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Abstract—Communication systems to date primarily aim at reliably
communicating bit sequences. Such an approach provides efficient engi-
neering designs that are agnostic to the meanings of the messages or to the
goal that the message exchange aims to achieve. Next generation systems,
however, can be potentially enriched by folding message semantics and
goals of communication into their design. Further, these systems can
be made cognizant of the context in which communication exchange
takes place, thereby providing avenues for novel design insights. This
tutorial summarizes the efforts to date, starting from its early adapta-
tions, semantic-aware and task-oriented communications, covering the
foundations, algorithms and potential implementations. The focus is on
approaches that utilize information theory to provide the foundations,
as well as the significant role of learning in semantics and task-aware
communications.

I. INTRODUCTION

Digital communication systems have been conceptualized, de-
signed, and optimized for the main design goal of reliably trans-
mitting bits over noisy communication channels. Shannon’s channel
coding theory provides the fundamental limit on the rate of this
reliable communication, with the crucial design choice that the system
remains oblivious to the underlying meaning of the messages to
be conveyed or how they would be utilized at their destination. It
is this disassociation from content that allows Shannon’s approach
to abstract the “engineering” problem that is to replicate a digital
sequence generated at one point, asymptotically error-free at another.
While this approach has been tremendously successful in systems
where communicating, e.g., voice and data, is the main objective,
many emerging applications, from autonomous driving, to healthcare
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and Internet of Everything, will involve connecting machines that
execute (sometimes human-like) tasks. Such cyber-physical systems
integrate computation and communication with physical processes
where processing units need to communicate and collaborate to
monitor and control physical systems through sensor and actuator
networks resulting in a networked cyber-physical system. In these
applications, the goal of communication is often not to reconstruct
the underlying message exactly as in conventional communication
networks, but to enable the destination to make the right inference
or to take the right decision and action at the right time and within
the right context. Similarly, human-machine interactions will be an
important component, where humans will simultaneously interact
with multiple devices using text, speech, or image commands, leading
to the need for similar interaction capabilities on the devices. These
applications motivate the development of “semantic” and “task-
oriented” communication systems. Recent advances in artificial intel-
ligence technologies and their applications have boosted the interest
and the potentials of semantics and task-oriented communications,
particularly within the context of future wireless communications
systems, such as 6G. Integrating semantics into system design,
however, is still in its infancy with ample open problems ranging
from foundational formulations to development of practical systems.
This article provides an introduction to tools and advancements to
date in semantic and task-oriented communications with the goal of
providing a comprehensive tutorial for communication theorists and
practitioners.

A. Motivation of Semantics and Task-oriented Communications

There is a growing interest in semantic and goal-oriented commu-
nication systems in the recent years. This interest is mainly driven
by new verticals that are foreseen to dominate the data traffic in
future communication networks. Current communication networks
are designed to serve data packets in a reliable and efficient manner
without paying attention to the contents of these packets or the
impact they would have at the receiver side. However, there is a
growing understanding that many of the emerging applications can
benefit from going beyond the current paradigm that completely
separates the design of the communication networks from the source
and destination of the information that flows through the network.
The reason behind this trend is twofold: First, the success of many
of the emerging applications, such as autonomous driving or smart
city/home/factory, relies on massive datasets that enable training
large models for various tasks. Hence, supporting and enabling such
applications will require carrying significant amounts of traffic due
to the transmission of these massive datasets and large models,
which can potentially saturate the network capacity. For example,
each self-driving car collects terrabytes of data each day from
its many sensors, including radar, LIDAR, cameras, and ultrasonic
sensors. Such data is often collected by the manufacturers to test
and improve their models, thereby generating a huge amount of
traffic. Hence, the communication infrastructure cannot simply be
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an ignorant bit-pipe to enable intelligence at the higher layers, but
must incorporate intelligence itself to make sure only the required
traffic is transmitted at the necessary time and speed [1], [2]. This
will require a data-aware communication network design that has
the required intelligence to understand the relevance, urgency, and
meaning of the data traffic in conjunction with the underlying task.
Second, unlike the current content-delivery type traffic, most of the
emerging applications require extremely low end-to-end latency. For
example, when delivering a video signal to a human, even in the case
of live streaming, a certain level of delay is acceptable. However,
when this video signal is intended to be used by an autonomous
vehicle to detect and avoid potential obstacles or pedestrians on
the street, even small delays may not be acceptable. On the other
hand, carrying out such a task does not require the vehicle to receive
the video sequence with the highest fidelity that is often considered
when serving a human receiver. The vehicle is only interested in the
content that is relevant for the task at hand. Again, it is essential
to incorporate intelligence into the communication system design to
extract and deliver the task-relevant information in the fastest and
most reliable manner.

B. What is Semantics? A Historical Perspective

Semantics has been studied for centuries in the context of different
disciplines, such as philosophy, linguistics, and cognitive sciences, to
name a few. It is a highly complex, and to some extend, controversial
concept, which is very difficult, if not impossible, to define in
a concise manner that would be widely acceptable. Very briefly,
semantics can be defined as the study of “meaning”, but maybe not
surprisingly, it means different things in different areas. ‘Meaning’
itself is an elusive word.

The word semantic originated from the Greek ‘sēmanticós’, which
means ‘significant’. It is closely connected to semiotics, the study
of signs. All communication systems are built upon signs, and a
language can be broadly defined as a system of signs and rules. The
rules applied to signs are divided into three categories [3]: 1) Syntax:
studies signs and their relations to other signs; 2) Semantics: studies
the signs and their relation to the world; and 3) Pragmatics: studies
the signs and their relations to users.

In this classification, syntax is only concerned with the signs
and their relations, and according to Cherry, “treats language as a
calculus” [4]. Semantics is built upon syntax, and its main goal is
to understand the relations between signs and the objects to which
they apply, designata. According to Chomsky, syntax is independent
of semantics [5]. Through his now famous sentence “Colorless green
ideas sleep furiously,” Chomsky argued that it is possible to construct
grammatically consistent but semantically meaningless phrases, hence
the separation between syntax and semantics. Pragmatics, on the
other hand, is the most general of the three, and considers context
of communication; that is, takes into account all the personal and
psychological factors (in human communications) when considering
the impact of a sign on designata.

Possibly inspired by the above classification, in his accompanying
article to Shannon’s Mathematical Theory of Communication in [6],
Weaver identified three levels of communication problems, which
correspond to the three categories above. According to Weaver,
Level A deals with the technical problem, and tries to answer the
question “How accurately can the symbols of communication be
transmitted?”. Level B instead deals with the semantic problem,
which asks “How precisely do the transmitted symbols convey the
desired meaning?”. Finally, the third level, Level C, corresponds
to the effectiveness problem, and asks “How effectively does the
received meaning affect conduct in the desired way?”. Similarly to

syntax in semiotics, the engineering problem can be considered as
the syntax in communications, dealing only with the signs used in
communication systems, their relations and how they are transmitted
over a communication channel.

Similarly to Chomsky’s strict separation between syntax and se-
mantics, Shannon’s information theory deals exclusively with the
engineering problem, ignoring the meaning of the symbols transmit-
ted. Indeed, in his seminal paper [7], Shannon explicitly states the
following: “The fundamental problem of communication is that of
reproducing at one point either exactly or approximately a message
selected at another point. Frequently the messages have meaning;
that is they refer to or are correlated according to some system
with certain physical or conceptual entities. These semantic aspects
of communication are irrelevant to the engineering problem. The
significant aspect is that the actual message is one selected from
a set of possible messages. The system must be designed to operate
for each possible selection, not just the one which will actually be
chosen since this is unknown at the time of design.” Shannon possibly
excluded ‘meaning’ from his theory as he wanted to create a clear
mathematical system. He was not alone in this, as many others at
the time avoided ‘meaning’ from their studies due to a lack of clear
definition and understanding of the word. Morris wrote in [3]: “The
term ‘meaning’ is not included among the basic terms of semiotics.
This term, useful enough at the level of everyday analysis, does
not have the precision necessary for scientific analysis. Accounts
of meaning usually throw a handful of putty at the target of sign
phenomena, while a technical semiotic must provide us with words
which are sharpened arrows.”

Despite Shannon’s clear indication, many researchers at the time
were excited about using Shannon’s statistical theory to explain or
measure semantics. For example, in [8], Wiener wrote “The amount
of meaning can be measured. It turns out that the less probable a
message is, the more meaning it carries, which is entirely reasonable
from the standpoint of common sense.” Weaver, on the other hand,
although explicitly excluding semantics from Shannon’s theory, still
argues it has implications for Level B and Level C problems. He
writes [6] “[Shannons’s theory] although ostensibly applicable only
to Level A problems, actually is helpful and suggestive for the level
B and C problems.”. And he later adds: “Thus when one moves to
levels B and C, it may prove to be essential to take account of the
statistical characteristics of the destination. One can imagine, as an
addition to the diagram, another box labeled “Semantic Receiver”
interposed between the engineering receiver (which changes signals
to messages) and the destination. This semantic receiver subjects the
message to a second decoding, the demand on this one being that
it must match the statistical semantic characteristics of the message
to the statistical semantic capacities of the totality of receivers, or of
that subset of receivers which constitute the audience one wishes to
affect.”

Not everybody was of the same opinion as Wiener and Weaver
regarding the potential application of Shannon’s information theory
to semantics. In [9], Bar-Hillel and Carnap argue that the statistical
theory of information conceived by Shannon cannot be applied to
study semantics. They also express their dissatisfaction with such
attempts: “Unfortunately, however, it often turned out that impatient
scientists in various fields applied the terminology and the theorems
of Communication Theory to fields in which the term “information”
was used, presystematically, in a semantic sense, that is, one involving
contents or designata of symbols, or even in a pragmatic sense, that
is, one involving the users of these symbols.”

Based on Shannon’s explicit statement of excluding semantics from
his theory, and the ensuing discussion by Carnap and Bar-Hillel,
today, many authors argue that the classical Shannon theory cannot



3

handle the semantics related aspects of communication systems.
In Shannon’s channel coding theorem, the goal is to convey the
maximum number of bits through a communication channel in a
reliable manner, where “reliable” means that the transmitted bit
sequence must be reconstructed at the receiver with an arbitrarily low
probability of error. Here, each bit is assumed to be equally likely,
and what the receiver does with these bits is not relevant for the
channel capacity. But, not all information sources generate sequences
of equally likely bits. This is obviously not the case in a text in
any language. Shannon also looked at such information sources, and
showed in his source coding theorem [7] that any information source
can be compressed into equally likely messages at a rate at least
at the entropy of the information source (assuming the information
source generates independent symbols from an identical distribution).
Even though Shannon explicitly studied the entropy of the English
language as an example [10], like channel coding theory, his source
coding theory does not deal with the meaning of the words. From the
point of Shannon theory, an information source generating messages
from the set {I love you, I miss you, I can’t stand you} is the same
as the one generating messages from the set {1, 2, 3} as long as the
messages come from the same probability distribution.

On the other hand, while Shannon’s theory did not deal with
the meaning of these messages, it did not ignore the possibility
of imperfect reconstructions. Even in his seminal work [7], which
mostly focused on the reliable transmission of sources, Shannon
highlighted that the exact transmission of continuous sources would
require a channel of infinite capacity, but they can be delivered
within a certain fidelity criterion. He laid down the basic ideas of
a rate-distortion theory in [7], although the theory is developed more
rigorously only in his later work in 1959 [11]. In [7], he mentioned
various fidelity measures that can be considered when transmitting
continuous signals, including mean squared error, frequency weighted
mean squared error, and absolute error. Shannon then states: “The
structure of the ear and brain determine implicitly an evaluation, or
rather a number of evaluations, appropriate in the case of speech or
music transmission. There is, for example, an ‘intelligibility’ criterion
in which ρ(x; y) is equal to the relative frequency of incorrectly
interpreted words when message x(t) is received as y(t). Although
we cannot give an explicit representation of ρ(x; y) in these cases
it could, in principle, be determined by sufficient experimentation.
Some of its properties follow from well-known experimental results
in hearing, e.g., the ear is relatively insensitive to phase and the
sensitivity to amplitude and frequency is roughly logarithmic.” Here,
Shannon uses the term “evaluation” to refer to different fidelity
measures. He clearly makes a reference to reconstruction measures
that go beyond recovering a sequence of bits, and allow a certain
level of reconstruction error as long as that is within the intelligibility
of the receiver, e.g., the ear or the brain. One can further argue that
Shannon already hints towards data-driven evaluation of the fidelity of
a reconstruction in accordance with the machine learning approaches
widely used today.

In this paper, our goal is to follow Shannon’s approach, in the sense
that, we would like to outline a mathematical framework for semantic
communication, and highlight how this mathematical framework can
be used to design and optimize communication systems and networks.
Considering a simple point-to-point communication system, where
the goal is to reconstruct the source signal at the receiver end,
we treat semantics as a prescribed measure between the source
and reconstruction pairs. This measure in general will depend on
the underlying goal of the communication, the ‘significance’ of the
source signal to be communicated for this goal, and the ‘fidelity’
of the reconstruction in achieving this goal. We will provide a
comprehensive overview of basic Shannon theoretic concepts in

relation to semantic and task-oriented communications in this context.
While we will provide a brief summary of semantic information
theory of Bar-Hillel and Carnap and some of its future extensions as
well, resolving the discussion regarding the applicability of Shannon’s
statistical information theory to study semantics, particularly in the
context of linguistics, is out of the scope of this paper. Indeed, our
main argument is that if we are given a certain distortion measure on
the pairs of transmitted and reconstructed messages, the problem then
falls into the realm of information and coding theory. On the other
hand, in most cases, particularly for natural languages, characterizing
such a distortion measure can be extremely difficult if not impossible.
Modern machine learning techniques, particularly those in the area
of natural language processing (NLP), can provide such distortion
measures, which are becoming increasingly accurate and useful, at
least from an engineering standpoint. Therefore, our interpretation
and application of semantics to communication systems is closer
to Weaver’s, where semantics is simply a fidelity measure imposed
by the underlying information source, captured by the concept of
“semantic noise” [6], and our focus will be on the theoretical
understanding and practical design of communication systems that
can extract and exploit such semantic fidelity measures.

C. Relevant Surveys and Our Contributions

Given the increasing interest in semantic- and task-oriented com-
munications, it is not surprising to note that there are quite a few exist-
ing surveys and tutorial articles focusing on this general topic already.
We discuss them briefly and then list our main contributions. The
authors in [12] introduced three kinds of semantic communications,
human-to-human, human-to-machine, and machine-to-machine com-
munications. The key performance indicators and system design for
semantic learning mechanisms over future wireless communications
were further pointed out in [13]. The goal-oriented signal processing
was investigated in [14], which included the graph-based semantic
language and representation of the semantic information. Besides, the
architectures of semantic communications for artificial intelligence-
assisted wireless networks were investigated in [15]–[17]. In [18],
the technical contents and application scenarios were discussed for
the intelligent and efficient semantic communication network design.
In [19], the authors discussed principles and challenges of semantic
communications enabled by deep learning. Compared with the above
works [12]–[20], the main focus of this paper is to provide a compre-
hensive introduction to semantic- and task-oriented communications
through an information-theoretic viewpoint. In other words, it will be
our intention to ground everything discussed in this paper in relevant
information-theoretic principles.

In addition to providing a comprehensive survey of semantic- and
task-oriented communication systems, the main ingredients of our
paper are listed below.

• We first review some of the early efforts in defining a seman-
tic information measure. We point out the differences among
existing definitions of semantic entropy, and introduce how
knowledge graph based semantics can be applied to and benefit
a wide variety of common tasks.

• We provide the basic information theoretic concepts for
semantic- and task-oriented communications. For instance, we
show how the rate-distortion theory can capture the semantic dis-
tortion measure and explore the connection between information
bottleneck (IB) and goal-oriented compression. To convey the
class information to the receiver, rate-limited remote inference
theory is discussed.

• Machine learning techniques for semantic- and task-oriented
communications are discussed in two phases separately, i.e.,
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training phase and prediction phase. Various approaches to the
remote inference and remote training problems are presented.

• We introduce the information theoretic concepts for semantic
and task-oriented transmission over noisy channels from the
viewpoint of joint source and channel coding (JSCC). Some
practical designs for goal-oriented semantic communication over
noisy channels are further provided for text, speech, and image
sources.

• We discuss the idea of “timing as semantics” where the relevance
or value of information is in time. Connections of this idea with
the related concept of age of information (AoI) are explored by
discussing a general real-time remote tracking or reconstruction
problem from the rate-distortion viewpoint with a time-sensitive
distortion measure which captures the semantic information
contained in the timing of source reconstructions.

• We present a new effective communication framework, cor-
responding to the Level C communication problem put forth
by Weaver. This results in a context-dependent communication
paradigm, where the same message may have a different affect
on the receiver depending on the context.

The paper is organized as follows. Some existing definitions
for semantic information measures are presented in Section II.
The information-theoretic foundations of semantic- and task-oriented
communications are presented in Section III. Then, in Section IV,
relevant machine learning techniques for semantic- and task-oriented
communications are introduced in detail. The JSCC approach tak-
ing into account the channel effects on semantic information is
presented in Section V. To realize semantic communications, some
practical designs for goal-oriented semantic communication over
noisy channels are provided in Section VI. As an instance of task-
oriented communications, an important class of problems where the
metric relates the freshness of information along with connections to
semantics is discussed in Section VII. An effective communication
framework is presented in Section VIII. Finally, Section IX concludes
the paper.

