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Abstract 5 
 6 
While classic models of animal decision-making assume that individuals assess the absolute 7 
value of options, decades of research has shown that rewards are often evaluated relative to 8 
recent experience, creating incentive contrast effects. Contrast effects are often assumed to be 9 
purely sensory, yet consumer and experimental psychology tell us that label-based expectations 10 
can affect value perception in humans and rodents. However, this has rarely been tested in non-11 
model systems. Bumblebees forage on a variety of flowers that vary in their signals and rewards 12 
and show contrast when rewards are lowered. We manipulated bees’ expectations of a stimulus’ 13 
quality, before downshifting the reward to induce incentive contrast. We found that contrast 14 
effects were not solely driven by experience with a better reward, but also influenced by 15 
experience with associated stimuli. While bees’ initial response did not differ between 16 
treatments, individuals were faster to accept the lower-quality reward when it was paired with a 17 
novel stimulus. We explored the boundaries of these label-based expectations by testing bees 18 
along a stimulus gradient and found that expectations generalized to similar stimuli. Such 19 
reference-dependent evaluations may play an important role in bees’ foraging choices, with the 20 
potential to impact floral evolution and plant community dynamics.  21 
 22 
Introduction 23 
 24 
Classic foraging theory assumes that animals know or can easily assess the absolute value of 25 
different options [1,2]. However, a wealth of studies in humans and other animals have 26 
demonstrated that rewards are often not perceived in absolute terms. Rather, choices are 27 
compared to other options available or to reference points [e.g., 3–5]. This idea forms the basis 28 
of Prospect Theory in behavioural economics which suggests that decision-making is based on 29 
perception of gains and losses relative to a reference point [6,7]. Reference-based evaluation has 30 
the potential to create incentive contrast effects, where a discrepancy between reward 31 
expectations and perceived value can lead to an exaggerated response of aversion or preference. 32 
A consequence of this is that identical options can be perceived differently depending on an 33 
individual’s recent experience. Incentive contrast effects are taxonomically broad, having been 34 
demonstrated across animals such as mice [8], dogs [9], starlings [10], and goldfish [11].  35 

Humans’ expectations of reward quality are often based on experience with associated 36 
stimuli (e.g. product labels), which can serve as strong reference points in value perception [12–37 
14]. These label-based expectations can influence decisions in several ways. Product labels 38 
similar to those of previously encountered products can lead consumers to accept rewards that 39 
would otherwise be less preferred or even rejected, a process known as ‘assimilation’ [15]. 40 
Conversely, labels can also have the opposite effect: if an individual expects a higher quality 41 
reward based on a familiar label and then encounters a lower quality one, this can lead to 42 
increased aversion [16]. For instance, people given cheap wine from a fancy bottle might enjoy 43 



the wine more than if it were poured from its original bottle or they may show stronger aversion 44 
than those who are given the cheap wine in its original bottle [17].  45 

Reference-based evaluation may be particularly relevant to guiding foraging decisions for 46 
animals with broad diets, allowing individuals to link sensory properties of foods to their 47 
nutritional quality [18–20]. For example, honeybees Apis and bumblebees Bombus are generalist 48 
foragers that associate floral traits such as scents, colours, or patterns (i.e. akin to ‘labels’) with 49 
properties of their rewards [21–24], such as the concentration of nectar [25,26]. Bees evaluate 50 
nectar (sucrose solution) in reference to their prior experience and exhibit negative incentive 51 
contrast to a solution they previously accepted after experiencing higher quality (i.e. 52 
concentration) sucrose [25,27–31]. Incentive contrast in bees can be explained at a sensory level 53 
(i.e. gustatory sensitivity), where ingestion of higher concentration sucrose reduces the apparent 54 
sweetness of lower concentration sucrose [25,28]. However, the direction and magnitude of 55 
contrast effects could also be influenced by prior experience with associated stimuli (‘labels’) 56 
(e.g. see [27,32,33]). 57 

