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Abstract— We investigate a transmission mechanism aiming
to improve the data rate between a base station (BS) and a
user equipment (UE) through deploying multiple relaying UAVs.
We consider the effect of interference incurred by another
established communication network, which makes our problem
challenging and different from the state of the art. We aim
to design the 3D trajectories and power allocation for the
UAVs to maximize the data flow of the network while keeping
the interference on the existing communication network below
a threshold. We utilize the mobility feature of the UAVs to
evade the (un)-intended interference caused by (un)-intentional
interferers. To this end, we propose an alternating-maximization
approach to jointly obtain the 3D trajectories and the UAVs
transmission powers. We handle the 3D trajectory design by
resorting to spectral graph theory and subsequently address
the power allocation through convex optimization techniques.
We also approach the problem from the intentional interferer’s
perspective where smart jammers chase the UAVs to effectively
degrade the data flow of the network. We also extend our work
to the case for multiple UEs. Finally, we demonstrate the efficacy
of our proposed method through extensive simulations.

Index Terms— Unmanned aerial vehicle (UAV), jammer, tra-
jectory optimization, power allocation, interference management,
smart interferer, spectral graph theory, Cheeger constant.
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I. INTRODUCTION

HE utilization of unmanned aerial vehicles (UAVs) has

recently become a practical approach for a variety of
mission-driven applications including border surveillance, nat-
ural disasters aftermath, monitoring, search and rescue, and
purchase delivery [2]-[4]. Owing to the low acquisition cost
of UAVs as well as their fast deployment and efficient cover-
age capabilities, UAV-assisted wireless communications has
recently attracted extensive interest [5], [6]. Specifically,
the 3D mobility feature of UAVs and the coexistence of
relaying UAVs with other existing communication networks
(e.g., cellular networks) have led to new design challenges
and opportunities in these networks [7], [8], which are not
investigated in the context of classic wireless sensor net-
works [9]. This fact has promoted an extensive literature
dedicated to studying the unique design aspects of these net-
works, e.g., [10]-[20]. In current literature, the UAV-assisted
relay communication is mainly studied in two different con-
texts, in which the network is assumed to be either static,
i.e., the positions of the UAVs, transmitters, and receivers
are fixed during the data transmission [10]-[14], [21], [22],
or dynamic [15]-[20], where the positions of the transmitters
and receivers are assumed to be fixed while the UAVs are
typically assumed to be mobile.

In the context of static UAV-assisted wireless communi-
cations, in [21], considering an interference limited in band
downlink cellular network, the authors studied the effects of
scheduling criteria, mobility constraints, path loss models,
backhaul constraints, and 3D antenna radiation pattern on
the trajectory optimization of a UAV. In [10], the optimal
deployment of a UAV in a wireless relay communication
system is studied in order to improve the quality of com-
munications between two obstructed access points by maxi-
mizing the average data rate of the system, while keeping the
symbol error rate below a threshold. In [11], a relay network
is considered in the context of a four node channel setup
consisting of a transmitter, a receiver, a UAV relay, and an
eavesdropper, where the goal is to shed light on the application
of UAV-enabled relaying in secure wireless communications.
In [12], the UAVs are utilized to form an aerial backhaul
network to enhance the performance of the ground network,
which is measured through data rate and delay. The link
configuration between the UAVs and the gateways, and among
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the UAVs, is formulated as a network formation game, which
is solved through a myopic network formation algorithm. The
optimal locations of the UAV are derived in [13] through
maximizing the data rate in single link multi-hop and multiple
links dual-hop relaying schemes. In this work, it is assumed
that the UAVs are hovering at an identical fixed altitude during
the transmission. As a follow-up work for [13], in our recent
works [14], [22], we studied the optimal position planning
of UAV relays, which coexist with a major interferer in the
environment. In these works, we investigated the following two
new problems: i) identifying the minimum required number of
UAVs and their optimal positions to satisfy a given SIR of the
system, ii) developing a distributed algorithm to maximize the
SIR of the system requiring message exchange only between
adjacent UAV relays.

In the context of dynamic UAV-assisted wireless commu-
nication, in [15], the joint optimization of propulsion and
transmission energies for a UAV relay-assisted communication
network is studied. An optimal control problem is formulated
for energy minimization based on dynamic models for both
transmission and mobility. In [16], the optimal altitude of a
UAV for both static and mobile relaying, which corresponds
to the circular movements around the user, is considered to
maximize the reliability of the system, which is measured
through total power loss, the overall outage, and the overall bit
error rate. It is shown that that decode-and-forward relaying
is better than amplify-and-forward relaying in terms of relia-
bility. In [17], a UAV-assisted relay communication network
is proposed, where the UAV serves as a relay between a base
station and a mobile device. The amplify-and-forward relaying
scheme is used, for which the trajectory of UAV, the transmit
power of both the UAV and the mobile device are obtained to
minimize the outage probability of the system. In [18], assum-
ing a source-destination pair and a UAV relay, an end-to-end
throughput maximization problem is formulated to optimize
the relay trajectory and the source/relay power allocations
subject to practical constraints on the UAV speed, transmitting
power of the transmitter and the UAV, etc. Afterward, an alter-
nating optimization approach is proposed to jointly derive the
optimal transmission power of the transmitter and the UAYV,
and the UAV trajectory. In [19], a wireless relay network
model is considered, in which a fixed-wing UAV serves as
a relay among the ground stations with disconnected commu-
nication links in the event of disasters. It is assumed that the
UAV deploys the decode-and-forward relaying protocol. Con-
sidering the fact that in contrast to rotatory-wing UAVs, fixed-
wing UAVs require circular movements to maintain their
altitude, it is shown that the conventional fixed rate relaying
will no longer be effective. To this end, a variable rate relaying
approach is proposed to enhance the performance of the
system measured through outage probability and information
rate. In [20], UAVs are deployed in a wireless network in order
to provide connectivity or boost the capacity for the ground
users. A nested segmented propagation model is proposed for
the air-to-ground channel, based on which they proposed an
algorithm to search the optimal UAV position for establishing
the best wireless relay link between a base station and a
user in a dense urban area. In [30], a caching UAV-assisted
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secure transmission scheme is proposed in hyper-dense small-
cell networks based on interference alignment. The UAVs
are utilized to provide data traffic to mobile users coopera-
tively with small cell base stations. In [31], multi-hop D2D
communication is leveraged to extend the coverage of UAVs
effectively in order to perform emergency transmission for
IoT in disasters. Two optimal transceiver design schemes
are proposed for the uplink and the downlink, respectively,
to improve the performance of UAV transmission. In [32],
the authors considered a single-cell multi-UAV network, where
multiple UAVs upload their collected data to the BS. They
introduced a cooperative UAV sense-and-send protocol in
which a sub-channel allocation and UAV speed optimization
problem is formulated to increase the uplink sum-rate of the
network. Authors in [33] considered a dynamic fly-hover-
transmit scheme for the UAV-aided efficient wireless infor-
mation transfer in a cognitive radio network. They deployed
the Markov decision process to solve the UAV’s expected
sum-throughput maximization problem with considering the
battery levels of the UAVs. In [34], a highly reliable and
low latency communication for a cellular-connected UAV
swarm is introduced in which they take advantage of D2D
communication for the UAV swarm to improve the spectral
and energy efficiency.

