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Abstract

While classic models of animal decision-making assume that individuals assess the absolute
value of options, decades of research has shown that rewards are often evaluated relative to
recent experience, creating incentive contrast effects. Contrast effects are often assumed to be
purely sensory, yet consumer and experimental psychology tell us that label-based expectations
can affect value perception in humans and rodents. However, this has rarely been tested in non-
model systems. Bumblebees forage on a variety of flowers that vary in their signals and rewards
and show contrast when rewards are lowered. We manipulated bees’ expectations of a stimulus’
quality, before downshifting the reward to induce incentive contrast. We found that contrast
effects were not solely driven by experience with a better reward, but also influenced by
experience with associated stimuli. While bees’ initial response did not differ between
treatments, individuals were faster to accept the lower-quality reward when it was paired with a
novel stimulus. We explored the boundaries of these label-based expectations by testing bees
along a stimulus gradient and found that expectations generalized to similar stimuli. Such
reference-dependent evaluations may play an important role in bees’ foraging choices, with the
potential to impact floral evolution and plant community dynamics.

Introduction

Classic foraging theory assumes that animals know or can easily assess the absolute value of
different options [1,2]. However, a wealth of studies in humans and other animals have
demonstrated that rewards are often not perceived in absolute terms. Rather, choices are
compared to other options available or to reference points [e.g., 3—5]. This idea forms the basis
of Prospect Theory in behavioural economics which suggests that decision-making is based on
perception of gains and losses relative to a reference point [6,7]. Reference-based evaluation has
the potential to create incentive contrast effects, where a discrepancy between reward
expectations and perceived value can lead to an exaggerated response of aversion or preference.
A consequence of this is that identical options can be perceived differently depending on an
individual’s recent experience. Incentive contrast effects are taxonomically broad, having been
demonstrated across animals such as mice [8], dogs [9], starlings [10], and goldfish [11].
Humans’ expectations of reward quality are often based on experience with associated
stimuli (e.g. product labels), which can serve as strong reference points in value perception [12—
14]. These label-based expectations can influence decisions in several ways. Product labels
similar to those of previously encountered products can lead consumers to accept rewards that
would otherwise be less preferred or even rejected, a process known as ‘assimilation’ [15].
Conversely, labels can also have the opposite effect: if an individual expects a higher quality
reward based on a familiar label and then encounters a lower quality one, this can lead to
increased aversion [16]. For instance, people given cheap wine from a fancy bottle might enjoy
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the wine more than if it were poured from its original bottle or they may show stronger aversion
than those who are given the cheap wine in its original bottle [17].

Reference-based evaluation may be particularly relevant to guiding foraging decisions for
animals with broad diets, allowing individuals to link sensory properties of foods to their
nutritional quality [18-20]. For example, honeybees Apis and bumblebees Bombus are generalist
foragers that associate floral traits such as scents, colours, or patterns (i.e. akin to ‘labels’) with
properties of their rewards [21-24], such as the concentration of nectar [25,26]. Bees evaluate
nectar (sucrose solution) in reference to their prior experience and exhibit negative incentive
contrast to a solution they previously accepted after experiencing higher quality (i.e.
concentration) sucrose [25,27-31]. Incentive contrast in bees can be explained at a sensory level
(i.e. gustatory sensitivity), where ingestion of higher concentration sucrose reduces the apparent
sweetness of lower concentration sucrose [25,28]. However, the direction and magnitude of
contrast effects could also be influenced by prior experience with associated stimuli (‘labels”)
(e.g. see [27,32,33]).

