFM is still able to cluster input
data completely unsupervised. Our proposed architecture
divides the SOFM algorithm into three subcircuits: input-
weight Euclidean error computation in the FeFET synapse,
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BMU selection with CMOS-based modified winner-take-
all (MWTA), and self-decaying learning parameter compu-
tation with gated-RRAM (neighborhood and learning rate
controllers), as shown in Fig. 2. It is apparent that there are
many similarities between the software and hardware imple-
mentation of the SOFM algorithm. How this was achieved
will be detailed in the remainder of this article.

FIGURE 2. Functional block diagram of n input by m neuron
NeuroSOFM architecture.

III. FeFET SYNAPSE IN-MEMORY EUCLIDEAN
ERROR COMPUTATION
In this section, we demonstrate that nonvolatile multidomain
FeFET devices offer an excellent opportunity to implement
in-memory computation of the input-weight Euclidean error.

FeFET is a metal–oxide–semiconductor field-effect
transistor (MOSFET) device with ferroelectric material
integrated in the gate-stack. Ferroelectricity is a permanent-
induced polarization in the material due to an externally
applied electric field. The magnitude of electric field that
causes a change in polarization in the material is known as
the coercive field Ec. This permanent remanent polarization,
Pr , can arise due to a switchable deformation of a polar ion in
the unit cell. Multiple unit cells oriented in the same direction
form a ferroelectric domain. The number, orientation, and
size of these ferroelectric domains can vary by method of
deposition. The individual polarization orientations of each
domain may be summed together to form a net polarization
of the entire ferroelectric material [17]. By manipulating the
polarization in ferroelectric material, the FeFET device can
be programmed to manifest multiple threshold voltage (VT )
states, as shown in Fig. 3.

This tunable nature of VT of FeFETs allows for the weights
of the SOFM to be programmed as specific VT states in the
synapses of this architecture. The multistate memory allows
for a single FeFET device to be used to store the weight in
place of multiple nonvolatile CMOS. The saturation drain
current (IDS) of an n-channel FET is given by

IDS =
WC′oxµ
2L

(VGS − VT )2 , |VDS| ≥ |VGS − VT | (1)

the width (W ), length (L), effective mobility carrier (µ),
and oxide capacitance per unit area (C ′ox) (F/cm

2) of the
FET. In this equation, one can observe that IDS is directly

FIGURE 3. (a) Ferroelectric domain switching and threshold
voltage as a function of programming pulses. In the presence of
VGS ≥ VProgramming Voltage, the polarization of the domains the
ferroelectric material aligns to oppose the electric field
produced by the gate bias. The aligning of the domains results
in a saturation of minority charge carriers (VT > VT,Initial) or
majority charge carriers (VT < VT,Initial) in the channel between
the diffusion wells, which changes the threshold voltage of the
FET. (b) Circuit diagram of FeFET pairwise Euclidean error
calculation.

proportional to the Euclidean distance between the applied
gate voltage (VGS) and VT of the FeFET.We capitalize on this
intrinsic device characteristics and propose a FeFET-based
synapse for in-memory computation of the input-weight
Euclidean error via IDS, as shown in Fig. 3(b). When the
input (Vin,i) is applied as the gate bias (VGS) and the weight
(Vw,ij) is programmed asVT for the top FeFET, the top FeFET
produces IDS proportional to the input-weight Euclidean error
when Vin,i > Vw,ij. However, when Vin,i < Vw,ij, then
VGS < VT ; therefore, the FeFET is no longer conducting
(IDS ≈ 0) and no longer represents the Euclidean error.
To account for this asymmetry in the Euclidean error compu-
tation, we added another n-channel FeFET (bottom FeFET).
The bottom FeFET’s VT is programmed to Vin,i, while VT of
the top FeFET (weight) is applied as VGS. Therefore, when
Vin,i < Vw,ij, the bottom FeFET produces IDS proportional to
the Euclidean error. The behavior of this FeFET synapse is
modeled using the following equation:

if Vin,i > Vw,ij

Top FeFET: ID,ij ∝
(
Vin,i − Vw,ij

)2
if Vin,i < Vw,ij

Bottom FeFET: ID,ij ∝
(
Vw,ij − Vin,i

)2
. (2)

To the best of our knowledge, this work is the first to report
in-memory computing of Euclidean error in FeFET devices
utilizing IDS to compute a cost function, or Euclidean error,
between the input and the weight. Cost function computation
is an integral part of many supervised networks as well.
In-memory computation of Euclidean error via FeFETs may
allow for low-power real-time hardware implementation of
conventional backpropagation techniques.
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A. READING AND WRITING VT OF FeFET DEVICE
External circuitry would be required to read VT of the top
FeFET and program the VT states of the FeFETs, as shown
in Fig. 2.

