PHYSICAL REVIEW D 106, 085012 (2022)

Gauge and scalar fields on CP?: A gauge-invariant analysis. I. The effective
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A parametrization of gauge fields on complex projective spaces of arbitrary dimension is given as a
generalization of the real two-dimensional case. Gauge transformations act homogeneously on the fields,
facilitating a manifestly gauge-invariant analysis. Specializing to four dimensions, we consider the nature
of the effective action due to chiral scalars interacting with the gauge fields. The key qualitatively
significant terms include a possible gauge-invariant mass term and a finite four-dimensional Wess-Zumino-
Witten (WZW) action. We comment on relating the mass term to lattice simulations as well as Schwinger-

Dyson analyses and also on relating the WZW action to the instanton liquid picture of QCD.
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I. INTRODUCTION

The gauge-invariant analyses of the low-energy or long-
distance properties of non-Abelian gauge theories remains a
challenging problem even after decades of work. Large-
scale numerical simulations have produced important
insights as well as quantitative estimates of physically
relevant observables, but the analytic understanding of
the problem is far from satisfactory. Perhaps the most
revelatory aspect of this state of affairs is concerning the
foundational ingredient needed for the quantum theory,
namely, the volume element for the gauge-orbit space. This
space is the set of all gauge potentials (A) modulo the set of
all gauge transformations which are fixed to be identity at
one point on the spacetime manifold (G,) [1]. Thus it is this
space of gauge-invariant field configurations over which the
functional integration for such theories has to be carried out
to define the quantum theory; i.e., the volume element of this
gauge-orbit space C = A/G, provides the measure of
integration. There is still no satisfactory and explicit formula
for this in the continuum four-dimensional theory. One can
use gauge fixing and the Faddeev-Popov procedure to
construct this volume element for a local section of A
viewed as a G, bundle over C, or, equivalently, one
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may use the BRST (Becchi-Rouet-Stora-Tyutin) procedure.
However, nonperturbative questions are generally beyond
the reach of this procedure, although it may be adequate for
the perturbative calculations.

In contrast to this, for gauge fields in two dimensions, the
volume element for C can be calculated exactly in terms of a
Wess-Zumino-Witten (WZW) action [2]. Although there
are no propagating degrees of freedom for gauge fields in
two dimensions, the result is relevant for the Chern-
Simons-WZW relationship [3] and in the solution of
Yang-Mills theory on Riemann surfaces [4]. This result
may be taken as applying to the fields on a spatial slice in
(2 4+ 1) dimensions, and one can thus seek to utilize it in a
Hamiltonian approach to (2 + 1)-dimensional Yang-Mills
theories. Such an analysis has led to a formula for the string
tension and also provided insights into the mass gap [5,6],
including supersymmetric cases [7]. The expression for the
string tension agrees very well with estimates via lattice
simulations [8] and, more recently, estimates of the Casimir
energy have provided independent verification of the mass
gap (or the mass defined by the propagator) [9].

The calculation of the volume element of C in two
dimensions was made possible by a parametrization of
the gauge fields which relied on the fact that the two-
dimensional space could be considered as a complex
manifold. For R*, there is no unique complex structure,
since there are many ways to pair the coordinates to form
complex ones. One could consider a twistor space version
which would include the set of all local complex structures.
Calculations for the gauge theory would also require an
infrared cutoff, so a compact space of finite volume is a better
alternative. The simplest case of such a space would be
the complex projective plane CP?, which is a complex
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Kéhler manifold. The standard metric for this space is the
Fubini-Study metric which is given in local coordinates z¢,
7% a=1,2,a=1,2,as

dz - dz
ds® — -
g (1+2z-2/r%)

Z-dzz-dz
(1 +z-z/r7)?

= Jaadz"dz®, (1)

where we have also included a scale parameter r for the
coordinates. The volume of CP? with this metric is z°r*/2,
so r can serve as an infrared cutoff. As r — oo, the metric
becomes that of flat space (although there are some global
issues which will not be important for us). Thus this space
has a complex structure (which can help with the para-
metrization of the fields) and a finite volume, with a well-
defined limit to the flat case. Indeed, a parametrization of the
gauge potentials, as a generalization of the parametrization
in two dimensions, was given in Ref. [10], where some
preliminary results regarding the volume element of C were
also given. Admittedly, the group of isometries for the space
is SU(3), rather than the 4d Euclidean group. However, this
should not be an issue for many questions of interest. Recall
that one can obtain insights into the physics by studying
lattice gauge theories even though the lattice breaks the
Euclidean invariance, recovering it only in the continuum
limit. The analog for our use of CP? would be the large r
limit. Also, there are many other instances in which scenarios
with reduced isometries can give insight into the physics of a
problem, the Casimir effect being a classic example.

A closely related issue is the nature of quantum correc-
tions (to the gauge field dynamics) due to matter fields. The
calculation of such corrections in a manifestly gauge-
invariant way using the parametrization mentioned above
can give insights into the renormalization structure of the
gauge theory and hence to some questions of physical
interest. We propose to take up a more detailed analysis of
the volume element for C and the nature of quantum
corrections due to a scalar field on CP2. The present
article will be devoted to the general framework and the
corrections due to the scalar field, with more details on the
volume element for C to be given in a follow-up paper [11].

There are two physical aspects of non-Abelian gauge
theories for which our analysis can lead to useful insights.
The first is about a possible mass term for gluons. There has
been growing evidence, based on analytical and numerical
studies, that the gluon acquires a “mass” [12-14]. Given
these results, one can ask if we can find any evidence for a
mass term in a manifestly gauge-invariant and analytic
approach. This is what our analysis addresses. One of the
terms we find is indeed a mass term consistent with gauge
invariance and all the isometries of the underlying
space CP?.

The second consideration is about the instanton liquid
picture [15,16]. Analytical investigations as well as lattice
simulations have shown that the infrared behavior of
correlation functions for gluons, and for hadrons, is

dominated by a dense collection of instantons, the so-
called instanton liquid. Again, in a manifestly gauge-
invariant analysis, one can ask if there are indications of
an instanton liquid. Indeed, we find that one of the terms in
the effective action is a four-dimensional WZW action
whose critical points are anti-self-dual instantons [17,18].
We will comment on these issues in more detail later.
The organization of this paper is as follows. In Sec. II, we
give the general parametrization of the fields, discussing in
turn the nature of scalars, vectors and gauge potentials on
CP?. We also introduce the action for the scalar field.
Section III is devoted to the calculation of the quantum
corrections due to the scalar field. After giving the general
framework, we calculate the scalar field propagator for CP?
and discuss regularization issues. The leading terms among
the quantum corrections are then obtained. These include a
WZW action with a finite coefficient, a quadratically
divergent mass term, and the expected log divergence of
the wave function renormalization for the gauge fields. In
Sec. 1V, we discuss the physical implications. Several
computational details are given in Appendixes, three of
them, so as to avoid clutter and keep an uninterrupted flow
of the general arguments in the text. Appendix A gives the
parametrization of the gauge fields and the calculation of
the scalar propagator on CP¥, for arbitrary k, even though
k=72 is what is used in the text of the paper. In
Appendix B, we give the calculation of a current relevant
for the identification of the WZW term. Some of the
subtleties regarding the WZW term are discussed in detail.
The ultraviolet divergences are calculated in Appendix C.

II. PARAMETRIZATION OF FIELDS

As stated in the introduction, the manifold CP? allows
for a parametrization of the fields with a clear separation of
the gauge-invariant degrees of freedom. This is most
conveniently done in terms of the coset structure of the
space as CP? = SU(3)/U(2). The manifold may be
coordinatized in terms of a group element g € SU(3), with
U(2) c SU(3) as the local isotropy group and the coset
directions corresponding to the translational degrees of
freedom. This shows that functions on CP? correspond to
functions on SU(3) which are invariant under U(2), while
vectors, tensors, etc., transform as specific nontrivial
representations of U(2).

Turning to more specific details, the defining fundamen-
tal representation is taken as a 3 x 3 unitary matrix g of unit
determinant. It can be parametrized as g = exp(it,¢*),
where ¢, form a basis for traceless Hermitian 3 x 3 matrices,
with Tr(¢,t,) = %5@, and ¢ are the coordinates for SU(3).
Following the familiar nomenclature from the quark model,
we shall refer to the SU(2) part of the U(2) subgroup as
isospin (denoted by [I) and the U(1) part of U(2) as
hypercharge (denoted by Y). The subgroup SU(2) corre-
sponds to the directions a = 1, 2, 3, with the generators ¢,
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1, and t; for its Lie algebra; the hypercharge corresponds to
2t3/v/3. On g, we can define left (L,) and right (R,)
translation operators by
L,g= 1.9, R.9 = gt,. (2)
The translation operators (or derivative operators) on CP?
can then be defined as
R:l:l = R4 :t iRs, R:|:2 - R6 :I: 1R7 (3)
These are the appropriate complex components; we shall
denote them by R;, R;, i, i =1,2. The matrices correspond-
ing to these combinations have all elements equal to zero,
except for the (i3) and (3i) elements, which are equal to 1
for R; and R;, respectively. The curvatures for CP? take
values in the Lie algebra of U(2), with the operators R,,

a =1,2,3, and Ry defining the analog of spin. Explicitly,
R, can be realized as differential operators:

. .0
“ldg = —it,E¢dp’,  R,=i(E')—. (4
g~'dg = —it,E{dp « = HE g @)

A basis for functions on SU(3) is given by the finite-
dimensional unitary representation matrices for SU(3),
denoted by Dﬁf; (9) = (s,A|g|s, B) (and often referred to
as the Wigner functions). The action of R, on these
functions is given by

Ry(s.Alg

5,B) = (s, Al9T,

s,B)=(s,A|§

5, C)(Ta)cp, (5)

where T, are the matrix representatives of 7, in the
representation labeled by s. Functions, vectors and tensors
on CP? have the mode expansion

F(g)=> "¢V} (9) = S ¢ (s. Alals.w).  (6)
s,A s,A

where the states on the right, namely, |s, w), must be so
chosen as to give the correct transformation property for
F(g) under U(2) € SU(3).

