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Abstract—We study a general setting of status updating sys-
tems in which a set of source nodes provide status updates about
some physical process(es) to a set of monitors. The freshness of
information available at each monitor is quantified in terms of the
Age of Information (AoI), and the vector of AoI processes at the
monitors (or equivalently the age vector) models the continuous
state of the system. While the marginal distributional properties
of each AoI process have been studied for a variety of settings
using the stochastic hybrid system (SHS) approach, we lack a
counterpart of this approach to systematically study their joint
distributional properties. Developing such a framework is the
main contribution of this paper. In particular, we model the dis-
crete state of the system as a finite-state continuous-time Markov
chain (MC), and describe the coupled evolution of the continuous
and discrete states of the system by a piecewise linear SHS with
linear reset maps. We start our analysis by deriving first-order
linear differential equations for the temporal evolution of both
the joint moments and the joint moment generating function
(MGF) of all possible pairwise combinations formed by the age
vector components. We then derive conditions under which the
derived differential equations are asymptotically stable. Finally,
we apply our framework to characterize the stationary joint
MGF in a multi-source updating system under several queueing
disciplines including non-preemptive and source-agnostic/source-
aware preemptive in service queueing disciplines.

Index Terms—Age of information, queueing systems, commu-
nication networks, stochastic hybrid systems.

I. INTRODUCTION

The explosive growth in the deployment of Internet of
Things (IoT) is playing a pivotal role in enabling many
critical real-time status updating systems that fundamentally
rely on the timely delivery of status updates [1]. The au-
thors of [2] introduced the concept of AoI which provides
a rigorous way of quantifying the freshness of information
at a destination node as a result of receiving status updates
over time from a transmitter node. In particular, for a single-
source queueing-theoretic model in which status updates are
generated randomly at a transmitter with a single source of
information, the AoI at the destination was defined in [2] as
the following random process: x(t) = t− u(t), where u(t) is
the generation time instant of the latest status update received
at the destination by time t.

Following [2], the average value of AoI or peak AoI (a
related metric based on the peak values of AoI over time)
has been extensively analyzed in single-source systems under
several queueing disciplines [3]–[5]. Meanwhile, the charac-
terization of the average AoI in multi-source systems (where
the transmitter has multiple sources of information) is quite
challenging, and hence the prior work in this direction is
relatively sparse [6]–[9]. Further, a handful of recent works

have aimed to characterize the stationary distribution (or some
distributional properties) of AoI/peak AoI in single-source
[10]–[13] or multi-source [14] systems. Note that the analyses
of the above works studying multi-source system settings
(i.e., there are multiple AoI or age processes in the system)
have been limited to the characterization of the marginal
distributional properties of each source’s AoI process.

The analyses of the above works were mainly based
on identifying the properties of AoI sample functions and
applying geometric arguments, which often involve tedious
calculations of joint moments. Motivated by this, the authors
of [15] and [16] have developed a SHS-based framework
(building on [17]) for characterizing the marginal distributional
properties of each AoI process in a network with multiple
AoI processes. The results of [15] and [16] have then been
applied to characterize the marginal distributional properties
of AoI under a variety of queueing disciplines [18]–[22].
However, a systematic approach to the joint analysis of AoI
processes is an open problem. In this paper, we develop an
SHS-based general framework to facilitate the analysis of the
joint distributional properties of the AoI processes through the
characterization of their joint stationary moments and MGFs.
Therefore, this paper is a joint distributional counterpart of
[16]. It is instructive to note that a very recent prior work
[23] has also analyzed the joint distributional properties of
AoI processes in a particular bufferless multi-source single-
server system setting using tools from Palm calculus. On the
other hand, our framework is applicable to any generic queuing
discipline. In fact, we will recover a key result of [23] as a
special case of our analysis in Section IV.

Contributions. This paper presents a novel SHS-based
framework for enabling the characterization of the stationary
joint moments and joint MGFs of different AoI processes in
networks. We first use the SHS framework to derive first-
order linear differential equations for the temporal evolution of
both the joint moments and the joint MGFs. We then demon-
strate that the existence of the stationary joint first moment
guarantees the existence of the stationary joint higher order
moments and MGF. Afterwards, we apply our framework to
derive closed-form expressions for the correlation coefficient
of two AoI processes in a two-source updating system under
both non-preemptive and preemptive in service queueing dis-
ciplines. Our analytical findings reveal that while the two AoI
processes are negatively correlated under preemptive in service
queueing disciplines for any choice of values of the system
parameters, there exists a threshold value of server utilization
in the non-preemptive queueing discipline above which the



two age processes are positively correlated.
Notations. A vector x = [x1 · · · xn] is a 1× n row vector

with [x]j = xj denoting its j-th element. A matrix X has i, j-
th element [X]i,j and j-th column [X]j . The vectors 0n and
1n are the 1 × n row vectors containing all zeros and ones,
respectively, and In is the n × n identity matrix. Whenever
subscript n is dropped, the dimensions of 0, 1, and I will
be clear from the context. For a process x(t) or X(t), ẋ(t) or
Ẋ(t) denotes the derivative dx(t)/dt or dX(t)/dt. For a scalar
function f(·) and a vector x, f(x) = [f(x1) · · · f(xn)]. For
integers m ≤ n,m : n = {m,m+ 1, · · · , n}. The Kronecker
delta function δi,j equals 1 if i = j and 0 otherwise. The vector
ei denotes the i-th Cartesian unit vector satisfying [ei]j = δi,j .