We have also conducted a comprehensive literature survey
on joint power and trajectory optimization for UAV relays,
and made a detailed comparison with the representative works
of the current art as shown in Table I. As can be seen,
about half of these works only consider single UAV relay,
and only a few pursues trajectory design in the 3D space.
More importantly, most of them do not consider the impact
of interference; among the few works that consider interfer-
ence and jamming (including one of our recent works), only
single interferer is explored, the trajectory design is limited to
1D/2D, and simplified communication scenarios (single relay
or no power control) are considered. In contrast, our proposed
approach is general enough to consider all these scenarios in
itself.

In this work, we consider the application of UAV relays
for a more complicated relay network structure, where the
network consists of multiple ground/terrestrial nodes and aerial
nodes, i.e., UAVs. The direction for the flow of information is
assumed to be time varying and thus unknown a priori. In this
context, all the UAVs and the ground nodes are considered
to be a transceivers. We aim to propose a framework to
enhance the current literature on the subject by incorporating
the existence of interferers. To this end, we utilize the mobility
of UAVs to avoid/suppress the interference from multiple inter-
ferers. For many emerging UAV applications, it is expected
that the UAV network will need to co-exist with existing
communication networks, such as cellular networks. This type
of interference is mainly caused by the transmitters within the
existing network, and hence is unintentional. In contrast, inten-
tional interference coming from the jammers can happen both
in civil and military applications. In this case, the legitimate
UAVs are the relaying UAVs aiming to form a link between
the BS and the UE, while the UAV jammers are assumed
as adversary. The existence of multiple interferers in the 3D
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environment makes our methodology different from the current
literature. We pursue two different design schemes for two
different types of interferers: (/) Unintentional interferer and
(ii) Smart interferer.! Unintentional interferers can be assumed
as primary transmitters in the context of cognitive radio
networks that produce interference unintentionally. In this
case, we study the problem considering two scenarios. First,
we assume that the UAV network and the co-existing network
(which is referred to as the primary network) can cooperate to
mitigate the mutual interference. Second, these two networks
are assumed to be non-cooperative. We consider both the
interference from the primary network to the UAV network and
vice versa. Smart interferers, on the other hand, intentionally
generate interference to interrupt or degrade the communica-
tion quality of the UAV network, e.g., mobile jammers or UAV
users. Here, we consider the problem from the perspective of
both the UAV network and the smart jammers. For the UAV
network, we pursue the problem of joint power allocation and
3D trajectory design for UAVs to maximize the achievable data
rate of the network. Also, for the smart jammers, we obtain
the 3D trajectories with the goal to chase the UAV relays.

A. Summary of Contributions

o We investigate the UAV-assisted relay communication
problem when the UAV network and another co-existing
network cause interference on one another. We formulate
the UAV trajectory design and power allocation as a
single commodity maximum flow problem aiming to
maximize the transmission flow of the network. We also
take one step further and extend our work to the multiple
UE setting. We consider a safety separation constraint for
the UAVs to guarantee a proper flight in the 3D trajectory
design. We address the problem considering two types
of interferers: (i) Unintentional interferer and (ii) Smart
interferer.

e Assuming an unintentional interferer, we address the
3D trajectory design and power allocation scheme while
keeping the interference to the co-existing network below
a pre-defined threshold. To this end, a solution for the
3D trajectory design is proposed resorting to spectral
graph theory, in which the Cheeger constant is deployed.
In addition, the power allocation design is achieved
through the successive convex approximation (SCA)
approach.

o Upon having smart interferers, we approach the problem
from both the UAV network and the smart interferers’
perspectives. We propose a 3D trajectory design for both
the legitimate UAVs and the smart interferers. In this case,
the legitimate UAVs aim to move towards a direction to
evade the interference caused by the smart interferers.
On the other hand, the smart UAV jammers aim to
chase the legitimate UAVs to increase the interference
intentionally and effectively degrade the communication
flow between the BS and the user equipment (UE).

'Throughout the paper, the smart interferer, the intended interferer, and
intentional interferer terms may be used interchangeably.
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Fig. 1. System model for the communications scenario where the desired

UE is also a flying UAV. The interferers are assumed as unintentional fixed
interferers.

The rest of the paper is organized as follows. In Section II,
the system model is presented. In Section III, the joint power
allocation and 3D trajectory design is formulated and solved
for unintentional interferer. Section IV presents the formula-
tion and the solution of the maximum flow problem for the
case of smart interferers. We have extended our scenario to
consider multiple UEs in Section V. Simulation results are
presented in Section VI and finally Section VII concludes the

paper.

II. SYSTEM MODEL

In this section, we describe the communications scenario
and the channel models for the air-to-air (A2A) and air-to-
ground (A2G) links.

A. Communications Scenario

We consider a scenario where a terrestrial BS and a UE
aim to engage in communication. The UE is either on the
ground (e.g., a moving vehicle or pedestrian) or in the air
(e.g., a UAV), as shown in Fig. 1. The channel condition of
the direct link between the BS and the UE is not satisfactory
for acceptable communication performance due to obstacles
located in the line of sight (LoS) area or large distance [35].
To improve the data rate, we consider employing multiple
UAVs relaying the signal between the BS and the UE. We also
take into account the interference caused by the existing
network (e.g., neighboring BSs, small cells, or jammers) on
the UAV network, and describe the corresponding transmitters
as interferers. We term the existing network as the primary
network and its UEs as primary UEs. We assume that the
interferers can be detected together with their transmission
parameters using the existing sensing methods in the literature
(e.g., [36]). Moreover, we assume that the BS, the UE,
the UAVs and the interferers are functioning as both trans-
mitters and receivers, i.e., transceivers, and thus can involve in
both uplink and downlink of their own networks. In addition to
the communication-related applications, another use case for
this scenario is the aerial wireless sensor networks comprised
of UAVs equipped with sensors and radio devices flying over
an area of interest to sense and collect data.

We adopt time-division multiple access (TDMA) to sched-
ule the relaying UAVs so that their transmissions do not collide
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TABLE I
COMPARISON OF THE PROPOSED WORK WITH RELEVANT LITERATURE ON UAV RELAY NETWORKS

Ref. Goal Single/Multi-hop ~ Power Trajectory Interferer Implementation
[13] Maximizing E2E SNR Multi-hop X 2D X Centralized
[14] Minimum SIR maximization Multi-hop X 1D V/(Single) Centralized
[18] Throughput maximization Single-hop v 2D X Centralized
[23] Power minimization Single-hop v 2D X Centralized
[17] Outage probability minimization Single-hop v 3D X Centralized
[24] Maximizing the E2E throughput Multi-hop v 2D X Centralized
[25] Maximizing the minimum rate Single-hop v 2D X Centralized
[26] Maximizing the E2E throughput Multi-hop v 2D X Centralized
[27] Maximizing sum rate Single-hop v 3D X Centralized
[28] Maximizing the min. average rate Single-hop v 2D X Centralized
[29] Maximizing the SNR Single-hop X 2D V/(Single) Centralized
Ours E2E throughput optimization Multi-hop v 3D v(Multiple)  Centralized/Distributed

with each other. Our goal is to obtain the 3D trajectories
of the relaying UAVs along with the transmission powers to
maximize the data rate between the BS and the UE, while
the interference constraint on the primary network is met.
As we consider a dynamic network, i.e., the nodes can move,
designing 3D trajectories is critical since the UAVs should
adaptively reconfigure their locations to avoid the interference
and transmit their information simultaneously, more than just
seeking the final locations to stop and transmit their informa-
tion. It is worth noting that 3D trajectory design alone cannot
guarantee that the interference threshold constraint is met for
the primary network. Thus, a joint 3D trajectory design and
power allocation is necessary to address such challenges.