A. Functions on CP?

Functions on CP? must be invariant under U(2), so
we need states |s,w) with ¥ =0 and I =0. A state
[{a;},{b;}) which carries a general SU(3) representation

is of the form T;ZE”'Z”, a;,b; = 1,2,3, which we refer to
...,

as a (p, q)-type representation. These are totally symmetric

in all the upper indices a;’s and totally symmetric in all the

lower indices b;’s with the trace (or any contraction

between any choice of upper and lower indices) vanishing.
. aya,...d, . .

The SU(3) action on T, """ is given by

aya,...a,

/ ad,...d,
14y Ap
biby...by (g

1graa )(Gb, v I, ')Tb’lb’zmb;' (7)

*ad

T

Notice that the isospin subgroup acts on indices taking
values 1 and 2, while the value of hypercharge is given as

—% a; 1,2, % bi 1,2,
y=1. Y — (8)
3 a; 3, b 3.

-2
3
The choice of all indices equal to 3 with p = ¢ corresponds
to the U(2)-invariant choice. Thus, for functions on CP?,
we need representations of the (p, p) type with the mode
expansion given by

4

fla) =D Ci"(s.Ala0).
s.A
10) = |(p. p). w) = [333....333...). (9)
For brevity, we will denote the U(2)-invariant state as |0).

B. Vectors on CP?

The translation operators R, ; = R; and R_; = R; trans-
form as doublets of SU(2) and carry hypercharge
Y = 1, -1, respectively. Thus vectors on CP? must have
a similar transformation property. This can be obtained for
representations of the (p, p) type with |s,w) of the form
[33...,i33...) and |i33...,33...), corresponding to ¥ =1
and Y = —1, respectively. These can be obtained from the
invariant state |33...,33...) by the application of R; and R;,
respectively. The corresponding vectors are the gradients of
functions on CP2.

One can also obtain the required states from representa-
tions of the (p + 3, p) type with |s,w) = [i33...,33...),
with i = 1, 2, corresponding to ¥ = 1, and from (p, p + 3)
type with |s,w) =133...,i33...) with ¥ = —1. Thus a
vector on CP? may be parametrized as

A= —R,f —nzel > CY(s. Alg[j33....33...),

s, A
A= —Rif — ey CY (57 Al[33.... 733,00, (10)
s*A

where, on the right-hand side, s indicates representations of
the (p + 3, p) type and s* indicates the (p, p + 3) type. The
first terms on the right-hand side correspond to gradients of a
function. The (p + 3, p)-type state [j33...,33...) can be
obtained from the SU(2)-invariant states, with all indices
equal to 3, by the application of R; operators.l Specifically,
we can write

'As defined in (7), the state |j33...,33...) transforms under
SU(2) as the conjugate of the standard doublet representation
(emphasized by using j) the extra factor of n;e" converts the
transformation to the usual doublet form.
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nie’’|733....33...) = nzelIR;[33....33...), (1)

where 7;; = 6; (which is the metric for CP? in the tangent
frame) and €'/ is the Levi-Civita tensor. The SU(2)-invariant
state on the right-hand side has Y = 2, so the corresponding
term in (10) may be written as 7;;¢'/ R;y, where y has Y = 2.
[We may regard e'/y as a rank-2 tensor of the antiholomor-
phic type, so that the relevant term in (10) is the divergence
of an antisymmetric tensor.] Similar statements hold for
conjugates in the second line of (10), so that we can write the
general parametrization as

Aj=—R,f— ’7i7€7}Rj){,
A; = —R;f —m€'R 7. (12)

These can be written in terms of the standard covariant
derivatives on CP2. R; and R; correspond to the tangent
frame, with
Ri=(e)'V,.,  Ri=—(e")"V,.  (13)
Here V’s include the spin connection as needed for y and .
el is the frame field for the metric on CP?, ie.,

niehet = gnm. The explicit formulas for the frame field
and its inverse for the Fubini-Study metric (1) are

a 5 Nmin 2" 2

ey = - .

"oVI+zoz (1+z2-9)(1+V1I+Z-2)
Uaazazm

(em=vV1+7z-z|" + (14)

1+vVi+z-z)

In a coordinate basis the parametrization (12) takes the form

Av = —Viof + 9"V,
Ap = Vif — gp€V 7. (15)

In this paper, we choose the components of A to be related by
(A;)" = —A;. This is in conformity with the use of anti-
Hermitian components for the gauge fields, which is what is
conventionally done for non-Abelian fields.

If we scale z — z/r and consider large values of r, CP?
reduces to a flat space, but with a complex structure since
we still retain complex combinations of the real coordi-
nates. In this case, (15) still retains its form:
Ap==0uf + 15" " 0py, Ay = 0pf — €01 (16)
An a priori and direct demonstration that this provides a
complete and unique (see later) parametrization of the
fields in the flat space limit is difficult without the group
theoretic arguments which were used for CP2.

C. Gauge fields on CP?

We can use (15) as the parametrization for Abelian gauge
fields (vector potentials) on CP2. In this case, y, 7 and the real
part of f correspond to gauge-invariant degrees of freedom,
while the imaginary part of f is the gauge parameter.

In generalizing to the non-Abelian case, we first note that
the product of two functions on CP? is still a function since
it remains invariant under U(2). So we can compose
functions. Likewise the product of functions with y or ¥
retain the same U(2) transformations as y and y. We can
now write the generalization of (15) to the non-Abelian
gauge fields as

Aj=-VMM™ + gi;D;qbw,
A; = M'ViMT - gD g (17)

Here M and M' are complex matrices which are group
elements in the complexification of the gauge group. We
will take the gauge group to be SU(N) for simplicity.
(This is easily generalized to any Lie group.) In this case, M
and M' are complex N x N matrices which may be
viewed as elements of SL(N,C). Further, ¢/ = e'/¢p
and @'/ = ¢ligp", where ¢/ and ¢’ are tensors valued
in the Lie algebra of the gauge group SU(N), in agreement
with A; and A; being Lie-algebra valued. Since ¢ is
complex, we may also view it as an element of the Lie
algebra of SL(N,C), with ¢ as its conjugate. The
derivatives D; and D; are defined by

D,®=V,®+ [-V,MM™, @],
D;® = V;& + [M~'V; M, @] (18)

acting on a field ® which transforms under the adjoint
representation of the gauge group, ® — UDU, where U €
SU(N) is the gauge transformation. The potentials in (17)
transform as connections with M — UM, M" - MTU",
(. ¢") > U(¢.¢")UT. The use of just —V,MM™',
M™='V;M" in defining D; and D; suffices to ensure that
D;® and l_).;-d) transform covariantly under gauge trans-
formations.” These derivatives are also Levi-Civita covariant.

There is another useful way to write the parametrization
(17). Toward this we first note the identities

*An important point about gauge fields is that the space of
connections is an affine space, so that one can reach any point in
this space from any other point by a straight line. In other words,
if A and A®) denote two potentials, then Az + A?) (1 - 7),
0 <7 <1 transforms like a connection for all z. Therefore one
can use a specific connection as a starting point and obtain every
other connection by adding something that transforms cova-
riantly. We may view (=V,MM~',M*~'V;M") as the starting
connection and (g;zD;¢'/, —g;;D;p™7) as what is added. In
particular we can construct covariant derivatives for (¢'/, ™)
using the starting connection (—V,MM~', M™'V;M").
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l_);(ﬁn _ v;qb?j + [MT"V;MT, ']
= M[V;(M~'¢M)"7 + [H'V:H, (M~ pM) )|~
= M(D;(M~'¢pM) )M~ = M(Dsy' )M,
Dy = M (D )M, (19)

where '/ = €li(M~'¢pM) and y' = ei(MFpTMIT).
Further, H is given as H=M'M and D; and D; are
defined with the connections H~!'V;H and —V;HH™":

'D;CD = W;CD + {H_lv}-H, (I)],

Using these identities, we can write (17) as

A =-V:MM™ + M(Qﬁ@j)ﬁj)M—lv
Ay = MTYWMT 4+ M (g Dyt )M (21)

These equations can be reexpressed as

Ai = —ViMM_l —MaiM_],
A; = MT‘W;MT + MT_lan%,

a;=—giDyp, @ =-g Dy =a. (22)

Itis easy to see that a; and a; obey the following conditions:

¢"Dra; = DDy’ =0,  ¢"Dya; =0. (23)

The gauge-invariant degrees of freedom are now easily
identifiedas H=M'M andy = M~'¢pM, 3" = MTp" M.
Equivalently, they may be taken as H = M™M and a;, a;,
where the latter are subject to the conditions (23). Yet
another equivalent choice would be y' = MTpM !, 't =
M~'¢'M and H = MTM. These fields constitute the
coordinates for the space of gauge-invariant configurations,
i.e., coordinates for the gauge-orbit space C.

D. Uniqueness of the parametrization of fields

We now comment on the uniqueness of the parametri-
zation of fields we have introduced. It is useful to consider
the Abelian case first. The analysis based on group theory
shows that the only representations of SU(3) which contain
a state transforming as a vector are of the (p,p) type
(for which we take a derivative) and of the (p + 3, p) or
(p,p +3) types. This means that any vector can be
parametrized as given in (12).}

*Notice that this may also be viewed as a holomorphic version
of the Hodge decomposition for one-forms in terms of an exact
form, a coexact form and a harmonic form. There is no “harmonic
term” for us, since the Betti number b, of CP? is zero.

Conversely, given A;, we notice that
N'R:A; = —n"RiR.f — €R:R;y = —n"RiRif. (24)

because [Rj, R3] = 0. Since 1 R;R; is invertible (in fact the
Green’s function for this will be given later in this paper),
we can find f in terms of derivatives of A;. Once we have f,
we can rewrite (12) as

€VA; = —€"R;f +n/'Ry, (25)
which leads to

We can now invert this to obtain y in terms of ¢/R;A;. (The
Green’s function for this case, namely, with ¥ = 42, is
given in [11].) Thus given A; (and its conjugate), we can
determine f and y (and their conjugates). They will, of
course, be nonlocal in terms of A’s as expected. These
arguments show the uniqueness of the parametrization for
the Abelian case.