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Network Model

We consider a general setting of status updating systems
where a set of source nodes provide status updates about
some physical process(es) to a set of monitors. The freshness
of information available at each monitor is quantified in
terms of AoI. The AoI processes or equivalently the age
processes in the system are modeled using the row vector
x(t) = [x1(t) · · · xn(t)], which is also referred to as the
continuous state of the system. Further, the discrete state of
the system is modeled using a finite-state continuous-time MC
q(t) ∈ Q = {0, · · · , qmax}, where Q is the discrete state
space. In the graphical representation of q(t), each state q ∈ Q
is a node and each transition l is a directed edge (ql, q

′
l)

with fixed transition rate λ(l)(q(t)) = λ(l)δql,q(t), where
the Kronecker delta function δql,q(t) ensures that transition l
occurs only in state ql. We denote the set of all transitions by
L, and the sets of incoming and outgoing transitions for state
q̄ by L′

q̄ = {l ∈ L : q′l = q̄} and Lq̄ = {l ∈ L : ql = q̄}.

B. An SHS Formulation and Problem Statement

The coupled evolution of the continuous state x(t) and the
discrete state q(t) is modeled using a piecewise linear stochas-
tic hybrid system with linear reset maps [16]. In particular,
when a transition l occurs in the MC q(t), the continuous
state x is reset to x′ according to a reset map matrix Al as
x′ = xAl. Further, as long as the state q(t) is unchanged, each
component in the age vector x(t) grows at a unit rate with
time (which yields piecewise linear age processes over time),

i.e.,
·
x(t) ≜

dx(t)

dt
= 1. To capture the temporal evolution of

the age processes, it is sufficient to assume that Al is a binary
matrix with no more than a single 1 in a column. Since column
[Al]j determines the value that will be assigned to x′j , we
have two different cases given the assumed structure of Al.
In the first case, [Al]j = 0T and so x′j = 0, whereas the
second case corresponds to [Al]j = eTi where x′j is reset to
xi. Different from ordinary continuous-time Markov Chains,
an inherent feature of SHS is the possibility of having self-
transitions in the MC q(t) modeling the system discrete state.
In particular, although a self-transition keeps q(t) unchanged,
it causes a change in the continuous state x(t). Further, there

may be multiple transitions between any two states in Q such
that their associated reset map matrices are different.

For the above SHS formulation, our prime objective in
this paper is to develop a framework that allows under-
standing/analyzing the joint distributional properties of the
components in the age vector x(t). In particular, we aim at
characterizing the stationary joint moments and joint MGFs
which are of the following forms: lim

t→∞
E[xm1

j (t)xm2

k (t)] and

lim
t→∞

E[es1xj(t)+s2xk(t)], ∀j, k ∈ 1 : n and m1,m2 ≥ 1.
Clearly, the characterization of such joint moments and joint
MGFs allows one to derive the correlation coefficient between
all possible pairwise combinations of the age vector compo-
nents. Given the generality of the system setting considered
in this paper, the importance of our framework lies in the
fact that it is applicable to the joint analysis of AoIs in a
broad range of status updating system setups under arbitrary
queueing disciplines.

III. JOINT ANALYSIS OF AGE PROCESSES IN NETWORKS

A. Differential Equations for the Temporal Evolution of the
Joint Moments and Joint MGFs

In order to characterize the temporal evolution of the
joint moments and joint MGFs, E[xm1

j (t)xm2

k (t)] and
E[es1xj(t)+s2xk(t)], it is useful to define the following quan-
tities that express different forms of correlation between q(t)
and the age processes in x(t):

v
(m)
q̄,j (t) = E[xmj (t)δq̄,q(t)], (1)

v
(s)
q̄,j (t) = E[esxj(t)δq̄,q(t)], (2)

v
(m1,m2)
q̄,jk (t) = E[xm1

j (t)xm2

k (t)δq̄,q(t)], (3)

v
(s1,s2)
q̄,jk (t) = E[es1xj(t)+s2xk(t)δq̄,q(t)], (4)

for all states q̄ ∈ Q, j, k ∈ 1 : n, m ≥ 0, and m1,m2 ≥ 1.
To see this, note that E[xm1

j (t)xm2

k (t)] and E[es1xj(t)+s2xk(t)]
can respectively be expressed as

E[xm1
j (t)xm2

k (t)] =
∑
q̄∈Q

E[xm1
j (t)xm2

k (t)δq̄,q(t)]︸ ︷︷ ︸
v
(m1,m2)

q̄,jk (t)

, (5)

E[es1xj(t)+s2xk(t)] =
∑
q̄∈Q

E[es1xj(t)+s2xk(t)δq̄,q(t)]︸ ︷︷ ︸
v
(s1,s2)

q̄,jk (t)

. (6)

Thus, according to (5) and (6), characterizing the tem-
poral evolution of v(m1,m2)

q̄,jk (t) and v
(s1,s2)
q̄,jk (t) directly char-

acterizes the temporal evolution of E[xm1
j (t)xm2

k (t)] and
E[es1xj(t)+s2xk(t)], respectively. Some key notes about the
notations in (1)-(4) are provided next. First, v(1)q̄,j may generally
refer to v

(m)
q̄,j |m=1 or v(s)q̄,j |s=1. To eliminate this conflict, the

convention that v(i)q̄,j , for any integer i ≥ 1, refers to v
(m)
q̄,j at

m = i is maintained here. The previous argument also applies
to v(m1,m2)

q̄,jk and v(s1,s2)q̄,jk . Further, note that v(s1,0)q̄,jk = v
(s)
q̄,j |s=s1

and v
(0,s2)
q̄,jk = v

(s)
q̄,k|s=s2 . Finally, we have v

(m)
q̄,j (t)|m=0 =

v
(s)
q̄,j (t)|s=0 = E[δq̄,q(t)] = P[q(t) = q̄], i.e., v(0)q̄,j (t) refers to

the probability that q(t) is equal to q̄ regardless of the value



of j. It will also be useful in our subsequent analysis and
exposition to define following vectors/matrices containing the
scalars in (1)-(4): [v(0)

q̄ (t)]j = v
(0)
q̄,j (t), [v

(m)
q̄ (t)]j = v

(m)
q̄,j (t),

[v
(s)
q̄ (t)]j = v

(s)
q̄,j (t), [V

(m1,m2)
q̄ (t)]j,k = v

(m1,m2)
q̄,jk (t) and

[V
(s1,s2)
q̄ (t)]j,k = v

(s1,s2)
q̄,jk (t), ∀j, k ∈ 1 : n, q̄ ∈ Q. The

following Lemma shows that {v(m1,m2)
q̄,jk (t)} and {v(s1,s2)q̄,jk (t)}

obey a system of first-order ordinary differential equations.