In the present study we tested how bees’ label-based expectations of a floral signal (colour) 58 
influenced perception and acceptance of a lower-quality reward. In our first experiment, bees 59 
were trained to associate a colour with a high-quality sucrose reward. We then offered 60 
individuals a downshifted reward paired with either the previously-trained colour or a novel 61 
colour and measured their probability of acceptance over successive visits. We both addressed 62 
bees’ first encounter with the downshifted reward, as well as how long it took them to accept the 63 
new reward after gaining experience with it. If bees’ response to a reduction in quality is purely 64 
sensory (i.e. governed by reward value alone), then we expected individuals to respond similarly 65 
to the lower-quality reward, irrespective of flower colour. Conversely, if bees form specific 66 
expectations about reward quality based on associated stimuli (‘labels’), then we expected their 67 
responses to the downshifted reward to be dependent on whether it was paired with the familiar 68 
or novel stimulus. We found that bees took longer to accept a downshifted reward on a familiar 69 
stimulus, indicating a possible cost to flowers that appear similar but offer lower rewards. In a 70 
second experiment we explored how similar floral stimuli needed to be to bear this cost of higher 71 
expectations.  72 
 73 
Methods 74 
 75 

a) Experiment 1: Is incentive contrast affected by label-based expectations?  76 
 77 

We used worker bumblebees Bombus impatiens from commercially-reared colonies (n=3) 78 
(Koppert, USA). We used 20 bees per treatment (10 for each colour combination), with 79 
treatments equally represented across colonies (Table S2). Individuals were trained to a colour 80 
(blue or yellow) paired with a high-quality reward (8l of 50% w/w sucrose) over three 81 
consecutive trials spaced 5 minutes apart. Within each trial, individuals visited ~10 rewarding 82 
flowers and consumed all rewards; the number of flowers visited did not differ across treatments 83 
(for additional information see Supplementary Material). Following these three training trials, 84 
bees were presented with a lower quality reward in a ‘test’ trial (8l of 30% w/w sucrose) paired 85 
with either the familiar or a novel colour (Figure 1a). Our experimental nectar concentrations 86 
were designed to match natural variation found in bumblebee-visited flowers [34]. In the test 87 
trial we recorded bees’ responses to downshifted rewards over their first 20 visits to flowers. We 88 
chose 20 successive visits based on our expectation that bees would increasingly accept the 89 



downshifted reward over this timescale. Acceptance was measured as bees consuming the 90 
solution, while rejection was characterized by bees probing the solution and exiting the flower 91 
without imbibing (video S1).  92 
 93 

b) Experiment 2: Do responses generalize to similar stimuli? 94 
 95 
To determine how similar stimuli needed to be to bear the cost of higher expectations, we tested 96 
bees using a range of colour stimuli. Individuals (n= 85 from 5 colonies; Table S1) were trained 97 
to a blue stimulus paired with a high-quality reward across three training trials (Figure 1b). We 98 
then presented individuals with one of five possible colours. Four of these stimuli ranged from 99 
blue to green and were increasingly different from the originally-trained colour whilst still being 100 
discriminable to foragers [35] (chromatic contrasts calculated in the bee colour space model 101 
[36,37]; Table S1). The fifth colour was yellow, serving as a ‘novel’ stimulus as in Experiment 1. 102 
We used a slightly different blue stimulus in Experiment 2 than Experiment 1, while the yellow 103 
was the same across both experiments. Again, we measured individuals’ acceptance of the 104 
downshifted reward over their first 20 visits.  105 
 106 

c) Data analysis 107 
 108 

Analyses were carried out in R version 4.0.5 [38]. We used generalized linear models (GLMs) 109 
and linear mixed-effect models (GLMMs) with the glm() and glmer() functions in the lme4 110 
package [39]. We first addressed whether bees across treatments differed from each other in their 111 
initial acceptance of the downshifted reward on their first floral visit using binomial GLMs 112 
including ‘acceptance’ (accept/ reject) as the response variable and ‘stimulus type’ (familiar/ 113 
novel) as the explanatory variable. After finding that treatments did not differ in their initial 114 
acceptance, to address the possibility that this was due to a lack of statistical power, we also 115 
addressed whether bees’ acceptance behavior differed across treatments over their first five visits 116 
using binomial GLMMs including the response variable ‘acceptance’ and the explanatory 117 
variables ‘stimulus type’ (different for each experiment; see Fig. 1) and ‘visit number’ 118 
(continuous variable), and ‘bee’ and ‘colony’ as random factors. To determine whether bees’ 119 
acceptance behavior varied across all 20 visits as they gained experience with the new flower 120 
type, we ran binomial GLMMs with the response variable ‘acceptance’, the explanatory 121 
variables ‘stimulus type’ (different for each experiment; see Figure 1), ‘visit number’ 122 
(continuous variable), and ‘bee’ as a random factor. We also included ‘colony’ as a random 123 
factor in Experiment 2, but not Experiment 1 due to a singularity issue. Finally, to determine 124 
whether the number of visits before acceptance differed across treatments, we carried out a GLM 125 
with a quasi-Poisson distribution using ‘number of visits until acceptance’ as the response 126 
variable and ‘stimulus type’ as the explanatory variable. Data and analyses are available on 127 
Dryad [40]. 128 
 129 
Results 130 
 131 