Going to the non-Abelian case, we note that the term R; f
is of the form of an infinitesimal (complex) gauge trans-
formation. Taking @ = f to be Lie-algebra valued, —R;f =
—R;MM~" for M ~ 1 + 6. We can “integrate” this to a finite
transformation to the form —R,MM~', M = . The
multiplication of functions on CP?> with functions is still
a function, so there is no difficulty in doing this.

The remaining term in A; should be Lie-algebra valued
and transform homogeneously under gauge transforma-
tions, so we are led to the form (17), where we have to
(gauge) covariantize the derivative acting on y, as in (18), or
in group theory language, R;® = R;® + [M"~'R;M, ®@]. In
terms of these derivatives, (17) reads

A; = —RMM™" — 5 R;.

A; = —M"T'RiM" — i R ™. (27)
The key point is that the covariant derivative R; has no
curvature, i.e., [R;, 7?,;] = 0. Therefore, we get

NRiA; = —n " Re(RMM™). (28)

We can solve this iteratively in powers of A by starting with
M ~ 1+ 0, since ' R;R; is invertible. Again once we have
M (and M" as its conjugate) we can use

CIRA; + €IRMM™ R;MM™" = —¢'in ;R Rz pi %, (29)
The leading

—eijnj;ej’_‘RiR,;;( = n*R;R;y and since #*R;R; is invert-
ible, again, we can, at least in principle, calculate y in terms

term on the right hand side is
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of A; as well. We have thus shown how we can go from A;,
As; to M, M", y, v and vice versa, showing uniqueness of
the parametrization.

There is another feature of the parametrization (17) or (22)
which will be important later. Notice that (M, a;, M', @;) and
(MV(x), V-1(x)a;V(%), V(x)M", V(x)@;V~'(x)) lead to
the same gauge potentials, where V(x) is an SL(N,C)
matrix with elements which are holomorphic functions, a
holomorphic matrix for short, and V(%) is an antiholomor-
phic matrix. On CP?, there are no globally defined hol-
omorphic or antiholomorphic functions, except for a
constant. Thus globally, we have no such possibility of
M — MV ,M" — VM" and there are no additional degrees
of freedom which could arise from this.

[We may note however that matrices V (or V) defined as
(anti)holomorphic in local neighborhoods can be useful to
write nonsingular expressions for fields, in the same way
that gauge transformations on intersections of coordinate
patches can be used as transition functions for gauge fields
which are specified patchwise. The use of V (or V) as
transition functions does not introduce additional func-
tional degrees of freedom; they also do not show up in A;
and A;. The metric and the expression for the volume
element we calculate are also insensitive to V and V since
our regularization preserves the correct transformation
properties under these (anti)holomorphic transformations.
A two-dimensional example of how the local use of V and
V can be useful is given in [5].]

E. A scalar field on CP?

We now consider a massless scalar field multiplet ® on
CP?, with components ®* which transform under gauge
transformations according to some representation of the
gauge group SU(N):

D - P2 = Uutﬂq)ﬁ7 (30)

U“4 being the representation matrices corresponding to U
in the specific representation. The corresponding covariant
derivatives are (V; +A;)® and (V;+ A;)®. Before we
write down the action, it is useful to discuss the volume
element for CP2. Local complex coordinates 7/, Z;, i=1,2,
can be introduced by taking the 3 x 3 matrix g to be such
that

| F) 1
= = =— (31
g13 m 923 m 933 m ( )
The metric, which is the restriction to CP? of the Cartan-
Killing metric on SU(3), is given by the Fubini-Study
metric

dz-dz z-dz%

-dz
1+z-z (1+2Z-

ds? =
z7)?

= gadz*dz.  (32)

We will use volume elements normalized so that the total
volume is 1. It is then given by

2 d*x 2
P (l+z-20° =

du = (det g)d*x, (33)

where 7! = x!' —ix? and 72 = x* — ix*. The use of this

volume element is equivalent to using the Haar measure on
SU(3), again normalized to unity. We will consider a
massless scalar with an action of the form

5 = / dug'((V, + A) O [(V, + A,) )

- / dug (V50" — OTA[(V, + A)D].  (34)

Notice that, upon carrying out an integration by parts, the
action can be written as

5= [ dug @' [=(Tr 4 AT, + AN, (39)

The relevant kinetic energy operator is thus —gﬁ (?; +
A;)(V; + A;). One can also consider an action of the form

5, = / dug™® [~ (V, + A)(V; + A0, (36)

This differs from the previous one by a term of the form
@' ¢! F;®, where F is the field strength for the gauge field.
Notice that either action is completely consistent with the
isometries of the space CIP?, so there is no a priori reason
to favor one or the other, or any linear combination of the
two. These actions essentially correspond to chiral scalars.
One can also consider a nonchiral action of the form

1 - - -
$=3 [ dug O [V, + )T+ A

+ (Vi +A7)(V; + A)]@. (37)

In this case the kinetic operator is the Laplace operator
(suitably gauge covariantized) on the manifold CP?. S; is
obviously (S} + 55).

To briefly summarize, this section introduced general
parametrizations for fields on CP2. The result for scalar
fields is given in Eq. (9) and for non-Abelian gauge fields
in Egs. (17) or (22). The scalar field actions are given in
(35)—(37). Our aim now is to calculate some of the quantum
corrections due to the scalar field action, say, S;, and
interpret the physical implications of the results. This is
discussed in the next section.
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III. QUANTUM CORRECTIONS DUE TO THE
SCALAR FIELD

Turning to the quantum corrections, we first note that the
action S; can be written as

Sl = /dﬂgzl[(l)'(_b . D)q) _ (I)'I'M'I'—laM'i' .D®
+®'D - MaM~'® + O M aMMaM~' @]
— [ aug @' (-D - D) + 5,
Sine = / dug'[-®'M'aM’ - DO + &' MaM~" - DD
+ o' M aMMaM ' @], (38)

where in getting S;,, we used the transformation property of
ain (23), D- (MaM™") = M(D-a)M~" = 0.
Denoting the [(M, M')-dependent] propagator as

@@ 0) = (=55

) =gy (9)
xy

the effective action resulting from integrating out the scalar
fields is I' =I"; 4+ 17, given by

et = /[dCIJdCI)T]e‘Sl,

[, = Tr log(-D - D),

I, = Tr log[l + MT~'aM™ - (-DG(x,y))
+ MaM~" - DG(x,y)
+M=taM™MaM='G(x, y)]. (40)

The first term I'; will generate terms which only depend on
M,M?". The second term can be expanded in powers of
(MaM=', M"='aM"); it will correspond to one-loop dia-
grams with (MaM~"', MT~'aM") at the vertices and with G
as the propagator. Even though we have a massless field,
there will be no infrared divergences in the calculation of I
since CP? is a compact manifold of finite volume. If we
rescale the coordinates z;,Z; — z;/r,Z;/r to introduce
appropriately dimensionful coordinates, 1/r will serve as
the infrared cutoff. In the diagrammatic expansion of I', the
first few terms will, however, be potentially ultraviolet
divergent. These will include terms in I'; and the expansion
of ', to the quartic order in (MaM~", M*~'aMT). Our aim
is to focus on these, evaluating them in a way fully
consistent with gauge invariance and all the isometries
of CP2. We will see that the first term I'; generates a WZW
action for H = MM, with a finite coefficient with potential
UV divergences canceling out. Such a term can have
significant implications for physics since its critical points
are instantons. There will also be other terms in I'; which

combine with terms from I',. The leading terms of ', will
be quadratic and logarithmic UV divergences.

While it is straightforward to use the standard diagram-
matic expansion for I',, for the evaluation of I'; it is easier
to consider its variation in M, M. We find

oT, :/Tr[a(M*—lvMT)w+6(VMM“)<ﬁ>], (41)

(J(x)) = ~(DO() @7 (y)),., =

(JT7(x)) = ~{@x)(DP) () -
= (=V,G(x.y) + GLx. )MV M), (42)

_ng(x’ y)]y—»x’

The limit y — x has to be taken with the properly
regularized version of the propagator G(x, y). The problem
is thus reduced to the evaluation of the expectation values
of the currents as shown in (42). The currents are functions
of M, M" and obey a very useful condition related to the
complex version of gauge transformations. The covariant
derivatives for (hM, M"h™"), where h is a complex matrix,
are given by

Dl = hDh™', Dl = hDh™'.  (43)

As a result, we find
(J(hM, MTh")) = h(J(M, MT))h~". (44)

This property will be very useful for the evaluation of I';.
A relation similar to (44) is what is used for the analogous
calculation in two dimensions. We will be using a regu-
larized version of this equation as discussed in Sec. III B.

A. The propagator for the scalar field

The free scalar field @ has the mode expansion
® =Y\ (p+ 1D 9. (49)
p.A

Here /(p + I)SDE{T “”)(g) are the normalized eigenfunc-

tions of #R:R; = —g''V;V,. (Our approach here will be
somewhat similar to what was done for the case of CP! =
S? in [19].) Notice that, since |0) is invariant under U(2)
transformations,

TR:RDYY (9) = (s, A" T5T;|0)
= (s, Alg(n"T;T; + T} + T3 + T3+ T3)|0)
= (s,Al9T,T,|0)

=p(p+2)DLY(9), (46)

085012-7



KARABALI, MAJ, and NAIR

PHYS. REV. D 106, 085012 (2022)

where we have used the fact that the quadratic Casimir
operator 7,7, has the eigenvalue p(p + 2) for the (p, p)
representations. The propagator is thus given by

(p+ 1>3 (p.p) #(p.p)
Glg.g)=> 2D (9D ()
e p(p+2) A0 A0

1)3 .
Sk

3
P 0ld'90) @)
1

p=

where we have used the group property to combine the two
eigenfunctions to obtain D(%p )(¢*g). The summation starts
at p =1 because the eigenfunction for p =0 is a zero
mode for R;R; and must be excluded from the sum. The

propagator thus obeys the equation

N'RiRG(9.9) =Y _(p+1)*(0lg"9/0)

p=1

=0(g.g) - 1. (48)

where §(g, ¢) is the Dirac delta function on CP?, normalized
with the volume element (33). Explicitly, 6(¢.¢) -1 =

= (p+ 1)3D(()f’o"’ )(¢/g). Notice that a (left) translation
of g, ¢ by the same SU(3) transformation £, i.e., g — hg,
g — hg, leaves the propagator invariant. This is the expres-
sion of the translational invariance of G(g, ¢).