In our setting, A/ describes the set of N nodes in the
network, which consists of the terrestrial BS (denoted by node
s), the desired UE (denoted by node d), and the relaying
UAVS. In addition, M stands for the set of M interferers.
The location of node ¢ € A in the UAV network is denoted by
r; = (i, i, 2i) €R? such that i € N. Also, for the interferer

nodes, we have r;, = (z,y,, ) € R3, where m € M.

B. A2A and A2G Channel Models

In this section, we discuss the air-to-air (A2A) and the
air-to-ground (A2G) channel models under consideration. The
link between two UAVs (i.e., A2A channel) is modeled using
the LoS model. To model the link between a UAV and
the ground nodes (i.e., A2G and G2A channels) a weighted
average between the LoS model and the NLoS model is used.
In particular, the path-loss between the nodes ¢ and j is defined
as [37], [38]:

1 — ) (Kodig)pes,  if LoS link, 0
" (Kodij)*pnLes,  if NLoS link,

where upos and unios are excessive attenuation factors for
the LoS and the NLoS links, respectively, « is the path-loss
exponent, d; ;,Vi,j is the distance between nodes 7 and j,
K, = 4”7f° with ¢ the speed of light, and f. is the carrier
frequency. As we assume LoS links between the UAVs, the
path-loss model between UAV ¢ and UAV j is given by [37]:

L'{%A = (Kodi ;) tiros-

For the A2G channel, the probability of having an LoS link
is given by [37]-[39]:

LoS 1

T T el ) ?
where 1 and 7 are constants depending on the carrier fre-
quency and the conditions of the environment. In (2), 6;;
denotes the elevation angle between node ¢ and j given by:

97;7]' = @ x sin ! (%) ,

s i,

where Az; ; is the difference in height between node ¢ and
node j. Consequently, the probability of NLoS link is given
by PEJ-LOS =1- Pi%;-’s. The average path-loss of the A2G link
from node ¢ to the node j is then obtained as:

L0 = (Kodi j)* [PFS® X puLes + PRy X fiNLos)-

Based on this, the channel power gain between a UAV i
and a ground/aerial node j is given by:

AR A2A link,
hij = J 3)
W’ A2G link.
ij
We assume perfect channel reciprocity for all the links under
consideration, i.e., h;; = hj;, Vi, j. We also define the

(KS pos) ™, A2A link,
(K2[PES % pros + PN x pingos]) ™!, A2G link,

ij =
which will be used later.

C. Graph Representation of the Network

We assume that the interference coming from the interferers
is much stronger than the noise. We therefore take into
account the signal-to-interference ratio (SIR) instead of signal-
to-interference-plus-noise ratio (SINR), which is defined at
node j for the transmitted signal from node 7 as follows:

P hij

> Phhm;’
meM

SIR; ; = “4)

where P; is the transmit power of UAV ¢, and P;,]L is the
transmit power of interferer m € M in the primary network.
We further define P = [P1,..., Py]and P/ = [P{,... P{)].
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We first define a flow graph G = (N, £), in which £ denotes
the set of available edges in the network and each edge
has the capacity a; ;,Vi,j. We assume a line topology for
the multi-hop relay network as in [13] since the major data
exchange happens between neighboring UAVs, not between
the UAVs away by more than a single hop. Note that all the
UAV relays are involved in data transmission from the BS to
the UE. The “route” in our setting solely means the order in
which the UAVs pass data from one to another, e.g., BS —
UAV 1 — UAV 2 — ...— UAV N — UE, which we assumed
to be known as in the literature concerning multi-hop UAV
relaying [13], [14], [17], [18], [23]-[29]. We formulate the data
communication in this single-source and single-destination
network as a single-commodity maximum flow problem, for
which the task is to maximize the flow between the BS and
the desired UE. It is worth noting that our proposed framework
is general enough to accommodate general network topology
and other network flow problems. The average transmission
rate is defined as the arithmetic mean of the data rates in
the forward and backward directions for each pair of nodes.
The generalized adjacency matrix is accordingly defined as
A= [am]f{\;j}:l, where a; ; is the average transmission rate
between nodes ¢ and j, given by:

ij =

1
5B (10ga (1SR, j)+log, (1SIR,..) ), i), )

0, =7,

with B the transmission bandwidth of the network. Note
that SIR;; is, in general, not equal to SIR;;, in part,
due to the unbalanced deployment of interferer. We fur-
ther define the generalized degree matrix of the network
as D = diag{0,...,0n}, where 5; = Z{j‘#i} a; ;.
Finally, the Laplacian matrix of the network graph is given
by L=D — A. In the following two sections, we formulate
the 3D trajectory and power allocation problem under two
different types of interferers. In particular, we consider unin-
tentional and intentional (i.e., smart) interferers in sequence,
and propose a solution for each case.

III. UNINTENTIONAL INTERFERER

We first consider the unintentional interference for which the
primary role of the interferer is not generating interference in
our UAV-assisted network on purpose, but rather transmitting
data to its desired UEs, as shown in Fig. 1. This type of
interference is mainly caused by the transmitters within the
existing network (e.g., neighbouring BSs, small cells), and
hence is unintentional. This interferer can be static or mobile.

Since the UAVs are co-existing with the primary net-
work, they must satisfy the interference constraint at primary
receivers as well. We assume that the interferers (which can
serve as BSs in primary network) are serving a set of primary
UEs, which their quality of service (QoS) should be satisfied.
Moreover, the transmission quality from primary UEs to the
interferers in uplink should be maintained. We denote the set
of all primary UEs in the primary network by U/, where their
locations are given by r,, = (2, Yu, 2,) € U? with u €U. The
interferers and the UAV network can be either cooperative
or non-cooperative. In the case of cooperation, the primary
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transmitters can adjust their transmission powers to avoid
generating excessive interference to the UAV network while
satisfying their user’s QoS. In real scenarios, the coopera-
tion assumption might not be able to be satisfied properly;
however, it can provide some insights on the upper bound
of the performance of the UAV network. In the absence of
cooperation, the interferers in the primary network do not
adjust their transmission powers. The SIR at each primary
UE u € U for the transmitted signal from transmitter m € M
while UAV : transmits at the same time is given by
J
SIR,, 00 = Py o

P hi o+ >
m’eM,m’'#m

(6)

)
P o

where the first term in the denominator is the interference
from the UAV transmitting at the same time slot, and the sec-
ond term is the interference from other primary BSs. Thus,
the transmission rate between primary UE u and interferer m
while the UAV ¢ is transmitting at the same time is given by:
Ry u,i = Blogy(1+SIR,, 4 ;). In order to guarantee the QoS
of the primary UEs, their transmission rates should be larger
than a predefined threshold R'".