II. SEMANTIC INFORMATION MEASURES

To extend the engineering approach proposed by Shannon, a
number of researchers started to work on the theory of semantic
communications soon after Shannon’s work. One of the desires was
to come up with a measure of information, similarly to Shannon’s
entropy, but one that takes into account the structures within the
elements of the set a random variable is defined on, particularly
the logical relations. This is in contrast to Shannon’s entropy which
depends only on the probability distribution of the random variable,
but not on the set on which it is defined. The concept of semantic
entropy was proposed in [21], and was foreseen to play a significant
role in developing a framework that considers semantics. This notion
is then used to quantify semantic information of a source. Until
now, a number of other definitions of semantic entropy have been
proposed from different perspectives. However, a commonly-agreed
upon notion is yet to emerge.

A. Semantic Entropy

Semantic entropy is a measure of the average level of "semantic".
In 1952, Carnap and Bar-Hillel [21] first explicated the concept of
semantic entropy of a sentence within a given language system, and
provided a way to measure it as follows:

H(s, e) = − log c(s, e), (1)

where c(s, e) is the degree of confirmation of sentence s on the
evidence e, given by

c(s, e) =
m(e, s)

m(e)
. (2)

Here, m(e, s) and m(e) represent the logical probability of s on e and
that of e, respectively, in which the logical probability is a measure
of inductive support or partial entailment. Here, the semantic entropy
of a statement is determined by the likelihood of that statement being
true ‘in all possible worlds’ [22]. Statement ‘s and t’ will have higher
semantic entropy than statements ‘s’, ‘t’ or ‘s or t’. For example, the
sentence ‘I slept under the rain’ has higher semantic entropy than ‘I
walked under the rain’ as the likelihood of the first one being true
is smaller. A well-known problem with the Carnap and Bar-Hillel’s
semantic entropy definition is the fact that it assigns the highest
information to the contradictory sentences. This is also known as
the Bar-Hillel and Carnap Semantic Paradox.

Different from the logic-based definition, Venhuizen et al. [23]
derived the semantic entropy based on a language comprehension
model in terms of the structure of the world (the latent background
knowledge) instead of the logical structure or the probabilistic model
of the language, which can be expressed as

H(vt) = −
∑

vM∈VM

p(vM |vt) log p(vM |vt), (3)

where VM = {vM |vM (i) = 1 iff Mi =
M and M is a unique model in M} is the
set of meaning vectors that identify unique models in M, M is
the set of models and reflects the probabilistic structure of the
world, and p(vM |vt) is the conditional probability of vM given vt.
This comprehension-centric notion of semantic entropy depends on
both linguistic experience and world knowledge and quantifies the
uncertainty with respect to the whole meaning space.

Apart from the language system, the semantic entropy for in-
telligent tasks has also been studied. Melamed [24] proposed an
information-theoretic method for measuring the semantic entropy
in translation tasks by using translational distributions of words in
parallel text corpora. The semantic entropy of each word w is given
by

H(w) = H(T |w) +N(w)

= −
∑
t∈T

p(t|w)logp(t|w) + p(NULL|w)logF (w), (4)

where H(T |w) is the translational inconsistency of a source word
w, which denotes a word that is translated in different ways, and
T represents the set of target words, N(w) denotes the contribution
of null links of w, which indicate the words that do not translate
easily from one language to another, and F (w) is the frequency of
w. Additionally, for classification tasks, Liu et al. [25] defined the
semantic entropy by introducing the membership degree in axiomatic
fuzzy set theory. Let µς (x) denote the membership degree of the
data sample x. The authors first obtained the matching degree to
measure the probability of the elements belonging to the set, which
characterizes the semantic entropy for data samples in class Cj , j ∈
{1, 2, . . . ,m} on semantic concept ς , as

Dj (ς) =

∑
x∈XCj

µς (x)

∑
x∈X

µς (x)
, (5)
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where XCj is the set of data for class Cj , and X is the data set of
all classes. According to the matching degree, the semantic entropy
of class Cj on ς is defined as

HCj (ς) = −Dj (ς) log2Dj (ς) . (6)

Further, the semantic entropy of concept ς on X can be obtained by

H (ς) =

m∑
j=1

HCj (ς) . (7)

Based on this definition, the optimal semantic descriptions of each
class can be obtained and the uncertainty in designing the classifier
is minimized.

In contrast to the aforementioned definitions that are specific to
a single task, Chattopadhyay et al. [26] explored an information-
theoretic framework to quantify semantic information for any task
and any type of source. They define the semantic entropy as the
minimum number of semantic queries about data S, whose answers
are sufficient to predict task V , which can be expressed as

HQ(S;V )
∆
= min

E
ES
[∣∣∣CodeEQ(S)

∣∣∣]
s.t. P (v|CodeEQ(s)) = P (v|s), ∀s, v, (8)

where CodeEQ(s) denotes the query vector extracted from S with
the semantic encoder E. From (8), in order to obtain the semantic
entropy, one needs to find the optimal semantic encoder, which has
the ability to encode S into the minimal representation that can accu-
rately predict the task. Currently, many methods are being utilized for
measuring the semantic entropy, such as semantic information pursuit
and variational inference. This direction is still in early stages and
need to be further investigated.

In summary, there are significant differences among existing
definitions of semantic entropy as each of them is based on the
properties of its own concerned task. Although the last definition
can be extended to different tasks, finding the optimal semantic
encoder is as challenging as obtaining semantic entropy. Hence, a
unifying definition (as in the case of Shannon entropy) does not
exist for semantic entropy, and most of these definitions lack the
operational relevance that Shannon’s entropy enjoys in a large number
of engineering problems.

B. Knowledge Graph for Semantic Communications

Knowledge can be defined as the capability to connect available
information that facilities understanding and drawing conclusions,
and the concept of knowledge graph has emerged as an information
network to enable such understanding. Fig. 1 presents an example
of a knowledge graph, which represents a network of real-world
entities, i.e., objects, events, situations, or concepts, and illustrates
the relationship between them. This information is usually stored in
a graph database and visualized as a graph structure. A knowledge
graph is made up of three main components: nodes, edges, and labels.
Any object, place, or person can be a node and an edge defines the
relationship between the nodes. Knowledge graph embedding is to
embed components of a knowledge graph including entities and rela-
tions into continuous vector spaces, so as to simplify the manipulation
while preserving the inherent structure of the knowledge graph [27].
It can benefit a variety of downstream tasks; and hence, has quickly
gained attention in the research community. In the following, we
review semantic matching models for knowledge graph. Then, we
introduce how knowledge graph based semantics can be applied to
and benefit from a wide variety of downstream tasks, such as data
integration, recommendation systems, and so forth. Subsequently,
we present the analysis and framework of knowledge graph based
semantics and its applications in semantic communication systems.

Fig. 1. Illustration of a knowledge graph.

1) Semantic Matching Model for Knowledge Graph: The knowl-
edge graph techniques can be roughly categorized into two groups:
translational distance models and semantic matching models. The
former use distance-based scoring functions, and the latter similarity-
based ones. In the following, we introduce the semantic matching
models. In particular, they exploit similarity-based scoring functions
and measure plausibility of facts by matching latent semantics of
entities and relations embodied in their vector space representations.
The authors in [28] associate each entity with a vector to capture
its latent semantics. Each relation is represented as a matrix which
models pairwise interactions between latent factors. For a knowledge
graph consisting of n entities and m relations, we define A as a n×r
matrix that contains the latent-component representations of entities,
where r is the coefficient of rank-r factorization. We further define
Rk, k ∈ [1, 2, . . . , m], as an asymmetric r× r matrix that models
the relations of the latent semantics given in A. Then A and Rk
can be computed by solving the following regularized minimization
problem:

min
A, Rk

(f (A, Rk) + g (A, Rk)) , (9)

where

f (A, Rk) =
1

2

(∑
k

∥∥∥Xk −ARkA
T
∥∥∥2
F

)
, (10)

Xk ≈ ARkA
T , (11)

and g (·) is the regularization term given by

g (A, Rk) =
1

2
λ

(
∥A∥2F +

∑
k

∥Rk∥2F

)
, (12)

where λ is a constant coefficient.
In [29], the authors propose the semantic matching energy method,

which conducts semantic matching using neural network architec-
tures. It first projects entities and relations to their vector embeddings
in the input layer. The relation is then combined with the entity to
get the score of a fact. Furthermore, the neural association model
has been developed in [30] to conduct semantic matching with a
deep architecture.

2) Applications of Knowledge Graph Based Semantic: The knowl-
edge graph embedding is a key approach for solving problems
involving knowledge graphs. The authors in [31] propose a novel
knowledge graph embedding method, which translates and transmits
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multi-directional semantics: (i) the semantics of head/tail entities
and relations to tail/head entities with nonlinear functions, and (ii)
the semantics from entities to relations with linear bias vectors.
The knowledge graph based semantics has also been employed
in data integration [32], recommendation systems [33], and real-
time ranking [34]–[36]. In [32], the authors devise a semantic data
integration approach that exploits keyword and structured search
capabilities of Web data sources. The authors in [33] incorporate
both word-oriented and entity-oriented knowledge graphs to enhance
the data representations, and adopt mutual information maximization
to align the word-level and entity-level semantic spaces. In [34], a
novel kind of knowledge representation and mining system has been
proposed, which is referred to as the semantic knowledge graph. It
provides a layer of indirection between each pair of nodes and their
corresponding edge, enabling edges to materialize dynamically from
underlying corpus statistics. In [35], an entity-duet neural ranking
model has been proposed, which introduces knowledge graphs to
neural search systems and represents queries and documents by their
words and entity annotations. In [36], a novel ranking technique that
leverages knowledge graphs has been proposed, which addresses the
challenge to understand the meaning of research concepts in queries.

3) Analysis and Framework of Knowledge Graph Based Semantic:
In [37], the authors introduce the semantic property graph for scalable
knowledge graph analytics. To enhance the input data, the authors
in [38] propose the framework of relevant knowledge graphs for
recommendation and community detection, which improves both
accuracy and explainability. In [39], the authors propose an iterative
framework that is based on probabilistic reasoning and semantic
embedding. The authors in [40] represent the knowledge graph
by utilizing semantics, which globally extracts semantics in many
aspects and then locally assigns a semantic-relevant category in each
aspect.

4) Semantic Communication Systems Driven by Knowledge
Graphs: In [41], a cognitive semantic communication framework is
proposed by exploiting the idea of a knowledge graph. Moreover, a
simple and interpretable solution for semantic information detection
is developed by exploiting triplets as semantic symbols. It also
allows the receiver to correct errors occurring at the symbolic level.
Furthermore, the pre-trained model is fine-tuned to recover semantic
information, which overcomes the drawback that a fixed bit length
coding is utilized to encode sentences of different lengths.

III. INFORMATION THEORETIC FOUNDATIONS OF SEMANTIC-
AND TASK-ORIENTED COMMUNICATIONS

As we have mentioned, despite the many efforts to define a
semantic information measure, none of the aforementioned attempts
have so far resulted in a widely accepted definition, or had an impact
on operational performance similarly to Shannon’s information theory
had on communication systems. Therefore, we take a statistical
approach to semantics in this paper, and either treat it as a given
distortion measure, or consider data-driven approaches to acquire
it. Our goal is to abstract out the linguistic aspects of semantic
communications, which is out of the scope of this paper, and instead
focus on the communication challenges.

In the current section, we will provide some of the basic concepts
in Shannon’s statistical information theory, and how they can be used
to study semantics in emerging communication systems. In particular,
we will first review rate-distortion theory, and its characterization in
various settings and under different distortion measures, and how
they can capture semantic or goal-oriented communications. In this
section, we will focus on rate-limited error-free communications; that
is, we will mainly treat the semantic/ task-oriented compression prob-

lem. Semantic- and task-oriented transmission over noisy channels
will be considered in Section V.

A. Rate-Distortion Theory

In [11], Shannon expanded the ideas put forth in his seminal work
by formally defining the problem of lossy source transmission, which
laid down the principles of rate-distortion theory. Note that, when
compressing a single source sample we have a quantization problem,
which is equivalent to analog-to-digital conversion when the source
samples come from a continuous alphabet. This can also be treated
as a clustering problem with a specified fidelity criterion. Shannon
showed that, similarly to the channel coding theorem, it is more
efficient, in terms of bits per source sample, if many independent
samples of the same source distribution can be compressed together.

Let sm ∈ Sm denote m independent source samples distributed
according to pS(s), i.e., p(sm) =

∏m
i=1 pS(si). Let ŝm ∈ Ŝm

denote the reconstruction at the receiver, where Ŝ is the reconstruction
alphabet, not necessarily the same as the source alphabet. The goal
is to minimize the distortion between sm and ŝm under some
given distortion (fidelity) measure, d : Sm × Ŝm → [0,∞),
which assigns a certain distortion, or equivalently, a quality met-
ric, for every pair of source and reconstruction sequences. Shan-
non considered single-letter additive distortion measures, that is,
d(sm, ŝm) = 1/m

∑m
i=1 d(si, ŝi) for a single-letter distortion mea-

sure d : S × Ŝ → [0,∞).
The goal in lossy source coding is to represent the source sequence

with as few bits as possible, measured in bits per source sample
(bpss), while guaranteeing a certain average distortion level. An
(m, 2mR) lossy source code consists of an encoder-decoder pair,
where the encoder f (m) : Sm → [2mR] maps each m-length source
sequence sm ∈ Sm to an index w(sm) ∈ [2mR], and the decoder
g(m) : [2mR] → Ŝm maps each index w ∈ [2mR], to an estimated
reconstruction sequence ŝm(w) ∈ Ŝm, where for a ∈ R, we
have defined [a] ≜ {1, . . . ⌊a⌋}. The collection of all reconstruction
sequences {ŝm(1), . . . , ŝm(2(mR))} forms the codebook, which is
assumed to be shared between the encoder and decoder in advance.

The average distortion of an (m, 2mR) code is given by

E[d(Sm, Ŝm)] =
∑

sm∈Sm

p(sm)d(sm, ŝm(w(sm))), (13)

where the expectation is taken over the source distribution.
For a given source distribution pS(s) and distortion measure

d(s, ŝ), we say that a rate-distortion pair (R,D) is achievable if
there exist a sequence of (m, 2mR) codes that satisfy

lim sup
m→∞

E[d(Sm, Ŝm)] ≤ D. (14)

The rate-distortion function R(D) of source S under the single-letter
distortion measure d(·, ·) is defined as the infimum of rates R for
which (R,D) is achievable.

For such single-letter additive distortion measures, Shannon pro-
vided a single-letter characterization of the optimal rate-distortion
function.

Theorem 1. (Shannon’s Lossy Source Coding Theorem, [11]) The
rate-distortion function for source S and distortion measure d(·, ·)
is given by

R(D) = min
p(ŝ|s):E[d(S,Ŝ)≤D]

I(S; Ŝ). (15)

We can argue that Shannon’s rate distortion function quantifies
the communication rate required to convey sample-level semantic
information when many source samples can be compressed jointly.
Here, our assumption is that the semantic relevance of reconstructing
source sample s as ŝ at the receiver is quantified by the prescribed
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distortion measure d(s, ŝ). In the context of text, this may refer to
reconstructing a certain sentence in a manner that preserves its core
meaning. In the context of music or image, it may mean, as argued
by Shannon, preserving the intelligibility of the source signal, for
example by conveying only the most audible or most distinguishable
frequencies, which is the approach followed by modern audio and
image compression standards.

We note, however, that in most cases we apply compression
algorithms on a single sample, e.g., a single image, a single video
sequence, or a single text file. In these cases, samples correspond
to pixels or patches in an image, frames in a video, and letters
or words in the text. Such samples are often highly correlated,
and additive distortion measures may not preserve the semantics of
the overall content. For example, preserving word level similarity,
such as, replacing words with their more common synonyms in
its reconstruction, or generating an image with a low pixel-level
mean squared error (MSE), may not lead to a good quality semantic
compression. For text, semantic compression requires a much deeper
understanding of the semantics of the underlying language. For
images, alternative quality measures have been proposed that would
provide a better image level semantic reconstruction. For example,
structural similarity index measure (SSIM) or multi-scale SSIM (MS-
SSIM) [42] have been introduced to measure the perceived quality of
images and videos by incorporating luminance masking and contrast
masking terms into the distortion measure, providing perceptually
more satisfactory reconstructions [43]. However, it has been shown
in [44] that the reported improvements in the MS-SSIM performance
may be misleading for the perceptual quality of the reconstructed
images, and a higher MS-SSIM metric does not necessarily lead
to better perceptual quality. An alternative perception-based quality
metric, called learned perceptual image patch similarity (LPIPS)
is proposed in [45], which trains a convolutional neural network
(CNN) on user judgments on distorted images to compute this metric.
Moreover, SSIM/MS-SSIM do not provide adaptivity to the regions of
interest in an image. In [46], [47], saliency-based attention prediction
is used to detect regions-of-interest in image and video signals, which
are then used for adaptive bit allocation.