Lemma 1. For state q̄ ∈ Q in the piecewise linear stochastic
hybrid system with linear reset maps under consideration,

V̇
(m1,m2)
q̄ (t) = m1V

(m1−1,m2)
q̄ (t) +m2V

(m1,m2−1)
q̄ (t)

+
∑
l∈L′

q̄

λ(l)AT
l V

(m1,m2)
ql

(t)Al −V
(m1,m2)
q̄ (t)

∑
l∈Lq̄

λ(l), (7)

V̇
(s1,s2)
q̄ (t) = (s1 + s2)V

(s1,s2)
q̄ (t) +Cq̄(t)

+
∑
l∈L′

q̄

λ(l)AT
l V

(s1,s2)
ql

(t)Al −V
(s1,s2)
q̄ (t)

∑
l∈Lq̄

λ(l), (8)

where [Cq̄(t)]j,k = cq̄,jk(t) is defined as

cq̄,jk(t) =
∑
l∈L′

q̄

λ(l)
[
1
(
[xAl]j ̸= 0 & [xAl]k = 0

)
× [v(s1)

ql
(t)Al]j + 1

(
[xAl]j = 0 & [xAl]k ̸= 0

)
[v(s2)

ql
(t)Al]k

+ 1
(
[xAl]j = 0 & [xAl]k = 0

)
[v(0)

ql
(t)]j

]
, (9)

where & is the logical AND operator and 1(·) is the indicator
function.

Proof: See Appendix A.
In order to clearly see that Lemma 1 characterizes the

trajectories of V
(m1,m2)
q̄ (t) and V

(s1,s2)
q̄ (t) over time, it is

useful to first state the following differential equations of
[16, Lemma 1] characterizing the temporal evolution of the
marginal m-th moments and marginal MGFs:

v̇
(0)
q̄ (t) =

∑
l∈L′

q̄

λ(l)v(0)
ql

(t)− v
(0)
q̄ (t)

∑
l∈Lq̄

λ(l), (10)

v̇
(m)
q̄ (t) = mv

(m−1)
q̄ (t) +

∑
l∈L′

q̄

λ(l)v(m)
ql

(t)Al

− v
(m)
q̄ (t)

∑
l∈Lq̄

λ(l), ∀m ≥ 1, (11)

v̇
(s)
q̄ (t) = sv

(s)
q̄ (t) +

∑
l∈L′

q̄

λ(l)
[
v(s)
ql

(t)Al + v(0)
ql

(t)Âl

]
− v

(s)
q̄ (t)

∑
l∈Lq̄

λ(l), (12)

[Â]i,j =

{
1 i = j, [Al]j = 0T,

0 otherwise.
(13)

We are now ready to elaborate on the use of Lemma 1 to
obtain the trajectories of V

(m1,m2)
q̄ (t) and V

(s1,s2)
q̄ (t). For a

given initial condition at t = 0, we observe from (7) that in
order to compute V

(1,1)
q̄ (t), we need to first compute V

(0,1)
q̄ (t)

and V
(1,0)
q̄ (t) using (11). This can be done after computing

v
(0)
q̄ (t) from (10). Afterwards, V

(2,1)
q̄ (t) can be computed

from V
(1,1)
q̄ (t) and V

(2,0)
q̄ (t), where V

(2,0)
q̄ (t) can be eval-

uated using (11). The process can be repeated to compute
V

(m1,m2)
q̄ (t) for the desired m1,m2 ≥ 2 using V

(m1−1,m2)
q̄ (t)

and V
(m1,m2−1)
q̄ (t) evaluated in previous steps. Further, by

inspecting the structure of Cq̄(t) from (9), we note that
V

(s1,s2)
q̄ (t) can be computed from v

(s)
q̄ (t) and v

(0)
q̄ (t), where

v
(s)
q̄ (t) can be evaluated from v

(0)
q̄ (t) using (12).

B. Stationary Joint Moments and Joint MGFs

While Lemma 1 holds for any collection of reset map
matrices {Al}l∈L, the set of differential equations in Lemma
1 can be unstable for some choices of {Al}l∈L. Thus, it
is necessary to investigate the conditions under which the
differential equations in Lemma 1 are stable. While there are
several notions of stability including Lyapunov, Lagrange, and
exponential stability, we are interested here in the asymptotic
stability under which V̇

(m1,m2)
q̄ (t) and V̇

(s1,s2)
q̄ (t) respectively

converge to the limits V̄
(m1,m2)
q̄ and V̄

(s1,s2)
q̄ as t→ ∞. The

limiting values can then be evaluated as the solution of the
equations resulting from setting the derivatives in Lemma 1 to
zero. To clearly see why we are concerned about the asymp-
totic stability in this paper, recall that our prime objective is
to characterize the stationary joint moments and joint MGFs:
lim
t→∞

E[xm1
j (t)xm2

k (t)] and lim
t→∞

E[es1xj(t)+s2xk(t)], ∀j, k ∈ 1 :

n. Under the asymptotic stability, these quantities can simply
be evaluated from (5) and (6) as

lim
t→∞

E[xm1
j (t)xm2

k (t)] =
∑
q̄∈Q

lim
t→∞

v
(m1,m2)
q̄,jk (t) =

∑
q̄∈Q

v̄
(m1,m2)
q̄,jk ,

(14)

lim
t→∞

E[es1xj(t)+s2xk(t)] =
∑
q̄∈Q

lim
t→∞

v
(s1,s2)
q̄,jk (t) =

∑
q̄∈Q

v̄
(s1,s2)
q̄,jk .