a) Experiment 1 132 
 133 
There was no difference between treatments in bees’ acceptance on their first visit (z = -0.644, p 134 
=0.519; Figure S2), nor in acceptance across the first five visits (treatment:  z= -1.035, p=0.301). 135 



However, bees which encountered the novel stimulus accepted the reward faster over the first 20 136 
visits compared with bees that encountered the same stimulus (stimulus × visit number: z = 137 
2.508, p = 0.0122; stimulus: z = -0.211, p = 0.833; Figure 2a). As was expected from previous 138 
work on contrast effects, all bees were more likely to accept the downshifted reward over 139 
successive visits (visit number: z = 7.448, p <0.001). The colour bees were trained to (blue vs. 140 
yellow) did not affect acceptance (Figure S4). There was no difference between treatments in the 141 
number of visits before acceptance (t38 = 0.790, p = 0.435; Figure S3). 142 
 143 

b) Experiment 2 144 
 145 
When we tested bees across a range of stimuli that varied in their degree of difference from the 146 
trained stimulus, we found that they generalized their responses, showing similar rejection 147 
behaviour across the full range of blue/green stimuli (treatment: z = -1.296, p = 0.194; treatment 148 
× visit number: z = 1.611, p = 0.12; Figure 2b; Table S3). In line with our results from 149 
Experiment 1, we found a strong trend towards bees being more likely to accept the novel yellow 150 
colour compared to Blue A across visits (Yellow-Blue A comparison: treatment × visit number: z 151 
= 1.815, p = 0.0696; Figure 2b); this effect may not have been as strong as in Experiment 1 152 
because the stimuli were more similar to each other (Table S1). Again, bees were more likely to 153 
accept the downshifted reward across visits (z = 6.268, p < 0.001) and treatments did not differ in 154 
bees’ acceptance on their first visit (z= -1.185, p=0.236; Figure S5), nor in their acceptance 155 
across the first five visits (treatment: z = -0.917, p = 0.359). There was also no difference in the 156 
number of visits before acceptance (t83 = 0.152, p = 0.879; Figure S6).  157 
 158 
Discussion 159 
 160 
Bees’ perception of floral rewards is strongly influenced by prior experience. By comparing 161 
bees’ acceptance behaviour towards downshifted rewards paired with familiar or novel colour 162 
stimuli, we found that incentive contrast effects were not only sensory, but also affected by 163 
individuals’ prior experience with associated stimuli. Bees’ initial rejection behaviour did not 164 
differ between treatments, with bees showing high rates of initial rejection in both familiar and 165 
novel treatments. Over repeated presentations, however, individuals were faster to accept a 166 
lower-quality reward when it was paired with a novel stimulus. Thus, both immediate taste 167 
perception and prior expectations based on stimulus value influence incentive contrast. While 168 
previous work has shown that bumblebees that encounter a downshifted reward are more likely 169 
to switch to a new colour than bees that encounter the same quality reward [29,30], ours is the 170 
first to demonstrate that incentive contrast effects are stimulus-dependent. These results indicate 171 
that when foraging, bumblebees will likely have different criteria of a flower’s acceptability 172 
based on their previous experience with similar flower types, rather than based on their 173 
experience with floral rewards per se.  174 

At a cognitive level, our results can be explained by when bees learn, they form associations 175 
between a specific stimulus and reward. If this stimulus is then changed to predict a lower-176 
quality reward, there is a greater discrepancy between expectation and outcome than for a novel 177 
stimulus that does not carry this reward expectation. Thus, the behavioural response of rejection 178 
is stronger for the learned stimulus than the novel one. Upon repeated visits to the test flowers, 179 
bees in the familiar treatment undergo extinction of the previously learned association. While 180 
bees in the novel treatment also have expectations of reward value based on their training 181 