B. Rate-Distortion-Perception Trade-off

Recently, it has been observed that perceived quality of re-
constructed images can be improved using generative adversarial
networks (GANs) [48]. GANs train a discriminator that tries to
distinguish the reconstructed image from the images in the dataset,
forcing the decoder to generate realistic looking images. GANs
employ distance measures between the reconstructed image and the
statistics of the images in the training dataset [49], [50], such as the
Jensen-Shannon divergence, the Wasserstein distance [51], or an f-
divergence [52]. By taking the perceptual quality into account when
reconstructing a compressed image, we aim not only to reproduce
the original image with the highest fidelity, but also to reconstruct
a more natural/realistic image, which preserves the semantics of the
underlying distribution.

Semantic information can be used to provide a more efficient
compression algorithm, or to achieve a better quality reconstruction
[50], [53], [54]. See, for example, the images in Fig. 2. By only
extracting and transmitting semantic information, e.g., the objects in
the original image and their general layout, the output image can be
reconstructed by simply including a generic representative of each of
the objects in the image. Hence, it is possible to convey the image
at a level to enable semantic reasoning about the image, albeit not
reliably at the pixel level.

In [50], the authors used GANs to push the limits of image
compression in very low bit-rates by synthesizing image content, such

Fig. 2. Examples of semantic image compression.

as facades of buildings, using a reference image database. A selective
generative compression method is proposed, which generates parts
of the image from a semantic label map, which can be obtained
using a semantic segmentation network [55], [56]. These parts of
the image are fully synthesized rather than being reconstructed based
on the original image. This allows the receiver to generate images
that resemble the source image semantically, although they may not
match perfectly in details, providing visually pleasing reconstructions
even at very low bit-rates. The rest of the image is generated using
a conditional generative adversarial network (cGAN) [57].

A deep semantic segmentation-based layered image compression
scheme is proposed in [53], where the semantic map of the input
image is used to synthesize the image, while a compact representation
and a residual are further encoded as enhancement layers. It is shown
that this semantic-based compression approach outperforms BPG and
other standard codecs in both PSNR and MS-SSIM metrics. We
also add that, including the segmentation map in the bit-stream can
further facilitate other downstream tasks such as image search or
compression and manipulation of individual image segments.

Another semantic-based image processing approach uses scene
graphs to extract not only objects within the image, but also their
relationships [58]. A scene graph is a directed graph data structure
consisting of the objects and their attributes as vertices, and the
relations between the objects as edges. Scene graph generation
typically follows three steps: i) Feature extraction, which is respon-
sible for identifying the objects in the image; ii) Contextualization,
which established contextual information between entities, and finally
iii) Graph construction and inference, which generates the final
scene graph using the contextual information, and carry out desired
inference tasks on the graph [59]. Scene graphs are powerful tools
that can encode images [58] or videos [60] using abstract semantic
elements.

More formal definitions of the perceptual quality of an output
image has also been considered, defined as ‘the extent to which it is
perceived as a valid (natural) sample’ [61]. We note that, while the
distortion of image ŝm is defined with respect to the source image sm,
perceptual quality is defined as a property only of the reconstruction.
Since the perception does not necessarily depend on the input image,
a generative model can generate an image that would exhibit the same
statistical properties of the images in the dataset, achieving perfect
perception quality, even in the extreme case of zero-compression
rate. As the compression rate increases, we expect the reconstruction
to better resemble the particular source image. This idea has been
identified as the distribution-preserving image compression in [62].

The perceptual quality of an image is often defined as the diver-
gence between the distribution of the reconstruction and the statistics
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of natural images [63]. If one can make this divergence vanish,
it means that the reconstruction is indistinguishable from real data
samples; however, this does not guarantee that the distortion between
the particular input sample and its reconstruction at the decoder
is small. It is shown in [61] that in general there is a tension
between the distortion that can be achieved and the divergence to
the real data distribution, which is formalized as the rate-distortion-
perception trade-off. An information theoretic formulation of the rate-
distortion-perception trade-off is presented in [64] allowing stochastic
and variable-length codes.

Consider the source Sm to be compressed as before, and the
distortion function d(·, ·), where d(s, ŝ) = 0 iff s = ŝ. We further
assume the presence of common randomness between the encoder
and the decoder. Hence, we define an (m, 2mR, 2mRc) code as a
pair of an encoding function

f (m) : Sm × [2mRc ] → [2mR],

and a decoding function

g(m) : [2mRc ]× [2mR] → Ŝm.

We then say that a tuple (R,Rc, D, P ) is achievable, if there exist
a sequence of (m, 2mR, 2mRc) codes, such that

lim sup
m→∞

E[d(Sm, Ŝm)] ≤ D

and
lim sup
m→∞

δ(PSm , PŜm) ≤ P,

where Ŝm = g(m)(f (m)(Sm, J), J) and J is the common random-
ness uniformly distributed over [2(Rc ] and independent of S. Here,
δ(·, ·) is an appropriate measure of similarity between distributions,
e.g., total variation distance or Kullback-Leibler (KL) divergence. The
goal, as before, is to characterize the set of achievable (R,Rc, D, P )
tuples for a given source distribution PS , distortion measure d, and
divergence P .

A one-shot version of this problem is considered in [64], where it
is first argued that the perception constraint can simply be interpreted
as yet another distortion measure on the joint distribution of the
source and its reconstruction. Then, using results from [65], an
operational rate-distortion-perception function (RDPF) is defined,
and associated lower and upper bounds are proven for variable-
length coding with common randomness. RDPF is characterized for a
Gaussian source under MSE distortion measure, and Wasserstein-2 or
KL divergence for the perception loss in [66]. In [66], authors focused
on the universal version of the rate-distortion-perception trade-off,
and showed that fixing a good representation map and only varying
the decoder may be sufficient to achieve multiple points on this trade-
off.

In conventional rate-distortion theory, it can be proven that deter-
ministic encoders are sufficient to achieve the optimal rate-distortion
performance. This simplifies both the analysis and the implemen-
tation of rate-distortion optimal codes. However, in the case of
rate-distortion-perception trade-off, it has been shown in [67] that
stochastic encoders can be strictly better than their deterministic
counterparts. The authors show that stochastic encoders can be par-
ticularly beneficial when perfect perceptual reconstruction is desired;
that is, when P → 0. This points to the requirement of some common
randomness.

The characterization of the optimal rate-distortion-perception trade-
off is given in [68] under the total variation distance as the perception
measure and for the perfect perception case, i.e., P = 0.

Theorem 2. For a finite-alphabet source S, the tuple (R,Rc, D, 0)
is achievable iff there exist (U, Ŝ) such that [68]

Fig. 3. Remote source-compression problem where the encoder observes a
noisy version S of the remote source V through a random disturbance pS|V ,
and the reconstruction Ŝ goes through another random transformation pV̂ |Ŝ .
The goal is to guarantee a certain fidelity requirement between V and V̂ .

PS = PŜ , (16)

S − U − Ŝ, (17)

R ≥ I(S;U), (18)

R+Rc ≥ I(Ŝ;U), (19)

∆ ≥ E[D(S, Ŝ)]. (20)

This characterization explicitly shows the impact of the amount
of available common randomness on the achievable trade-off. When
sufficient common randomness is available, this results boils down
to the one in [69]. On the other hand, when there is no common
randomness, the trade-off boils down to the following region.

Corollary 1. For a finite-alphabet source S, the tuple (R, 0, D, 0)
is achievable iff there exist (U, Ŝ) such that

PS = PŜ , (21)

S − U − Ŝ, (22)

R ≥ max{I(S;U), I(U ; Ŝ)}, (23)

∆ ≥ E[D(S, Ŝ)]. (24)

In [68], the optimal rate-distortion trade-off for perfect perception
is explicitly characterized for a Gaussian source and MSE distortion
measure. An interesting observation based on this result is that, at
small distortions, requiring perfect perception at the decoder incurs
no rate penalty as long as sufficient common randomness is available.

In the context of video coding, semantic-based compression has
long been considered for very low bit-rate video compression [70].
These include motion-compensated compression, where motion vec-
tors of pixels between two consecutive images or optical flow
vectors [71] are encoded and transmitted. Alternative object-based
compression methods have also been considered in the literature for
a very long time [72], [73]. In object-based compression, each moving
object in a video signal is separated from the stationary background
and are conveyed to the decoder by describing their shape, motion,
and content using an object-dependent parameter coding. Using this
coded parameter set, each image is then synthesized at the decoder
by model-based image synthesis. Although such an object-based
compression approach was standardised as part of MPEG4 in the
late 90s, it has not been widely adopted due to the lack of fast and
reliable object and motion segmentation techniques. This approach is
regaining interest in recent years due to the rapid advances in deep
learning based segmentation techniques [74], [75].

In general, quantifying the semantic distortion measure for a
particular information source is a formidable task. There have been
many studies to understand and model semantics particularly in the
context of text and natural language processing. We will go over some
of these efforts in Section V in the context of semantic/goal-oriented
transmission.

C. Goal Oriented Compression

In the conventional rate-distortion framework overviewed above,
the goal is to reconstruct the source sequence sm within a desired
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fidelity constraint. This framework applies to most delivery scenarios,
such as the transmission of an image, video or audio source over a
rate-limited channel, where the goal is to recover the original content
with the highest fidelity. However, in many emerging applications,
particularly those involving machine-type communications, the re-
ceiver may not be interested in the source sequence, but only in
a certain feature of it. For example, rather than reconstructing an
image, the receiver may be interested in certain statistical aspects of
the image, or the presence or absence of certain objects or persons
in the image. This can model a goal-oriented compression scenario,
where reconstructing the desired feature can represent the goal.

The desired feature in this context can be modelled as a correlated
random variable V ∈ V that follows a joint distribution p(v, s)
with the source sample S. In this scenario, we can instead impose
a distortion constraint on the feature and its reconstruction at the
decoder, for a prescribed distortion measure d(v, v̂) < ∞ for
(v, v̂) ∈ V × V̂ . This problem can be interpreted as a remote
source coding problem, which was originally studied by Dobrushin
and Tsybakov in [76]. In addition to the noisy observation of
the features at the encoder, they also considered another random
transformation at the output of the decoder, as illustrated in Fig.
3. They showed that this generalization of the Shannon’s rate-
distortion problem can be reduced to Shannon’s original formulation
by appropriately transforming the distortion measure. Consider any
pair of encoding function f and decoding function g. The average
end-to-end distortion achieved by this encoder-decoder pair is given
by

D(f, g) =
∑
v,s,ŝ,v̂

pV (v)pS|V (s|v)p(f,g)Ŝ|S
(ŝ|s)pV̂ |Ŝ(v̂|ŝ)d(v, v̂).

(25)
From the perspective of the encoder, it observes a source S with

marginal distribution pS(s) =
∑
v∈V pV (v)pS|V (s|v). Let us now

consider the modified distortion measure

d̂(s, ŝ) =
1

pS(s)

∑
v,v̂

pV (v)pS|V (s|v)pV̂ |Ŝ(v̂|ŝ)d(v, v̂). (26)

Using this new distortion measure, we can rewrite the end-to-end
distortion as

D(f, g) =
∑
s,ŝ

pS(S)p
(f,g)

Ŝ|S
(ŝ|s))d̂(s, ŝ). (27)

Therefore, the problem of minimizing the average end-to-end dis-
tortion for the remote source coding problem can be reduced to
the classical source coding problem for a source with marginal
distribution pS under the modified distortion measure d̂(·, ·).

The following equivalence can be generalized to the standard
block coding setting. Assume now that we observe a sequence sm

and want to reconstruct the corresponding feature vector vm, where
(vi, si) are i.i.d. samples from the joint distribution pV,S . Then, the
corresponding remote rate-distortion function can be characterized in
a single letter form as given in the next theorem.

Theorem 3. (Remote Rate-Distortion Function, [76]) The remote
rate-distortion function for source V based on its observation S
following joint distribution pV,S(v, s) and distortion measure d(·, ·)
is given by

Rremote(D) = min
p(ŝ|s):E[d̂(S,Ŝ)≤D]

I(S; Ŝ). (28)

Recently, the remote rate-distortion interpretation of semantic com-
pression is considered in [77], where the decoder wants to reconstruct
both the feature vector vm and the source vector sm, under different
distortion measures. With the above reduction, one can see that this
problem trivially reduces to the Shannon rate-distortion problem with

Fig. 4. The CEO problem.

two distortion measures. Further characteristics of this rate-distortion
function for a Hamming distortion measure is studied in [78]. In
[79], it is shown that the optimal transmission scheme for the general
model in Fig. 3 under the squared error distortion measure can be
divided into two steps: the encoder first estimates the feature variable
v conditioned on s, and then conveys the estimated value to the
decoder.

A natural extension of the above remote rate-distortion function
involves multiple terminals, each observing a different noisy version
of the underlying latent source V (see Fig. 4 for an illustration).
This is known as the “CEO problem” in the literature following
[80]. In this setting, a chief executive officer (CEO) is interested in
estimating an underlying source sequence, V n. She sends M agents
to observe independently corrupted versions of the source sequence,
where the observations Smi of the i-th agent are generated through
the conditional distribution pSi|V in an i.i.d. manner. The agents
cannot communicate among each other, and each one only has a rate-
constrained channel to the CEO. For a given sum rate constraint, what
is the minimum average distortion the CEO can estimate Sn under
a given fidelity measure d(·, ·) < ∞? The special case of Gaussian
source and noise statistics with squared error distortion is called the
quadratic Gaussian CEO problem [81]. The problem remains open
in the general case, while the rate region was characterized for the
Gaussian case in [82], for logarithmic loss distortion for discrete
sources in [83], and vector Gaussian sources in [84].

D. Context as Side Information

When the communication of an underlying source signal is consid-
ered, additional information that is correlated with this desired source
variable available to the transmitter and the receiver can be leveraged
to reduce the rate requirements. Consider, for example, a surveillance
camera in a house recording a video and forwarding the recording
to a remote node which aims to detect the presence of intruders.
Depending on the hour of the day, the illumination of the image will
be different. The context in which the information is being obtained,
e.g., the time, or weather conditions, could be exploited to improve
the video compression quality. Images of the same scene recorded
by other cameras can also serve as the context information.

From an information theoretical perspective, contextual informa-
tion can be modelled as side information. The problem of lossy source
coding when common correlated side information is available both
at the encoder and the decoder was studied by Gray in [85]. By
characterizing the rate-distortion function for this problem, it was
shown that the rate required to achieve a prescribed distortion could
be reduced by exploiting the side information available. Interestingly,
the rate required to achieve a particular distortion is also reduced
when the correlated side information is only available at the decoder,
and the encoder has to compress without knowledge of the realization
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of the side information available, as long as its distribution is known.
This problem was studied in [86], and the corresponding single-letter
rate-distortion function is referred to as the Wyner-Ziv rate-distortion
function.

Let Tm denote the side information sequence observed by the
receiver that is correlated with the source Sm. In particular, let
(Si, Ti) be i.i.d. samples jointly distributed with p(S, T ). The Wyner-
Ziv rate distortion function for source coding problem with side
information at the decoder is characterized as given in the following
theorem.

Theorem 4. (Lossy Compression with Side Information at the
Decoder, [86]) The rate-distortion function for source S with side
information T available only at the decoder following joint distribu-
tion pS,T (s, t) and distortion measure d(·, ·) is given by

RWZ
S|T (D) = min I(S;U |T ), (29)

where the minimum is over conditional distributions pU|S with |U| ≤
|S|+ 1 and functions g : U × Y → Ŝ such that E[d̂(S, Ŝ) ≤ D].

In Wyner-Ziv coding, typical source codewords are split into bins,
and only the bin index is forwarded to the decoder. By leveraging
the side information, the receiver is able to identify the corresponding
compression codeword within the selected bin. Wyner-Ziv coding has
been exploited in image and video compression [87], [88]. While in
general having the side information available at both the encoder
and the decoder is beneficial, for some source-distortion measure
pairs, e.g., Gaussian sources under squared-error distortion, it is
known that having the side information available only at the decoder
does not result in any performance loss [86]. Side information can
also be considered for the remote source coding problem since any
remote compression problem is equivalent to a standard source coding
problem with a new distortion measure as in (27). Side information
can also be incorporated into multi-terminal source coding problems,
e.g., [89]. For example, in the CEO setting in Fig. 4, letting one of
the observers to have a link to the CEO with sufficiently large rate
allows conveying this observation perfectly, which then acts as side
information.