(15)
We now proceed to characterizing the conditions under

which the differential equations in Lemma 1 are asymptotically
stable. Let us first recall the asymptotic stability theorem for
linear systems. The linear system

v̇(t) = v(t)P, v(0) = v0 (16)

is asymptotically stable if and only if the eigenvalues of
P have strictly negative real parts. According to (16), it is
always useful to write the differential equations at hand in
a vector form to test the asymptotic stability. This was also
done in [16] to characterize the conditions under which the
differential equations describing the temporal evolution of the
marginal m-th moments and marginal MGFs (given by (11)
and (12)) are asymptotically stable. For all q̄ ∈ Q, let v̄

(0)
q̄ ,

v̄
(m)
q̄ , V̄

(m1,m2)
q̄ and V̄

(s1,s2)
q̄ denote the limiting values of

v
(0)
q̄ (t), v

(m)
q̄ (t), V

(m1,m2)
q̄ (t) and V

(s1,s2)
q̄ (t), respectively,

when t → ∞. Clearly, v̄
(0)
q̄ , v̄

(m)
q̄ , V̄

(m1,m2)
q̄ and V̄

(s1,s2)
q̄

are the fixed points of (10), (11), (7) and (8), respectively,
which can be obtained after setting the derivatives to zero.
Further, let [C̄q̄]j,k = c̄q̄,jk = lim

t→∞
cq̄,jk(t). The next theorem

characterizes the conditions for asymptotic stability of the
equations in Lemma 1.



Theorem 1. If the MC q(t) is ergodic with stationary distri-
bution v̄

(0)
q̄ > 0, and there exist positive fixed points v̄

(1)
q̄ and

V̄
(1,1)
q̄ of (11) and (7), respectively, then:

• (i) For all q̄ ∈ Q, V(m1,m2)
q̄ (t) converges to V̄

(m1,m2)
q̄

satisfying

V̄
(m1,m2)
q̄

∑
l∈Lq̄

λ(l) = m1V̄
(m1−1,m2)
q̄ +m2V̄

(m1,m2−1)
q̄

+
∑
l∈L′

q̄

λ(l)AT
l V̄

(m1,m2)
ql

Al. (17)

• (ii) There exists s0 > 0 such that for all (s1, s2) ∈ S =

{(s1, s2) : s1 + s2 < s0} and q̄ ∈ Q, V(s1,s2)
q̄ (t) and

Cq̄(t) respectively converge to V̄
(s1,s2)
q̄ and C̄q̄ satisfying

V̄
(s1,s2)
q̄

∑
l∈Lq̄

λ(l) =
(
s1 + s2

)
V̄

(s1,s2)
q̄

+
∑
l∈L′

q̄

λ(l)AT
l V̄

(s1,s2)
ql

Al + C̄q̄. (18)

Proof: See Appendix B.
Theorem 1 is a generalized version of [16, Theorem 1]

which was focused on the characterization of the station-
ary marginal moments and MGFs, i.e., the fixed points of
(11) and (12). An interesting analogy between Theorem 1
and [16, Theorem 1] is that the existence of the stationary
marginal/joint first moment guarantees the existence of the
stationary marginal/joint higher order moments and MGF. It
is worth emphasizing that the generality of Theorem 1 lies in
its ability of allowing the investigation of the stationary joint
moments and MGFs under any arbitrary queueing discipline.
This opens the door for the use of Theorem 1 to study the joint
analysis of age processes in networks for different queueing
disciplines/status updating system settings in the literature,
which have been only analyzed in terms of the marginal
moments and MGFs until now.

IV. ANALYSIS OF THE STATIONARY JOINT MGF IN
MULTI-SOURCE UPDATING SYSTEMS

In this section, we use Theorem 1 to analyze the stationary
joint MGF of the age processes in a multi-source status
updating system, where a transmitter monitors two physical
processes, and sends its measurements to a destination in the
form of status updates. As shown in Fig. 1, the transmitter
consists of two sources and a single server; each source
generates status updates about one physical process, and the
server delivers the status updates generated from the sources to
the destination. Status updates generated by the i-th source are
assumed to follow a Poisson process with rate λi. Further, the
time needed by the server to send a status update is assumed
to be a rate µ exponential random variable. Let ρ = λ

µ denote
the server utilization factor, where λ = λ1 + λ2. Further, we
have ρi = λi

µ , λ−i =
∑2

j=1, j ̸=i λj , and ρ−i = λ−i

µ . We
derive the joint MGF of the two age processes (associated
with the two observed physical processes) at the destination
under three different queueing disciplines for managing status
update arrivals at the transmitter, which are described next.

Fig. 1. An illustration of a two-source status updating system.

v v

v

v v

v

v v

v

Fig. 2. Markov chains modeling the system discrete state q(t) under different
queueing disciplines: (a) LCFS-NP, (b) LCFS-PS, and (c) LCFS-SA.

Last-come-first-served with no preemption (LCFS-NP): Un-
der this queueing discipline, a new arriving status update at
the transmitter (from any of the sources) enters service upon
its arrival if the server is idle (i.e., there is no a status update in
service); otherwise, the new arriving status update is discarded.

Last-come-first-served with source-agnostic preemption in
service (LCFS-PS): When the server is idle, the management
of a new arriving status update under this queueing discipline
is similar to the LCFS-NP one. However, when the server is
busy, a new arriving status update replaces the current update
being served (regardless of the index of its generating source)
and the old update in service is discarded.

Last-come-first-served with source-aware preemption in ser-
vice (LCFS-SA): This queueing discipline is similar to the
LCFS-PS one with the only difference that a new arriving
status update preempts the update in service only if the two
updates (the new arriving update and the one in service) are
generated from the same source.

Using the notations of the SHS framework, the continuous
state x(t) in each queueing discipline is given by x(t) =
[x1(t) x2(t) x3(t)], where xi(t), i ∈ {1, 2}, represents the
value of the source i’s AoI at the destination node, and x3(t)
is the age of the status update in service. Further, the discrete
state space in each queueing discipline is given by Q =
{0, 1, 2}, where q(t) = 0 indicates that the system is empty
and hence the server is idle, and q(t) = i, i ∈ {1, 2}, indicates
that the server is serving a status update generated from the
i-th source. Further, the continuous-time MC modeling the
system discrete state q(t) ∈ Q under each of the queueing
disciplines is depicted in Fig. 2.