With the parametrization of g as in (31), D(Of’dp J(gtg)isa
polynomial of degree p in é=(¢'Tg)33(¢7g) = (1+s)7",
where

2 1 _(0+z-9)(+5-y)

ST Oy T AR TR v i
(9v9:)33(9:9y)33 (1+z-y)(1+73-2)

_(E=9) - (z=y)+2-2y-y-2yy 2 (49)

(1+z-y)(1+5-2)

By construction this is invariant under translations on CP?
since it only involves (¢'* )55 and its conjugate. Further it is
symmetric between the two points and vanishes when
¢ = g and also reduces to Z - z when y = 0, i.e., for ¢ = 1.
Therefore it is the appropriate generalization of Z - z to the
square of the distance between two points.

It is possible to write down an expression for Dé{’o’p )(g),
but we do not display this expression here since it is still
difficult to evaluate the sum in (47) in a closed form, except
for certain special values of s. Instead, we will obtain the
propagator by solving the differential equation (48). This
can be done by writing the operator R;R; in terms of 5. CP?
is a Kéhler manifold with the Kihler potential

K =log(l +7z-2z), (50)

so that the metric tensor can be written as g,; = d,0,K. The
metric so obtained is the Fubini-Study metric given in (32).
Explicitly, this metric tensor and its inverse are, respec-
tively,

e T
gll(l (1 + Z . Z) namr]um (1 + Z . Z)2 ’
¢ = (14220 + 2°7°). (51)

Because of the Kéhler property, we also have
0,(g"®detg) = 0 = 0;(¢?“ detg), so that the operator of
interest for us is given as

:_%tgaa (9°“detgd,G)

=—0""0,0,G
=—(1+z-2)(0:0+%-9z-:9)G(s(z,y))
=—[s(145)2G"+(2+5)(1+5)G], (52)

”;iR?,zRi,ZG(Zﬂy)

where, in the fourth line, we have expressed the operator as
it acts on a function of s = a;y as in (49), and the prime
denotes the derivative with respect to s. We now consider
points with nonzero separations o—iy, hence nonzero s, so
that the 6 function in (48) has no support. Equation (48)
then becomes

s(L+ )W+ 2+s)(1+s)W=1, w=0qG". (53)
This is a first-order inhomogeneous differential equation
for W and can be solved using an integrating factor. A
further integration then leads to the following expression
for G:

1\ 1 1 s
G=- <C1 —§> ;-f— C] logs—ilog <1—H> + C(), (54)

where Cy, and C; are arbitrary constants. For short
separations, s < 1, the first term on the right dominates.
In this limit, we see from (52) that R;R; is well approxi-
mated by —0 - d. To get the § function upon the action of
this operator, we need

1
GNZIZ—yIT (55)
[Recall that, for R*, —V? acting on 1/(47%(x — x)?) leads
to the & function. Here we have —0 - 0 = —V?/4, so this
removes a factor of 4. Further, we need a factor 72 /2, since
we are using the 6 function which integrates to 1, with the
volume normalized to 1 rather than 72 /2. This leads to the
result (55).] In this limit the separation s approaches that of
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flat space, namely, |z — y|>. We conclude from (55) that
C,=0.

To determine C, we notice that, since the constant mode
(or the zero mode) has been subtracted out in (48), the
propagator is orthogonal to the zero mode. Thus we have
the condition

L/@am:o (56)

Carrying out the integration, we find C, = —%, The

propagator for the massless scalar field on CP? is thus
obtained as

K 3

1 1

G(z.y) = 5 2log<
More details on these calculations are given in Appendix A,
where the propagator for a massless scalar on CP¥, for any
k, has been derived.

It is also useful to write this in terms of homogeneous
coordinates for CP% Let Z=(Z',7>,7%) and Y =
(Y',Y2,Y3) be the homogeneous coordinates correspond-
ing to the points we labeled by z' and y’. Then

, Z-72Y-Y

== = _1=6%Z7Y).
2, =20 sy, )

s=o
Notice that this is invariant under the scaling Z — 1Z,
Y > Y, 1,7 €C—{0}, so that it is defined on the
projective space rather than C3. Scaling out Z* and Y?3,
in a particular coordinate patch with Z3, Y3 # 0, we can
write

Z =2 221) = 22V1 + 2 2(913. 923. 933)-
Y=Yy vy 1) =Y’ \/1 45 y(di3. 93 Gs3)- (59)

where z/ = Z//Z3 and y' = Y/Y3. We then see that s in
(58) reduces to s in (49). Thus G(s) in (57) with s given in
homogeneous coordinates as in (58) and (59) gives a
globally valid expression for the propagator for the scalar
field.

B. Regularizations

With og,y as defined in (58), we have a globally valid
expression for the propagator on CP2. We will now use this
to define an ultraviolet regularization via point splitting,
which is fully covariant, i.e., gauge covariant and consistent
with all the isometries of CP2. Toward this, consider moving
from y to a nearby point with coordinates y’, which we
express in terms of the homogeneous coordinates as

WY -Y

where «a is a small complex number and W parametrizes the
shift of coordinates. Notice that the added term has the same
scaling behavior as Y. We then find

(1+6%(Z,Y))(1 + aac*(Y,W))

Z-WYY ~(W-ZY-Y
[1 +a(?.wz.y_ 1)] [] +a(W.yf/.Z_ 1)]

14+6%(Z,Y) =

. (61)

The strategy is to use G(62(Z, Y’)) as the regularized version
of G(6%(Z,Y)), where we take Y’ to be different from Y by a
small amount proportional to |a| ~ y/e. € will serve as the
regularization parameter. Thus

GReg(Z’ Y) = G(62(Z, Y/))’ (62)

where we will include an angular averaging over the
displacement due to point splitting.

We will be calculating the effective action in a derivative
expansion, so for most of the terms, it will turn out that we
can take one of the points z, y to be at the origin, by virtue
of translational invariance. A transformation which imple-
ments this will be given in Appendix B. But for now, if we
take y = 0, i.e., Y = (0,0, 1), we find

7-2)(1 +aaw-w)
az-w)(1+aw-z)

== (63)

where W = (aW,,aW,, W3) = W5(aw,, aw,, 1). Further
it is useful to make a change of variables from Z to Z’ such
that
z 7
ZW, W-Z

(64)

Notice that this transformation is covariant under indepen-
dent scalings of Z, W, and Z'. Equation (64) is equivalent to

_ZWs

7 =3z, «A=2223
W-z

(65)

The key point is that, because of the homogeneity property,
the Fubini-Study metric is unchanged under the change of
variables in (64) or (65):

ds*(Z',7") = ds*(Z,Z). (66)
Correspondingly, the inverse metric, the volume measure,

etc., can be taken to be defined by Z'. Equation (63) can
then be written as

1+6*(ZY)=01+7-2)(1+ W)
=1+s(1+e€)+e, (67)
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where s =7 -7 and w-w =e. Thus, in terms of the
coordinates defined by Z’, the effect of regularization is
to replace G(s) by G(s(1 +¢€) +¢):

1 11 <1s(1+€)+€> 3

GReg(S):m—E 0g _|_s(1+€)+€ -

’
(68)

(The proper dimensions for € and s can be restored by the
scaling z/ — z//r and W' — W'/r.)

This procedure provides a regularization which is covar-
iant respecting the isometries of CP?, since s in (58) is an
invariant quantity. Equation (68) may be viewed as a
covariant point splitting and provides a uniform way to
carry out calculations.

We now turn to the issue of gauge invariance. So far we
have discussed the free propagator. In the presence of gauge
fields, the propagator is G(x,y) = (=D - D);}. For most of
the calculations we do, this will be expanded in powers of
the gauge field as

G(x.y) = G(x.y) + / Gx. 1)V, G(y1.)

Y1
4 / Gty )V, G(y1y2)Vy, Gyaey) + -
Yi.y2
(69)

where V=A-0+A-0+(d-A) +A-A. In calculating
currents such as (J(x)) = =D, G(x, ¥y in (42), we must
ensure that the point splitting is gauge covariant as well.
The point splitting amounts to writing Greg (X, y) = G(x,y").
Since  Greg(x,y) must transform as  Greo(x,y) =
U(x)GReg(x.y)U'(y) under the gauge transformation
M — UM, M" — MU, we see that a gauge-invariant point
splitting is given by

Greg (x.¥) =G(x.y)Pexp <— / ' (M*“VMT—VMM“))
:

= |:GReg(x,y)‘|‘/G(X,y1)\/(y])GReg(yl’y)_|_“.:|

Y1
y+oy _
X Pexp (—/ (MT‘]VMT—VMM‘I)).
y
(70)

Here Gge, is asin (62) and y’ = y + 8y, with §y*6y% — en™
in taking the small € limit in a symmetric way. Notice that,
because the path-ordered exponential involves the integral of
one-forms, we can use local coordinates y, y" in (70).

In principle, we can now calculate I' according to
(40)—(42), using the expression given above. But before
doing that, we discuss some issues regarding the infrared

side of calculations with (62). As mentioned earlier, on
CP?, we do not expect infrared divergences. Nevertheless,
there is a subtlety we need to address. Here we will consider
only the first few terms in the expansion of I', which are
potentially ultraviolet divergent, to understand the nature of
counterterms which might be needed. The key point is that
we cannot carry out an exact calculation of all of the one-
loop contributions. We can evaluate the first few terms in a
diagrammatic expansion (and the WZW term which is
rather special). So we need some control over the diagrams
with higher numbers of vertices. Thus we need to develop
an expansion scheme where the diagrams with more and
more vertices are parametrically smaller. To see how this
can be implemented, a comparison with flat space is useful.
Basically, we are saying that the diagrammatic expansion of
I' will contain two types of terms. The first few diagrams,
which are potentially ultraviolet divergent, do not have
infrared divergences even in flat space. If we evaluate them
in flat space with an infrared cutoff, they will be insensitive
to this or at worst have a marginal (logarithmic) depend-
ence. The remaining terms in I', corresponding to higher
numbers of vertices, will be infrared divergent in flat space.
Such contributions, if we evaluate them with an infrared
cutoff 4, will be proportional to inverse powers of 4. We can
use an analogous procedure for CP?2, evaluating the
corresponding diagrams with an infrared cutoff 1. Since
at short distances the propagator on CP? approaches the flat
space version, these will carry inverse powers of 4 as well.
The relevant parameter will then be Ar2, where r is the CP?
radius, and for Ar? > 1, these terms are parametrically
small. As we shall see in the next section the dominant term
for 12 > 1 is a WZW term, which is also UV finite. The
other dominant contributions are from the potentially
ultraviolet-divergent terms. The calculation of the effective
action along these lines is very much in the spirit of
Wilsonian renormalization.