FIGURE 4. (a) Circuit diagram of the proposed VT read circuit.
(b) LTspice simulation of the VT read circuit.

We emulated a read sweep commonly done on FeFET
devices by applying VGS via a charging capacitor for the VT
read circuit, as shown in Fig. 4. A constant input of 1 V at
the input of the synapse charges the CVT ,ij capacitor until
the potential stored across the capacitor exceeds VT of the
top FeFET. Once the potential across the capacitor exceeds
VT of the top FeFET, the operational amplifier-based com-
parator applies a logic high bias on the pMOS transistor,
so it is no longer conducting. This causes CVT ,ij to become a
floating capacitor allowing it to retain the potential (approx-
imately equal to the weight or VT of Top FeFET), as shown
in Fig. 4(b). This stored potential across the capacitor is
applied as VGS to the bottom FeFET. The average total power
consumption of a single VT read circuit, as measured in
LTspice (45-nm transistor model at 1 V), was approximately
0.81 µW per read of a single synapse. The estimated latency
of the VT read circuit would be a maximum of 0.15 ns
per synapse using a 1-fF capacitor and the transistor spec-
ifications of the FeFET (see Table 1 in the Supplementary
Material).

The VT write circuit was modeled based on the axon-
hillock circuit, as shown in Fig. 5(a). This modified axon-
hillock circuit used an additional nMOS transistor to allow
for ID,ij to be scaled by the output of the neighborhood and
learning rate controllers (VP,j = 3jη), as shown in Fig. 5(a).
Therefore, if either ID,ij = 0 (no Euclidean error) or VP,ij = 0
(neuron too far from BMU or learning rate too small), no pro-
gramming pulses were produced by VT write circuit resulting
in no weight change, as shown in Fig. 5(b). The output pulses
of the VT write circuit were applied to the gate of the top
FeFET (if bottom FeFET produced nonzero IDS), while the
source and drain were grounded to increase the weight and
decrease error. We use a programming voltage greater than
1 V (read voltage) to ensure that the FeFET error computation
does not cause drift in VT of the FeFET devices. If the top
FeFET produced nonzero IDS, the output pulses were applied
to the source or drain of the top FeFET, while the gate was
grounded to increase the weight and decrease error. The
average total power consumption of a single VT write circuit
measured in LTspice was approximately 69 µW per synapse.
These VT read and write circuits can be implemented

per synapse, per neuron, or globally. Implementing the read
and write circuits at each synapse results in the fastest
computation, latency of architecture is equivalent to latency
of a single synapse, due to parallelization at the cost of the

FIGURE 5. (a) Circuit diagram of the proposed VT write circuit.
(b) LTspice simulation of the VT write circuit demonstrating
modulation of pulse frequency proportional to the FeFET IDS
(Euclidean error).

scaled area and power consumption. Considering an ultralow-
power budget of approximately 0.1 mW, we are able to
implement 100 VT read circuits (one per neuron) and a sin-
gle global VT write circuit. Depending on different powers,
performances, and area budgets, a combination of serial and
parallel implementations of these VT read and write circuits
can be explored.

IV. MODIFIED WINNER-TAKE-ALL
To produce clusters, the SOFM algorithm must identify a
BMU. However, first, the error from each synapse of a neuron
must be accumulated to compute the total error. We use
a capacitor at each neuron to accumulate error, where the
charging rate of the capacitor would be proportional to the
summation of ID,ij of each FeFET synapse in the correspond-
ing neuron. The BMU in our architecture will be the neuron
with the slowest charging capacitor or least total synaptic IDS.

FIGURE 6. Circuit diagram of the MWTA.