A. Optimization Problem Formulation

We formulate the optimization problem, where the goal is
to maximize the data flow f; between the terrestrial BS and
the desired UE with the help of relaying UAVs in the presence
of interferers. The flow of the network can be assumed as a
measure of average uplink/downlink transmission capability
of the UAV network. For each link (i,j) € £, f; ; and f;, are
the amount of flows going from ¢ to j and coming from j
to 4, respectively. The desired optimization problem for the
cooperative case is therefore given as follows [40], [41]:

max fs (7)
PP’ {ri}izs,a,
fss fi,520, Vi,j

N
s.t. Z (fij — fji) = fsDi, VieN, (7a)
7j=1
fij+ fii <aij, Vi,jeN, (7b)
dij > d™, Vi, jeN, (7c)
Pihim < I Vi€ N,m e M, (7d)
P, < Puax, ViEN, (7e)
Rmwi>R™ VYmeMuclicN, (If)

where D; is equal to +1 for the source (: = s) to represent
that the flow only goes out from the source, and it is equal
to —1 for the destination (i = d) as the sink absorbs all
the incoming flow. For the other nodes, the corresponding
D;’s are set to 0 to preserve balanced flows. The loca-
tion of node i € N in the UAV network is denoted by
r; = (z:,vi,2) €ER? such that i e N, R = [ry,...,rn], P
is the maximum transmission power of each UAV, and I*
represents the predefined interference threshold of the m-th
interferer. In addition, constraint (7a) is due to the assumption
of balanced flows for all the nodes except the source and
the destination. Constraint (7b) ensures that the two-way flow
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of each link is less than the maximum capacity. Constraint
(7c) is considered to guarantee a safety separation between
the UAVS and other nodes in the UAV network (i.e., the BS,
the desired UE, or the other UAVs) in order to have a proper
flight performance [42], where d** is the safe distance for the
proper flight of UAVs. Moreover, constraint (7d) satisfies the
condition that the interference generated by each UAV at any
interferer m is always less than a predefined threshold I72*.
Constraint (7e) is imposed to limit the transmission powers of
the UAVs. Constraint (7f) is a QoS service consideration for
the UEs in the primary network which guarantees the downlink
QoS of the primary users. By imposing this condition and
adjusting the transmission powers of the primary network
transmitters (which are interferers from the UAV network
perspective), the primary network avoids generating stronger
interference on the UAV network beyond satisfying the QoS
constraints. It is worth noting that with fixed locations for
UAVs, solely optimizing the UAV transmission powers leads
to a worse performance of the UAV relay network and vice
versa. Thus, joint power allocation and 3D trajectory design is
necessary to obtain the satisfactory performance for both net-
works. It is worth noting that in the case of non-cooperation,
the optimization problem (7) is solved only with respect to the
transmit power of the UAV P and their locations {r;}ixs d
while the interferer’s transmit power P is determined by the
primary network. Thus, the interferers may generate stronger
interference which degrades the maximum flow of the UAV
networks.

In the following, we to decompose the overall optimiza-
tion of (7) into two sub-problems using the alternating-
optimization approach [43]. In the proposed strategy, we first
solve the 3D trajectory optimization for a given set of
transmission powers (i.e., P;,Vi € N), and then the power
allocation problem is solved for the given the locations of
UAVs computed beforehand. These recursions continue till a
satisfactory level of performance is obtained.

B. 3D Trajectory Optimization

We first attempt to solve the optimization problem in (7)
to obtain the 3D trajectories of the UAVs assuming a given
initial set of transmission powers. The optimization problem
therefore reduces to a maximum flow problem with respect to
the locations, which is given by:

max fs
{l‘i }i;ﬁs,d;
fss fi,520, Vi j
s.t. (7a), (7b), (7c). (8)

Note that the maximum flow problem in (8) can be solved
for given UAV transmission powers using the well-known
max-flow-min-cut theorem [44]. Given the locations of the
UAVs, the achievable maximum flow of the network is equal
to the single flow min-cut of the underlying network given by:

min

fo= omin Y i, ©)
(Swe€SwaSt, S Tes

where s denotes the source and d is the destination, and
S C {1,...,N} denotes a subset of nodes in the network
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graph. The maximum flow in (9) can be obtained by the
Ford-Fulkerson algorithm [44]. The challenging task is to
design the trajectories (i.e., moving directions) of each UAV in
the 3D space so as to maximize the information flow between
the BS and the desired UE. The constraints (7a) and (7b) are
implicitly satisfied by deploying the Ford-Fulkerson algorithm.
Since the proposed solution for the trajectory design problem
requires an unconstrained optimization, we further incorporate
(7c) into the definition of the weights of the graphs. This is
carried out via adding a penalty term to the edge capacity to
define the modified edge capacities as follows:

i =ai;—x Y uldjr/dae), Vi, j,
keN

(10)

where x stands for the importance of this safety precaution,

and wu(.) is the smoothed step function given by [45]:
exp(—+y — log yo)

1+ exp(—ry — logyo)’

uly) = ¢ (1)
where yq is an arbitrarily small positive number, and ¢ and &
are design parameters. The parameter d**® controls the min-
imum distance between any two nodes in the UAV networks
to avoid collision. For instance, if the two UAVs ¢ and j get
too close to each other, the separation d; ; becomes much less
than d**, which decreases the ratio d;, j/ d* and forces the
penalty u(d; ;/d*®) to increase dramatically. The modified
edge capacity therefore decreases significantly, which is an
undesired outcome in terms of our primary goal of maximizing
the flow. As a result, our 3D trajectory design methodology
will automatically avoid this unfavorable situation. Note that
the parameters of the smoothed step function should be chosen
properly so that the safety constraint is satisfied.

Although the proposed methods in the literature concerning
UAV trajectory design are useful, they cannot be applied
to our study for 3D trajectory design for a general setting
with multi-hop relays and multiple interferers to optimize the
maximum flow of a general graph. As can be seen in (4),
the SIR expression is non-convex with respect to the locations
of the UAVs [13], [14], which makes the maximum flow
problem complicated to solve. In order to move the UAV
to achieve the maximum flow of the network, we use Cheeger
constant or isoperimetric number of the graph, which provides
a numerical measure on how well-connected our UAV network
is [46]. Assuming that £=D~Y/2LD~1/2 is the normalized
Laplacian matrix, the Cheeger constant is given as [46]

i Yiesjes i

s min{|S|,|S|}’
where S CN is a subset of the nodes that contains the
source but not the destination, S=A —S, and |S| is S
cardinality. Note that the original definition of the Cheeger
constant h(L) considers all the nodes in the network with
equal importance. Since the maximum flow of the network for
a given source-destination pair depends on the individual link
capacities, the weighted the Cheeger constant is a promising
solution. In particular, the original Cheeger constant blindly
aims at improving the weakest link in the network and may
fail to emphasize the desired flow associated with a particular

h(C) = (12)
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source-destination pair. The weighted Cheeger constant is
given as [45]:

Qi
hw (L) = min Zzes,jes J (13)

s" min{|S|w, |S|w}’
where |S|w = > ,cgw; is the weighted cardinality, and
w; > 0 is the weight of node 7. The weighted Laplacian matrix
is then given by:

Lw = W71/2£W71/2,

where W =diag{wj, ..., wy}. Usually, the Cheeger constant
is difficult to compute. To address this issue, the weighted
algebraic connectivity A2(Lw ) can be considered as a suitable
alternative, which is given by:

(Lwv, V)

W)= vov)
It is shown in [45] that the following weighted Cheeger’s
inequalities hold:

Ao (Lw)/2 < hw(Lw) < v/ 20max 2 (Lw)/Wiin ,  (16)

where 0o« is the maximum node degree, and wy,;, = min; w;.
As can be seen, the larger values of \o(Lw) correspond to
larger values of the lower bound of the weighted Cheeger
constant. The UAVs can therefore adjust their geometric
locations in order to maximize A2(Lw), and hence hw (L).