In the present study we tested how bees’ label-based expectations of a floral signal (colour)
influenced perception and acceptance of a lower-quality reward. In our first experiment, bees
were trained to associate a colour with a high-quality sucrose reward. We then offered
individuals a downshifted reward paired with either the previously-trained colour or a novel
colour and measured their probability of acceptance over successive visits. We both addressed
bees’ first encounter with the downshifted reward, as well as how long it took them to accept the
new reward after gaining experience with it. If bees’ response to a reduction in quality is purely
sensory (i.e. governed by reward value alone), then we expected individuals to respond similarly
to the lower-quality reward, irrespective of flower colour. Conversely, if bees form specific
expectations about reward quality based on associated stimuli (‘labels’), then we expected their
responses to the downshifted reward to be dependent on whether it was paired with the familiar
or novel stimulus. We found that bees took longer to accept a downshifted reward on a familiar
stimulus, indicating a possible cost to flowers that appear similar but offer lower rewards. In a
second experiment we explored how similar floral stimuli needed to be to bear this cost of higher
expectations.

Methods
a) Experiment 1: Is incentive contrast affected by label-based expectations?

We used worker bumblebees Bombus impatiens from commercially-reared colonies (n=3)
(Koppert, USA). We used 20 bees per treatment (10 for each colour combination), with
treatments equally represented across colonies (Table S2). Individuals were trained to a colour
(blue or yellow) paired with a high-quality reward (8pl of 50% w/w sucrose) over three
consecutive trials spaced 5 minutes apart. Within each trial, individuals visited ~10 rewarding
flowers and consumed all rewards; the number of flowers visited did not differ across treatments
(for additional information see Supplementary Material). Following these three training trials,
bees were presented with a lower quality reward in a ‘test’ trial (8l of 30% w/w sucrose) paired
with either the familiar or a novel colour (Figure 1a). Our experimental nectar concentrations
were designed to match natural variation found in bumblebee-visited flowers [34]. In the test
trial we recorded bees’ responses to downshifted rewards over their first 20 visits to flowers. We
chose 20 successive visits based on our expectation that bees would increasingly accept the
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downshifted reward over this timescale. Acceptance was measured as bees consuming the
solution, while rejection was characterized by bees probing the solution and exiting the flower
without imbibing (video S1).

b) Experiment 2: Do responses generalize to similar stimuli?

To determine how similar stimuli needed to be to bear the cost of higher expectations, we tested
bees using a range of colour stimuli. Individuals (n= 85 from 5 colonies; Table S1) were trained
to a blue stimulus paired with a high-quality reward across three training trials (Figure 1b). We
then presented individuals with one of five possible colours. Four of these stimuli ranged from
blue to green and were increasingly different from the originally-trained colour whilst still being
discriminable to foragers [35] (chromatic contrasts calculated in the bee colour space model
[36,37]; Table S1). The fifth colour was yellow, serving as a ‘novel’ stimulus as in Experiment 1.
We used a slightly different blue stimulus in Experiment 2 than Experiment 1, while the yellow
was the same across both experiments. Again, we measured individuals’ acceptance of the
downshifted reward over their first 20 visits.

¢) Data analysis

Analyses were carried out in R version 4.0.5 [38]. We used generalized linear models (GLMs)
and linear mixed-effect models (GLMMs) with the glm() and glmer() functions in the Ime4
package [39]. We first addressed whether bees across treatments differed from each other in their
initial acceptance of the downshifted reward on their first floral visit using binomial GLMs
including ‘acceptance’ (accept/ reject) as the response variable and ‘stimulus type’ (familiar/
novel) as the explanatory variable. After finding that treatments did not differ in their initial
acceptance, to address the possibility that this was due to a lack of statistical power, we also
addressed whether bees’ acceptance behavior differed across treatments over their first five visits
using binomial GLMM s including the response variable ‘acceptance’ and the explanatory
variables ‘stimulus type’ (different for each experiment; see Fig. 1) and ‘visit number’
(continuous variable), and ‘bee’ and ‘colony’ as random factors. To determine whether bees’
acceptance behavior varied across all 20 visits as they gained experience with the new flower
type, we ran binomial GLMMs with the response variable ‘acceptance’, the explanatory
variables ‘stimulus type’ (different for each experiment; see Figure 1), ‘visit number’
(continuous variable), and ‘bee’ as a random factor. We also included ‘colony’ as a random
factor in Experiment 2, but not Experiment 1 due to a singularity issue. Finally, to determine
whether the number of visits before acceptance differed across treatments, we carried out a GLM
with a quasi-Poisson distribution using ‘number of visits until acceptance’ as the response
variable and ‘stimulus type’ as the explanatory variable. Data and analyses are available on
Dryad [40].