A. LCFS-NP Queueing Discipline

Table I presents the set of different transitions L and their
impact on the values of both q(t) and x(t). Before proceeding
into evaluating v̄

(s1,s2)
q̄,12 , ∀q̄ ∈ Q, satisfying (18), we first

describe the set of transitions as follows:



TABLE I
TRANSITIONS OF THE LCFS-NP QUEUEING DISCIPLINE IN FIG. 2A.

l ql → q′l λ(l) xAl Al

1 0 → 1 λ1 [x1 x2 0]

1 0 0
0 1 0
0 0 0


2 0 → 2 λ2 [x1 x2 0]

1 0 0
0 1 0
0 0 0


3 1 → 0 µ [x3 x2 0]

0 0 0
0 1 0
1 0 0


4 2 → 0 µ [x1 x3 0]

1 0 0
0 0 0
0 1 0


l = i, i ∈ {1, 2}: This transition occurs when there is a new

arriving status update of source i at the transmitter node. Since
the age of this new arriving status update at the transmitter is
0 and it does not have any impact on the AoI processes of the
two sources at the destination, we note that the updated age
vector xAi is set to be [x1 x2 0].
l ∈ {3, 4}: This transition occurs when the status update

in service is delivered to the destination. When the status
update received at the destination belongs to source i, the
AoI of source i is reset to its age and the AoI of the other
source does not change. For instance when l = 3, a status
update of source 1 is received at the destination. Hence,
we note that the source 1’s AoI is reset to the age of the
received update ([xA3]1 = x3) whereas the source 2’s AoI
does not change ([xA3]2 = x2). In addition, since the system
becomes empty after the occurrence of this transition, the
third component of the age vector x(t) becomes irrelevant.
Following the convention [15], we set the value corresponding
to such irrelevant components in the updated age value to 0,
and thus we observe that [xA3]3 = 0.

Using Table I, we are now ready to derive {v̄(s1,s2)q̄,12 }q̄∈Q
satisfying (18), form which the stationary joint MGF is char-
acterized in the following theorem.

Theorem 2. Under the LCFS-NP queueing discipline, the
stationary joint MGF is given by

NP

M (s̄1, s̄2) =
ρ1ρ2

[
1 + ρ− (s̄1 + s̄2)

]
(1 + ρ)

[
ρ− (s̄1 + s̄2)

][
1− (s̄1 + s̄2)

]2
×

2∑
i=1

1

(1− s̄i)(ρ− s̄i)− ρ−i
, (19)

where s̄i = si
µ , i ∈ {1, 2}.

Proof: See Appendix C.

Remark 1. Note that the marginal MGF of source i’s AoI
under the LCFS-NP queueing discipline can be obtained from
the joint MGF in (19) by setting s̄j (j ̸= i) to zero. This argu-
ment applies to any queueing discipline under consideration
including the ones presented next.

Corollary 1. Under the LCFS-NP queueing discipline, the
correlation coefficient of the two AoI processes x1(t) and x2(t)
is given by

NP

Cor =
ρ1ρ2

[
ρ3 − 2(2ρ+ 1)

]
ρ
∏2

i=1

√
(1 + ρ)2[ρ2 + 2ρ−i + 1] + ρ2i ρ(ρ+ 2)

.

(20)

TABLE II
TRANSITIONS OF THE LCFS-PS QUEUEING DISCIPLINE IN FIG. 2B.

l ql → q′l λ(l) xAl Al

5 1 → 2 λ2 [x1 x2 0]

1 0 0
0 1 0
0 0 0


6 2 → 1 λ1 [x1 x2 0]

1 0 0
0 1 0
0 0 0


7 1 → 1 λ1 [x1 x2 0]

1 0 0
0 1 0
0 0 0


8 2 → 2 λ2 [x1 x2 0]

1 0 0
0 1 0
0 0 0


Proof: The correlation coefficient of the two AoI pro-

cesses x1(t) and x2(t) can be evaluated as
NP

Cor =
E[x1x2]− E[x1]E[x2]√

E[x21]− (E[x1])2
√

E[x22]− (E[x2])2
. (21)

The expression in (20) then follows from the fact that the

expression of
NP

M (s̄1, s̄2) (derived in Theorem 2) can be used
to compute the stationary moments in (21) as follows

E[xm1
1 xm2

2 ] =
∂m1+m2

[NP

M (s̄1, s̄2)
]

µm1+m2∂s̄m1
1 ∂s̄m2

2

∣∣∣
s̄1=0,s̄2=0

, ∀m1,m2 ≥ 1,

(22)

E[xm1
1 ] =

1

µm1
×

dm1
[NP

M (s̄1, 0)
]

ds̄m1
1

∣∣∣
s̄1=0

, ∀m1 ≥ 1, (23)

E[xm2
2 ] =

1

µm2
×

dm2
[NP

M (0, s̄2)
]

ds̄m2
2

∣∣∣
s̄2=0

, ∀m2 ≥ 1. (24)

B. LCFS-PS Queueing Discipline
The set of transitions in the LCFS-PS queueing discipline

can be constructed using Tables I and II. The subset of
transitions in Table II refers to the event of having a new
arriving status update at the transmitter node while its server
is serving another status update. According to the mechanism
of the LCFS-PS queueing discipline, the status update that is
currently being served will be discarded, and the new arrival
will enter service upon its arrival. The stationary joint MGF
for this case is provided in the next theorem.