The infrared cutoff can be included by using a simple
integral representation for the propagator. We write

1 fo [ o 2(1 1 2\ 3
R | ) e

We have introduced 7> via the scaling of coordinates. The
infrared cutoff A appears as the lower limit of the integration
over t. When 1 is set to zero, we clearly reproduce (62).
This result, combined with (69), can be used for calculating
the effective action.

C. The WZW action
We now discuss the explicit calculations, starting with
the evaluation of I';. This requires, according to (41) and
(42), the current (J(x)). Notice that according to (44) we
can evaluate this by choosing 4 = M, so that
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(J(M, M)y = M= (J(H,1))M". (72)

For (J(H,1)), the relevant propagator (obtained by
M= H M —1)is

Gres(5.) = (e ) Pep ( | vaH). (73

The current is then (J(H, 1)) = =D, Gg,(x.y) withy - x.
We can expand the expression (73) in powers of VHH™!.
This leads to the result

(J,(H, 1)) = —gcvaHH—1 4, (74)

1 3 pre
C=— [1 —log2 + e +L]
nr 2

4
1 2 2 1 —Ar? —Ar?
+—2 (El(/lr)—El(Z/Ir ))——e r(l—e r)
nr 2
1 (1 _ e—lrz)Z 2
+ F [74/“2 + /1?’2(6’1 - 1)E1(22r2)} . (75)

Here E;| denotes the exponential integral

o ¢t o -t
E(w) = [ T gt — v A a5, (76)

t W+t

(The details of this calculation are given in Appendix B.
There are additional terms which involve more powers of
gradients of H as indicated by the ellipsis. Some of these
terms will contribute to the log e terms; see below.) Going
back to (41), we can now write the variation of I'; (with
respect to M") as

Ty = / ¢Tr [5(M"‘—1%M"')M*'—1 (—%CVﬂH*)M"‘]

--¢ / GTH (MM HE 4. (77)

We can now identify the part of I'; corresponding to (77).
The four-dimensional WZW action is given by [17,18]

1 2 _ —
SWZW(H) = ﬂ/%dﬂgaaTr(vaHvaH_l)
b 13
oyl IR Tr(H™'dH)
= % / dug“®Tr(V ,HV,H™")

_ b 13
s [ @A THH AR, (78)

where o is the Kihler two-form on CP? given in local
coordinates as

® = ig,;dz°d7" (79)

with g,; given by the Fubini-Study metric (32). The last
term in (78) is, as usual, over a five-manifold which has
CP? as the boundary. [The extra factor of z?/2 in (78)
compared to the standard normalizations used for this
action is due to the fact that we normalized the volume
to 1. Also, we use a slightly different convention for the
normalization of w, compared to [10].] It is easily verified
by direct computation that S, obeys the 4d version of the
Polyakov-Wiegmann identity [20], namely,

SWZW(NH) = SWZW(N> + SWZW(H)

=3 [ NNV, (80

Introducing a left variation of M™ by N~ 1+ MM,
we find

S (H) =1 / dug ™ Te [V, (M M=)V, HH1]. (81)

Comparing with (77), we see that we can write
FIZCSWZW(H)+"" (82)

The coefficient C is as given in (75) and is finite. It is useful
to simplify it for limiting values of Ar>. For small Ar?, we
can use the expansion E;(w) ~% —y —logw + - - - to obtain

~

1 {5 51r?

a2 2

} , arr < 1. (83)
This shows that, as 4 — 0, we still get a finite result with no
infrared divergence, consistent with the expectations for a
compact space of finite volume. For Ar> > 1, which is the
case of interest to us in view of the discussion at the end of
Sec. 1II B,

| a2
Cr—s [1=log2+ 22|, a2>1. (84)
r 4

A number of remarks are in order at this point. First of
all, we have only evaluated (J(M, M")). The term in 6T,
Eq. (41), where we vary M can be obtained via Hermitian
conjugation of the term resulting from (J(M, M")). We can
then verify, via the identity (80), that the WZW term of I'; is
consistent with the variation of M as well.

A second point is the following. The result (82) was
obtained by choosing & = M' and using (72) for the
current. We can then ask the question whether we obtain
the same result if we use the identity (44) with h = M~!,
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thus setting M — 1, M" — H. In this case D — V, and the
relevant propagator is (=D - V)™, In this case, it is not
possible to obtain the result (74) in any expansion of
(=D-V)~! in powers of H'VH to any finite order.
A resummation of an infinite series of terms is necessary.
With the resummation, we do get the same result. The
situation is similar to what happens in two dimensions.
(A more detailed explanation is given in Appendix B.)

Finally, we note that the leading term of S,,,,, is negative
definite. Thus, in e', which is to be used for the
subsequent integration over the gauge fields, it has the
“wrong” sign, leading to divergent functional integrals.
What this means of course is that higher terms in gradient
of H are not negligible in regimes where integration over H
starts diverging (which can happen when the gradients of H
become large). Also, there is a similar WZW term which
arises in the calculation of the functional measure for the
gauge fields, which is analyzed in the follow-up paper [11].
It turns out that the coefficient of the combined WZW terms
has the appropriate sign to ensure convergence, at least for
some number of chiral scalar fields of low-dimensional
representations.

D. The mass term

We now turn to terms in I',, Eq. (40). First, we notice that
similarly as for (J(x)) we can factorize out M' and M*~" in
the trace and send M - H, MT — 1. This gives us

I, =Trlog[l + (—a-D+HaH™" -V +aHaH")G(x.y)].
(85)

where G = 1/(=V - D). The UV-divergent terms can then
be calculated by first expanding I, and then further using
the expansion of G in terms of VHH™'. The first set of
terms will have one power of @ or HaH~'. Notice that the
coefficient of @ in (85) is (—DG) which is the current we
have already discussed. We may therefore expect a finite
term of the form Tr[@aVHH™']. Unlike the case for
Swzw(H), this term is not invariant under M* — VM?, so
it is sensitive to the ambiguity of how M is defined. Recall
that for the contribution to I'; the terms with higher powers
of VHH™!, or higher number of derivatives, do not
contribute to the leading term with the minimal number
of derivatives, i.e., Sy, (H). However, for a, the situation is
less clear, since we have a tensor /. The commutator of
derivatives on this gives a term with no derivatives, albeit
at the cost of a power of 1/r?> due to the curvature.
Presumably some combination of such terms will combine
with Tr[aVHH"'] to produce a result insensitive to the
ambiguity M™ — VM. So calculating finite terms is rather
involved requiring the careful accounting of powers of
1/r2. We do not carry this out here. Instead we will
focus on the potentially ultraviolet-divergent terms. [The

only finite term with significant physical implications is
Swaw(H), which we have already discussed.]

The next set of terms will be of the quadratic order. It is
straightforward to work this out as

1 _
r=_ / dug*®Tr(a,Ha,H') + O(loge).  (86)
€

The leading-order ultraviolet-divergent term is thus a mass
term for the fields a and a.

It is useful to contrast this with the situation in flat space.
Consider a scalar field @ (in flat space) coupled to A,,. For
the sake of the argument, we will take the field ® to be
massive to avoid any issues of infrared divergences. Then
the quantum corrections due to @ can also, naively, lead to
a mass term for the gauge field, namely, a term of the form
f d*xA?, due to vacuum polarization effects. However,
usually we reject such a term by requiring that any term we
generate via quantum corrections should be gauge invariant
and preserve the isometries of the underlying space. In
flat space, the latter condition is equivalent to requiring
invariance under Poincaré symmetry, or the corresponding
Euclidean symmetry of 4d rotations and translations. The
mass term [ d*xA? does not pass this test and hence can be
avoided in any regulator (such as dimensional regulariza-
tion) which preserves the required invariances. Notice also
that since ® has a mass, we can expand diagrams with
higher numbers of vertices in powers of the inverse mass
and the terms so generated will be local. As a result, a
nonlocal mass term of the form

1
Fmass ~ / d*xTr |:FW (—D Da) F/u/:| s (87)

which we may think of as | d*xA* completed by an infinite
series of nonlocal terms to obtain the required invariance, is
also not possible.

However, if we relax the invariance conditions, the
Ward-Takahashi identities for the gauge symmetry do
allow for mass terms. A classic well-known case is at
finite temperature. If we use the Matsubara formalism, the
relevant spacetime is R? x S!, which has less isometries
than R*. In this case, we get gauge-invariant screening
masses for gauge fields, compatible with the Ward-
Takahashi identities. The situation with the present case
of CP? is similar. The mass term on CP? given in (86) is
gauge invariant and is fully consistent with the isometries
of the underlying space. Thus there is no a priori reason to
reject it. The divergence also implies that it is a short-
distance effect and not eliminated at large values of r. So
the correct way to handle this is to define a renormalized
theory where such a term has a coefficient renormalized to a
finite value.
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E. The log-divergent terms

Calculating further terms in the expansions of I'; and I',
we find the following logarithmically divergent terms:

loge -
Fiose= o | T (Vo (VuHH ) az. Ha 1)

—2g4gP"(Vo(V,HH")|a;, Ha,H™]
+V,a;D,(Ha,H™")) = 2g " (D, (Ha,H™")[a,.a5)
—V,az[Ha,H " Ha,H™'])
+g“'g""[Ha,H™',Ha,H™)[az, ). (88)

The term which is independent of a and a is from I'; due to
the terms in (J) with higher powers of VHH™' and
derivatives.