Results
a) Experiment 1

There was no difference between treatments in bees’ acceptance on their first visit (z = -0.644, p
=0.519; Figure S2), nor in acceptance across the first five visits (treatment: z=-1.035, p=0.301).
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However, bees which encountered the novel stimulus accepted the reward faster over the first 20
visits compared with bees that encountered the same stimulus (stimulus X visit number: z =
2.508, p = 0.0122; stimulus: z=-0.211, p = 0.833; Figure 2a). As was expected from previous
work on contrast effects, all bees were more likely to accept the downshifted reward over
successive visits (visit number: z = 7.448, p <0.001). The colour bees were trained to (blue vs.
yellow) did not affect acceptance (Figure S4). There was no difference between treatments in the
number of visits before acceptance (138 = 0.790, p = 0.435; Figure S3).

b) Experiment 2

When we tested bees across a range of stimuli that varied in their degree of difference from the
trained stimulus, we found that they generalized their responses, showing similar rejection
behaviour across the full range of blue/green stimuli (treatment: z =-1.296, p = 0.194; treatment
x visit number: z = 1.611, p = 0.12; Figure 2b; Table S3). In line with our results from
Experiment 1, we found a strong trend towards bees being more likely to accept the novel yellow
colour compared to Blue A across visits (Yellow-Blue A comparison: treatment X visit number: z
= 1.815, p = 0.0696; Figure 2b); this effect may not have been as strong as in Experiment 1
because the stimuli were more similar to each other (Table S1). Again, bees were more likely to
accept the downshifted reward across visits (z = 6.268, p < 0.001) and treatments did not differ in
bees’ acceptance on their first visit (z=-1.185, p=0.236; Figure S5), nor in their acceptance
across the first five visits (treatment: z =-0.917, p = 0.359). There was also no difference in the
number of visits before acceptance (33 = 0.152, p = 0.879; Figure S6).

Discussion

Bees’ perception of floral rewards is strongly influenced by prior experience. By comparing
bees’ acceptance behaviour towards downshifted rewards paired with familiar or novel colour
stimuli, we found that incentive contrast effects were not only sensory, but also affected by
individuals’ prior experience with associated stimuli. Bees’ initial rejection behaviour did not
differ between treatments, with bees showing high rates of initial rejection in both familiar and
novel treatments. Over repeated presentations, however, individuals were faster to accept a
lower-quality reward when it was paired with a novel stimulus. Thus, both immediate taste
perception and prior expectations based on stimulus value influence incentive contrast. While
previous work has shown that bumblebees that encounter a downshifted reward are more likely
to switch to a new colour than bees that encounter the same quality reward [29,30], ours is the
first to demonstrate that incentive contrast effects are stimulus-dependent. These results indicate
that when foraging, bumblebees will likely have different criteria of a flower’s acceptability
based on their previous experience with similar flower types, rather than based on their
experience with floral rewards per se.