E. The Information Bottleneck (IB) and Goal Oriented Compression

IB was introduced by Tishby et al. [90] as a methodology for ex-
tracting the information that a variable S ∈ S provides about another
one V ∈ V that is of interest and not directly observable by mapping
S into a representation U ∈ U , as shown in Figure 3. Specifically, the
IB method consists of finding the mapping PU|S : S → U that, given
S, outputs the representation U that is maximally informative about
V , i.e., such that the mutual information I(U ;V ) is maximized, while
being minimally informative about S, i.e., the mutual information
I(U ;S) is minimized. Here, I(U ;V ) is referred to as the relevance
of U and I(U ;S) is referred to as the complexity of U , where
complexity is measured by the minimum description length (or bit-
length) at which the observation is represented. For a distribution
PS,V , the optimal mapping of the data with parameter β, denoted by
P ∗,β
U|S , is found by solving the IB problem, defined as

LIB,∗
β (PS,V ) := max

PU|S
I(U ;V )− βI(U ;S), (30)

over all mappings PU|S that satisfy the Markov chain U − S −
V , where β is a positive Lagrange multiplier that allows to trade-
off relevance and complexity. In Section VI-C several methods are
discussed to obtain solutions to the IB problem in (30) in several
scenarios, e.g., when the distribution of (S, V ) is perfectly known or
only samples from it are available.

The IB problem is connected to multiple source-coding problems
including source coding with logarithmic loss distortion [83], in-
formation combining [91], [92], common reconstruction [93], the
Wyner-Ahlswede-Korner problem [94], [95], the efficiency of invest-
ment information [96]; to communications and cloud radio access
networks (CRAN) [97], as well as learning, including generalization
[98], variational inference [99], representation learning and autoen-
coders [99], neural network compression [100], and others. See [101]
and [102] for recent surveys on the IB principle and its application to
learning. The connections between these problems allow extending
results from one setup to another, and to consider generalizations
of the classical IB problem to other setups including multi-terminal
versions of the IB [103]–[105].

In fact, it is now well-known [106] that the IB problem in (30) is es-
sentially a remote point-to-point lossy source-coding problem [107]–
[109], where the distortion between the desired feature V m ∈ Vm
and the reconstruction V̂ m ∈ V̂m is measured under the logarithmic
loss (log-loss) fidelity criterion [83]. That is, given m i.i.d. samples
(vm, sm), an encoder f (m) : Sm → [1 : 2mR) encodes the
observation sm ∈ Sm using at most R bits per sample to generate an
index W = f (m)(sm). Using a decoder g(m) : [1 : 2mR) → V̂ , the
receiver generates an estimate v̂m ∈ V̂m as a probability distribution
on Vm given index w generated from sm. The discrepancy between
vm and the estimate v̂m is measured using the m-letter distortion
dlog(v

m, v̂m) := 1
m

∑m
i=1 dlog(vi, v̂i), where

dlog(v, v̂) := log
1

v̂(v)
, (31)

where v̂(v) is the value of that distribution evaluated at v ∈ V . The
decoder g(m) is interested in a reconstruction to within an average
distortion D, such that E[ 1

m

∑m
i=1 dlog(Vi, V̂i)] ≤ D. The rate

distortion function of this problem can be characterized as follows.

Theorem 5. (Remote Rate-Distortion Function with Log-Loss Distor-
tion, [107], [109]) The rate-distortion function for the remote source
coding problem with log-loss distortion measure is given by

R(D) = min
PU|S :D≥H(V |U)

I(U ;S), (32)

where the optimization is over all distributions satisfying V −S−U .

Using the substitution ∆ := H(V )−D, the region of achievable
pairs (R,D) described by this function can be seen to be equivalent
to the convex hull of all pairs (I(S;U), I(V ;U)) obtained by solving
the IB problem in (30) for all β. Note that, for a given encoder PU|S
and reconstruction given by a distribution QV |U on V , we have

EPS,V [dlog(V,QV |U )] =
∑

s∈S, v∈V

PS,V (s, v) log
( 1

Qv|u(v|u)

)
= H(V |S) +DKL

(
PV |S∥QV |U

)
, (33)

which is minimized iff the estimate QV |U is given by the true
conditional posterior PV |U . Thus, operationally, the IB problem is
equivalent to finding an encoder PU|S which maps the observation
S to a representation U that satisfies the bit-rate constraint R, and
such that U captures enough relevance of V so that the posterior
probability of V given U minimizes the KL divergence between PV |S
and the estimation PV |U produced by the decoder.

The IB is deeply linked to goal oriented compression, i.e., the
compression is intended to perform a task. Consider the scenario in
which a picture is taken at an edge device and a computational task,
such as classifying an element in the picture or retrieving similar
images to the one taken, needs to be performed at a remote unit.
In classical compression, the image is compressed with the goal
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of preserving the maximum reconstruction quality before forward-
ing it over the communication channel. However, in goal-oriented
compression only the information or features that are most relevant
to perform the task need to be transmitted. For classification, those
features should be the most discriminative ones, and not necessarily
a representation that allows to reconstruct the image, while for image
retrieval, the task is different and so are the most relevant features.
That is, the features are specific for the task, and the metric under
which the task will be evaluated. This communication scenario is
similar to that in Fig. 3, where S is a random variable modeling the
observation, which is jointly distributed with the relevant information
V for the task, which is not directly observable. The goal of the
receiver is to recover an estimate of V with sufficient quality to
perform the task, while the goal of the transmitter is to encode S
into the representation U that conveys only the information necessary
to recover V at the receiver, but not necessarily S. In the classical
setup, in which the image needs to be reconstructed with minimum
distortion we have V = S, while in classification, V can be the
label class to classify the image to, such that the output obtained
from the IB is the probability of the observation S belonging to the
class given by V . How to select which are the relevant features for
a given task is an open problem and depends on the metric that is
used. However, in practice, often a careful encoding of the task into
V and a conditional probability tailored for the task estimated by
the IB to maximize the relevance can be a good candidate. This is
justified, since the log-loss and the mutual information can be used to
bound the performance of certain tasks, e.g., the probability of mis-
classification of a classifier using a decision rule QV̂ |U , denoted by
ϵV |U (QV̂ |U ), can be shown to be upper bounded as ϵV |U (QV̂ |U ) :=

1− EPS,V [QV̂ |U ] ≤ 1− exp
(
−EPS,V [dlog(V,QV̂ |S)]

)
[98].

The formulation of the IB as a remote source coding problem
under the log-loss distortion measure can be extended to consider
the context in the form of side information at the decoder or both the
encoder and decoder [86] as described in Section III-C and studied
in [110]. The IB problem can also be extended to multi-terminal
scenarios. In particular, in [105], [111], the distributed classification
problem is studied from an information-theoretic perspective using
the IB formulation. In this scenario, one is interested in performing
a task at a remote destination, e.g., classification, represented by
the latent random variable V using the information relayed by K
encoders, each observing some correlated information (S1, ..., SK)
with V . As shown in Fig. 4, Encoder k encodes the observation Sk
into a representation Uk in order to preserve the most relevant and
complementary information to the other encoders for the task. This
problem can be shown to be essentially a K-encoder CEO problem
under log-loss distortion [83], in which the decoder is interested in
a soft estimate of V from the descriptions U1, ..., UK , each encoded
with an average finite rate of Rk bits per sample. The fundamental
limits in this scenario can be characterized in terms of the optimal
trade-off between relevance ∆ and rate at each encoder as follows.

Theorem 6. (Distributed IB Problem [105]) The relevance-
complexity region for the distributed IB problem is given by the union
of all non-negative tuples (∆, R1, . . . , RK) that satisfy

∆ ≤
∑
k∈S

[Rk−I(Sk;Uk|V, T )] + I(V ;SSc |T ), ∀S ⊆ K (34)

for some distribution pT pV
∏K
k=1 pSk|V

∏K
k=1 pU|Sk,T .

The above IB framework can be used to design encoders and
decoders in order to extract the most relevant and complementary
information from distinct observations. In Section VI-C we describe
how to design encoders and decoders by solving (or approximating)

the IB problem both for scenarios in which the distribution is
perfectly known or when the source distribution is unknown and only
data samples are available.

More generally, the approach to extract the most relevant informa-
tion for a task can also be considered for other end-to-end metrics that
go beyond log-loss by modelling the relevant information extraction
as a remote source coding problem in which a metric needs to be
minimized under some rate constraints, and the metric is a distortion
(not necessarily additive) that represents the performance of the
task, and can include, for example, the KL divergence, classification,
hypothesis testing, etc. In other cases, the metric can also be learned
implicitly by defining an alternative task, as in GANs [48], in which
the generator and discriminator are trained to simultaneously extract
the relevant information to generate realistic signals by learning how
to pass an hypothesis test on distinguishing the generated data from
real data.

F. Rate-Limited Remote Inference

As mentioned above, the hidden feature variable V can represent
the class that the sample S belongs to, or the value associated to it
in the case of a regression problem. If the goal is to convey only the
class information to the receiver, and if there are no constraints on
the complexity of the encoder, then the optimal operation would be to
detect the class at the encoder, and only convey the class information
to the receiver. From an information theoretic perspective, this
problem can also be formulated as a remote inference problem.

In statistical inference problems, an observer observes n i.i.d.
samples Sn = (S1, . . . , Sn) from some distribution pS . We assume
that this distribution belongs to a known family of distributions
indexed by V ∈ V; that is, Sn follows the conditional distribution
pS|V=v(S

n) =
∏n
i=1 pSi|V=v(si). In general, the observer may

want to estimate V simply from the available samples. If set V is a
discrete set, we have a detection/ hypothesis testing (HT) problem. If,
instead, V is a continuous set, i.e., V = Rd, then we have a parameter
estimation problem. We impose a loss/ distortion function to quantify
the quality of the estimation: l(V, V̂ ), where V̂ is the estimate of the
observer. The expected loss/risk of a decision rule g(n) : Sn → V ,
where V̂ = g(n)(Sn), is then defined as Rv(g

(n)) = E[l(v, V̂ )].
In the Bayesian setting, we assume some known prior distribution

on V , and try to minimize the average loss (also called risk)
over the joint distribution of V and S, i.e., E[l(V, g(n)(Sn))].
Alternatively, we can also aim at minimizing the worst case loss/risk
Rmax = supv∈V E[l(v, V̂ )]. The corresponding decision rule is
called the minimax rule. The classical Bayesian and minimax in-
ference problems deal with centralized decision problems; that is,
they assume the observer and the decision maker are the same agent,
and makes the decision with full access to the samples. However, in
many practical problems of interest, the observer and the decision
maker are connected through a constrained communication channel.
If we consider a rate-limited link, we obtain a remote inference
problem. Remote inference problems over a rate-limited channel
were first considered by Berger in [112]. We note that, the remote
inference problem in the Bayesian setting is very similar to the
information theoretic remote-rate distortion formulation in Section
III-C, with the exception that we only have a single realization of the
latent/hidden variable V , rather than a sequence of i.i.d. realizations
each generating a separate sample Si.

When the dimension of the parameter to be estimated is smaller
than that of the observations, for example, in the case of HT,
the observer can perform local inference and transmit its decision
(indeed, optimal performance can be achieved asymptotically at zero
rate by conveying the type information, which is a sufficient statistic
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Fig. 5. Remote model training over a finite-rate communication link.

[113]). Distributed parameter estimation with multiple terminals,
each observing a component of a family of correlated samples, was
studied in [114], under rate constraints from the observers to the
decision maker in bits per sample. A single-letter bound, similar to
the Shannon’s rate distortion function, is provided on the variance
of an asymptotically unbiased estimator, which is later improved
in [115]. Ahlswede and Burnashev studied the remote estimation
problem when the decision maker has its own side information [116].

Ahlswede and Csiszár studied HT when the decision maker also
has its own observations [117]. They studied the exponent of the
type-II error probability, when a constraint is imposed on the type-I
error probability. For the case of testing against independence, they
were able to provide a single-letter expression similar to Shannon’s
rate-distortion function. This is one of the few cases in which a
single-letter characterization is possible for a non-additive distortion
measure. The more general distributed setting is considered in [118].
Han showed in this paper that a positive exponent can be achieved
even with a single-bit compression scheme. This result was extended
to the more general zero-rate compression in [119]. This result
was later refined by Shalaby and Papamarcou in [120], where
they show that when the observers have fixed codebook sizes, the
asymptotic performance does not depend on the particular codebook
size. This means that no further gain can be obtained in terms of
the asymptotic error exponents by allowing each observer to transmit
a high-resolution soft decision instead of a binary decision. Despite
significant research efforts, the optimal characterization of the type-
II error exponent for the remote HT problem for the general case
(beyond testing against independence) remains open to this day.
Lower bounds are provided for the general problem in [117] and
[118]. Distributed hypothesis testing is also studied in the context
of a sensor network in [121], where multiple sensors convey their
noisy observations to a fusion center over rate-limited links. There
has been a recent resurgence of interest in distributed HT problems
[122]–[126].

IV. MACHINE LEARNING TECHNIQUES FOR SEMANTIC- AND

TASK-ORIENTED COMPRESSION

The ultimate motivation of semantic compression is to extract
the semantic information within the source data at the transmitter
that is most relevant for the task to be executed at the receiver.
By filtering out task-irrelevant data both the bandwidth consumption
and the transmission latency can be reduced significantly. However,
the information theoretic framework presented above either assumes
known statistics for the data and the relevant features for the task,
or it is limited to the parameter estimation framework assuming i.i.d.
samples from a family of distributions. On the other hand, in most
practical applications we do not have access to statistical information,
and often need to make inferences based on a single data sample. An
alternative approach is to consider a data-driven framework, where
we have access to a large dataset, which would allow us to train a
model using machine learning tools to facilitate semantic information
extraction without requiring a mathematical model. In particular, deep
learning (DL) aided semantic extraction techniques have shown great

potential for various information sources and associated tasks in the
recent years.

While most machine learning research can be considered within
the context of semantic feature extraction, we will focus on the
communication aspects here. Machine learning algorithms typically
follow a two-step approach: in the training phase, a model is trained
using the available dataset for the desired task, e.g., classification or
regression. Once the model is trained, it is used for prediction on
new data samples. Communication in both phases can be considered
in the context of semantic or goal-oriented communications. Below,
we provide an overview of research in these two phases separately.

A. Remote Model Training

In the training phase, a single node or multiple nodes each with
its own dataset communicate with a destination node with the goal
to reconstruct a model at the destination for a particular inference
task. Note that this may also correspond to a storage problem, where
the goal is to store the model in a limited memory to be later
used in predicting future data samples. We would like to highlight
here that this problem is an instance of a particular remote rate-
distortion problem. Let us consider first the point-to-point version
of the problem illustrated in Fig. 5. Here, we can treat the dataset
at the encoder as the information available at the encoder, and the
model itself as the remote source that the decoder wants to recover.
Note that, similarly to the other semantic rate-distortion problems, the
fidelity measure here is also not the similarity of the reconstructed
neural network weights at the receiver to those trained at the encoder.
In the end, what really matters is the performance of the reconstructed
model at the decoder in terms of the prescribed quality measure, e.g.,
the accuracy of the reconstructed model at the decoder on new data
samples.

As in the previous remote rate-distortion problems, a natural
solution approach is to first estimate the remote source at the encoder;
that is, to first train a model locally, and then convey this model to
the decoder with the highest quality over the rate-limited channel,
that is, in a way retaining the predictive power of the model on
future queries. While the former step is simply the standard training
process, the latter corresponds to model compression, which has been
widely studied in recent years particularly in the context of deep
neural networks (DNNs) that would otherwise require significant
communication or storage resources.

There are various widely used methods to reduce the size of a
pre-trained model. These include parameter pruning, quantization,
low-rank factorization [127], and knowledge distillation. It has been
known for a long time that many parameters in a neural network
are redundant, and do not necessarily contribute significantly to the
performance of the network. Therefore, redundant parameters that
do not have a significant impact on the performance can be removed
to reduce the network size and help address the overfitting problem
[128]–[130]. In particular, the so-called ‘optimal brain surgeon’ in
[130] uses the second-order derivative, i.e., the Hessian, of the
loss function with respect to the network weights. In [129], the
authors assumed that the Hessian matrix is diagonal, which causes
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Fig. 6. Federated model training.

the removal of incorrect weights. In [130], the authors showed that
the Hessian matrix is non-diagonal in most cases, and they proposed
a more effective weight removal strategy. In addition to its better
performance, the optimal brain surgeon does not require re-training
after the pruning process. Note that pruning the network would also
reduce the complexity and delay of the inference phase. Pruning
is still a very active research area, and many different pruning
methods have been studied, including weight, neuron, filter, or layer
pruning. Please see [131] and references therein for a detailed survey
on advanced pruning techniques. Another approach is to train the
network directly with the sparsity constraints imposed during training,
rather than reducing the network to a sparse one after training a full
network [132], [133].

We can also apply quantization or other more advanced compres-
sion techniques, e.g., vector quantization, on the network parameters.
Quantization has long been employed to reduce the network size for
efficient storage [134], [135]. It is well-known that low precision
representation of network weights is sufficient not just for inference
based on trained networks but also for training them [136], [137]. At
the extreme, it is possible to train DNNs even with single-bit binary
weights [138], [139].

DNN compression can also be treated as a standard source
compression problem, and vector quantization techniques can be
employed for codebook-based compression to reduce the memory
requirements. Similarly to pruning, Hessian-based quantization is
shown to be effective in [140]. Hash functions are employed in [141],
where the connections are hashed into groups, such that the ones
in the same hash group share weights. It is argued in [142] that,
for a typical network about 90% of the storage is taken up by the
dense connected layers, while more than 90% of the running time
is taken by the convolutional layers. Therefore, the authors focus on
the compression of dense connected layers to reduce the storage and
communication resources, and employ vector quantization to reduce
the communication rate. In [143], Huffman coding is used to further
compress the quantized network weights.