Even though (88) is a rather complicated looking
expression, it simplifies neatly when written in terms of
the field strength tensors. The calculation is straightforward
and T’y reduces to the covariant form

loge
1—‘loge 24 /Trgaa bb[ZF bF b FabFab]
loge loge _
Trg“¢"°F ,,F Tr(g“®F ,z)*, (89
384 g”gy uv M"" 16/ r(g aa) ( )

where the field strength tensors are, as usual, defined as

Fab = [va +Aa»vb +Ah]’
Fup=[Va+AsV; + 4,
F,; = [VL,+A“,V,—,+A,-,]. (90)

The details of the calculations, of both (86) and (88), are
given in Appendix C. Notice that the first term in [y, in
the second line of (89), is proportional to the familiar action
for gauge fields. The second term is allowed for a complex
manifold such as CP?, since g“*F,; does not have to
vanish. The appearance of this term is linked to the chiral
nature of the action S; for the scalar field in (35), with a
kinetic operator —D - D. One can verify that a nonchiral
kinetic energy term —1 (D - D + D - D) does not produce
the last term in (89). Further, writing

-D D:—%[(D D+D-D)—(D-D-D-D)
= —3[(D-D+D-D) = g F,,) (1)

we can trace the origin of the last term in (89) to the
1g"Fg, term in (91).

F. Summary of Sec. I1I

It will be useful to have a short summary of this rather
long section. We set up the expansion scheme for calculat-
ing the effective action I" obtained by integrating out the
scalar fields ® and ®'. The propagator for the scalar field
and its regularized form were given in (57) and (71),
respectively. The result for I' can be summarized as

L B loge
r= /Tr {gg (azHa,H™") + 284 g“’lg”‘sF,me
loge , _ 5 .
+ Y( 9F3)" | + CSyuw(H) + finite terms,  (92)

where the coefficient C is given in (75). These are the
leading terms in the following sense. The first three terms
give the potential ultraviolet-divergent terms, correspond-
ing to a mass term and the wave function renormalization of
the gauge field. There is one finite term, which is rather
special, which we have singled out. This is the WZW action
for H; it is the finite term with the minimal number of
derivatives on the H field. The terms which we have not
calculated are finite terms with higher numbers of deriv-
atives on H or involving powers of a, and a;.

IV. SUMMARY AND PHYSICAL IMPLICATIONS

As mentioned in the introduction, the manifold CP? has
many features making it attractive for analyzing the
dynamics of gauge fields. With this in mind, we have
worked out the parametrization of the gauge potentials on
CP?, very much along the lines of a similar parametrization
used in two dimensions. This allowed for a simple
separation of the gauge-invariant degrees of freedom,
making it possible to perform calculations in a manifestly
gauge-invariant way. We have also obtained the form of the
(chiral) scalar field propagator on CP? and worked out the
leading terms in the effective action obtained by integrating
out the scalar fields. The result is summarized in (92).

We now turn to the physical implications of the results
we have obtained. We start with considerations regarding
the mass term with the quadratically divergent coefficient in
(92). This term is manifestly consistent with gauge invari-
ance and, also, it preserves all the isometries of CP2,
Therefore, we have no reason to reject a possible mass
term. Further, the ultraviolet singularities in a field theory
are only sensitive to local geometry, so they are essentially
the same as in flat space. The appearance of this term with a
divergent coefficient therefore shows that it will survive to
the large r limit. (The fact that we have reduced isometries
even in the large r limit is important for this, unlike the
situation in R* where a mass term can be ruled out on
grounds of invariance.) The existence of the mass term
implies that we have to include a counterterm

085012-13



KARABALI, MAJ, and NAIR

PHYS. REV. D 106, 085012 (2022)

Smass = /42 / gaaTr(aaHaaH_l> (93)

in the action for the gauge fields. We can then use u? to
absorb the divergence and define a renormalized mass
Uren = > + (1/4€). The natural question is then: What
value should we assign to p3..? Recall that the four-
dimensional non-Abelian gauge theory is not defined until
we pick a dimensionful parameter which sets the basic
scale for the theory. So one option is to regard uz., as
providing this dimensional transmutation. In this case,
other renormalization effects will include this parameter
as an infrared cutoff for the transverse modes. Thus the
usual dimensional parameter Agcp Will be a function of this
parameter y.,. Equivalently, we may take the dimensional
parameter to be the usual Agcp defined via the one-loop
renormalization of the coupling constant and regard y,, as
determined by the theory in terms of Agcp. The full
effective action by construction includes quantum effects
in the sense that it determines the quantum dynamics via its
equations of motion. These are essentially the Schwinger-
Dyson equations of the theory. So we can think of u3,, as
determined via the Schwinger-Dyson equations, if we have
already chosen the dimensional parameter as Agcp.

The idea of a soft gluon mass’ goes back to the 1980s
[12], but it is only more recently that systematic attempts
have been made to develop this to the level of quantitative
predictions [13,14]. There has been considerable evidence
based on lattice simulations, where one sees clearly that the
gluon propagator in the Landau gauge saturates to a finite
nonzero value at low momenta [21]. These lattice results do
require an explanation. On the analytical side, there has
been a lot of effort in calculating the gluon self-energy via
Schwinger-Dyson equations and showing that it is nonzero
at zero momentum; for a review, see [14]. The propagator,
by construction, is gauge dependent, but the result for the
mass is gauge invariant since BRST Ward-Takahashi
identities are preserved. Our analysis, which is manifestly
gauge invariant, thus provides an understanding for the
possible genesis of a mass term as expected from the lattice
data and is in conformity with the analyses done using the
Schwinger-Dyson equations.

Regarding the log-divergent terms, there is not much to
say, except that it contributes to the field (or wave function)
renormalization and eventually gets folded into the running
of the coupling constant. Turning to the WZW action, we
first note that if 43, # 0, then the modes corresponding to
a, and a; are not relevant at low energies and the theory is
controlled primarily by S, (H). This term comes with a
finite coefficient even if we take 4 — 0, i.e., there are no
infrared divergences, the result being

*If the self-energy Z(p) as a function of the momentum p has
the property that £(0) = u?> # 0 and £(p) — 0 as |p| — oo, it is
referred to as a “soft” mass.

5
Fyw =—S H). 94
WZW 27”_2 WZW ( ) ( )

The kinematic regime of interest to us is however for
Ar? > 1 with the coefficient of Sy, (H) equal to C as in
(84); in this regime, terms in the effective action with
vertices of higher mass dimension are parametrically
subdominant, as explained at the end of Sec. III B. This
provides a consistent argument for the theory being
controlled by S, (H). As we noted before, the coefficient
in (94) or (84) has the wrong sign, contributing a growing
exponential for the subsequent integration over the gauge
fields. But this is only for the contribution due to scalar
matter fields; as we will see in [11], there is a WZW term
which arises in the measure for the gauge fields as well; it is
of the right sign and convergence for the integration over
the gauge fields is obtained, at least for some number of
massless chiral scalar fields of low-dimensional represen-
tations. In this case, the low-energy dynamics will be
dominated by the critical points, i.e., solutions of the
equations of motion, of S, (H). The critical points are
anti-self-dual instantons and related to holomorphic vector
bundles. Essentially, M and M define the holomorphic
frames for the bundle. This action has a long history.
Originally, Donaldson considered this action in the context
of anti-self-dual instantons [17]. The same arises in
attempting to generalize the WZW theory to four dimen-
sions and relating it to the Kéhler-Chern-Simons theory
[18], similar to the WZW-CS relation in two and three
dimensions [3]. As shown in [18] and elaborated in [22,23],
this action also leads to a holomorphically factorized
current algebra, very similar to the situation in two
dimensions. Such theories have also been found in
higher-dimensional quantum Hall systems [24] and are
also realized as the target space dynamics of (world-sheet)
N = 2 heterotic superstrings [25].

As mentioned in the introduction, the correlation func-
tions for gauge fields seem to be dominated by instantons at
low energies. A number of numerical simulations starting
with the work of the MIT group have shown clear evidence
for this; see, for example, [15]. On flat R*, it is difficult to
isolate a part of the effective action as pertaining just to the
instantons, so it is difficult to see how instanton dominance
can emerge. By considering a complex manifold such as
CP? and obtaining S,,,,, by integrating out fields, we obtain
some analytical evidence pointing to an instanton liquid
picture. Further discussion of these matters will be taken up
in the second part of this work.
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APPENDIX A: GAUGE FIELDS AND THE
SCALAR PROPAGATOR ON CP*

In this Appendix, we consider the generalization of our
parametrization of gauge fields to complex projective
spaces of arbitrary dimension, i.e., to CPX. We will also
discuss the propagator for a scalar field on such spaces.
While we do not carry out explicit calculations of effective
action or gauge-invariant measures (for arbitrary k), this
analysis does serve to illustrate that there is a uniform way
to treat all CP.

Regarding the parametrization of the gauge fields, we
can proceed in a way similar to what we did for CP? by
noting that CP* is the group coset space SU(k + 1)/U(k).
Thus functions, vectors, etc., on this space may be realized
in terms of the Wigner function DX)B(g) = (s,A|j|s, B)
which is the representative of an SU(k + 1) element g in a
general irreducible representation. We designate the rep-
resentation by s, and A and B label the states within the
representation. For the defining fundamental representa-
tion, g is a (k+1)x (k+ 1) unitary matrix of unit
determinant. The generators of the group in this represen-
tation will be denoted by {z,}, as we did for SU(3).
The subalgebra U(k) is embedded in the standard way in
the algebra of SU(k + 1), as the upper left block in the
fundamental representation, while the U(1) generator,
which is the analog of the hypercharge, is given by

2k 1 T 0
[Fa e k+&{0 —k} (A1)

The right translation operators are defined as in (2), with R;
and R; given by the coset generators.