We developed an MWTA subcircuit to select the BMU.
We decided to use a CMOS-based approach for the MWTA
using digital logic and gates to allow the architecture to be
more modular, as shown in Fig. 6. This will result in all
of the non-BMU neurons to charge to the logic high of the
CMOS-based MWTA before the BMU. The delay between
the BMU charging to logic high and the non-BMU neurons
is used to identify the BMU. The MWTA inverts the neuron
corresponding to the MWTA output and and’s the inverted
neuron with all the other noninverted neurons to identify
whether it is the last to charge to logic high (BMU). Once
a BMU is identified, the MWTA produces a pulse until the
BMU charges to logic high. Therefore, a D flip-flop (DFF)
is used to store the MWTA decision (the pulse can behave as
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FIGURE 7. (a) Diagram of different biasing states of a
Gated-RRAM device. (b) Measured state decay of RRAM
devices. (c) Circuit diagram of self-decaying learning parameter
implementation.

a rising edge clock signal to store logic high). The MWTA
output is logic high for the BMU and logic low for non-
BMU neurons, as shown in Fig. 6. The latency of the BMU
selection is dependent on current integrating capacitor and on
the error difference between the BMU and the second BMU
since the second closest BMU is the last to reach high voltage
before the BMU can be selected.

V. GATED-RRAM-BASED SELF-DECAYING
LEARNING PARAMETERS
In this section, we demonstrate that gated-RRAM devices
with self-decaying states offer an excellent opportunity to
implement the in-memory computation of the decaying learn-
ing parameters (neighborhood function and learning rate) in
the SOFM algorithm.

Gated-RRAM is a type of gated-memristive device that has
been recently reported [18]. As shown in Fig. 7, gated-RRAM
devices consist of a top electrode, a bottom electrode, a chan-
nel oxide containing oxygen vacancies (V 2+

o ) through which
current can flow between the top and bottom electrodes, and
a gate terminal capacitively coupled to the channel oxide
through an insulating layer.When a positive bias is applied on
the gate with respect to the top and bottom electrodes, V 2+

o in
the channel oxide drift toward the top and bottom electrode
interface of the channel oxide increasing the conductance of
the device measured between the top and bottom electrodes.
This results in the low-resistance state (LRS) of the device,
which saturates over time with continued application of gate
bias as the concentration of V 2+

o reaches its maximum value.
Once the gate bias is removed, V 2+

o tends to diffuse back
toward the channel oxide leading to a decay in the con-
ductance over time causing the device to approach its high-
resistance state (HRS) as shown in Fig. 7(a) and the measured
data in Fig. 7(b). We modeled this decay using exponential
decay modulated by a decay time constant hyperparameter.
The gate terminal also allows simultaneous read and write
feature, which eases the peripheral circuit requirement for
programming these devices.

The rate of decay of the gated-RRAM conductance can be
tuned by applying a subprogramming voltage bias on the gate
of the device. This bias is insufficient to potentiate or depress

the device; however, the bias either accelerates the diffusion
of the defects moving toward the gate (negative bias) or
prevents diffusion of the defects (positive bias), as shown
in Fig. 18(a). A continuous subprogramming voltage positive
bias may increase the conductance state at which the device
settles. The device settling to a higher conductance state is
useful in cases when the application requires the neurons
to retain more plasticity than the HRS offers. However, this
positive bias can be pulsed or removed over a period to allow
for the device to return to its original HRS.

The intrinsic passive decay of the gated-RRAM and its
tunable nature is important for use for the short-term plas-
ticity of the neurons in our proposed SOFM architecture.
In the SOFM algorithm, the plasticity of the network decays
over time as both the learning rate and neighborhood rate
decay. We implemented the neighborhood function using
chained identical voltage dividers, consisting of a gated-
RRAM device (Rσ,RRAM) and fixed value resistor (Rσ ), for
each neuron shown in Fig. 7(c). Therefore, as the con-
ductance of the gated-RRAM decays passively, the output
of each voltage divider decays accordingly. The voltage
divider output decay results in the narrowing neighborhood
function shown in Fig. 18(b). The chained voltage dividers
[Fig. 7(c)] allow for the attenuation of the neighborhood
output as a function of the Manhattan distance from the BMU
[d1(j, jBMU)] as modeled in the following equation:

3j =
Rsigma

Rsigma + Rsigma,RRAM

d1(j,jBMU)

VDD

−Vγ

d1(j,jBMU)∑
n=0

Rsigma

Rsigma + Rsigma,RRAM

n
 (3)

where VDD is the output of the DFF of the BMU from the
MWTA and Vγ is the forward voltage of the diodes. The
neighborhood function output feeds into the input of an addi-
tional gated-RRAM voltage divider, which implements the
learning rate resulting in (4). The learning rate decays as well
due to the passive decay of the gated-RRAM device. This
passive in-memory computation results in a nearly constant
0.1 mW per input of power consumption throughout the
training of the architecture

3jη = 3j
Rη

Rη + Rη,RRAM
. (4)

External circuitry can be implemented for tuning the decay
rate if required by applying a continuous or pulsed bias to the
gate of the gated-RRAM device. The gated-RRAM device
may be potentiated at any time, increasing the plasticity of
the network. Increasing the plasticity of the network can
help it learn completely new environments, help it evolve
with the dynamics of the dataset, or compensate for any
damage accrued. In addition, the decay rate hyperparameter
in the SOFM can be implemented in device characteristics of
gated-RRAM.