experience, the association will be less strong and thus they more readily accept the new flower 182 
faster. Extinction of reward expectations based on floral signal has similarly been shown to 183 
influence acceptance behavior in honeybees [41]. Our result and proposed cognitive mechanism 184 
is supported by classic work on incentive contrast in rats [42,43]. For example, rats only showed 185 
incentive contrast in contexts when they expected a higher reward, and not in contexts that 186 
predicted a lower reward [43]. However, while this topic has been explored in experimental 187 
psychology using model organisms, few studies have directly addressed how label-based 188 
expectations influence acceptance behaviour in other animals and in ecologically-relevant 189 
scenarios. One exception comes from a study using ants (Lasius niger) that found equivalent 190 
results to our own [33]. However, in a different study with this species, when the odour of the 191 
reward was manipulated, ants formed label-based expectations in the opposite direction 192 
(‘assimilation’), consuming more of the downshifted reward when it contained the odour that 193 
was previously associated with a high-quality reward [32]. This result may be explained by the 194 
odour cues being incorporated into the reward rather than the label or associated stimulus, 195 
meaning that the odour-containing downshifted reward may have been perceived as more similar 196 
to the previous, higher-quality reward instead of altering ants’ reward expectation.  197 

What are the implications of our findings for bumblebee foraging behaviour? Floral rewards 198 
can be dynamic, with nectar concentration varying within and between species [44–46]. 199 
Bumblebees can respond flexibly to this variability, switching between the flowers they visit 200 
based on their reward history [47,48]. When a flower type or patch drops in reward value, 201 
foragers will switch to visiting alternative food sources. For instance, bumblebees will fly farther 202 
and bypass more flowers following a sequences of encounters with unrewarded flowers [49]. 203 
Results from the present study suggest that, in addition to this, bees may have different 204 
acceptability thresholds of different flowers depending on their previous experience with the 205 
same or similar species. 206 

In our second experiment, we found that bees generalized their expectations of quality to 207 
similar colours; this finding is in line with our understanding of how bees learn, requiring 208 
differential conditioning for fine-colour discrimination such as this [50,51] (as opposed to 209 
absolute conditioning used in these experiments). These results may have implications for floral 210 
signalling. Co-flowering species with similar floral traits (e.g. colour) can benefit from 211 
facilitation, i.e. increased fitness due to increased pollinator sharing (e.g. [52–54]). Our results 212 
indicate that there may also be costs to having similar floral traits to other species: without 213 
having similarly high rewards, these plants may bear the cost of bees being more sensitive to a 214 
lower-quality reward than they would on a novel flower. Likewise, there may be a benefit to 215 
being dissimilar: rare flower types that have a novel signal may ‘get away’ with offering cheaper 216 
rewards. Our findings also indicate that bees may be less tolerant of reward variability within 217 
than between species. This would both favour novel species within a patch and could exert 218 
pressure on a given species to not exceed certain limits of reward variability. Indeed, nectar 219 
sugar concentrations are generally less variable within than between species [55]. Bees’ 220 
discrimination against lower-quality flowers that they expect to have higher rewards may also 221 
help explain ‘honest’ signalling of floral rewards within [56] and across species [57].  222 

Taken as a whole, our results indicate that floral signals can serve as labels that mediate bees’ 223 
expectations of floral rewards. Of course, real flowers have additional levels of complexity such 224 
as multimodal stimuli [58] and multiple rewards [59–62]. Future work might address how bees’ 225 
relative value perception of flowers is affected by multiple rewards on different axes of reward 226 
quality [63]. Additionally, real flowers will have greater variability in reward quality than the 227 



artificial flowers used here, and this variability may differ across floral communities [44,64]. 228 
Going forward, future research could explore how this environmental noise influences incentive 229 
contrast effects. By determining how decision-making is guided by experience with floral 230 
stimuli, we can make more informed predictions both about bees’ foraging behaviour and the 231 
evolution of signalling traits in flowers. 232 

 233 
Figure legend 234 
 235 
Figure 1. Experimental design for a) Experiment 1 and b) Experiment 2. In both experiments, 236 
we trained bees to a high-quality reward before offering them a downshifted reward paired with 237 
either a familiar, similar, or novel stimulus.   238 
 239 

Figure 2. (a) Experiment 1: Proportion of bees accepting downshifted rewards paired with a 240 
familiar or novel colour stimulus across the first 20 visits in the test trial. Shaded error bars show 241 
95% confidence intervals. (b) Experiment 2: Proportion of bees accepting the downshifted 242 
reward across visits in the test trial across the five stimuli.  243 
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