We move each UAV along the spatial gradient of the
weighted algebraic connectivity Ao(Lw ). Given the instanta-
neous location of the ith UAV, its spatial gradient along x-axis
is given as follows:

(14)

A2 (L (15)

min
v£0,v I W1/21

Da(Lw)  1OLw) ;o 0] v [or
ox; N Ox x = Z Z /W, «/Wq | Ox
g g p=1¢=1 v /Wq tdp.a
l vl vl ]28&
— Z p q P,4q (17)
{p,q:p~q} Vi \/w_ Oz’

where v,{ is the kth entry of v/ with ke {p,q}, v/ is
the Fiedler vector which is the eigenvector corresponding to
the second smallest eigenvalue A2(Lw), and p~ ¢ means
that the nodes p and ¢ are connected. In (17), d“"/q can be
computed as "
0dp 4 _B [ 1

1+SIR,, ,

OSIR, 1
dzr;  1+SIR,,

—x Z dq, /dsafe

keN

which is 0 for p=gq, or i ¢ {p, ¢}. The Fiedler vector can be
computed in a distributed manner as well [47]. The partial
derivative of SIR with respect to x; in (18) can be computed
using (4) together with the geometrical relations between z;
and the channel gain h;; presented in Section II-B. After
obtaining the gradient [a’g;(f(t")"), a/gz%;v)’ 8’};%;")? at the
current time slot ¢, the UAVs move along the directions « and
y respectively by distances:

dSIR,
8$i
— x4

dsafe d ’

(18)

dx(t) = vp,. cos(8) sin(¢)dt, (19)
dy(t) = vp,.sin(0) sin(¢p)dt, (20)
dz(t) = vy, cos(@)dt, (21
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Algorithm 1 DC-Based SCA Algorithm for Power Allocation
1: Initialization: Iteration number ¢ := 1, locations r; ,Vi €
N, feasible initial value for P;[0], Vi € N and P”[0].

2: Calculate the value of a; ;(P[0], P;[0], P7[0]), Vi € N

using (31).
3: while [n[¢] —n[¢ —1]| >¢ do
4: Compute the optimal power allocation P;[{], Vi € N
and P7[(] in (36) using CVX [48].
s:  Compute a; ;(P;[¢), P;[¢],P/[¢]), Vi € N using (31).
N R |
7: end while

where wv,, is the moving speed of the UAV; 6 =
arctan (dgz(ft‘;’)/a)‘2(£v")); ¢ = arctan (Mfw) dt is

the length of the time slot. The update in the location of the
ith UAV is then given as

x;i(t) = z;(t — 1) + dx(t), (22)
yi(t) =yt — 1) + dy(?), (23)
Zi(t) = Zi(t — 1) + dZ(t), (24)

where t stands for the discrete time, or, equivalently, the iter-
ation number.

C. Power Allocation Optimization

We now focus on the power allocation problem, and solve
the optimization problem in (7) to find the optimal power
allocation for a given set of the UAV locations. In this
case, we consider the unintentional interferer generating the
unwanted interference. We assume that the primary network
and the UAV network can cooperate to mitigate the mutual
interference. The UAVs try to mitigate the unwanted interfer-
ence between the primary network and the UAV network to
improve the data flow between the source and the destination.
The corresponding optimization is given by:

max fs
PP’ fs

s.t. (7a), (7b), (7¢), (7d), (7e), (76). (25)

In this case, the maximum data exchange of the network
is determined by the link with the minimum edge capacity.
Hence, as we try to maximize the flow of the network,
we equivalently maximize the data exchange of the hop with
the minimum instantaneous rate. More specifically, the power
allocation problem can be equivalently given by

max mln am
PP’ Vij

s.t. (7d), (7e), (7). (26)

In order to have a more tractable problem, (26) can be
reformulated as follows:

max 7 (27)
PP’
st. 0<n< @5, Vimja

(7d), (7e), (71), (27a)
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where 7 is an auxiliary variable employed to facilitate the
optimization. In this case, the objective is an affine function.
However, the constraint on a; ; is not convex. a; ;, V1, j, can
be recast as the difference of two concave functions, given by
ai j(Pi, Pj,P7) = v(P;, P;,P’) —r; ;(P’), where

1
v(P;, P, P7) = 53 log, (Pi hij + Z P/, hm,,j>
m’'eM
+ 10g2 <Pj h]"i -+ Z PT}IL/ hmlﬂ-) ‘| ,  (28)
m’'eM
and
rij(P7)
1
- 53{1%( S P hm/,j) +1og2( S Bl hm)}

m’eM m/eM

(29)

In general, the difference of two concave functions is not
a concave one [49]. In order to convexify this function at
iteration ¢, we deploy first-order Taylor expansion to approxi-
mate 7; j(P”) around a given point from the previous iteration
P/[¢ —1] as:
75 (P7)
~ 11 (PI[C=1]) + (Vri; (P[0 = 1)) T (P — PI[¢ ~ 1]).
(30)
Thus, we have the approximation of a; ;(P;, P;,P”) as:
a,; (P, Pj,P7) =v(P;, P;,P7) — 7 ;(P7).  (31)
Using this approximation, it can be verified that
ai ;(Pi, P;j,P7) is a concave function. A similar approxima-
tion can be adopted for the constraint (7f) to make it a convex

constraint as (7f). To do this, we can re-write the rate function
in constraint (7f) as:

Rm,,u,'L(P'L'a PJ) = B(logQ (Pz hi,u + Z P]J hj,u)

m’eM

m/EMz,:m’;ém

As can be seen in (32), Ry, ,i(P;, P7) is the difference of

two concave functions. Since R, y.;(P;, P’ ) is on the right

hand side of the inequality in constraint (7f), it should be a

concave function to have a convex optimization problem [50].

However, the difference of two concave functions is not

necessarily concave. Hence, we deploy the first order Taylor

expansion to approximate the second concave function in (32),
which results in ]A%m}u,i(Pi, P7) given by:

~ logy (Piho + p/ h)) (32)

Rmm,i(Piv PJ) = B<10g2 (Pz hi,u + Z P';y]]/ hm’,u)
m’eM

- gm,,u,i(pi)) ’ (33)

gm,u,i(pi) = gm,u,i(pi[e - 1])
+ (Vgmui(Pilt — 1) (pi — pill — 1),
(34)
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where gp.u.i(P) ~ log, (Pi Riw + 3 P/, hmgu).
m/eM,m’#m
For notation simplicity, we consider p; = [P;, P’]. Let

pi[¢—1] denote the starting point of Taylor expansion obtained
from previous iteration. Deploying Taylor expansion in each
iteration, the approximated constraint is written as:

(7f) : R®™ < Ry wi(P, P7), Yme MyueR,ieN. (35)

Thus, the optimization problem in (27) can be recast as:

max 7 (36)
PP’
s.t. 0< n< di7j7 Vi,j,

(7d), (7e), (7f). (36a)

After substituting the approximated versions of the con-
straints, in each iteration ¢, the above optimization problem is
now convex, which can be solved efficiently using the interior
point method [50]. This procedure, called successive convex
approximation (SCA) [51], is described in Algorithm 1, which
generates a sequence of improved feasible points that converge
to at least a local optimal point (P* P7/*) [52]. If the
primary network does not cooperate with the UAV network,
the optimization can be written with respect to the UAVs’
transmit powers while the transmit powers of the existing
network are fixed.