In knowledge transfer, the goal is to transfer the knowledge learned
by a large, complex ensemble model into a smaller model without
substantially reducing the network performance. It was first studied in
[144]. In [145], the concept of temperature was introduced to generate
the soft targets used for training the smaller model.

Another possible approach to solve this problem is model archi-
tecture optimization, where the goal is to adjust the size and com-
plexity of DNN architectures to the constraints of the communication
link during training without sacrificing their performance. Some of
the popular recent efficient model architectures include SqueezeNet

[146], MobileNets [147], ShuffleNet [148], and DenseNet [149]. We
refer the reader to [150] for a more comprehensive survey of recent
advances in model compression techniques for DNNs.

A more common scenario in remote model training is distributed
training, in which multiple nodes each with its own local dataset
collaborate to train a model by communicating with a remote pa-
rameter server, or with each other. The former scenario is known as
federated learning, while the latter is referred to as fully distributed,
or peer-to-peer learning. Please see Fig. 6 for an illustration of the
federated learning scenario. Similarly to the single node scenario
discussed above, federated training can be treated as a multi-terminal
rate-distortion problem, where the datasets are observed samples at
the multiple encoders, correlated with the underlying model, which
is to be recovered at the parameter server. This would correspond
to the CEO problem presented in Section III-C, implemented with
multiple rounds of two-way communications between the nodes
and the parameter server. Stochastic gradient descent based iterative
algorithms are often used for federated learning. In the federated
averaging (FedAvg) algorithm, proposed in [151], a global model is
sent from the parameter server to the nodes, each of which computes
a model update, typically employing multiple stochastic gradient
descent updates. The nodes then transmit these model updates back
to the parameter server, which aggregates them, to finally update the
global model. The algorithm is iterated until convergence. At each
iteration of the algorithm, the goal is then to compute the average of
the model updates, rather than the individual updates. Hence, this is
a distributed lossy computation problem, which can be considered as
yet another aspect of semantic communications. Here, the semantic
that is relevant for the underlying task is a function of the multiple
signals observed at different nodes.

Computation is often considered as a distinct problem from com-
munication. One approach to computation over networks would be
to carry out separate communication and computation steps. For
example, if a node wants to compute a function of random variables
S1, . . . , Sn that are distributed over the network, we can first deliver
these random variables to the node, which then computes the function
value. In the point-to-point setting, the optimality of this approach
can be shown in certain cases following the arguments of remote rate-
distortion problem, where we treat the function to be computed as
the latent variable V of the observed source S (see Fig. 3). However,
in the general case, the optimal performance for a generic function is
an open problem, even in the lossless computation case. The multi-
terminal function computation problem was first introduced in [152],
where the authors considered the parity function of two correlated
symmetric binary random variables. They identified the optimal rate
region for this case, and showed that this is not equivalent to the rate
region one would obtain from [153] by first compressing and sending
the observed sequences to the decoder. This illustrates the difficulty
of the problem for arbitrary function computation. The problem was
later studied in [154] in a point-to-point setting, considering one
of the two sources is available at the decoder as side information.
The optimal rate required for lossless computation of any function
(in the Shannon theoretic sense - over long blocks with vanishing
error probability) is characterized, and is shown to be given by the
the conditional G- entropy [155] of X given Y , where G is the
characteristic graph of X,Y and function g to be computed as defined
in [156]. While this is in general lower than first sending X to
the decoder at rate H(X|Y ), and then computing the function, it
is observed in [154] that the gain is marginal in most cases.

B. Remote Inference

We next consider the machine learning approaches for rate-limited
remote inference problems. Following the arguments in Section
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Fig. 7. Remote image retrieval problem.

III, various lossy compression problems can be considered in the
context of semantic communication under the appropriate reconstruc-
tion metric. In recent years, DNN aided compression algorithms
have achieved significant results, often outperforming state-of-the-
art standardised codecs in a variety of source domains, from image
[157]–[161], to video [162]–[170], speech [171], [172], and audio
[173], [174] compression. One of the main advantages of DNN-
based approaches compared to conventional compression algorithms
is that they can be trained for any desired reconstruction metric at the
receiver. For example, image or video compression algorithms can be
trained with the SSIM or MS-SSIM metrics as objective, providing
perceptually better reconstructions. We refer the reader to [175] for a
comprehensive overview of recent developments in both lossless and
lossy compression using DNNs and other machine learning methods.

Task-oriented image compression was considered in [176], where
the authors proposed lossy compression of MRI images to preserve
as much clinically useful information as possible depending on the
diagnostic task to be performed. In [177], the authors propose a
metric based on conditional cross entropy for a target detection task.
In video compression, one approach is to employ region-of-interest
compression, where only the relevant part of the video stream is
compressed [178]–[180]. A classification aware distortion metric is
proposed in [181], and applied to the high efficiency video coding
(HEVC) standard.

The authors of [182] have shown that latent representation pro-
duced by compressive autoencoders can be used to perform a
classification task with ResNet-50 [183] network resulting in almost
the same accuracy obtained by training on uncompressed image,
showing that the classification network does not need to reconstruct
the image first, at least explicitly. They also consider joint training of
the compression and classification networks. Task-based quantization
is studied in [184] in the context of analog-to-digital conversion of
signals for a specific task, and for channel estimation in [185].

We remark that the aforementioned task-based compression prob-
lems are remote rate-distortion problems in essence, but machine
learning tools are employed mainly to acquire statistical knowledge
from data. However, in these cases, since the transmitter has access to
the original source information, the desired task can often be carried
out at the transmitter, which is then transmitted to the receiver over
the channel. Particularly, for classification tasks this would require
only a limited amount of information to be transmitted. However,
complete classification at the transmitter may not be possible due to
complexity constraints, e.g., when the transmitter is a simple Internet
of Things (IoT) device. In such a scenario, the transmitter may extract
some features, which are then conveyed to the decoder using a finite
number of bits, and the rest of the inference task is carried out at the
receiver end. This is termed ‘split learning’ in the literature. In the
context of DNNs, split learning refers to dividing a DNN into two

parts, the head and the tail. The head consists of the first layers of
the DNN architecture that are executed at the encoder, while the tail
consists of the later layers that are executed at the receiver. From a
rate-distortion perspective, the goal is to convey the features obtained
at the end of the head network to the receiver with as few bits as possi-
ble, while still achieving the desired inference accuracy. Quantization
and/or compression of feature vectors is considered in [186], [187]
and [188]. While the former considered using a quantized version
of the network at the transmitter side to also reduce the storage and
computation requirements, the latter considered split learning also for
unsupervised learning with an autoencoder architecture. Ideas from
knowledge distillation and neural image compression are exploited
in [189] to obtain a more efficient compression scheme for the
intermediate feature representations obtained by the head network.

A different type of remote inference problem is considered in
[190], called image retrieval at the edge. In this setting, illustrated
in Fig. 7, the goal is to identify a query image of a person or a
vehicle recorded locally by matching with images stored in a large
database (gallery), typically available only at the edge server. We
emphasize that, unlike the typical classification tasks, the retrieval
task cannot be performed locally as the database is available only
at the remote edge server. In [190], the authors propose a retrieval-
oriented image compression scheme, which compresses the feature
vectors most relevant for the retrieval task, depending on the available
bit budget. To reduce the communication rate, the authors quantize
and entropy code the features to be transmitted, using a learned
probability model for the quantized bits for efficient compression.

In [191], the classification-distortion-perception trade-off is stud-
ied, assuming that the reconstructed image at the receiver is also
fed into a prescribed classification network. It is shown that the
classification error rate on the reconstructed signal evaluated by the
prescribed classifier cannot be made minimal along with the distortion
and perceptual measures. A similar semantic-oriented compression
approach is applied to facial image compression in [192], where
regionally adaptive pooling is used to optimize the compression
parameters according to gradient feedback from the hybrid distortion-
perception-semantic fidelity metric. It is shown that the semantic
distortion metric allows allocating more bits for the compression of
more semantically critical areas in face images. Automatic generation
of semantic importance maps is considered in [193], where the
output of instance segmentation (combination of object detection and
semantic segmentation) through Mask-RCNN [194] is used as the
importance measure of each segment, and the bit allocation is carried
out using reinforcement learning.

V. SEMANTIC- AND TASK-ORIENTED COMMUNICATION OVER

NOISY CHANNELS: A JSCC APPROACH

In the previous section, we have mainly focused on the compres-
sion aspects, assuming an error-free finite-rate communication chan-
nel from the encoder to the decoder. However, many communication
channels suffer from noise, interference, and other imperfections.
Shannon’s channel coding theory mainly deals with communication
over such noisy communication channels. However, as we have
mentioned earlier, channel coding theory focuses on the reliable
delivery of bits, whereas in the context of semantic communication,
we will consider the transmission of source signals such as image,
video, audio, or their features relevant for a particular task, over a
noisy channel.

In this problem, illustrated in Figure 8, the transmitter wants to
transmit a sequence of independent source symbols Sm ∈ Sm
each sampled from the distribution pS(s), over a memoryless noisy
communication channel characterized by the conditional probability
distribution P (Y |X), where X ∈ X , Y ∈ Y . Let Ŝm ∈ Ŝm denote
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Fig. 8. Illustration of a JSCC problem over a noisy communication channel.

the reconstruction at the receiver based on Y n. Similarly to the rate-
distortion theory formulation, the goal is to minimize the distortion
between Sm and Ŝm under some given distortion (fidelity) measure,
d : Sm×Ŝm → [0,∞). More formally, let fm,n : Sm → Xn denote
the encoding function, and gm,n : Yn → Ŝm denote the decoding
function. In the case of an average distortion criteria, the goal is
to identify the encoder and decoder function pairs that minimize
E[d(Sm, Ŝm)], where the expectation is over the source and channel
distributions as well as any randomness the encoding and decoding
functions may introduce. One can also impose an excess distortion
criterion, where the goal is to minimize P[d(Sm, Ŝm) > d], for some
maximum allowable distortion target d > 0.

An (m,n) joint source-channel code of rate r = m/n consists
of an encoder-decoder pair, where the encoder f (m,n) : Sm → Xn

maps each source sequence sm to a channel input sequence xn(sm),
and the decoder g(m,n) : Yn → Ŝm maps the channel output yn

to an estimated source sequence ŝm. A rate-distortion pair (r,D) is
said to be achievable if there exists a sequence of (m,n(m)) joint
source-channel codes with rate r such that n(m) ≤ rm, ∀m, and

lim sup
m→∞

E[d(Sm, Ŝm(Y n(m)))] ≤ D. (35)

Shannon proved his well-known Separation Theorem for a
single-letter additive distortion measure; that is, d(Sm, Ŝm) =
1/m

∑m
i=1 d(Si, Ŝi) for the distortion measure d(S, Ŝ) ∈ [0,∞).

The theorem states the following.

Theorem 7. (Shannon’s Separation Theorem, [7]) Given a mem-
oryless source S and a memoryless channel pY |X with capacity
C = suppX (x) I(X;Y ), a rate-distortion pair (r,D) is achievable
if rR(D) < C. Conversely, if a rate-distortion pair (r,D) is
achievable, then rR(D) ≤ C.

The theorem states that we can separate the design of the com-
munication system into two sub-problems without loss of optimality,
the first focusing on the compression and the second focusing on
the channel coding, each of them designed independently of the
other. However, the optimality of separation holds only in the limit
of infinite blocklength; whereas, in practice, it is possible to design
joint source-channel codes that would outperform the best achievable
separate code design. This was observed by Shannon in his 1959
paper [11]. Considering a binary source generating independent and
equiprobable symbols and a memoryless binary symmetric channel,
Shannon observed that simple uncoded transmission of symbols
achieves the optimal distortion with rate r = 1 for one particular
value of distortion D determined by the error probability of the
channel. This observation was later extended by Goblick in [195] to
Gaussian sources transmitted over Gaussian channels. This happens
when the source distribution matches the optimal capacity achieving
input distribution of the channel, and the channel at hand matches the
optimal test channel achieving the optimal rate-distortion function of
the source. Necessary and sufficient matching conditions are given
in [196] for general source and channel distributions. However,
these conditions are not satisfied for most practical source and
channel distributions, and even when they hold, optimality of uncoded
transmission fails when the coding rate is not 1, i.e., in the case of
bandwidth compression or expansion. On the other hand, the presence

of such optimality results, that is, the fact that asymptotically optimal
performance that requires infinite blocklength source and channel
codes can be achieved by simple zero-delay uncoded transmission
implies that there can be other non-separate coding schemes that can
achieve near optimal performance, or outperform separation-based
schemes in the finite blocklength regime.

A. Multi-terminal JSCC

It is well-known that the optimality of separation does not directly
generalize to multi-terminal scenarios, even in the infinite blocklength
regime. This observation is often attributed to the seminal work
by Cover, El Gamal and Salehi [197], where they consider the
transmission of correlated sources over a multiple access channel
(MAC), and provide an example in which the uncoded transmission of
the sources allow their perfect recovery, while this cannot be achieved
by a separate scheme. Interestingly, it is much less known that a
similar observation was already made by Shannon in [198], where
he considered the transmission of correlated sources over a two-way
channel.

The authors of [197] also proposed a coding technique (achievabil-
ity result) exploiting the correlation among the sources. This result
showed that instead of removing the correlation, we can utilize the
dependency among the sources to design correlated channel codes,
and in certain cases transmit the sources reliably even though this
would not be possible with distributed compression followed by
independent channel coding. Shortly afterwards, a counter example
was given in [199] showing that the sufficiency conditions provided
in [197] are not necessary. More recently, [200] gave finite-letter
sufficiency conditions for the lossless delivery of correlated sources
over a MAC. A similar problem of broadcasting correlated sources
to multiple users is considered in [118], while [201] considers
broadcasting to multiple receivers each with a different distortion
measure and side information. Many JSCC transmission strategies
have been extensively studied for Gaussian sources over multi-
terminal [202]–[204], as well as non-ergodic scenarios [205].

B. Remote Inference over Noisy Channels

In Subsection III-F, we have presented various statistical inference
problems under rate constraints. We highlighted that these inference
problems do not satisfy the additive single-letter requirement of
typical Shannon theoretic distortion measures considered in the
context of rate-distortion theory. Therefore, the separation theorem
does not directly apply for these distortion measures.

Distributed hypothesis testing problem over a noisy communication
channel was studied in [206] considering the type II error exponent
(under a prescribed constraint on the type I probability of error) as the
performance measure. Here, the task is to make a decision on the joint
distribution of the samples observed by a remote observer and those
observed by the decision maker. The observer communicates to the
decision maker over a noisy channel. A separate hypothesis testing
and channel coding scheme is presented, combining the Shimokawa-
Han-Amari scheme [207] with a channel code that achieves the
expurgated exponent with the best error-exponent for a single special
message [208]. A joint scheme is also proposed using hybrid coding
[209]. It is shown that the separate scheme achieves the optimal
type II error exponent when testing against independence. This is
a special case of the problem, when the alternate hypothesis is
the independence of the samples observed by the observer and the
decision maker. While the optimal type II error exponent remains
open in general, it is shown in [206] that joint encoding can
strictly improve upon separation. This shows that communication and
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inference cannot be separated (without loss of optimality), but how
the two should interact is vastly unexplored.

Distributed hypothesis testing over independent additive white
Gaussian noise (AWGN) and fading channels, respectively, is studied
in [210] and [211]. These works consider multiple sensors making
noisy observations of the underlying hypothesis, and communicate
to a fusion center over orthogonal noisy channels. Hypothesis testing
over a discrete MAC is studied in [212], where the observations
are quantized before being transmitted. Distributed estimation over
a MAC is studied in [213], and a type-based uncoded transmission
scheme is shown to be asymptotically optimal. Distributed estimation
over a MAC is studied in [214] from a worst-case risk point of view.
Analog/uncoded transmission is again shown to outperform its digital
separation-based counterparts, and to achieve a worst case risk that is
within a logarithmic factor of an information theoretic lower bound.

VI. PRACTICAL DESIGNS FOR GOAL-ORIENTED

COMMUNICATION OVER NOISY CHANNELS

Practical designs for JSCC of various information sources have
been a long standing research challenge. Many different designs
have been proposed in the literature, mainly based on the joint
optimization of the parameters of an inherently separate design [215]–
[223]. Another group of JSCC schemes instead consider a truly
joint design. Motivated by the theoretical optimality of uncoded
transmission in certain ideal scenarios, analog transmission of discrete
cosine transform (DCT) coefficients is proposed in [224] for wireless
image transmission. In [225], the authors proposed linear coding
of quantized wavelet coefficients. However, these efforts in JSCC
design either do not provide sufficient performance gains, or they
are too complex and specific to the underlying source and channel
distributions to be applied in practice.