VI. NeuroSOFM ARCHITECTURE
The NeuroSOFM architecture (Fig. 8) consists of a crossbar
of the dual-FeFET synapses computing the Euclidean error
[Fig. 3(b)], feeding into the CMOS-based MWTA for BMU
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FIGURE 8. Circuit diagram of NeuroSOFM architecture. (1a) VT
read and write circuits. (1b) Dual-FeFET synapse. (2) Integration
of error. (3) MWTA. (4) Neighborhood controller. (5a) Learning
rate controller. (5b) Feedback to VT write circuit of each
synapse.

selection (Fig. 6), and finally the gated-RRAM network to
compute the self-decaying learning parameters [Fig. 18(b)].

First, VT of the top FeFET in every FeFET synapse is
initialized with a random value. Prior to applying an input,
VT of the top FeFET of each synapse is read and stored
by the VT reading circuit to apply as VGS for the bottom
FeFET. In addition, at this time, VT of the bottom FeFET
is programmed to its lowest VT state to allow for VT to be
programmed to Vin,i to be shown to the network. After the VT
states of the FeFET synapse have been prepared, the input can
be applied to the network. At this time, Vin is applied as VGS
to the bottom FeFET, and the bottom FeFET is programmed
via the VT write circuit until it produces a nonzero IDS (its
VT = Vin,i). Vin is applied as VGS to the top FeFET and the
stored voltage read from VT of the top FeFET is applied as
VGS to the bottom FeFET. This FeFET configuration results
in a single FeFET per synapse producing a nonzero IDS,
which captures the Euclidean error between the input and the
weight (2). Since only a single FeFET produces a significant
current per synapse, only a single FeFET device per synapse
contributes to the power consumption of the circuit. Each
FeFET synapse is able to compute the Euclidean error simul-
taneously. In addition, each synapse can have its own circuitry
for reading and writing VT . Therefore, the FeFET synapses
are completely parallelized and would result in constant time
complexity as the size of the network is scaled.

The total current in the crossbar is proportional to the total
pairwise Euclidean error of the neurons as seen in subcircuit 2
in Fig. 8. An integrate-and-fire circuit produces a logic high
once the capacitor is charged to a sufficient voltage. The rate
of charging of the capacitor in the integrate-and-fire circuit
is dependent on the total current along the neuron branch.

The MWTA circuit then selects the BMU by finding the
neuron to last reach logic high. The output of the MWTA
is stored in a DFF shown in subcircuit 3 in Fig. 8 (detailed
in Fig. 6).

The DFF of the BMU has a logic high, 1 V, while the
DFFs of the remaining neurons hold 0 V. This logic high from
the winning neuron propagates through the neighborhood
function circuit, as shown in subcircuit 4 in Fig. 8 [detailed
in Fig. 7(c)]. Each neuron has a corresponding voltage divider
in the neighborhood function circuit. The diodes at the input
of the voltage divider ensure that the highest voltage inputted
into the voltage divider is passed through the divider. The
diodes ensure that only the feedback from the shortest dis-
tance is considered in the neighborhood output. The output
of the neighborhood controller from each neuron feeds into
an additional independent voltage divider with gated-RRAM,
which emulates the learning rate that decays over time.

The output of the final voltage divider is a combination of
the neighborhood function and learning rate (5). A nonzero
IDS in the top FeFET results in positive programming pulses
to the top FeFET to depress the weight or reduce VT .
A nonzero IDS in the bottom FeFET results in negative pro-
gramming pulses to the top FeFET to potentiate the weight
or increase VT . The number of pulses produced by the pro-
gramming circuit is proportional to the product of the final
learning parameter output of the corresponding neuron and
the IDS Euclidean error of the corresponding synapse. This
weight update is modeled as follows:

1Vw,ij ∝ 3jη (−1)(Vin,i<Vw,ij) ID,ij (5)

where 1Vw,ij is the change in VT of the top FeFET.
The nature of the gated-RRAM allows for the decay rate

of the neighborhood rate and learning rate to be tuned for
each application [Fig. 18(b)]. The combination of FeFET
devices for Euclidean error computation and gated-RRAM
for learning parameter implementation results in an architec-
ture requiring little or no external circuitry.