D. The Alternating Optimization Algorithm

1) Algorithm Description: Given the transmission powers of
the UAVs, the trajectory design problem can be solved based
on the Cheeger constant in Section III-B. Given the locations
of the UAVs, the power allocation can be obtained using the
SCA method as in Algorithm 1 discussed in Section III-C.
At each step of 3D trajectory design, we need to make
sure that the interference threshold constraint is met in the
primary network. Thus, at each iteration of the 3D trajectory
design, we compute new set of transmit powers for UAVs.
The overall algorithm considering both the 3D trajectory and
power allocation optimization is summarized in Algorithm 2.

2) Convergence Analysis: In this part, we analyze the con-
vergence of each sub-problem considered in Algorithm 2. The
power allocation optimization (Algorithm 1) is in the format
of difference of concave functions, which is not necessarily
concave. Thus, the global optimal solution can be obtained
only using exhaustive search. Nonetheless, based on our
developed DC programming method in Algorithm 1, we can
assure that our proposed power allocation solution converges
to a local optimal point.

Proposition 1: Algorithm 1 is guaranteed to provide a
monotonically increasing sequence of improved solutions over
the iterations {1 }¢>0 which converge to a local optimal point
of the problem (36).

Proof: At each iteration /¢, the proposed SCA method
approximates the non-convex functions in the optimization
problem using the first order Taylor expansion. As in (30),
since r; ;(P”) is a concave function, its gradient is also its
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Algorithm 2 Proposed Alternating-Optimization Algorithm
Initialization: Locations r; and power allocation P; for ith
UAV for Vi € N'U M, error tolerance &

t— 1, fo(=1) « —o0, fs(0) <0
while |fs(t—{1) — fs(t—=2)|>¢ do

OXa(Lw) ONa(Lw) Oa(Lw)
Compute O;L(t")", {fyi(t")", ai,i(tV)V by (17).

Update r;(t) in R? as in (22), (23), (24).
Compute optimal P and P using SCA algorithm given
in Algorithm 1.
Compute f,(¢) by Ford-Fulkerson algorithm [44]
t—t+4+1
end while

super-gradient [53], and thus we have:

ri;(P7)
<1 (PI[0=1]) + (Vi ; (P[0 = 1)), P — P70 - 1)).
(37

This provides a proper approximation that makes (36) a
lower bound maximization problem for the non-convex prob-
lem given in (27). Therefore, the proposed method provides a
sequence of improved solutions over the iterations. Moreover,
the constraint set of the optimization problem (36) is compact.
As a result, according to Cauchy theorem [53], the sequence
{ne}e>0 always converges to a local optimal point. O

As to the trajectory design sub-problem, we maximize the
upper bound of the Cheeger constant which is the algebraic
connectivity of the network graph. Since we deploy the gradi-
ent descent method for the optimization [54], it converges to a
local optimum of the second smallest eigenvalue. In the sim-
ulation results, we empirically demonstrate that our proposed
algorithm continuously moves toward increasing the network
flow of the network until convergence.

3) Computational Complexity: We analyze the computa-
tional complexity of the proposed alternating optimization
solution for the problem in (7). Algorithm 2 includes two
sub-problems based on the DC programming and Cheeger
constant optimization approaches, the complexity of each of
which is discussed below.

Regarding the DC programming approach described in
Algorithm 1, since (36) is a convex problem, we deploy the
CVX optimization toolbox [55] with interior point method [50]
at each iteration ¢. The interior point method requires
log(N./t°p)/log(¢) number of iterations (Newton steps) to
solve a convex optimization problem, where N, = N? +
NM + N 4+ NMU is the total number of constraints in (36),
t® > 0 is the initial point for approximating the indicator
function in the barrier method, 0 < p < 1 is the stopping
criterion and ¢ > 1 is used to update the accuracy of
the interior point [56]-[58]. According to [50], the values
of 10 to 20 work well for ¢ and a proper value for t° can
be 2. Regarding the trajectory design sub-problem, the com-
putational complexity is dominated by the computation of
the Fiedler vector required in (17). The Fielder vector can
be obtained with a worst-case computational complexity of
O(N?) [59]. The overall complexity of the Algorithm 2 is
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given by O (NT (Np% + N3)), where Np and
Nrp are the number of required iterations for convergence of
Algorithm 1 and 2, respectively.

Alternatively, the Fiedler vector can be computed in a
distribute manner at the UAVs, where each UAV computes
its associated element of the Fiedler vector. This can be
achieved efficiently via the method proposed in [47], with
a worst-case computational complexity of ¢ + 2|Ny| floating
point operations (flops) per iteration at each UAV, where N}
denotes the set of neighboring nodes of UAV k and c is some
constant. This distributed method is guaranteed to converge
to the Fiedler vector, and requires each UAV to transmit two
scalars to each of its neighbors during each iteration of the
algorithm, which does not impose significant communication
burden.

IV. SMART INTERFERER

In this section, we assume that smart interferers can pur-
posefully move in order to decrease the flow of the UAV
network (see Fig. 2). The moving smart interferers can be
assumed as other UAVs trying to interrupt or degrade the
quality of the communication quality of the legitimate UAVs.
In this case, the UAVs act selfishly to improve their own
transmission quality. This implies that the interference on the
co-existing network, i.e., the smart jammer UAVs, is redundant
and can be dropped. We consider the problem from both
the UAV network and the smart interferer’s perspectives. The
UAVs in the UAV network try to reconfigure their 3D locations
to evade the interference caused by the smart interferers, while
the smart interferers’ goal is to chase the UAVs to decrease the
path-loss effect and hence increase the intended interference
to the UAV network. In this case, the UAVs can transmit with
their maximum powers. Hence, the optimization problem only
comprises the trajectory design given by:

max fs

(33)
fss fi,520, Vi,j, {ri}tizts,a

N
s.L. Z(fi,j — fii) = fsDi, YieN, (38a)
j=1

fij+ fii <aij, Vi,jeN.

(38b)

In the following, we address the problem from the perspec-
tives of both the UAV network and the smart jammers.

A. From the UAV Network Perspective

In the UAV network, the UAVs try to evade the smart
interferers’ interference. For the power allocation, since there
are no constraints on the interference of the UAVs to smart
jammers, the best strategy is to transmit with full power. In
the 3D trajectory design, the UAVs move toward the spatial
gradients of the algebraic connectivity to maximize the flow
of the network as in (17).

B. From the Smart Interferers’ Perspective

Here, we consider the problem from the perspective of
moving smart interferers which can be assumed as other UAVs
aiming at decreasing the flow of the network. To this end,
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Fig. 2. System model for the communications scenario where the interferer
is a smart moving UAV.

we assume that the smart UAVs transmit with their full power
and move towards the opposite direction of the spatial gradient
of the algebraic connectivity of the UAV network weighted
Laplacian matrix. Thus, the moving direction for the moving
smart interferers is given by:

Oollw) __ rollw) ;g bty [OL

7 T
ox, oz, = g
(39)
f F2
{p,¢:p~q} LV Wp VW OTin
(40)

By moving along the opposite direction of spatial gradient
of the second smallest eigenvalue of the weighted Laplacian
matrix of the UAV network, the smart interferers can decrease
the maximum flow between the BS and the UE. The partial
derivative of the SIR between two node i and j with respect to

J ¥'m € M, can be obtained similar to (18). We consider a
parameter 7 so as to adjust the level of smartness of the smart
UAV. That means the smart UAV interferer can move every
7 iterations. Thus, by decreasing the value of 7 the moving
interferer will be smarter as it can chase the relay UAVs faster.
It should be noted that we consider the static interferer as naive
interferer in this scenario.