Theorem 3. Under the LCFS-PS queueing discipline, the
stationary joint MGF is given by

PS

M(s̄1, s̄2) =
ρ1ρ2[

ρ− (s̄1 + s̄2)
][
1− (s̄1 + s̄2)

]
×

2∑
i=1

1

(1− s̄i)(ρ− s̄i)− ρ−i
. (25)

Proof: The proof follows along similar lines to the proof
of Theorem 2. In particular, Tables I and II will be used to
derive v̄(s1,s2)q̄,12 satisfying (18), form which the stationary joint
MGF in (25) can be obtained.

Corollary 2. Under the LCFS-PS queueing discipline, the
correlation coefficient of the two AoI processes x1(t) and x2(t)
is given by

PS

Cor =
−2ρ1ρ2

ρ
√

(ρ2 + 2ρ1 + 1)(ρ2 + 2ρ2 + 1)
. (26)



Remark 2. Note that the expression in (26) is identical to
the correlation coefficient expression derived in [23, Theorem
2] using tools from Palm calculus (for a two-source system
setting under the LCFS-PS queueing discipline).

C. LCFS-SA Queueing Discipline

The set of transitions in this queueing discipline can be
constructed using Tables I and II as L = {1, 2, 3, 4, 7, 8}. Note
that l = 5 and l = 6 were excluded from L since the LCFS-
SA queueing discipline only allows preemption between the
status updates generated from the same source. In the next
theorem, we provide the stationary joint MGF.

Theorem 4. Under the LCFS-SA queueing discipline, the

stationary joint MGF is given by:
SA

M(s̄1, s̄2) =

ρ1ρ2
[
1 + ρ− (s̄1 + s̄2)

]
(1 + ρ)

[
ρ− (s̄1 + s̄2)

][
1− (s̄1 + s̄2)

] 2∑
i=1

[
(1 + ρi)

(1 + ρi − s̄i)
×

(1 + ρ−i − s̄i)[
1 + ρ−i − (s̄1 + s̄2)

][
(1− s̄i)(ρ− s̄i)− ρ−i

]]. (27)

Proof: The proof follows along similar lines to the proof
of Theorem 2. The detailed proof has been omitted for the
sake of brevity.

Corollary 3. Under the LCFS-SA queueing discipline, the
correlation coefficient of the two AoI processes x1(t) and x2(t)
is given by

SA

Cor =
−ρ1ρ2g(ρ1, ρ2)

ρ(1 + ρ1)(1 + ρ2)
√
f(ρ1, ρ2)f(ρ2, ρ1)

, (28)

where g(ρ1, ρ2) and f(y, z) are respectively given by:

g(ρ1, ρ2) = ρ21ρ
2
2(ρ+ 2)(2ρ+ 1) + ρ1ρ2ρ(1 + ρ)(3ρ+ 5)

+ 2(1 + ρ)4, (29)

f(y, z) = z3y + y2z(2ρ2 + 7ρ+ 4) + yz(ρ2 + 6ρ+ 3)

+ y2ρ3(ρ+ 2) + yρ(2ρ3 + 6ρ2 + 4ρ+ 1) + (1 + ρ)4.
(30)

Remark 3. From Corollaries 1-3, we note that while the
two age processes are negatively correlated under preemptive
in service queueing disciplines (LCFS-PS and LCFS-SA) for
any choice of values of the system parameters, there exists
a threshold value ρth ≈ 2.2143 of ρ in the non-preemptive
queueing discipline (LCFS-NP) above which the two age
processes are positively correlated. Further, we observe from
Fig. 3 that the source-aware preemption in service slightly
reduces the negative correlation of the two age processes
compared to the source-agnostic one.

V. CONCLUSION

This paper presented a novel SHS-based framework that
allows the analysis of the joint distributional properties of
AoI processes in networks through the characterization of the
joint stationary moments and MGFs. An interesting insight
drawn from our analysis is that the existence of the stationary
joint first moment guarantees the existence of the stationary
joint higher order moments and MGF. As an application of

our framework, we obtained closed-from expressions of the
stationary joint MGF in a two-source updating system under
several queueing disciplines including non-preemptive and
source-agnostic/source-aware preemptive in service queueing
disciplines. Our derived expressions demonstrated that while
the two AoI processes are negatively correlated under preemp-
tive in service queueing disciplines for any choice of values
of the system parameters, there exists a threshold value of
server utilization in the non-preemptive queueing discipline
above which the two age processes are positively correlated.
Further, we numerically demonstrated that the source-aware
preemption in service slightly reduces the negative correlation
of the two age processes compared to the source-agnostic one.

The generality of our analytical framework stems from the
fact that it allows one to understand the joint distributional
properties of AoI processes in a broad range of system settings
under any arbitrary queueing discipline. This, in turn, opens
the door for the use of our framework in future work to
investigate the joint stationary moments and MGFs of age
processes for different queueing disciplines/status updating
system settings in the literature, which have been only ana-
lyzed in terms of the marginal moments and MGFs until now.

APPENDIX

A. Proof of Lemma 1

To derive this result, we follow a similar approach to that
in [16] and [17], where the idea is to define test functions
{ψ(q,x)} whose expected values {E[ψ(q(t),x(t))]} are quan-
tities of interest. Then, one can use the SHS framework to
derive a system of differential equations for the temporal
evolution of the expected values of the defined test functions.
Since we are interested in the joint analysis of age processes in
this paper, we define the following two classes of test functions
ψ
(m1,m2)
q̄,jk (q,x) = xm1

j xm2

k δq̄,q, ∀q̄ ∈ Q, and j, k ∈ 1 : n,

(31)

ψ
(s1,s2)
q̄,jk (q,x) = es1xj+s2xkδq̄,q, ∀q̄ ∈ Q, and j, k ∈ 1 : n.