A function on CP* must be invariant
U(k) € SU(k + 1), so it can be expanded as

_ ZC,%S)<S’A|§|S’ W> - ZC,(QS)D(S)
s,A s.A

where Cﬁf) are arbitrary coefficients characterizing the

function and the state |s,w) =0) is invariant under
U(k). As in the case of SU(3), we can think of the carrier
space of SU(k + 1) representations in the tensor notation as

under

(A2)

apdp...a

b]bz bp = |a1,a2,. 'ap;bl7b27"'ﬂbq>7 (A3)
where each index can take values 1 to k + 1. But unlike the
case of SU(3), in general, we do not have symmetry under
permutation of the a’s or the b’s. To obtain a U (k)-invariant
state within such a representation, which is to be identified

as |s,w) in (A2), we will need p = ¢; the invariant state

would then correspond to the choice of a; =k +1,
b, =k+1;ie.,

s.) =0)
— k4 1Lk+1,..k+1;

k+1,k+1,k+1,.. k+1). (A4)
This will also mean that the representations of interest for
functions on CP* are of the s = (p,p) type and are
symmetric in all a’s and symmetric in all b’s.

The components of the gauge potential must transform in
the same way as R; and R;. These operators transform as the
fundamental and antifundamental representations of SU (k)
and have Y =1 and —1, respectively. Thus, the gauge
potentials can be expanded as in (A2), but with |s,w)
having ¥ = 4+1 and transforming as fundamental and
antifundamental of SU(k). Since functions are U(k)
invariant, derivatives of functions will have these properties
and will qualify as components of the gauge potential. As
before, these will describe the gradient part (i.e., the pure
gauge part and the H part) of the vector potentials. There
are other choices for |s, w) as well. For example, a state
|s,i) =|k+1,k+1,...,

k+ Lik+1.k+1, .. k+1)

(AS)

with all a’s and b’s being set to k + 1, except for by, which
is identified as the index i taking values 1 to k, satisfies the
requirements, with Y = 1. If b, is symmetric with the other
b’s, then this will be obtained by acting on the state given in
(A4). This is the gradient part we have already mentioned.
But we can also have states where b is antisymmetric with
all the other b’s, which are themselves symmetric among
themselves. Such a state cannot be written in terms of the
action of R; on a highest weight state of the form (A4). We
also have a corresponding state in the conjugate represen-
tation given by

s, i) = |i,

k4 Lk4 1 k41, k+1, ... k+1)

(A6)

This will have Y = —1. If we are considering an Abelian
gauge potential on CP*, we can now write it as

lf + ZaA

-:—Rf—l-Za (s,A|9]s, )

A.:—

gls. i) = —R,f + a;,
) = —R;f + a;, (A7)

where f is a complex function with a mode expansion

(A8)
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Since the product of a U(k)-invariant state like |s, w) with
another U (k)-invariant state will contain only U (k)-invariant
states when it is reduced to irreducible components, we see
that products of functions also qualify as functions. Thus, for
a non-Abelian theory we can generalize (A7) as

Ai = _viMM_l —Mal'M_l,
A; = MMt 4+ MM (A9)
where M is a complex matrix taking values in the com-
plexified gauge group and a; and a; are given by

a;=» ay(s. Algls.i) (A10)
$,A

witha; = aj. [In (A9), we have also changed from R; and R;
to the gradient operators, as in (13).]

Again, it is useful (and important) to count the number of
polarizations shown in the parametrization (A7) or (A10).
For a U(1) gauge field on a complex k-dimensional space
such as CP*, we need k complex components or k
independent functions to begin with. In f and f, we have
one complex function. The remaining terms in (A7),
namely, a; and a;, give k complex (or 2k real) components.
But there is a constraint, just as in the case of CP?, since the
state |s, i) is a highest weight state. The action of a raising
operator on it, whereby the index i is changed to k + 1,
vanishes because the index b; was taken to be antisym-
metric under exchange with any of the other »’s. This
means that we have the condition 7 'R;a; = 0. Thus,
effectively, we have k — 1 independent (complex) functions
in a;, so that with the f and f, we have a total of kX complex
functions as needed.

We now turn to the derivation of the propagator for a
scalar field on CP*. The mode expansion for such a field
was given in (A2) and (A4). The propagator can be written
in terms of a mode expansion as in (47), with the local
coordinates of CP? given in (31). These local coordinates
are related to the homogeneous coordinates Z as in (59).
More generally, on CP*, the required representations

Dﬁf o )(g) are polynomials in g,y and the conjugate

g%+ This implies that D(%'” ) (g) is a function of s =
N.22°Z% land, likewise, Df)f’dp )(¢"g) is a function of s =
az(z,y) as defined in (49)]. The action of the operator
n''R;R; = —g''V-V,; on the U (k)-invariant state is given by

PRRDY (9) = p(p + )DL (g),  (ALN)

where p(p + k) is the eigenvalue of the quadratic Casimir
operator for a (p, p) representation of SU(k + 1). Hence,
as for CP?, the eigenfunction for p = 0 is a zero mode and

it must be excluded from the mode expansion of the
propagator. Thus the propagator obeys the equation

n"RiR,G(g.9) = 8(g.9) — 1. (A12)

Since CP* is a Kihler manifold, the metric tensor and its
inverse are given by Eq. (51). The normalized volume
element is

k! d**x !
dy = ——————=—(detg)d*x. (A13
K k(1 +z-z)k! ﬂk(eg) x. (A3)
The operator of interest acting on G gives us
NRiRG = —¢030,G
=—(149)[s(1+5)G" + (k+ s)G']. (A14)

Following the propagator calculation for CP2, if we

consider nonzero s, (A14) becomes
s(1+s5)2W+(k+s)(1+s5)W=1, W=G". (Al5)
Using a suitable integrating factor and performing an

integration on W, we get the following equation for G:

B 1 k_llck_ll |
G=- Cl_% ZZ n s—n+C1 ogs

n=1

(k—1)!

k—1
G Cnllk—n-1)0

(A16)

where the first term is present only for k > 1.

We fix the constant C; by looking at the short-distance
expansion of the propagator. As s <1, G = —(C} —}) 7
[for k=1, (C; —1/k)logs]. In this limit R;R; can be
approximated by the flat space operator —d- 0 = —V?/4.
For R%, the Green function for the operator —V? is

— o log(x—x')?
(k=2)!/(4nk(x —x')2=D)  (for k=1, =<5,
Removing a factor of 4 (since we are considering
—V?2/4) and multiplying by a factor of Z—k, from the volume
normalization, we conclude that G should have the follow-
ing short-distance limit:

I
Gr——— k>,
k(k = 1)s& T g

G~ —logs, k=1. (A17)
This implies that C; = 0.

To find C,, we notice that G is given by an expansion of
modes with the eigenfunction for p = 0 removed. Hence it
must be orthogonal to the p = 0 eigenfunction, which is a

constant. The propagator must then obey the equation
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Oz/d,uG
140 11 s
= Nkl g —— . Al
/dﬂ{k;ncn s" kog(1+s>]+co (A18)

Solving the integral on the left we identify the constant
Cy as

1~ 1
Co=—-> —. A19
0 k;n (A19)
Thus, the massless scalar propagator for CP* is
1A 11 s -1
G=-) —C-'———1] —-—» —. (A20
k;n ogn kOg(s—|—1> k;n (A20)
In particular, for k = 2,
1 1 s 3
=——=1 —-— A21
“=7 2Og<s+l> 4 (A21)

which is the same as our result in (57) for CP2.

APPENDIX B: CALCULATING THE .
EXPECTATION VALUE OF THE CURRENT (/)

In this Appendix we go over some of the details of the
calculation of the result (74) for (J). The terms we need
come from the expansion of the propagator in (73) up to
terms with one power of VHH™!. The current is then
given as

<‘i> = _ngReg (x’ y)|y—>x
=Term1 + Term?2 + Term3 + - - -,

Term 1 = -V ,,G(x,y')Pexp </v VHH‘I)
y

Term?2 = (V,HH™') G(x,x'),

k)
y—x

Term3:/VmG(x,z)gf’_’(VbHH‘l)z_Z,-,G(Z,x’). (B1)

The primed homogenous coordinate is as in (52):

X-X
X’zX—i—a(W —X).

Xw (B2)

For each term we do an angular average over a and W with
the conditions that a@ = ¢ and ¢ (x,w) = 1.

For Term 1 in (B1), on averaging over a and w, we get

Term1= —(VbHH‘l)x/é(a&—e)

[24

(x'=x)?. (B3)

x [ 86 (e = VGl
w yox
We can then make a coordinate transformation w — w'
such that

w/b

Wa:xa"'(e;l)(bl]_)—c‘wl’

(B4)
where e;! are the (inverse) frame fields at x as given in (14).
This sets w' - W' = ¢°(x, w). In group theoretic terms we are
using the translational invariance of the integral to change
gi,gx to gjv,, effectively setting x - 0 and w — w' in the
integral in (B3).

Using the following:

o (x,x') = aw' - aw/,

Va0 (0.3 )yox = (1 + aw' - @ Jngq(e,) o',

aw/l

¥ =x)" = () T

(B5)

Eq. (B3) becomes

Term 1 = (V,HH™), % (1 + %) G' (52) . (B6)
r r

r

where we have included the scaling e — e¢/r* and

G'(s) = 9. The scalar propagator is given by

G(s):—/oodp ers l—|—i(l—e_p) —ée_f’ (B7)
}’2 A2 2 2/) 4

so that Term 1 is

Term 1 = (V,HH™), [—i— ! }

de 277 (B8)

Doing a similar coordinate transformation for w in Term
2 in (B1), the rescaled Term 2 becomes

2

1 1 € A3
= (V,HH™) |——=—log| = | -2 - =&
( a )x |:2€ 27‘2 Og<r2> 2 4rZe

(B9)

Term?2 = (V,HH™),G (i)

o B+ 4 Togir))|

Finally, for Term 3 in (B1), we can do two coordinate
transformations: one, as above, w — w' such that
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o*(x,w) =w -w, and another for z — 7 such that
0%(z,x) = 7' -7'. These transformations effectively set
x — 0 in the integral. Furthermore, in Term 3, V,HH™!
is at point z, but since we are focusing on terms without
derivatives on V,HH™!, we evaluate it at x. The term then
becomes

Term3 — (VbHH‘l)x/é(aa—e) / S(W2 = 1)

x /dﬂ(Z’)G’(IZ’IZ)(l +ZP)G (6 W)
X (1462, W) (~1aa(ex)mz™)
m /m
_1Nb Z _aw
(e (e )

(1+1Z])A —aw' - %)

, B10
(I+anw-Z)1-2-%) (B10)
where
(1+2-2)(1 + aaw’ - )
1 2 /’ /N —
W) = s a7
7 ZW W
oWz .

and W = (aW/, aW}, W) = W(aw', aw}, 1). Tt is now
useful to make a final change of coordinates from variables
7' to Z given by

= — . (B12)
Wy Wz
Equation (B11) can then be written as
1+0*(Z.w)=(1+Z-2)(1 +aaw - W)
=(1+z-2)(1+¢) (B13)

upon angular averaging. Term 3 then simplifies to

Term3 = ~(V, ), [ du()(G' ()1 +¢)
X G(EP(0 +€) +€)
X (1+ 2Vt (e )i (es 522"

— (V) [ s G514 o
x G'(s(1 +¢€)+e), (B14)

where, in the final line, s = |Z|*>. After rescaling and
carrying out the integral this term becomes

1 1 32
Term3 = (V,HH™!), [—Eﬁ-ﬁlog <%> +§

+ # (E(24r%) 4 7 + log(24r%))

A 1. i
+500- eVE (24r%) —I—me"“ (1—e?)