Recently, JSCC schemes based on autoencoders [226], which are
DNNs aimed at unsupervised dimensionality reduction for high-
dimensional data, have been introduced [227]–[231], and are shown
to provide comparable or better performance than state-of-the-art
separation-based digital schemes. Compared to the semantic data
compression schemes we have seen in Section IV, the main chal-
lenge in semantic communications over wireless channels is the
stochasticity in the channel. Therefore, the designed code should not
only compress the input signal to the available channel bandwidth,
but also design a mapping that can mitigate the effects of channel
uncertainties; that is, it should act both as a compression and an
error correction code. As we will later highlight, learned end-to-
end JSCC schemes for semantic communications (particularly for
high-dimensional inputs such as image and video) generate channel
inputs that are correlated with the source signal. In a sense, these
schemes transform the manifold representing the source signal to
another manifold in the channel input space in a continuous manner;
that is, similar source signals are mapped to similar channel inputs so
that the reconstruction is not far from the input signal even after some
noise is added by the channel. Thanks to this correlation, in addition
to improving the performance for a fixed channel state, these JSCC
schemes also achieve graceful degradation with channel quality. That
is, unlike separation-based approaches, their performance does not
fall apart when the channel quality falls below a certain threshold
(below which the channel code cannot be decoded reliably), but
instead gracefully degrades as the channel quality worsens.

We reemphasize that both the source and channel statistics need
to be taken into account when designing semantic communication
schemes. When training the semantic communication system in an
end-to-end manner, the stochasticity due to the wireless channels
will affect the forward-propagation and the back-propagation in the
training process. Moreover, in addition to a dataset representing the

potential source signals, we also need to be able to model the channel
statistics during training. In the case of a finite input channel with
a discrete input alphabet, this may be acquired in the form of a
dataset of transmitted and received signal pairs over the particular
channel, or, in general, we can simply use the model of the channel
if an accurate model is available. Another possibility would be to
embed the physical channel into the training process, but this will
slow down the training significantly. Another consequence of the
randomness in the channel is that the reconstruction at the receiver
becomes random, as it depends on the channel realization. This is
different from conventional digital communication systems, where
the source signal is reconstructed as a prescribed representation
determined by the deterministic compression scheme as long as the
channel codeword is decoded successfully. The channel uncertainty
also creates further challenges regarding the availability of channel
state information (CSI) and how this information can be used within
the learning framework.

The general schematic of a semantic communication system is
shown in Fig. 9. The input data is sequentially passed through a
semantic encoder and joint source-channel encoder to extract seman-
tic information relevant to the receiver’s task, which can be either
source signal recovery or intelligent task execution. The benefits of
this semantic communication approach is due to both the intelli-
gent semantic encoding step, which basically extracts task-relevant
features from the input, and the JSCC approach to delivering these
features to the receiver. On the other hand, depending on the system
design approach, the complexity of the data and the downstream task,
the distinction between the semantic encoder/decoder and the JSCC
encoder/decoder may not be clearly demarcated, and both of them
can be implemented through a single DNN architecture, and trained
jointly in an end-to-end fashion.

The intelligent task-oriented semantic communications have at-
tracted intensive investigation in recent years due to the capability to
address pertinent challenges in the traditional communication system,
which has been considered as one of the key technologies to cater to
the unprecedented demands of intelligent tasks in the future intelli-
gent communications era. While the JSCC approach can potentially
outperform separate source and channel coding, particularly in the
short blocklength regime, it loses the modularity. Modularity refers
to the separate design of source and channel coding schemes, where
the source encoder can be designed oblivious to the channel statistics
or the particular channel coding and modulation scheme employed for
communication. All the source encoder needs to know is the level
of compression, in terms of the bits per source sample. Similarly,
the channel code can be designed oblivious to the particular source
signal and its statistics. However, in the case of JSCC, since the code
is designed in an end-to-end fashion, we need to take the source
and channel statistics into account in a joint manner. Therefore,
we will introduce task-oriented semantic communications separately
according to the different types of source data, for text, speech, and
image, respectively.

A. Task-Oriented Semantic Communications for Multimodal Data

1) Task-Oriented Semantic Communications for Text: For net-
works that allow interactions between humans as well as smart
devices that have unique backgrounds and behavior patterns, reliable
communication can be redefined as the intended meaning of messages
being preserved at reception. Further, communicating parties can
form social relationships and build trust, which may further affect
how the received messages are interpreted. Motivated by these factors,
reference [232] has proposed an approach that takes into account
the meanings of the communicated messages and demonstrated the
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Fig. 9. Schematic of a DL-enabled semantic communication system.

design of a point-to-point link to reliably communicate the meanings
of messages through a noisy channel. To do so, in [232] the authors
proposed a novel performance metric, semantic error, to measure
how accurately the meanings of messages are recovered, and then
determined the optimal transmission policies to best preserve the
meanings of recovered messages. This is achieved by leveraging
lexical taxonomies and contextual information to design a graph-
based index assignment scheme for fixed rate codeword assignment
in a noisy channel. Words that are similar in their meaning (measured
by the semantic distance between the words) are assigned to closer
codewords in terms of their Hamming distance.

Building on this work, [233] modeled an external agent who can
influence how the destination perceives the meaning of received
information, to study the impact of social influence on contextual
message interpretations on semantic communication. The exact nature
of the agent, whether adversarial or helpful, is unknown to the
communicating parties. This problem is first modeled as a Bayesian
game played between the encoder/decoder and the influential entity
in [233]. By extending the Bayesian game to a dynamic setting,
the authors studied the interplay between the influential entity and
the communicating parties, in which each player learned the true
nature of the other player by updating its own beliefs as the game
progresses, revealing information through observed actions. Since
these works pre-date the recent efforts that brought semantics into
the center stage, they serve as early works to build on designing
semantic communication networks.

However, the semantic error of the aforementioned text-based
semantic communication system is measured only at the word level.
In an early effort on JSCC for text transmission using deep learning
techniques, the authors of [228] considered sentence level similarity
using the edit distance. In particular, they studied the transmission of
text over an erasure channel, and designed a JSCC scheme using long
short term memory (LSTM) networks as encoder and decoder, and
showed that this can outperform separation-based approaches using
Lempel-Ziv or Huffman coding. A transformer-powered semantic
communication system for text, named DeepSC, is proposed in [234]
by utilizing the meaning difference between the transmitted and
received sentences. DeepSC is shown to yield better performance
than the traditional communication systems when coping with AWGN
channels and it is more robust to channel variations, especially in the
low signal-to-noise ratio (SNR) regime.

The core idea behind task-oriented semantic communications for
text is to extract the useful information, e.g., grammatical informa-
tion, word meanings, and logical relationships between words, to
achieve intelligent tasks at the receiver, while ignoring the mathemat-
ical expression of words. In [235], Xie et al. have designed a multi-
user semantic communication system to execute text-based tasks
by transmitting text semantic features. Particularly, a transformer-
enabled model, named DeepSC-MT, is proposed to perform the

machine translation task for English-to-Chinese and Chinese-to-
English by minimizing the meaning difference between sentences.
The objective of DeepSC-MT is to map the meaning of the source
sentence to the target language, which is achieved by learning the
word distribution of the target language. Therefore, cross entropy is
utilized as the loss function, represented as

LMT = E

[
−
∑
n

P (p[n]) log (P (p̂[n]))

]
, (36)

where P (p[n]) and P (p̂[n]) are the real and predicted probabilities
that the n-th word appears in the real translated sentence p and the
predicted translated sentence p̂, respectively.

Visual question answering task is investigated in [235] based
on a multi-modal multi-user system. Particularly, the compressed
text semantic features and image semantic features are extracted
by a text semantic encoder and image semantic encoder at the
transmitter, respectively, besides, a layer-wise transformer-enabled
model is utilized at the receiver to perform the information query
before fusing the image-text information to infer an accurate answer.

2) Task-Oriented Semantic Communications for Speech: The se-
mantic extraction of speech signals is more complicated than text
information. For speech signals, the semantic information required
for transmission may refer to text information, emotional expression
and type of language, etc., which increases the difficulty in extracting
semantic features. Weng et al. has investigated a semantic communi-
cation system for speech signal reconstruction in [234], which aims
to minimize the MSE between the input and recovered speech se-
quences. Moreover, in [236], a speech recognition-oriented semantic
communication system, named DeepSC-SR, has been developed to
obtain the text transcription by transmitting the extracted text-related
semantic features. Particularly, two convolutional layers are employed
to constrain the input speech signals into a low dimension repre-
sentation before passing through the multiple gated recurrent unit
(GRU)-based bidirectional recurrent neural network (BRNN) [237]
modules. The text transcription is recognized at the character level
by minimizing the difference of the character distribution between
the source text sequence and the predicted text sequence. According
to the connectionist temporal classification (CTC) [238], the loss
function can be expressed as

LCTC(θ) = − ln

 ∑
A∈A(s, t)

p
(
t̂
∣∣∣ s,θ)

 , (37)

where A(s, t) represents the set of all possible valid alignments of
text sequence t to input speech s, p

(
t̂
∣∣∣ s,θ) denotes the posterior

probability to recover one of the valid alignments t̂ based on s, and
θ is the trainable parameters of the whole system.

Inspired by DeepSC-SR, a semantic communication system for
speech recognition at the word level is proposed in [239], in which
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a visual geometry group enabled redundancy removal module is
utilized to compress the transmitted data. The objective of this system
is to convert the word distribution into a readable text transcription,
which is achieved by the cross-entropy loss function between the
source word sequence and predicted word sequence. Hyowoon et al.
developed a novel stochastic model of semantic-native communica-
tion (SNC) for generic tasks [240], where the speaker refers to an
entity by extracting and transmitting its symbolic representation. A
curriculum learning framework for goal-oriented task execution is
investigated in [241], where the speaker describes the environment
observations to enable the receiver to capture efficient semantics
based on the defined language by using the concept of beliefs.

3) Task-Oriented Semantic Communications for Image and Video:
Due to their high data rate content, significant contribution to the
network traffic, and diverse applications from live video streaming
to augmented and virtual reality and video gaming, semantic de-
livery of image and video content is essential for next generation
communication systems; and hence, has been studied extensively in
the recent years. In [227], a neural network aided JSCC scheme
was proposed for the first time for efficient delivery of images
over wireless channels. The authors proposed an autoencoder-based
DeepJSCC scheme, where the channel is treated as an untrainable
bottleneck layer. The surprising result in [227] showed that the
proposed DNN-based solution could outperform the concatenation
of state-of-the-art image compression techniques (e.g., BPG) with
state-of-the-art channel coding (e.g., LDPC) at a prescribed channel
SNR. We would like to highlight that DNN-based image compression
techniques could only very recently outperform BPG [160], and their
design is quite complex, requiring not only the training of a learned
transform coding approach, but also the learning of the distribution
of the quantized features for efficient entropy coding. Similarly, so
far DNN-based channel code designs cannot meet the performance of
state-of-the-art channel codes, such as LDPC, in the long blocklength
regime that would be used in image and video transmission. On
the other hand, the DeepJSCC scheme proposed in [227], and later
improved in [242], can outperform their combination, despite its
rather simple architecture. This is because the problem of JSCC is
a comparatively easier one for DNNs to learn, since they simply
need to learn to map similar signals in the source domain to similar
channel inputs, such that after noise addition, they can be mapped to
similar reconstructed signals, thereby minimizing the error. On the
other hand, learning digital compression and channel coding schemes
is a much harder problem due to the structure they need to create, and
the discrete nature of the problem makes it more difficult to be learned
through SGD. This joint approach also provides significant speed-
up in end-to-end delivery. The encoding and decoding tasks can be
carried out with significantly less latency in DeepJSCC, thanks to the
simple neural network architecture and the complete parallelization it
provides, compared to conventional compression and channel coding
algorithms, which are often iterative and can be highly complex.

As mentioned earlier, another significant benefit of the end-to-end
DNN-based approach is the graceful degradation it provides; that
is, the performance, trained for a specific channel SNR generalizes
to other SNRs. This capability was exploited in [227] to show that
DeepJSCC can outperform the separation-based alternatives with
even a greater margin when used over a fading channel, when channel
state information (CSI) is not available. It is later shown in [243]
that, when the CSI is available at the transmitter and the receiver, an
attention mechanism can be used to train a single network that can
achieve the best performance at every SNR.

In [244], it is shown that DeepJSCC can also achieve successive
refinability, that is, the image can be delivered at multiple steps,
using gradually more bandwidth, with minimal loss in performance.

This means that receivers can tune into the transmission until they
recover the transmitted image at the desired quality. In [245], a
dynamic-bandwidth approach is introduced, where the bandwidth
used for each input image is decided adaptively based on the
image content and channel conditions. In [246], the authors employ
adaptive-bandwidth transmission across features depending on feature
entropies. This allows allocating more bandwidth to more important
features, increasing their reconstruction quality. Bandwidth allocation
strategy is learned jointly with the non-linear transform in an end-
to-end fashion, thereby significantly improving the performance of
DeepJSCC in all performance measures (PSNR, MS-SSIM, LPIPS),
especially in the large channel bandwidth regime.

Another challenge in communication systems is to develop efficient
ways for exploiting feedback. It was shown by Shannon that feedback
does not increase the channel capacity. Therefore, in the infinite
blocklength regime, it does not help from a JSCC perspective either.
Since separation is optimal in this regime, what matters for the end-to-
end performance is the channel capacity, which the feedback cannot
improve. On the other hand, it is known that feedback helps to
improve the error exponent in channel coding [247], [248]. More
interestingly, when transmitting a Gaussian source signal over a
Gaussian channel, it is shown in [249] that optimality of uncoded
transmission shown in [195] only in the case of matched bandwidth
between the source and the channel, extends to arbitrary bandwidth
extensions. In [229], the DeepJSCC scheme is extended to channels
with channel output feedback, and it is shown that feedback can
significantly improve the end-to-end performance. It is shown that
the required bandwidth for image delivery can be reduced to half
when variable rate transmission is allowed and channel feedback is
exploited to stop transmission whenever the required reconstruction
quality is reached at the receiver.

Benefits of DNN-aided JSCC are extended to OFDM channels
in [250], [251]. In [251], the authors employ a double attention
mechanism, where a channel-attention mechanism is used to adap-
tively allocate power according to states of the subchannels, and
a spatial-attention mechanism is used to map the features to the
subchannels to make sure that the important features are transmitted
over good subchannels. In all these works, the encoder is free to
map the input signal to arbitrary points in the channel input space;
that is, the channel inputs are limited only by an average power
constraint, but there is no input constellation. However, in practical
communication systems, communication hardware is constrained to
a fixed constellation diagram. In [252], a differentiable quantization
approach is used to map channel inputs to points from a prescribed
discrete constellation, and it is shown that the performance loss
compared to DeepJSCC with unconstrained channel inputs is limited
as long as a sufficiently rich constellation can be employed. In
[253], JSCC of images transmitted over binary symmetric and over
binary erasure channels is considered using a variational autoencoder
(VAE) assuming a Bernoulli prior. To overcome challenges imposed
by the non-differentiability of discrete latent random variables (i.e.,
the channel inputs), unbiased low-variance gradient estimation is
used, and the model is trained using a lower bound on the mutual
information between the images and their binary representations.

We would like to highlight that, similarly to neural image com-
pression techniques, an important advantage of DNN-based JSCC
approaches, compared to employing conventional compression and
channel coding techniques is that, these codes can be trained for
any desired final fidelity measure, including various inference tasks,
that would not require a complete reconstruction of the source
signal. Indeed, it has been shown that DNN-based JSCC approaches
outperform their conventional counterparts particularly in terms of
SSIM and MS-SSIM performance measure, which are known to
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better capture the perceived quality, or semantics, of the transmitted
images. Similarly, adversarial measures can also be used to further
improve the perception quality of the reconstructed images [250].

A semantic communication system for image retrieval over a
wireless channel is considered in [190], which aims to identify
the top-k similar images to a query image in a large dataset of
images. The authors proposed directly mapping the extracted image
features to channel inputs through a three-step training procedure:
feature encoder pre-training, followed by JSCC autoencoder pre-
training, and finally, end-to-end training. It is shown that this joint
approach significantly outperforms the separation-based approach that
combines the retrieval-oriented compression scheme mentioned in
Section IV-B with a capacity-achieving channel code. This is despite
the fact that a very short blocklength is considered, and hence,
capacity is far from achievable. This scheme is recently extended
in [235]. A semantic rate-distortion theory-based communication
system for multiple image tasks has been investigated in [254],
in which the source image is first restored at the receiver before
intelligent task execution.

The performance of DeepJSCC for image transmission has also
been tested and verified in practical communication systems using
a software-defined radio testbed in [242], which is also exhibited in
[255]. The authors in [256] proposed a real-time semantic testbed
based on a visual transformer.