(32)
Clearly, taking the expectation of the two classes of

test functions in (31) and (32) gives {v(m1,m2)
q̄,jk (t)} and

{v(s1,s2)q̄,jk (t)}, respectively. Now, we apply the SHS mapping
ψ → Lψ (known as the extended generator) to every test
function in (31) and (32). Since the test functions defined
above are time-invariant, it follows from [17, Theorem 1] that
the extended generator of the considered piecewise linear SHS
with linear reset maps is given by

Lψ(q,x) =
∂ψ(q,x)

∂x
1T +

∑
l∈L

λ(l)(q)
[
ψ(q′l,xAl)− ψ(q,x)

]
︸ ︷︷ ︸

θ(q,x)

,

(33)
where the row vector ∂ψ(q,x)/∂x denotes the gradient.
Applying (33) to the test functions in (31) and (32), we have

Lψ
(m1,m2)
q̄,jk (q,x) =

∂ψ
(m1,m2)
q̄,jk (q,x)

∂x
1T + θ

(m1,m2)
q̄,jk (q,x),

(34)
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for a fixed λ2 = 2 and different values of µ.

Lψ
(s1,s2)
q̄,jk (q,x) =

∂ψ
(s1,s2)
q̄,jk (q,x)

∂x
1T + θ

(s1,s2)
q̄,jk (q,x), (35)

∂ψ
(m1,m2)
q̄,jk (q,x)

∂x
= m1ψ

(m1−1,m2)
q̄,jk ej +m2ψ

(m1,m2−1)
q̄,jk ek,

(36)

∂ψ
(s1,s2)
q̄,jk (q,x)

∂x
= s1ψ

(s1,s2)
q̄,jk ej + s2ψ

(s1,s2)
q̄,jk ek. (37)

Now, to obtain θ(m1,m2)
q̄,jk (q,x) and θ(s1,s2)q̄,jk (q,x), note that

ψ
(m1,m2)
q̄,jk (q′l,xAl) = [xAl]

m1
j [xAl]

m2

k δq̄,q′l
(a)
= [xm1Al]j [x

m2Al]kδq̄,q′l , (38)

ψ
(s1,s2)
q̄,jk (q′l,xAl) = es1[xAl]j+s2[xAl]kδq̄,q′l , (39)

δq̄,q′lδql,q =

{
δql,q, l ∈ L′

q̄,

0, otherwise
, δq̄,qδql,q =

{
δq̄,q, l ∈ Lq̄,

0, otherwise,

(40)
where step (a) in (38) follows from the fact that Al has no
more than a single 1 in a column. Thus, we have

θ
(m1,m2)
q̄,jk (q,x) =

∑
l∈L′

q̄

λ(l)[xm1Al]j [x
m2Al]kδql,q

− xm1
j xm2

k δq̄,q
∑
l∈Lq̄

λ(l), (41)

θ
(s1,s2)
q̄,jk (q,x) =

∑
l∈L′

q̄

λ(l)es1[xAl]j+s2[xAl]kδql,q

− es1xj+s2xkδq̄,q
∑
l∈Lq̄

λ(l). (42)

Finally, the system of differential equations in (7) and (8)
can be derived by applying Dynkin’s formula [17] to each test
function and its associated extended generator. In particular,
the Dynkin’s formula can be expressed as

dE[ψ(q(t),x(t))]
dt

= E[Lψ(q(t),x(t))]. (43)

Hence, from (3), (31) and (34), we get

v̇
(m1,m2)
q̄,jk (t) = E[Lψ(m1,m2)

q̄,jk (q(t),x(t))],

= E[
∂ψ

(m1,m2)
q̄,jk (q(t),x(t))

∂x(t)
1T] + E[θ(m1,m2)

q̄,jk (q(t),x(t))]︸ ︷︷ ︸
A

,

= m1v
(m1−1,m2)
q̄,jk (t) +m2v

(m1,m2−1)
q̄,jk (t) +A, (44)

where A is given by

A =
∑
l∈L′

q̄

λ(l)[AT
l V

(m1,m2)
q̄l (t)Al]j,k − v

(m1,m2)
q̄,jk (t)

∑
l∈Lq̄

λ(l).

(45)
Substituting (45) into (44) yields
v̇
(m1,m2)
q̄,jk (t) = m1v

(m1−1,m2)
q̄,jk (t) +m2v

(m1,m2−1)
q̄,jk (t)+∑

l∈L′
q̄

λ(l)[AT
l V

(m1,m2)
q̄l

(t)Al]j,k − v
(m1,m2)
q̄,jk (t)

∑
l∈Lq̄

λ(l). (46)

Further, from (4), (32) and (35), we get

v̇
(s1,s2)
q̄,jk (t) = E[Lψ(s1,s2)

q̄,jk (q(t),x(t))],

= E[
∂ψ

(s1,s2)
q̄,jk (q(t),x(t))

∂x(t)
1T] + E[θ(s1,s2)q̄,jk (q(t),x(t))],

= (s1 + s2)v
(s1,s2)
q̄,jk (t) + E[θ(s1,s2)q̄,jk (q(t),x(t))], (47)

where E[θ(s1,s2)q̄,jk (q(t),x(t))] =∑
l∈L′

q̄

λ(l)E
[
es1[x(t)Al]j+s2[x(t)Al]kδql,q(t)

]
− E[es1xj(t)+s2xk(t)δq̄,q(t)]

∑
l∈Lq̄

λ(l) =
∑
l∈L′

q̄

λ(l)

[AT
l V

(s1,s2)
q̄l (t)Al]j,k + cq̄,jk(t)− v

(s1,s2)
q̄,jk (t)

∑
l∈Lq̄

λ(l), (48)

such that
∑

l∈L′
q̄
λ(l)E

[
es1[x(t)Al]j+s2[x(t)Al]kδql,q(t)

]
=

cq̄,jk(t) when [x(t)Al]j = 0 and/or [x(t)Al]k = 0, and
cq̄,jk(t) is given by (9). Substituting (48) into (47) yields

v̇
(s1,s2)
q̄,jk (t) =

[
s1 + s2 −

∑
l∈Lq̄

λ(l)
]
v
(s1,s2)
q̄,jk (t)

+
∑
l∈L′

q̄

λ(l)[AT
l V

(s1,s2)
q̄l (t)Al]j,k + cq̄,jk(t). (49)

The system of differential equations in (7) and (8) can be
obtained by gathering the equations in (46) and (49), and
writing them in a matrix form.