(B15)

Combining expressions (B8), (B9), and (B15), we get

(7)) = —gcvaHH-l T (B16)
with C as given in (75).

In arriving at (B16), we used (72) with h = M",
effectively eliminating M and replacing M by H. What
is the result if we eliminate M? In this case, the relevant
propagator is (=D - V)~! and we do not obtain (74) in any
expansion of (=D - V)~ in powers of H~'VH to any finite
order. A resummation is then needed but the final result is
the same. We mentioned this point in Sec. III C, but here we
go over the arguments in some more detail.

We start by regarding (/) as a function of M and M. Then,
rather than using (44), consider just setting MT = 1 in the
expression for the current. This leads to (J(M,1)) =
—(x/2)CVMM~". This calculation is the same as in arriving
at (74) except that we just have M now, not H as in the
argument of the current. [We can view this as giving the
functional derivative of T"; at the point (M, 1) in the space of
configurations (M, M"). One may then seek to integrate
functionally.] Naturally, the result (J) = —(z/2)CVMM™!
is not gauge covariant (since we set M" = 1), but we know
(J) should be. Clearly, this has to be obtained by
M -dependent correction terms. We may then ask: What
MT-dependent terms can we add to VMM~ to make it
covariant? To eliminate the inhomogeneous term in VMM ~!
from the gauge transformation M — UM, we need a term of
the form —M™~'VM". This gives -VMM~' — M*-'VM"
and leads to the result (74). Notice that we have the
holomorphic derivative of M in this expression. Since
M comes with the antiholomorphic derivative in D, various
terms must combine to produce M* from MT~'VM* (and
then the holomorphic derivative) which will require an
infinite series. Effectively, the identity (44) is a way of
carrying out this resummation. Another way to see the
argument for the gauge-covariant expression for the current
is the following. We consider the derivative V(J,,). With the
result (J(M,1))=—(z/2)CVMM~" +---, this becomes
ValJu(M. 1)) = (2/2)C[Va(=V,MM™")] +---. (B17)
The term on the right-hand side is the first term in the field
strength for the potentials,
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o(=V MM™") =V (MY, M)
[(MT=1V MY, (-V,MM™)]
=D, (-V ,MM™") =V (M-'V M?).

f?m:v
+

(B18)

Since this is the gauge-covariant version of V,(—V,MM™")
with the minimal number of derivatives, we see that the
gauge-covariant extension of (B17) is

Dy (J, (M. M) =5 C[D4(~V MM ™) =V, (MY ;)]
S (B19)
Notice further that we have the identity
V(M= M) =V (MY, M")
+ [M'V,MT, MV M) = 0. (B20)
Combining this with (B19) we get

D, <ja(M,MT)>+gC(vaMM-1+Mf-lvaM*)] Foe=0,

(B21)
which has the solution
0.0 = 01 |5 €0, o
+ M VIV VMY 4+ .-, (B22)

where V is a holomorphic matrix. This result leads us back to
(74). The second term on the right -hand side is an ambiguity
corresponding to the holomorphic ambiguity in defining M
and M" mentioned at the end of Sec. II C. It can be removed
by redefining M; the WZW action is insensitive to this.
Effectively, in solving (B19) using (B20), we are carrying out
a resummation.

The situation is exactly analogous to what happens in
two dimensions. In calculating Tr log D in two dimensions,
one uses the result

(5) L = Lo

~ L(x;_y)] oM oM

(B23)

If D7 is expanded in powers of M~ 10M", clearly one
needs to resum an infinite series to get the holomorphic
derivative on the right-hand side.

APPENDIX C: CALCULATING THE
UV-DIVERGENT TERMS

In this Appendix we will go over some of the calcu-
lations leading to the UV-divergent terms in (86) and (88).
First, we will find the divergent terms in I'; by calculating

the expectation value of the current as in the appendix
above. As we have seen in Appendix B, I'| has at most log-
divergent terms. Such terms can be calculated in the large
? limit treating the space as effectively flat.’ Following
Eq. (42),

(J(H. 1) (x) = [-DG(x. )]s (C1)

where D has the connection —VHH™! and G(x,y) =
(=V- D)3y
Expanding the propagator G in powers of VHH™!,

(J(H,1))(x)=-D, (G(x,y’) +/ G(x,2)X,G(z,y') + - >

Z

X Pexp (/} VHH‘1>
y

=(NHO (N 4.

y—=x

(€2)

where —V-D=-V.V—-X, or explicitly, X=—V(VHH!)—
VHH~'.V. The UV-divergent terms arise from the first
three terms of the expansion.

For log-divergent terms we are only interested in the flat
space part of the propagator G(x,y) = m Performing
similar coordinate transformations as in Appendix B we
introduce the regulator in the following way:

Gres(123) = 57— (©3)

F—P+e)

Using results from Appendix B and performing calcula-
tions for the log terms,

(J )W = (i_loﬁ> V,HH™!,

d4e 21
A 1 loge
J)® = ———=" |V ,HH!
(/a) <4€ 2r2> “
loge

+F(—2VGW(VHH‘1) +3V,HH'V(VHH™")

+V-V(V,HH™)),
:l%(—vuﬂﬂ—lv(vzm-l)

—2V(VHH )V, ,HH™!
+ g [~V ,HH' V;(V,HH)]).

<j(l> (3>

(C4)

°By dimensional analysis, terms that are at most log divergent
are of the form of monomials of fields and their derivatives of
scaling dimension 4, integrated over all space. So we can
calculate them in the flat space limit and then promote the metric
and volume element to the curved space ones to obtain the
covariant expressions.
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Gathering these terms together we find

log €

(J)(H. 1) = ==S=DV(VHH™).

Looking back at oI'; in Eq. (41), and given that
(J(M, M)y = MT="(J(H,1))M", we find that

(C5)

ory = /Tr[ (M"Y MIY(F (M, M?)) +H.c]

_ / Tr[V(SM' M) (J(H, 1)) + H.c]

To get the divergent terms in I, the calculation scheme is
similar as for I'j. For mass terms we use calculations as in
Appendix B; for log terms we simplify calculations by
treating the space as flat. Starting from Eq. (85),

[, =Trlog[l +(-a-D+HaH™" -V +aHaH™") G(x,y)]
=Trlog[1+VY,G(x,y)]

- / TrY, G(x,y )W(y,y)

x y—ox

—;/ TrY, G(x,2) Y. G(z, X)W (x',x) - -

__loge = RN ~1
BTE Tr[6(V(VHH'))V(VHH™)]. (Co) :F§1)+F§2)+~-, (C8)
This identifies I'; as where Y =—a-(V—-VHH')+ HaH™" -V +aHaH™'
and W(y',y) = Pexp (f;/ VHH™).
r, :loﬁ (W(VHH )) (C7) As above, we expand the propagator G in terms of
24 VHH™" to find the following UV-divergent terms:
|
= 1 _loge /TraHaH‘l+10g€/Trlv(VHH‘1)ZzHaH‘1,
2 2¢ 217 4

2 1 loge _ B
F2 —<—@+F>/TYCIHGH !

+loge / Tr {—év(VHH‘I)<aHaH‘1+%HaH‘1a> +i(aHaH‘1)2

12
(3) _ 1 WICH -1 -1
;7 =loge [ Tr —Z(aHaH ) —Za-HaH HaH

aa ,bb
12

1
'Y =loge / Tr|— (aHaH™")? +

24 2

Combining the four terms together we get

T TR
——g””gbbvz,&l;(va(HabH")+[—VaHH",HabH‘I])—Eg““gbbva(VbHH‘l)[Ez,—,,HaaH"]],
I
Ez—Eg““gbhvaag[—HaaH_l,HabH_l]
1
5 000V, Hay ) + [V HH Hap )

1 1 |
—(HaH 'a)? +6a-HaH-‘HaH-1-a+Mg““gbb[aa,a,;][HaaH-‘,HabH-l]]. (C9)

1 1 _
L=y / TraHaH"" +% / Te2V(VHH)[a, HaH™"] + [a. HaH™']?
€

=29 (Va(V, HH™") (a5, Ha,H™'] + Vaa; Dy (HayH™))

—2¢“g"" (D, (Ha,H")[a. az)

~VaapHa,H™' Ha,H ') + g [Ha,H™', HayH ) [a,, az).

(C10)

Combining I'; and I'; from (C7) and (C10) above, the ultraviolet-divergent terms are

Fay =3 [ Trattat 55 [ 149 (VHH) + . Hatt )

V-
—2¢"4g""(Vo(V,HH ")y, Ha,H') + V,aa;D, (Ha,H'))
V.az[Ha,H™' Ha,H™ ")) +¢"¢"" [Ha,H™", Ha,H")[a,. a;)],

—2¢"4g""(D,(Ha,H™")a,, a5) —

which is the result in (86) and (88).

(C11)
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