The first work on the JSCC of video signals over wireless channels
employing DNNs is carried out in [231]. In this work, video signals
are divided into group of pictures (GoPs), similarly to common video
compression standards. Each GoP is directly mapped to channel
input symbols of a fixed bandwidth. The first frame of each GoP
is considered as a key frame, and transmitted on its own using JSCC
techniques similar to the one used in [227]. The remaining frames are
transmitted using an interpolation encoder, which encodes the motion
information in that frame and residual information with respect to
the nearest two key frames as reference. Scaled space flow is used to
estimate the motion information using the DNN architecture proposed
in [257]. There are two challenges in the proposed method. First, due
to the JSCC for delivering key frames, the encoder does not know
their exact reconstruction at the receiver, which depends on the noise
realization. The authors use a stochastic encoding method, where
the encoder emulates the channel, and generates a reconstruction of
the key frame using the channel statistics. The interpolation is based
on this stochastically generated version of the key frame. Second,
the total bandwidth for the GoP is limited, but in general, one
would expect to allocate more channel bandwidth for frames with
more motion content. This is achieved by reinforcement learning
in [231]. The authors show that the proposed learned bandwidth
allocation methodology strictly improves upon equal allocation of the
available bandwidth among the frames. The results in [231] show that
the proposed JSCC technique for video delivery, called DeepWiVe,
not only provides graceful degradation with channel SNR, similarly
to DeepJSCC, but also outperforms state-of-the-art separation-based
digital transmission alternatives combining H.264 or H.265 video en-
coding with LDPC channel coding at a specified channel SNR value.
These results are promising as they show the potential advantages
of DNN-based JSCC techniques for future augmented/virtual reality
(AR/VR) applications for wireless headsets.

A semantic communication system for image classification has
been proposed in [258], which uses a variational IB (VIB) framework
to overcome the difficulty in mutual information computation of the
original IB [90]. Additional details on the VIB are provided in Section

VI-C. The adopted loss function can be expressed as

LV IB (ϕ,θ) = Ep(x,y){Epϕ(ẑ|x ) [− log (qθ (y |ẑ ))]
+ βDKL (pϕ (ẑ |x ) ∥ q (ẑ))}, (38)

where x represents the input image, y denotes the target label,
and ẑ is the recovered semantic information at the receiver. q (ẑ)
and qθ (y |ẑ ) are two variational distributions to approximate the
true distributions of p (ẑ) and pθ (y |ẑ ), respectively. ϕ and θ are
the trainable parameters at the transmitter and receiver, respectively.
DKL (·) indicates the KL divergence.

B. Distributed Training over Noisy Channels

We can also extend the model training tasks presented in Section
IV-A for rate-limited channels to training over noisy channels. Since
model training is often carried out over many iterations, training
among wireless devices imposes strict delay constraints per iteration.
Hence, the conventional approach of separate model compression and
communication would not meet the desired delay and complexity
requirements [1].

The problem of training and delivering a DNN to a remote termi-
nal, called AirNet, is considered in [259]; extending the model in Fig.
5 by replacing the rate-limited error-free link with a noisy wireless
channel. The conventional approach would be to first train a DNN,
which is then delivered reliably over the bandwidth-limited channel.
We can either train a low complexity model, such as MobileNet or
ShuffleNet, or first train a larger model, and then compress it to the
level that can be delivered over the limited capacity wireless link.
Here, the size of the delivered model will be dictated by the available
channel capacity, and errors over the channel will further reduce the
accuracy of inference at the decoder side.

An alternative joint training and channel coding approach is
considered in [259], where the trained neural network weights are
delivered over the wireless channel in an analog fashion; that is,
they are mapped directly to the channel inputs. However, given the
large size of DNNs, this would require a very large bandwidth.
Moreover, the receiver will recover a noisy version of the network
weights, which varies according to the noise realization. The authors
propose two distinct strategies to remedy these problems. Pruning
[260] is employed to reduce the network size without sacrificing its
performance significantly. The encoder first trains a large-dimensional
DNN, which will be then pruned to the available channel bandwidth.
Choosing a large DNN as an initial point, rather than directly training
a DNN of dimension equal to the available channel bandwidth
is motivated by the literature [261], which shows that pruning
a trained large-dimensional DNN generally performs better than
directly training a low-dimensional DNN. The noise problem is
remedied by injecting a certain amount of noise to the network’s
weights at each training iteration, so that the trained network acquires
robustness against channel noise. It is shown in [259] that the analog
transmission of DNN weights achieves better accuracy compared to
their digital delivery. A further unequal error protection strategy is
also incorporated by pruning the network to a size smaller than the
available channel bandwidth, and applying bandwidth expansion to a
selected subset of more important weights using Shannon-Kotelnikov
mapping [262].

While the above framework assumes the availability of the dataset
at the encoder, in many practical settings, the encoder may simply
have access to the DNN architecture and weights but no data.
Delivering such a network over a wireless channel is considered in
[263], where it is shown that a Bayesian approach at the receiver
when estimating the noisy DNN weights can significantly improve
its performance. The authors assume a Gaussian prior, and propose
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a population compensator and a bias compensator to the minimum
mean square error (MMSE) metric.

Another common scenario is when the dataset is distributed across
many wireless devices, which collaborate to train a common model
in a federated manner. When the devices participating in federated
learning share a common wireless medium to the parameter server,
this is called federated learning at the edge (FEEL). FEEL was studied
in [264] and [265] for AWGN and fading channels by first treating
the uplink channel from the devices to the parameter server as a
MAC, and the devices communicate at the boundary of the capacity
region. Then, each device, depending on the rate available to it,
reduces the size of its model update by compressing it using the
technique proposed in [266]. With this approach, there is a trade-off
between the number of devices participating in the model update at
each round, and the accuracy of the updates they can convey to the
parameter server. The higher the number of devices, less wireless
channel resources they are allocated, and the less the accuracy of the
updates they transmit to the parameter server. In [267], the authors
studied the trade-off between the energy cost of model updates and
the latency in FEEL over fading channels. A joint wireless resource
allocation problem is formulated in [268] for FEEL over fading
channels to maximize the convergence rate of the underlying learning
process.

In [264], [265], an alternative ‘analog’ transmission approach is
proposed for FEEL, by treating the uplink model transmission as
a distributed computation problem over a MAC. Inspired by the
optimality of uncoded transmission in certain distributed compu-
tation and JSCC problems over MAC [197], [203], these papers
proposed uncoded and synchronized transmission of local model
updates, which enables the the parameter server to directly recover
the sum of the updates from multiple terminals. This ‘over-the-air
computation (OAC)’ approach has received significant interest in
recent years thanks to its bandwidth efficiency [264], [265], [269],
[270]. Instead of allocating orthogonal channel resources to the
participating devices, they all share the same bandwidth. Unlike in
separate model compression and channel coding, the accuracy of the
resultant computation benefits from more transmitters as the goal
is to recover the sum of their model updates. The OAC can also
be used in a fully distributed learning scenario [271], [272], where
many computations take place in parallel. We refer the reader to [273]
for a comprehensive overview of distributed learning techniques over
wireless networks.

C. Solutions to the IB Problem

The IB problem detailed in Section III-E provides a formulation
to design mappings PU|S that allow to extract relevant information
within the IB relevance–complexity region, i.e, the pairs of achievable
(∆, R), by solving the IB problem in (30) for different values
of β. However, in general, this optimization is challenging as it
requires computation of mutual information terms. In this section,
we describe how, for a fixed parameter β, the optimal solution P β,∗U|S ,
or an efficient approximation of it, can be obtained under: (i) known
general discrete memoryless distributions and particular distributions,
or particular distributions such as Gaussian and binary symmetric
sources; and (ii) unknown distributions and only samples are available
to design the encoders and decoders.

1) Known Discrete Memoryless Distribution: When the relevant
features V and the observation S are discrete and the joint distribution
PS,V is known, the maximizing distributions PU|S in the IB problem
in (30), can be efficiently found by an alternating optimization proce-
dure similar to the expectation-maximization (EM) algorithm [274]
and the standard Blahut–Arimoto (BA) method [275], [276], which

Fig. 10. Example parametrization of Variational Information Bottleneck using
neural networks.

is commonly used in the computation of rate-distortion functions of
discrete memoryless sources. In particular, a solution PU|X to the
constrained optimization problem is determined by the following self-
consistent equations, for all (u, s, v) ∈ U × S × V , [90]

PU|S(u|s) =
PU (u)

Z(β, s)
exp

(
− βDKL

(
PV |S(·|s)∥PV |U (·|u)

))
PU (u) =

∑
s∈S

PS(s)PU|S(u|S)

PV |U (v|u) =
∑
s∈S

PV |S(v|s)PS|U (s|u) (39)

where PS|U (s|u) = PU|S(u|s)PS(s)/PU (u) and Z(β, s) is a nor-
malization term. It is shown in [90] that alternating iterations of these
equations converges to a solution of the problem for any initial PU|S .
However, different to the standard Blahut–Arimoto algorithm for
which convergence to the optimal solution is guaranteed, convergence
here may just be to a local optimal solution.

2) Unknown Distributions: The main drawback of the solutions
discussed above is the requirement of knowing the joint distribution
PS,V , or at least a good estimation of it and that iterating (39)
can only be performed for sources with small alphabet (or jointly
Gaussian [110], [277], [278]). The VIB method was proposed in [99]
as a means to obtain approximate solutions to the IB problem in
the case in which the joint distribution is unknown and only a
give training set of N samples {(si, vi)}Ni=1 is available or the
alphabet is too large. The VIB consists of defining a variational
(lower) bound on the cost of the IB problem in (30), using neural
networks for parameterizing this bound and showing that, leveraging
the reparametrization trick [279] its optimization can be performed
through stochastic gradient descendent (SGD). From a task oriented
communication perspective, the VIB approach provides a principled
way to generalize the evidence lower bound (ELBO) and Variational
Autoencoders [279] (and its extension to β-VAE cost [280]) to
scenarios in which the decoder is interested in recovering the relevant
information V for a task that is not necessarily the observed sample
S by maximizing relevance. The idea is to use the IB principle to
train an encoder and decoder, parameterized by DNNs, which are
able to extract the relevant information to forward to a decoder
in charge of reconstructing the relevant information. The resulting
architecture to optimize with an encoder, a latent space, and a decoder
parameterized by Gaussian distributions is shown in Fig. 10. This
approach has been used for task oriented communications also in
JSCC scenarios, as a means to extract the relevant information to
transmit over communication noisy channels to perform a given task
at the destination, e.g., [281], [282].

More precisely, solving the IB problem in (30) consists of opti-
mizing the IB-Lagrangian

LIB
β (PU|S) := I(U ;V )− βI(U ;S) (40)

over all PU|S satisfying U−S−V . It follows from Gibbs inequality,
for any PU|S satisfying U − S − V , we have the following lower
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Fig. 11. Example parameterization of the distributed variational information
bottleneck method using neural networks for K = 2 for encoders parameter-
ized by Gaussian distributions, Pθ(uk|sk) = N (sk;µ

θ
k(s),Σ

θ
k(s)).

bound on the IB-Lagrangian,

LIB
β (PU|S) ≥ LVIB

β (PU|S , QV |U , SU ) (41)

:= EPU|S

[
logQV |U (V |U)

]
− βDKL(PU|S |SU ), (42)

where QV |U (V |u) is a given stochastic map QV |U : U → [0, 1]
(also referred to as the variational approximation of PV |U or decoder)
and SU (u) : U → [0, 1] is a given stochastic map (also referred to as
the variational approximation of PU or prior), and DKL(PU|S |SU )
is the relative entropy between PU|S and SU . The equality holds iff
QV |U = PV |U and SU = PU , i.e., the variational approximations
match the true values.

Therefore, optimizing (40) over PU|S is equivalent to optimizing
the variational cost (42) over PU|S , QV |U and SU . In the VIB
method, this optimization is done by further parameterizing the
encoding and decoding distributions PU|S , QV |U , and SU that are
to optimize using a family of distributions Pθ(u|s), Qψ(v|u), and
Sφ(u), whose parameters are determined by DNNs with parameters
θ, ϕ, and φ respectively. A common example is the family of
multivariate Gaussian distributions [279], which are parameterized
by the mean µθ and covariance matrix Σθ . Given an observation
X , the values of (µθ(s),Σθ(s)) are determined by the output of the
DNN fθ , whose input is S, and the corresponding family member is
given by Pθ(u|s) = N (u;µθ(s),Σθ(s)). Another common example
are Gumbel-Softmax distibutions [283], [284]).

The bound (42) restricted to family of distributions Pθ(u|s),
Qψ(v|u), and Qφ(u) can be approximated using Monte-Carlo and
the training samples {(si, vi)}Ni=1. To facilitate the computation
of gradients using backpropagation [279], the reparameterization
trick [279] is used to sample from Pθ(U |S). In particular, consider
Pθ(U |S) that belongs to a family of distributions that can be sampled
by first sampling a random variable Z with distribution PZ(z), z ∈ Z
and then transforming the samples using some function gθ : S×Z →
U parameterized by θ, such that U = gθ(s, Z) ∼ Pθ(U |s), e.g. a
Gaussian distribution. The cost (42) is lower bounded by
LNN
β (θ, ϕ, φ) (43)

:= EPS,V EPθ(U|S) [logQϕ(V |U)]− βDKL(Pθ(U |S)|Qφ(U)),

The reparametrization trick is used to approximate (43) by sam-
pling M independent samples {um}Mm=1 ∼ Pθ(u|si) for each
training sample (si, vi), i = 1, . . . , N . Then, the lower bound (43)
can be optimized using methods such as SGD or ADAM [285] with
backpropagation over the the DNN parameters θ, ϕ, φ as,

max
θ,ϕ,φ

1

N

N∑
i=1

Lemp
β,i,M (θ,ϕ,φ), (44)

where the cost for the i-th sample in the training dataset is:

Lemp
β,i,M (θ, ϕ, φ) (45)

:=
1

M

M∑
m=1

[
logQϕ(vi|ui,m)− βDKL(Pθ(Ui|si)∥Qφ(Ui))

)]
,

and sampling is performed by using ui,m = gϕ(si, zm) with
{zm}Mm=1 i.i.d. samples from PZ for each (si, vi) pair.

For inference, let θ∗, ϕ∗, φ∗ be the DNN parameters obtained in
training by solving (44). Inference for a new observation S, the
representation U can be obtained by sampling from the encoders
Pθ∗

k
(Uk|Sk) and a soft estimate of the remote source Y can be

inferred by sampling from the decoder Qϕ∗(V |U). Thus, from a
task oriented communication perspective, Pθ∗

k
(Uk|Sk) is an encoder

trained according to the cost (44) to extract the most relevant
representation U for inference of V , and Qϕ∗(V |U) is a decoder
that is trained to reconstruct the relevant information V from the
representation U that minimizes the log loss.

Similarly to the steps followed for the variational IB in Sec-
tion VI-C2, encoders and decoder performing on the region (34) can
be computed by deriving a variational bound on and parameterizing
encoding and decoding distributions PUk|Sk

, QUk|V using a family
of distributions whose parameters are determined by DNNs, and
optimize it by using the reparameterization trick [279], Monte Carlo
sampling, and stochastic gradient descent (SGD)-type algorithms. The
encoders and decoders parameterized by DNN parameters θ,ϕ,φ
can be optimized according to the distributed IB principles by
considering the following empirical Monte Carlo approximation:

max
θ,ϕ,φ

1

n

n∑
i=1

[
logQϕK(vi|u1,i,j , . . . , uK,i,j) (46)

+s

K∑
k=1

(
logQϕk (vi|uk,i,j)−DKL(Pθk (Uk,i|sk,i)∥Qφk (Uk,i))

)]
,

where uk,i,j = gϕk (sk,i, zk,j) are samples obtained from the
reparameterization trick by sampling from K random variables PZk .
The resulting architecture is shown in Fig. 11.

VII. TIMING AS SEMANTICS IN COMMUNICATIONS

In the previous sections, we have considered goal-oriented com-
munications from a ‘static’ perspective; that is, we considered the
scenario in which a transmitter observes a certain signal, and wants
to deliver it to a receiver under a certain semantic quality measure,
which depends on the underlying task, but neither the source statistics
nor the semantic quality measure changes over time. Therefore, time
did not really factor into our analysis. However, in many practical sys-
tems, particularly those involving control of cyber-physical systems,
timing of messages can be as critical as their content. A message that
arrives too late can be completely useless no matter how reliably it
have been recovered.

In this section, we will deal with a broad class of problems, where
the relevance or value of information is related to its timing. A
specific sub-class of these problems relates to the popular idea of
age of information (AoI). However, as we shall argue shortly, AoI
is just one piece of the bigger puzzle when it comes to “timing as
semantics” in communications. For a systematic exposition, we will
first summarize key ideas related to the concept of AoI that will
be useful in this discussion. We will then introduce a general real-
time reconstruction problem using a rate-distortion viewpoint where
semantic information is contained in the timing of the source samples.
Along the way, we will explore the connection of age metrics to this
rate-distortion viewpoint.
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Fig. 12. An illustration of the general setup for Section VII.

The general setup for this section is illustrated in Fig. 12. It consists
of a source modeled as a random process X(t), a transmitter that
transmits status updates to a monitor about the current state of X(t),
and the monitor where the estimated state is denoted by X̂(t). In
this setting, the transmitter needs to take two key decisions during
each time slot: (i) whether to sample X(t) to generate a status
update, and (ii) whether to transmit the status update. Note that it
is not always optimal to sample and transmit in the same time slot
when the server is subjected to additional constraints, such as the
energy availability/harvesting constraints. With this background, we
now present some relevant background on AoI.