B. Proof of Theorem 1

We start the proof by writing the differential equations in
Lemma 1 in a combined way as follows:

v̇(m1,m2)(t) =m1v
(m1−1,m2)(t) +m2v

(m1,m2−1)(t)

+ v(m1,m2)(t)(B−D), (50)

v̇(s1,s2)(t) = c(t) + v(s1,s2)(t)
[
B−D+ (s1 + s2)I

]
, (51)

v(m1,m2)(t) =
[
vec

(
V

(m1,m2)
0 (t)

)
· · · vec

(
V

(m1,m2)
qmax (t)

)]
,

v(s1,s2)(t) =
[
vec

(
V

(s1,s2)
0 (t)

)
· · · vec

(
V

(s1,s2)
qmax (t)

)]
,

D = diag
[
d0In2 , · · · , dqmax

In2

]
, dq̄ =

∑
l∈Lq̄

λ(l),

c(t) =
[
vec

(
C0(t)

)
· · · vec

(
Cqmax

(t)
)]

,[
vec(R0) · · · vec(Rqmax

)
]
= v(m1,m2)(t)B, (52)[

vec(R̂0) · · · vec(R̂qmax
)
]
= v(s1,s2)(t)B, (53)

such that vec(X) is the row vector resulting from con-
catenating the rows of X into a single long row, X =
diag[x1, · · · , xn] is a diagonal matrix with [X]i,j =

xiδi,j , ∀i, j ∈ 1 : n, Rq̄ =
∑

l∈L′
q̄
λ(l)AT

l V
(m1,m2)
ql (t)Al,



and R̂q̄ =
∑

l∈L′
q̄
λ(l)AT

l V
(s1,s2)
ql (t)Al. Note that we could

construct the expressions in (52) and (53) due to the fact
that vec(Rq̄) and vec(R̂q̄) are linear in v(m1,m2)(t) and
v(s1,s2)(t), respectively. Now, in order to figure out the condi-
tions under which (50) is asymptotically stable, we first rewrite
(50) in the case where v̇(1,1)(t) = 0 as t→ ∞:

v̄(1,1)D = v̄(0,1) + v̄(1,0) + v̄(1,1)B, (54)
where v̄(m1,m2) = lim

t→∞
v(m1,m2)(t). A key observation here

is that both B and D are non-negative matrices. Thus, based
on [16, Lemma 2], if v̄(0,1) + v̄(1,0) is strictly positive and
there exists a positive solution v̄(1,1) for (54), then all the
eigenvalues of B − D have strictly negative real parts, and
hence (50) is asymptotically stable. Further, when all the
eigenvalues of B − D have strictly negative real parts, we
observe from (51) that there exists s0 > 0 such that for
all (s1, s2) satisfying s1 + s2 < s0, all the eigenvalues of
B−D+(s1+s2)I will have strictly negative real parts, which
guarantees the asymptotic stability of (51) under the condition
that c(t) converges as t → ∞. Note that v̄(0,1) and v̄(1,0)

can be constructed using the stationary marginal first moments
{v(1)

q̄ }, and according to (9), c(t) is a function of the marginal
MGFs {v(s)

q̄ (t)} and the distribution of the MC {v(0)
q̄ (t)}

satisfying (12) and (10), respectively. Therefore, based on [16,
Theorem 1], we can figure out that both strict positivity of
v̄(0,1) + v̄(1,0) and convergence of c(t) as t→ ∞ hold when:
1) the MC q(t) is ergodic with distribution {v̄(0)

q̄ > 0}, and
2) there exists a positive fixed point v̄

(1)
q̄ , ∀q̄ ∈ Q, for the

marginal first moment in (11).

C. Proof of Theorem 2
Using the set of transitions in Table I and (18) in Theorem

1, {v̄(s1,s2)q̄,12 }q̄∈Q can be expressed as

λv̄
(s1,s2)
0,12 = (s1 + s2)v̄

(s1,s2)
0,12 + µ(v̄

(s1,s2)
1,32 + v̄

(s1,s2)
2,13 ), (55)

λv̄
(s1,s2)
1,12 = (s1 + s2)v̄

(s1,s2)
1,12 + λ1v̄

(s1,s2)
0,12 , (56)

λv̄
(s1,s2)
2,12 = (s1 + s2)v̄

(s1,s2)
2,12 + λ2v̄

(s1,s2)
0,12 , (57)

From (55)-(57), the MGF can be evaluated as
NP

M (s1, s2) =

2∑
q̄=0

v̄
(s1,s2)
q̄,12 =

µ+ λ− (s1 + s2)

µ− (s1 + s2)
v̄
(s1,s2)
0,12 . (58)

Thus, we show how v̄
(s1,s2)
0,12 can be evaluated in the follow-

ing. In particular, from (18), we have
µv̄

(s1,s2)
1,32 = (s1 + s2)v̄

(s1,s2)
1,32 + λ1v̄

(s2)
0,2 , (59)

µv̄
(s1,s2)
2,13 = (s1 + s2)v̄

(s1,s2)
2,13 + λ2v̄

(s1)
0,1 . (60)

Now, v̄(si)0,i is evaluated from the fixed point of (12) as

v̄
(si)
0,i =

µλiv̄
(0)
0

(µ− si)(λ− si)− µλ−i
, (61)

where v̄(0)0 can be obtained from the fixed point of (10) as 1
1+ρ .

Note that v̄(s1,s2)1,32 and v̄(s1,s2)2,13 can be evaluated by substituting
v̄
(s2)
0,2 and v̄

(s1)
0,1 from (61) into (59) and (60), respectively.

Therefore, v̄(s1,s2)0,12 is obtained by substituting v̄
(s1,s2)
1,32 and

v̄
(s1,s2)
2,13 into (55). The final expression in (19) follows from

(58), which completes the proof.
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