VII. RESULTS AND DISCUSSION
After simulating each circuit module in LTspice, the proposed
NeuroSOFM architecture was modeled and simulated at a
higher level using Python 3.8 with both the measured and
simulated VT states for the FeFET devices. The functions
that were used to model every step of the algorithm are
detailed in Sections III–VI. A VT lookup table was extracted
from a FeFET model and was used for the VT states of the
devices. The gated-RRAM decay model was validated on a
gated synaptic device (GSD) model developed to emulate the
behavior of various fabricated GSD devices.

The proposed architecture was trained and tested on
benchmark datasets: RGB color (10 000 randomly generated
RGB colors) and MNIST handwritten digits (5000 images
sized 28 × 28) datasets. The proposed architecture was also
trained and tested on a dataset of chest X-rays (148 images
compressed to 100× 100) of healthy subjects and the subjects
after being diagnosed with COVID-19, to show more practi-
cal application-oriented results. In all experiments, we tested
a 10 × 10 neuron SOFM, the number of synapses or weights
differed between datasets. Theweights were randomly initial-
ized ([0,1]) for experiment. Topographical error, the average
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FIGURE 9. Weight map evolution of 10 × 10 NeuroSOFM trained
on (a) RGB colors. (b) MNIST handwritten digits. (c) COVID-19
chest X-ray images. The color bar illustrates the VT range of the
FeFET devices.

distance between the first BMU and the second BMU (neuron
with second least Euclidean error), was to measure the ability
of the self-organized map to preserve the topology of the
data [20]. Quantization error, the average Euclidean error
between an input and the weight vector of its BMU, was used
tomeasure the ability of the neurons in the self-organizedmap
to represent the individual inputs [7]. We show the evolution
of the weight maps over the training period for all three
datasets in Fig. 9(a)–(c). We tested the networks robustness to
device variability in the FeFET devices Gaussian distribution
to offset the VT states. We also tested the robustness of the
architecture by simulating neurons failing and by removing
neurons from the network prior to training.

The network was able to completely learn the RGB dataset
and converge after 50 000 inputs with a topographical error
of 1.50 and a quantization error of 0.22 [Fig. 9(a)]. Visually,
we can observe the development of various colors including
both brighter and darker colors, which have not been shown
in the existing networks using the dot product. The network
was able to completely learn theMNIST dataset and converge
after 50 000 inputs with a topographic error of 1.67 and
a quantization error of 136.00 [Fig. 9(b)]. It is expected
that topographical and quantization error for more com-
plex datasets (higher dimensions) is larger. Visually, we can
observe the development of the various digits in the weight
map with a level of expected noise, as shown in Fig. 9(b). The
network was able to completely learn the COVID-19 chest
X-ray dataset and converge after 592 inputs with a topograph-
ical error of 1.52 and a quantization error of 1029.97. The
output map illustrates that the SOFM successfully separated
clusters of healthy and COVID-19 diagnosed chest X-rays
while retaining significant detail (observable rib and lung
features) in Fig. 9(c). Discrete states in the FeFET devices
and the projection of a large dataset on few neurons will result
in a nonzero quantization error. However, a low topographic
and quantization error for the COVID-19 results and intrinsic
explainability of SOFMs [21] shows the practicality of the
network in real-world applications. In addition, the quality
preservation in all tests shows that the decaying plasticity of

the network can prevent overtraining, while the network is
still functional.

FIGURE 10. Weight map of NeuroSOFM with FeFET devices
with 8, 16, 32, and 64 nonvolatile VT states (a) from the
measured set VT states and (b) from the simulated set VT states.