V. SERVING MULTIPLE UES: A MULTI-COMMODITY
FLOW APPROACH

Although the models considered in Section III and
Section IV are common in the literature as shown in Table I,
where the UAVs are utilized to serve only one UE, we take one
step further and extend our work to the multiple UE setting.
In this case, we formulate the problem as a multi-commodity
flow problem in which each UAV may be deployed in the paths
of data flows from multiple BSs to multiple UEs. We mainly
investigate the 3D trajectory design in this scenario. Due to the
fact that UAVs may serve in data relaying for multiple UEs,
the power allocation problem for the case of unintentional
interferers is highly non-trivial and obtaining the optimal
solution is very challenging. Thus, we will resort to a heuristic
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method to tackle the power allocation. For the case of smart
interferers, all the nodes transmit with full power in both sides
in the arms race.

A. 3D Trajectory Design

We consider a scenario where multiple BSs in set B serve
K UEs in set K. Let N denote the number of BSs, UEs,
and UAVs in the network. We extend our single commodity
flow formulation to the multi-commodity flow problem in
this setting [41], [60]. In our formulation, we assume K
commodities (data flows) each having its own source v,, € B,
destination vy, € K, and demand D) for 1 < k < K.
It is worth noting that the sources or destinations can be the
same for some flows. We define the maximum concurrent
flow as the maximum f,, so that f,, D) units of data flow
k, 1 < k < K, can be transmitted simultaneously without
exceeding the edge capacity. More specifically, the multi-
commodity flow problem can be written as follows:

fm

max

(41)
fms fi(ﬁ>7 Voiygik, {ritizs.a

N
st 3 (15 = £7) = 1D, vick @a)

J=1

Z (f(k>

f()>0 Vi, j, k

f8) <aiy Vi @b

(41c)

where f ) and f (%) are the amount of data flow k from node i

to node j and that from node j to node 7, respectively. D§k) is
introduced to keep flows balanced, which is equal to +D*) or
— D™ if node i is the source or the destination for data flow k,
respectively, and O in all other cases. A typical choice for the
equally important commodities is D*) = 1 /K. The maximum
flow of the multi-commodity problem can be obtained using
the minimum multicut C,,, as in [60]:

2ics,jes Y
5 Y ker(sy P®’
€ S and vy, € S, or

Cnm = mm (42)

where K(S) = {k

vs, € S and vg, € S}.
Similar to the single commodity case, the UAVs can max-

Usy,

imize Ay (Egé)) to design their trajectories, where W =
diag{wlv"'va}, W; Zk 1( (k))l P with w(k) the

weight assignment for ﬂow k atnode i, and p € [0,1) a d651gn
parameter. The weighted Laplacian matrix is given by L5, 5
W1/2LW~—1/2 [45]. It is worth noting that the above for-
mulations is general enough to cover both the multi-cast and
multi-uni-cast scenarios. In the multi-cast scenario, there exists
one BS (source) and multiple UEs (destinations), while in the
multi-uni-cast scenario, there are multiple BS (source) and
UE (destination) pairs each transmitting their own data.

B. Power Allocation for Unintentional Interferers

For the power allocation, we consider deploying the same
transmit powers at the UAVs P; = P,,Vi € N. To obtain
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TABLE II

SIMULATION PARAMETERS
Parameter Value
Path-loss exponent 2
Maximum transmit power of the UAVs (Ppax) 20dBm
Transmit power of the interferers (P;),, Vm € M) 30dBm
Bandwidth (B) 10KHz
Interference threshold (I, Vm € M) [-50, -10] dBm

Safety distance (d%€) Sm
Carrier frequency (f;) 2 GHz
Smoothed step-function parameters (<, k, yo) 1,10,1073
Penalty term coefficient (y) 10*
Additional path loss to free space for LoS (uyos) 3dB
Additional path loss to free space for NLoS (unros) 23 dB

P, in each iteration t of trajectory adaptation, we find
the maximum power that satisfies the feasibility constraints
(7d), (7f) concerning the interference limit and QoS require-
ment on the primary network. To this end, we deploy binary
search in the interval P, € [0, Ppn.] with quantization step
[, and successively check those feasibility conditions until
convergence, which is always achieved with time complexity
of O(logy([Pmax/0])).- The more general power allocation
problem will be left as a future work.

VI. SIMULATION RESULTS

In this section, we present numerical results to evaluate the
performance of the proposed joint 3D trajectory and power
allocation optimization. In our simulation environment, the BS
and the UE are assumed to be located at (0,0,hBS) and
(200, 0, hVE), respectively, in R?® with hBS=15m and the
unintentional interferers are located randomly in zy—plane
with fixed altitude of 2™ =15m and I™* = —25dBm, unless
otherwise stated. The list of simulation parameters are given
in Table II. In the figures for trajectories of the UAVs, the black
dots indicate the final locations of the UAVs. We choose the
maximum speed of v,,, = 5 m/s for the UAVs. We assume the
communications occurs in an urban environment with ¢ =
11.95 and 1 = 0.14 at 2GHz carrier frequency. We consider
10 primary UEs with QoS requirement of 1 bits/s/Hz.

In practice, the perfect estimation of the locations of the
UAVs may not be feasible on both UAV network side and
interferer’s side. Thus, it is also important to examine how our
proposed method performs in the presence of the localization
errors. Here, we define § as the localization error from the
perfect location of the nodes as

galy_ (%
d7,7]

x 100,

where d; j and d; ; are the estimated and true distances for two
given nodes ¢ and j, respectively. In order to obtain samples I
with 0 percent localization error around point r;, we generate
uniform samples on a sphere with the center of r; and radius
of d; j x 6/100. It is worth noting that our proposed approach
only requires the distance between the nodes and the path-
loss information. In all the simulations related to localiza-
tion error, the results are averaged over 1000 Monte Carlo
runs.
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Fig. 3. Performance of the proposed approach for a single UE with 8§ UAVs
and 2 interferers (a) Convergence of the proposed alternating optimization
problem. (b) 3D trajectories of the UAVs when I™** = —25 dBm (3D view).

A. Unintentional Interferer

1) Convergence of the Proposed Algorithm: In Fig. 3a,
the maximum flow of the network is depicted versus iterations,
assuming 8 UAVs, 2 interferers, and a UE on the ground.
Each iteration is composed of solving one power allocation
optimization problem and one trajectory design. The results for
different values of I™?*, which determines the maximum value
of tolerable interference from the UAV network on the primary
network. As can be seen, the larger the /™2, the larger data
flow can be achieved between the BS and the UE since the
UAVs can transmit with more powers. In this figure, we show
the maximum flow of the network for 2D and 3D trajectory
design approaches. For the zy—plane 2D trajectory design,
we assume that each UAV can move in zy—plane and it
cannot move in z direction (its height is assumed to be fixed
at 20 m). It can be seen that both algorithms converge in
finite number of iterations. However, 3D trajectory design
significantly outperforms the 2D trajectory design and can
improves the maximum flow of the network considerably. This
performance improvement is due to the fact that 3D space
has more degrees of freedom as compared to 2D space. All
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the results presented in Fig. 3a are obtained using weighted
Cheeger constant. In Fig. 3b, the 3D trajectories of the UAVs
are shown. We observe that the relaying UAVs adjust their
locations in 3D space so as to evade from the interferers, and
therefore improve the desired data flow between the BS and
the UE.2