A. Age of Information

1) Background and Definition: AoI is a performance metric that
quantifies freshness of information at a monitor about some remote
stochastic process X(t) observed by a transmitter node [286]–
[289]. Specifically, AoI is defined as the time elapsed since the last
successfully received update packet at the monitor was generated at
the transmitter. Mathematically, it is defined as the following random
process:

∆AoI(t) = t− u(t), (47)

where u(t) is the generation time instant of the latest status update
received at the monitor by time t. In order to introduce the idea
of AoI concretely, we use Fig. 13, which depicts a realization of
AoI at the monitor as a function of time when the transmitter
sends update packets according to a First-Come-First-Served (FCFS)
queuing discipline and only one packet transmission may occur at any
given time. Here, we implicitly model age as a linear function, which
is also the most popular definition of age in the literature, although
more general non-linear age functions have also been considered.
Further, tn and t′n denote the generation and reception time instants
of packet n at the transmitter and monitor, respectively. Therefore,
we observe that: i) Xn is the inter-arrival time between packets n−1
and n, i.e., the time elapsed between the generation of packets n−1
and n, ii) Tn is the system time of packet n, i.e., the time elapsed
from the generation of packet n at the transmitter until it is received
at the monitor, and iii) AoI is reset to Tn at t′n since packet n
becomes the latest received update packet at t′n, and hence the AoI
value at that time instant is the time passed since the generation of
packet n, which is Tn. Under ergodicity, many key properties of the
AoI process, such as the average AoI or the mean peak AoI, can
be studied from its sample functions, such as the one depicted in
Fig. 13. Interested readers are advised to refer to well-known books
and overview articles on this topic, such as [286]–[289], for a more
comprehensive introduction to the concept of AoI.

2) Age of Incorrect Information (AoII): While AoI is useful in
characterizing the freshness of information and has found applications
in a broad range of system settings under a variety of queuing
disciplines [290]–[300], it does not explicitly take into account the

Fig. 13. AoI evolution vs. time for n update packets [288].

similarity or discrepancy between the status of information at the
transmitter and the monitor. In particular, as observed from (47),
the AoI always increases as time passes even if the transmitter
and monitor have the same status of information. As an example,
consider X(t) to be a discrete Markov source. If the current state of
X(t) matches with that of X̂(t), the monitor has the most updated
information about X(t) irrespective of when the status update was
received. Therefore, in this case AoI is not an accurate measure of
information freshness since it ignores semantic information about the
nature of source X(t). This motivated the introduction of a related
metric, termed AoII, which is defined as [301]:

∆AoII = (t− v(t))1{X(t) ̸= X̂(t)}, (48)

where v(t) is the last time instant when 1{X(t) ̸= X̂(t)} = 0 and
1(·) is an indicator function. Thus, according to (48), AoII grows with
time only when X(t) ̸= X̂(t). Therefore, AoII explicitly includes
some semantic information about the nature of source X(t) that was
ignored in the definition of AoI. In order to make this connection
more concrete, we now discuss the general real-time reconstruction
problem from the rate-distortion viewpoint.

B. Real-time Reconstruction

We now establish a connection between the well-known age met-
rics discussed above and the semantics of information in the context
of real-time remote tracking or reconstruction systems as formulated
in [302]. Recall the setup of Fig. 12, where a transmitter observes
source X(t) and sends samples/updates about that source over time
to a monitor. The objective is to reconstruct X(t) at the monitor using
the received samples/updates from the transmitter. Recall also that the
transmitter has two key decisions to take during each time slot in this
general setting: i) whether to sample X(t) or not, and ii) whether
to transmit the available or newly generated sample/update or not.
Further, we consider a semantic-aware objective function (which is
usually referred to as a distortion function), which can be expressed
for the cases of discrete and continuous sources of information as

Sdis = lim
T→∞

1

T

T∑
t=1

c(t), (49)

Scon = lim
T→∞

1

T

∫ T

t=0

c(t)dt, (50)

where c(t) is an appropriately chosen cost function. For instance,
c(t) in the discrete case can be either c(t) = |X(t)− X̂(t)|, c(t) =
a(t)1{X(t) ̸= X̂(t)}, or c(t) = [X(t)− X̂(t)]2, while the latter is
also appropriate for the continuous case.

When no channel or transmission delays are considered, the above
problem can be thought of as a rate-distortion problem. In the
classical rate-distortion problem, we are interested in the average
distortion between the original process at the transmitter and its
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reconstruction at the receiver under a constraint on the number of
bits transmitted. Here, on the other hand, ‘real-time’ operation is
considered; that is, the distortion measure does not tolerate delays,
and the process needs to be reconstructed at the receiver in a real-
time fashion. The general objective here is to develop sampling
and transmission policies that minimize the average delay-sensitive
distortion. An extreme case is zero-delay transmission, where the
reconstruction at the receiver at each time depends only on the
information received up to that point. Delay-constrained distortion
requirement is naturally motivated by cyber-physical applications,
where the source signal may model the system state and observations,
and the receiver is a controller, which cannot tolerate the infinite delay
requirements of the classical rate-distortion formulation.

Specific instances of this problem have already been investigated
in the literature. When the transmitter samples and transmits during
every time slot, we obtain a causal compression problem. Real-time
compression of a discrete Markov source under a finite rate constraint
is studied in [303]. In this work, Witsenhausen showed that if the
source is a kth-order Markov source, the transmitted codeword at
each time instant can depend only on the last k source samples and
the present state of the receiver’s memory, without loss of optimality.
When the source is memoryless, i.e., k = 1, then it is known that
the optimal distortion is achieved by the optimal scalar quantizer
(LloydâMax) for the source [304].

Many works have also considered the sampling aspect in tracking
random processes under constraints on the sampling rate. In [305]–
[307], causal transmission of a discrete random process over a finite
time horizon is considered under transmission cost constraints. While
[305] and [306] consider special decoder and encoder functions,
respectively, and optimize the other one, [307] made no assumptions
on the structure of the encoder or the decoder, and showed that the
optimal encoding function is of threshold type and optimal estimation
strategy at the decoder is Kalman-like. The optimal distortion-
transmission rate trade-off is fully characterized in [308] for Gauss-
Markov sources. Continuous-time processes are considered in [309]
with a constraint on the number of samples that can be transmitted.
Energy, delay and buffer constraints are also considered in [310],
[311] for delay-limited source delivery.

All of the aforementioned works consider a perfect communication
channel, and deal mainly with the rate-distortion performance, rate
representing either the usual bits per sample, or the sampling rate.
While this can be considered as the extension of the source coding
problems overviewed in Section III-A with a delay-sensitive distor-
tion measure, in practical systems it is important to take the effect of
the channel into account. Note that, since the channel transmission
also introduces delays, it will have a direct impact on the achieved
distortion.

Optimality conditions for the delay-limited transmission of source
samples over a noisy channel have been studied as early as the 60s
[312], [313]. These works considered discrete channel inputs and
outputs. Real-time transmission of a Markov source over a noisy
channel with perfect channel output feedback is studied in [314].
Perfect channel output feedback significantly simplifies this problem
as it allows the encoder to track perfectly the knowledge of the
decoder. The more challenging problem of real-time transmission
of a Markov source over a noisy channel without feedback is
studied in [315], and a general framework is introduced to study
the corresponding team decision problems. A similar JSCC problem
with real-time reconstruction constraints is considered in [316], which
assumes that the transmitter can only transmit a certain number of
times; that is, [316] extends the model in [305] to the JSCC scenario.

In [317], the authors consider the real-time transmission of a
discrete-time Markov source over a fading channel, where each trans-

mission is lost with a probability that depends on the transmission
power and the channel state. Assuming that the channel state is known
to both the transmitter and the receiver instantaneously, the authors
characterize the optimal transmission and estimation strategies for the
infinite-horizon average distortion for vector-valued autoregressive
sources. They also show that the optimal transmission strategy is of
threshold-type when the available transmit power levels are discrete.
A similar model is also considered in [318], with the slight but
important difference that the channel state is known instantaneously
only by the receiver, and is fed back to the transmitter with unit
delay. The optimal transmission and estimation schemes are then
characterized for Markov and first-order autoregressive sources, and
the optimality of threshold based transmission is also shown for
discrete power levels.

While these works considered explicit source and channel statistics,
and treated end-to-end optimization problem as JSCC with a delay-
constrained distortion measure, there has been a significant research
interest from the networking community to treat the physical channel
as a random queue [287], [292], [319], [320], and focus on the
scheduling aspects rather than source and channel coding. In most of
the early works on AoI, the status updates are generated as a new
packet at the transmitter by an exogeneous process, and the goal of
the transmitter is to choose which packets to transmit to keep the AoI
at the receiver low. The core idea here is that dropping some packets
can be beneficial to reduce the queue waiting time for future status
updates.

While AoI is explicitly defined as the measure of performance
in these works, AoI can also be connected to the JSCC framework
through a delay-sensitive distortion measure. As mentioned earlier,
transmission of a random Wiener process over a random delay
channel is considered in [302], and the authors show that the
estimation error at the receiver is a function of the AoI. In [321], the
authors consider the mutual information between the real-time source
value and the samples delivered to the receiver, and show that this
mutual information depends on the AoI. These provide operational
meaning to the AoI measure, and connects it closely with cyber-
physical systems and control.

Before concluding this discussion, we present three different sam-
pling and transmission policies [16], [302] that will also highlight
subtle connections between the age metrics and semantics of infor-
mation.

1) AoI-aware Sampling and Transmission Policy: In this policy,
the transmitter samples a new update and sends it to the receiver once
the AoI at the receiver reaches a predefined threshold Ath. While this
policy takes into account the timeliness of the available information
at the receiver, it is not semantics-aware since it does not involve the
status of information at the source and the receiver in the process of
decision-making. This again highlights the fact that AoI is agnostic
of the source semantics.

2) Source-aware Sampling and Transmission Policy: In this policy,
the transmitter samples a new update and sends it to the receiver when
the status of information at the source changes. This policy can be be
thought of as a semantics-aware policy but just from the perspective
of the source signal. Since this does not explicitly account for the
discrepancy of the status at the transmitter and receiver, it could
potentially result in unnecessary transmissions that could have been
avoided in a truly semantics-aware policy. One specific example of
such an instance given in [16] is when a transmission is triggered by a
change in the status of the source but the status update does not reach
the monitor because of an erasure. Now, if the source returns to the
previous state in the next time slot, no transmission is required since
there is no discrepancy in the states at the transmitter and receiver.
However, the current policy will still transmit an update since it does
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Fig. 14. Illustration of the effective communication paradigm introduced in
[322].

not incorporate end-to-end semantics.
3) Semantics-aware Sampling and Transmission Policy: Not sur-

prisingly, this policy overcomes the drawback of the previous one by
accounting for both the status of the source signal and the status of
the reconstructed signal at the monitor. In particular, the transmitter
samples a new update and sends it to the receiver only if the status
of the source signal is different from that of the reconstructed signal.
Here, we would like to remind the readers that this discrepancy on
the status at the transmitter and the monitor explicitly appeared in
the definition of AoII. Therefore, one can also interpret this policy
as follows: the transmitter samples a new update and sends it to the
receiver at the moment when the AoII becomes non-zero.

VIII. EFFECTIVE / PRAGMATIC COMMUNICATIONS

In [6], Weaver defines Level C of communications as the effec-
tiveness problem, which deals with the effect of the communicated
symbols on the receiver. At this level, the communication should
not just have a meaning, but also an impact on the behavior of the
receiver. In [322], the authors argue that communication problems
where the receiver takes actions based on the messages it receives,
and where the goal is to maximize a long-term reward function, falls
into this category. The reward received following each transmission
depends on the state of the receiver as well as the action it takes.
In these problems, we cannot define a simple fidelity metric as in
the preceding rate-distortion theory based framework. The utility, or
fidelity of each transmission depends on its impact over a long time
horizon. Here, as in the previous section, time plays an important role,
and the same message may have different ‘meanings’ depending on
the state of the receiver. Therefore, we can consider the action taken
by the receiver after each transmission as the affect of communication
on the receiver, and the state of the receiver as the ‘context’.

An illustration of the effective communication paradigm proposed
in [322] is presented in Fig. 14. The authors suggest that any
single-agent Markov decision process can be turned into an effective
communication problem by considering two entities, one of them,
called the controller, observes the state and the reward signals,
while the actions are taken by the agent, which may or may not
observe its state, but not the rewards. We further assume that there
is a noisy communication channel from the controller to the agent,
and the actions taken by the agent will depend on the signals
received from the controller through this channel. Note that the
controller and the agent collaboratively need to learn the best actions
to take that will maximize their long term reward, which can be
formulated as a reinforcement learning problem. However, unlike in

conventional formulation, here the learning must be enabled through
the noisy channel. It is shown in [322] that separating the learning
problem from the communication problem will result in a suboptimal
performance.

We also note here that both Morris [3] and Weaver [6] conceptu-
alized syntax, semantics and pragmatics as going from more specific
to more general; that is, pragmatics is the most general of the three.
Indeed, the above formulation of effective/pragmatic communication
generalizes both the technical communication formulation of Shannon
(i.e., the source and channel coding theorems), and the semantic
communication as conceptualized in this paper in the form of a JSCC
problem with a prescribed distortion measure. To see this, we can
formulate the channel coding problem as a two-agent guessing game,
where the transmitter observes the message m ∈ [M ] and maps it into
a channel codeword xn that belongs to the set Xn, which denotes the
set of possible actions of the transmitter. Upon observing the noisy
channel output Y n, the receiver takes one of M actions, m̂ ∈ [M ],
which correspond to its reconstruction of message m. The agents
receive a reward of 1 if m̂ = m, and 0 otherwise. Their goal is
to maximize their long-term average reward, which corresponds to
the probability of error, and their joint policy, which consists of the
encoding and decoding functions, form the channel code. Similarly, if
we replace the observation of the encoder with sm ∈ Sm, its actions
with w ∈ [M ], which is observed by the receiver perfectly, the action
set of the receiver with ŝm ∈ Ŝm, and consider a cost function
d(sm, ŝm), minimizing the long-term average cost is equivalent to
solving the lossy source coding problem.

It is easy to see that the JSCC problem is also a special case
of the above effective/pragmatic communication framework, where
the encoder observes sm ∈ Sm and takes an action from set Xn,
while the decoder observes Yn and takes an action from set Ŝm.
Minimizing the long-term average distortion, which can be specified
as any of the semantic distortion measures mentioned throughout this
paper, corresponds to solving the corresponding JSCC problem for
the given channel-to-source bandwidth ratio n/m. We would like
to emphasize that the proposed effective/pragmatic communication
framework generalizes semantic communication in multiple direc-
tions. First, it can allow memory in the state of the encoder, that is,
sm(t) observed in time slot t can depend on the past state sm(t−1)
or states sm(1), . . . , sm(t). This would result in the type of problems
studied in Section VII, in which the goal is to enable the receiver
to track a stochastic process available at the transmitter over a noisy
channel. On the other hand, in the model considered in [322], the
actions taken by the receiver also have an impact on the next state
of the transmitter.

It is further shown in [323] that adjusting the communication
scheme according to the state of the agent can result in a better
long-term reward, providing evidence for context-dependent commu-
nications.

The effective/pragmatic communication framework can be gener-
alized to multiple agent scenarios, where the agents communicate
with each other over noisy channels while trying to maximize
prescribed reward functions [324]. This model also generalizes recent
models in the machine learning literature that study the emergence
of communication among agents within the reinforcement learning
literature [325]–[328]. In these problems all agents transmit and
receive signals in addition to taking actions and interacting with the
environment. Communication serves as a tool to enable coordination
and cooperation among the agents in order to maximize their ac-
cumulated reward, which clearly highlights the pragmatic nature of
communication that goes beyond the transmitted bits over the channel
or reconstructed signals at the receiver; what matters is not which bits
are transmitted, or what the receiver’s estimate of the transmitter’s
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signal is, but the actions taken by the agents.

IX. CONCLUSION

In this paper, we have presented a comprehensive overview of
the foundations of semantic- and task-oriented communications as
well as practical data-driven approaches to semantic communication
of various information sources including image, text and video. In
particular, we argued that semantics can be considered in the context
of rate-distortion theory, albeit for most practical information sources
it is difficult if not impossible to explicitly state the corresponding
distortion metric. Therefore, we provided an extensive overview of
deep learning aided approaches to communicating practical informa-
tion sources over constrained communication channels under various
semantic loss functions. In the case of rate-limited error-free com-
munications, we have presented results related to remote inference
as well as distributed model training, and exposed the relevance of
information theoretic concepts and techniques such as IB. We empha-
sized the potential benefits of JSCC when communicating over noisy
channels, both in terms of end-to-end performance and adaptivity
to channel variations. Finally, we included the time dimension into
the framework, and argued that the timeliness of a signal can be
considered as yet another aspect of semantics. Finally, we presented
an interpretation of the effective/ pragmatic communication problem,
which involves communication among agents that take actions to
achieve a certain goal. We believe that the provided framework, which
focuses on the communications aspects of semantics rather than lin-
guistic formulations, and the in-depth overview of the foundations of
semantic- and task-oriented communications will provide guidelines
for the development of more efficient practical solutions for semantic-
and task-oriented communication networks.
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