We tested to see how the number of nonvolatile VT states in
the FeFET devices affect learning in the SOFM architecture.
We observed that the architecture was able to cluster to a
degree with as little as eight states for the measured VT
states, as shown in Fig. 10(a). However, having 32 nonvolatile
VT states [17] yielded higher quality clustering. 64 non-
volatile states had little or no effect. The optimal number of
nonvolatile states required may vary between applications.
Comparing the measured VT results with the simulated VT
results in Fig. 10(b), we observe that at a higher number of
VT states (≥16 states), both the VT state distributions were
able to cluster. These results demonstrate intrinsic robustness
to different distributions of VT states of the FeFET device,
which can result from varying fabrication methods or pro-
gramming schemes [17]. However, we do note that a more
uniform distribution of states, such as those in the measured
states, resulted in higher quality maps even as the number
of states was reduced to 8. The distribution of the simu-
lated VT states did not allow for proper clustering at eight
nonvolatile states. For the neuromorphic architectures based
on emerging devices, device-level failure and variability are
important concerns. Variability in the FeFET devices would
be especially detrimental since the algorithm relies on the
initial Euclidean error computation. We observed that the
SOFM was highly robust even to an offset distribution with a
standard deviation exceeding the average difference between
VT states shown in Fig. 11(a). Visually, the clustering was not
as continuous and tight as the offset variance was increased.
Our architecture was also highly robust to large amounts
of the neurons, up to 50%, failing or being removed from
the network, as shown in Fig. 11(b). We also observed that
if the network failed in the middle of the training process,
the remaining neurons would adapt and compensate for
the failed neurons by reorganizing [Fig. 11(c)]. The results
in Fig. 11(c) illustrate that the network is able to learn unseen
and unlearned inputs given sufficient plasticity (yellow por-
tion in the halved network). Integrating gated-RRAM allows
for easy tuning of the plasticity. The relearning of lost infor-
mation due to broken neurons does not require additional
external circuitry and is able to be completely internalized.

We recorded the average error for each FeFET synapse,
the average number of programming pulses to the synapses,
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FIGURE 11. (a) Weight map of NeuroSOFM, using 32-state FeFET
devices, with VT offset variance from 0 to 0.01, (b) with neurons
broken or removed at initialization, and (c) with neurons broken
or removed in the middle of training.

and the minimum error difference between the BMU and
second BMU to estimate the power consumption and latency
of the architecture. The average input-weight error for FeFET
synapses was approximately 0.0005 resulting in an average
power consumption of 70 nW per synapse for Euclidean error
computation. Although the power consumption increases
in proportion to the number of synapses per neuron, for
higher dimensional data such as the COVID-19 dataset,
the time period for Euclidean error computation (latency of
BMU selection) also decreases. The minimum error differ-
ence, between the BMU and second BMU, for the RGB
dataset (three attributes) resulted in a maximum latency
of 0.28 µs, while the minimum error difference for the
COVID-19 dataset (10 000 attributes) resulted in a maximum
latency of 0.1 ps. The power consumption of the entire passive
RRAM-based learning parameter controller measured to be
approximately 0.1mW. This demonstrates the ultralow power
consumption due to in-memory computation of the FeFET
synapse and RRAM-based learning parameter controller.

In conclusion, we have proposed a neuromorphic SOFM
architecture, based on emerging FeFET and gated-RRAM
memory devices, that is able to learn simple bench-
mark datasets such as RGB colors to more complex
application-specific datasets such as the COVID-19 chest
X-rays. By utilizing the underlying device physics of the
device technologies, the architecture utilizes very little power
and requires little or no external circuitry making it com-
pletely autonomous. The low power and autonomity of this
architecture allow it to be easily interfaced with sensors
and IoT devices for real-time clustering of the data and
environment. The interaction between neighboring neurons
allows for the network to handle severe damage to itself
and still operate at a functional level. This type of dura-
bility is fantastic for systems that are exposed to high-risk
environments such as space (due to radiation exposure) [22]
by not requiring monitoring and repairing systems. It also
allows the architecture to utilize synaptic devices with lower
durability if damaged neurons can be detected and shut off
improving manufacturing scalability. Our architecture has
the ability to learn lifelong due to its self-decaying learning
parameter controller. Lifelong learning allows for the archi-
tecture to adapt to the dynamics of the environment without
external interference (e.g., retraining), as shown in the results

in Fig. 11(a)–(c). The ability to adapt to the environment
is especially useful for transfer learning and in applications
such as navigation. The architecture is completely unsu-
pervised, meaning that it requires no labeled data. In the
future, we would like to further examine the ability of the
SOFM algorithm and architecture to interact with other neu-
ral networks such as recurrent networks like the attractor
network for fully unsupervised association between signals
or inputs [12]. This would allow for networks to utilize the
topography and features captured by the SOFM for classifi-
cation or signal correlation/association.
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