2) Impact of Weighted Cheeger Constant: Here, we investi-
gate the impact of using weighted version of Cheeger constant
on the desired data flow and 3D trajectories. In Fig. 4a,
we depict the maximum flow for the conventional Cheeger
constant and weighted Cheeger constant with assuming
6 UAVs and one interferer. We consider different localization
error values for the locations of the UAVs. We observe that the
weighted version is significantly superior to the conventional
one. As shown, even with localization error, the proposed
approach can improve the maximum flow of the network.
We also depict the corresponding 3D UAV trajectories

2We assume that the UAVs are able to move freely to any locations in the
air as long as they consider the safety distance from each other. In practice,
there may be further constraints on the initial or final locations of the UAVs,
which can be incorporated in our framework as well.
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in Fig. 4b. Interestingly, weighted Cheeger constant results
in 3D trajectories ending up with final UAV locations closer
to both the BS and UE. This might be due to the fact that
the bottleneck of the network flow occurs at the closer links
to the BS and the UE, considering the close proximity of
the interferer located on the ground. The weighted Cheeger
constant therefore adjusts the final UAV locations to make
them as close to the BS and UE as possible.
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(a) Comparison of the throughout of the network for weighted/unweighted
Cheeger constant (b) Top view trajectories of the UAVs.

3) Interference Avoidance Capability: In Fig. 5, we depict
the maximum flow against the interference threshold I™?#*
for the UE altitude of 2YE =25m, which may well represent
a low-flying UAV as the desired UE. We consider 8 UAVs
and one interferer on the ground. We observe that when the
relaying UAVs trajectories are optimized in 2D space only (i.e.,
in xy—, xz—, or yz— planes), their performances are always
inferior to that of the 3D trajectory optimization. It can be
seen that if the interferer transmit power is optimized, the UAV
network performance can be further improved since the inter-
ferer does not generate stronger interference at UAV network
beyond satisfying the QoS constraint. Moreover, in the case
of non-cooperation it may not be practical for UAVs to obtain
the positions of unintentional interferers perfectly. Thus, we
provide the performance for a 10 percent localization error
with confidence interval of 95%. As can be seen, although
the maximum flow of the UAV degrades due to imperfect
localization, it still provides satisfying performance compared
to the 2D trajectory design. One other aspect of comparison
between 2D and 3D trajectory design is energy consumption
for traversing the trajectory. It can be seen that in case
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of 3D trajectory design the UAVs traverse longer trajectories
ending up with better performance in improving the maximum
flow of the network, while it increases the moving energy
consumption.

4) Impact of the UE Altitude: In this section, our goal is
to evaluate the impact of the height of the UE on maxi-
mum flow of the UAV network. To do so, we assume that
the UE (destination) can also move in the direction z-axis.
We consider 10 interferers and 8 UAVs in this scenario.
In Fig. 6a, we present the maximum flow along with increasing
the height of the UE. Interestingly, maximum flow improves
with increasing altitude until hYE =110 m and decreases after
that. This implies that there is an optimal height for the
location of the UE that can be achieved. To illustrate this
situation, we depict the 3D trajectories of all the 8 UAVs
in Fig. 6b for the UE altitudes of h%E = {15,110} m. Further
increasing the altitude beyond hYF = 110m may decrease the
maximum flow due to the increasing path loss to the source,
which becomes more dominant over the interference from
interferers (even though the interference is also decreasing due
to the increasing distance).
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where decreasing 7 corresponds to a smarter interferer. (b) 3D trajectories of
relaying UAVs and the smart interferers (7 = 2).

5) Multiple UEs: The proposed approach can be extended
to the case of multiple UEs. In this scenario, we consider
both multi-cast and multi-cast scenarios. For the case of multi-
cast scenario, we consider 1 BS, 3 UEs and 4 interferers.
The BS transmits the flow to multiple UEs with the help
of 12 UAV relays. Here, we assume 3 = Ppax/1000 as our
power allocation quantization step. In Fig. 7a and Fig. 7b,
we show the maximum concurrent flow of the network with
weighted/unweighted algebraic connectivity and top view of
the trajectories of the UAVs, respectively. The trajectories
are formed in a way that UAVs try to evade the interferers
and get close to the UEs and BS as much as possible. It is
observed that the proposed method is effective in the multi-cast
case as well. For the multi-unicast case, we consider 2 BSs
and 2 UEs. Each BS is associated with its own UE for data
transmission, in the presence of 4 interferers. In Fig. 8a and
Fig. 8b, we again show network concurrent flow and top view
trajectories of the UAVs, respectively. As shown, the weighted
algebraic connectivity based trajectory design can improve
the flow significantly compared to that of the unweighted
case.
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B. Smart Interferer

We finally consider a scenario involving two smart inter-
ferers, which are smart UAVs, as discussed in Section IV-B.
In order to evaluate the performance, we assume 12 UAVs
and a UE at a height of 40 m (i.e., another UAV). The
smart interferers start their movement at an initial point and
chase relaying UAVs. Note that we control the smartness
of the interferer with the parameter 7, which denotes the
ability of the interferer to adjust its 3D location. The value
of 7 controls the time interferer needed to find its direction
towards the “best” 3D location at. When 7 = 1, the jammer
can with same speed of the legitimate UAVs. Considering
a certain amount of time that the smart interferer needs to
estimate the UAV-relaying parameters so as to decide the best
strategy, we assume 7 > 1 to have a realistic scenario. We also
depict the data flow performance of the UAV-assisted network
in Fig. 9a for smart interferers with 7 € {4, 6, 8} and the naive
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interferers which are not adjusting their locations. We observe
that the maximum flow performance generally degrades as
smart interferers become more capable in adjusting their
locations (i.e., smaller 7). In Fig. 9b, we depict the UAVs
trajectories in 3D. We observe that while smart interferers are
chasing the UAVs to decrease the data flow, the relaying UAVs
adjust their locations to get away from the smart interferers.

C. Localization Error

In this part, we evaluate the performance of the UAV net-
work in both cases of intentional and unintentional interferers
with localization errors in UAV network side and also inter-
ferers side. In Fig. 10a, the performance of the UAV network
is depicted with different localization errors on the jammer’s
side. It can be observed that a larger localization error at the
jammer grants more vantage to the UAV network. On the other
hand, the perfect jammer localization can be challenging for
the UAVs as well. As can be seen in Fig. 10b, the maximum
flow of the UAV network decreases with the increase of
localization error as expected. In the above figures, we have
shown the results with confidence interval of 95 percent (where
the location error is assumed to be uniform) around the mean
curve averaged over 1000 realizations.

VII. CONCLUSION

In this paper, we have considered the joint power and 3D tra-
jectory design for a UAV-assisted relay network in the presence
of a primary network. The solution for 3D trajectory design
and power allocation is proposed based on spectral graph
theory and convex optimization. We approached the problem
for both unintentional and smart interferers perspectives. We
also extended our work to the multiple UE setting. Simulation
results show the effectiveness of the proposed algorithm in
improving the maximum flow and interference mitigation. In
particular, we have shown that the proposed 3D trajectory
design can increase the UAV network maximum flow signifi-
cantly compared to the 2D trajectory design while satisfying
the interference constraint on the primary network. Moreover,
we have shown that there exists an optimal altitude for the
UE as a UAV that maximizes the flow of the UAV network.
We also observed that the UAVs can reconfigure their locations
to evade the smart interferer, while smart interferers chase the
UAVs so as to decrease the maximum flow of the network by
increasing the interference resulted from decreasing the path
loss effect.
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