At a cognitive level, our results can be explained by when bees learn, they form associations
between a specific stimulus and reward. If this stimulus is then changed to predict a lower-
quality reward, there is a greater discrepancy between expectation and outcome than for a novel
stimulus that does not carry this reward expectation. Thus, the behavioural response of rejection
is stronger for the learned stimulus than the novel one. Upon repeated visits to the test flowers,
bees in the familiar treatment undergo extinction of the previously learned association. While
bees in the novel treatment also have expectations of reward value based on their training
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experience, the association will be less strong and thus they more readily accept the new flower
faster. Extinction of reward expectations based on floral signal has similarly been shown to
influence acceptance behavior in honeybees [41]. Our result and proposed cognitive mechanism
is supported by classic work on incentive contrast in rats [42,43]. For example, rats only showed
incentive contrast in contexts when they expected a higher reward, and not in contexts that
predicted a lower reward [43]. However, while this topic has been explored in experimental
psychology using model organisms, few studies have directly addressed how label-based
expectations influence acceptance behaviour in other animals and in ecologically-relevant
scenarios. One exception comes from a study using ants (Lasius niger) that found equivalent
results to our own [33]. However, in a different study with this species, when the odour of the
reward was manipulated, ants formed label-based expectations in the opposite direction
(‘assimilation’), consuming more of the downshifted reward when it contained the odour that
was previously associated with a high-quality reward [32]. This result may be explained by the
odour cues being incorporated into the reward rather than the label or associated stimulus,
meaning that the odour-containing downshifted reward may have been perceived as more similar
to the previous, higher-quality reward instead of altering ants’ reward expectation.

What are the implications of our findings for bumblebee foraging behaviour? Floral rewards
can be dynamic, with nectar concentration varying within and between species [44—46].
Bumblebees can respond flexibly to this variability, switching between the flowers they visit
based on their reward history [47,48]. When a flower type or patch drops in reward value,
foragers will switch to visiting alternative food sources. For instance, bumblebees will fly farther
and bypass more flowers following a sequences of encounters with unrewarded flowers [49].
Results from the present study suggest that, in addition to this, bees may have different
acceptability thresholds of different flowers depending on their previous experience with the
same or similar species.

In our second experiment, we found that bees generalized their expectations of quality to
similar colours; this finding is in line with our understanding of how bees learn, requiring
differential conditioning for fine-colour discrimination such as this [50,51] (as opposed to
absolute conditioning used in these experiments). These results may have implications for floral
signalling. Co-flowering species with similar floral traits (e.g. colour) can benefit from
facilitation, i.e. increased fitness due to increased pollinator sharing (e.g. [52—54]). Our results
indicate that there may also be costs to having similar floral traits to other species: without
having similarly high rewards, these plants may bear the cost of bees being more sensitive to a
lower-quality reward than they would on a novel flower. Likewise, there may be a benefit to
being dissimilar: rare flower types that have a novel signal may ‘get away’ with offering cheaper
rewards. Our findings also indicate that bees may be less tolerant of reward variability within
than between species. This would both favour novel species within a patch and could exert
pressure on a given species to not exceed certain limits of reward variability. Indeed, nectar
sugar concentrations are generally less variable within than between species [55]. Bees’
discrimination against lower-quality flowers that they expect to have higher rewards may also
help explain ‘honest’ signalling of floral rewards within [56] and across species [57].

Taken as a whole, our results indicate that floral signals can serve as labels that mediate bees’
expectations of floral rewards. Of course, real flowers have additional levels of complexity such
as multimodal stimuli [58] and multiple rewards [59—62]. Future work might address how bees’
relative value perception of flowers is affected by multiple rewards on different axes of reward
quality [63]. Additionally, real flowers will have greater variability in reward quality than the
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artificial flowers used here, and this variability may differ across floral communities [44,64].
Going forward, future research could explore how this environmental noise influences incentive
contrast effects. By determining how decision-making is guided by experience with floral
stimuli, we can make more informed predictions both about bees’ foraging behaviour and the
evolution of signalling traits in flowers.

Figure legend

Figure 1. Experimental design for a) Experiment 1 and b) Experiment 2. In both experiments,
we trained bees to a high-quality reward before offering them a downshifted reward paired with
either a familiar, similar, or novel stimulus.

Figure 2. (a) Experiment 1: Proportion of bees accepting downshifted rewards paired with a
familiar or novel colour stimulus across the first 20 visits in the test trial. Shaded error bars show
95% confidence intervals. (b) Experiment 2: Proportion of bees accepting the downshifted
reward across visits in the test trial across the five stimuli.
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