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ABSTRACT

Interleaved Nuclear Quadrupole Resonance (NQR) detection was conducted on ammonium nitrate and
potassium chlorate using two 87Rb magnetometers, where potassium chlorate is measured during the
T; limited recovery time of ammonium nitrate. The multi-pass magnetometers are rapidly matched to
the NQR frequencies, 531 kHz and 423 kHz, with the use of a single tuning field. For ease of implemen-
tation, a double resonant tank circuit was used for excitation, but could be replaced by a broad-band
transmitter. All work was done in an unshielded environment and compared to conventional coil detec-
tion. The two magnetometers were sensitive, base noise as low as 2 fT/v/Hz, and were shown to reduce
ambient noise through signal subtraction. When an excitation pulse was introduced, however, residual
ringing increased the noise floor; mitigation techniques are discussed. The two detection techniques
resulted in comparable Signal-to-Noise Ratio (SNR). Interleaved detection using the atomic magnetome-
ters took half the time of conventional detection and provided localization of the explosives.

Ammonium nitrate

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Ability to distinguish different chemical species has increased in
demand over the decades, for both science and defense, and thus
increased the need for non-invasive spectroscopic techniques such
as NQR. In particular, zero-field nuclear magnetic resonance (NMR)
or NQR spectroscopy is used to detect quadrupolar nuclei with
nuclear spin I > 1/2. NQR frequencies are determined by the local
electric-field gradient at the nucleus due to the surrounding elec-
tronic environment. Detection is conventionally done using a Fara-
day coil tuned to the NQR frequency and can be conducted non-
destructively in powdered samples. This, coupled with a unique
spectral signature [1], makes NQR attractive for a variety of appli-
cations, such as detection of explosives and narcotics [2-4], as well
as pharmaceuticals [5-7], and to study magnetic properties of
superconductors [8-10]. Yet, NQR detection is often limited by
long T, times, such as the T; = 17 s for ammonium nitrate [11].
In addition, because of the unique and often widely spaced spec-
trum, conventional coil detection for multiple materials is done
serially, where variations in electrical components for each NQR
frequency [12,13] limit scalability.

In contrast, atomic magnetometers can be easily tuned to an
NQR frequency by small adjustments to the field coils [14]. They
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also maintain a high sensitivity to ultra-low magnetic fields. Over
recent years, sensitivities have rivaled superconducting quantum
interference devices (SQUIDS) [15], without the need for cryogen-
ics [16]. As a result, atomic magnetometers have been applied to
biomagnetics [17-22], geomagnetics [23,24], search for axion and
axion-like particles through the GNOME collaboration [25-28],
and in particular, in the RF regime, for NMR [29-31], including
NQR [32-35]. Furthermore, they are insusceptible to electric field
noise and inductive coupling, often present in Faraday coil arrays;
as a result, they provide an efficient method for RF interference
mitigation when used as gradiometers [36,37].

Taking advantage of the easy tunability, atomic magnetometers
allow for long relaxation times to be compensated for by using
interleaved detection. Paired with broadband excitation [38],
switching between frequencies becomes trivial. Using atomic mag-
netometers with multiple probe passes for increased sensitivity,
we demonstrate the ability to cut in half the detection time of
two nuclei using interleaved detection. The magnetometers are
tuned by only adjusting the static tuning field By, matching the Lar-
mor precession of the Rb atoms to the NQR frequency. Only the
current applied to the tuning field of the magnetometer is used
to match to the NQR frequency. By comparing the relative signals
across two magnetometers, localization of explosives and sources
of noise are distinguishable. For simplicity in demonstration, how-
ever, a doubly-tuned resonant circuit was designed and used for
excitation. The following discussion will compare conventional coil
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detection done sequentially to interleaved magnetometer detec-
tion. Common materials used in improvised explosives devices,
ammonium nitrate and potassium chlorate, are detected in an
unshielded environment with the RF coils in free space.

2. Experiment

To generate the NQR excitation pulses, a double-resonance tank
circuit, described in Section 2.3, was constructed. For detection by
atomic magnetometers, two separate magnetometers were placed
symmetrically under the coil, see Fig. 1. All work was done using a
spin-lock spin-echo sequence, shown in Fig. 2. The sequence tim-
ings were made to accommodate a time between refocusing pulses
of 27 ~ 2 ms. Standard phase cycling techniques were used to mit-
igate ringing from the excitation pulse.

For convenience, the two (0.48 kg of KCLO3; and 0.36 kg of NH,4-
NOs) samples were temperature-controlled to lock in their reso-
nance frequency [39],[40]. In addition, a sniffer coil, placed
~0.7 m away, was used to calibrate the RF fields.

2.1. Conventional NQR

Conventional coil detection used the same tank circuit for exci-
tation as for detection. Moreover, a m-network was connected in
series to the receiver for protection against the transmitted RF
pulses [41]. Detection was done serially, as the receiver’s n-
network needed to be changed between samples.

2.2. Atomic magnetometers

Two optically heated 8’Rb magnetometer sensors (Twinleaf LLC)
replaced the receiver used for conventional coil detection, placed
1 cm below the bottom of each sample and 8 cm apart, that are
optically heated to create an alkali vapor. The magnetometers are
tuned using magnetic fields of less than 0.1 mT to adjust the
8Rb atoms Larmor frequency to match the NQR frequency. A set
of small field coils directly around each sensor and two larger field
coils surrounding both sensors compensate for Earth'’s field, as well
as tune and shim the magnetometers. The largest field coil,
designed to be highly homogeneous [33], is used to change the res-
onance frequency as is shown in Fig. 1. In addition, an offset field of
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0.85 G is applied during the RF pulse to detune the magnetometer
from the frequency of the excitation pulse. This detuning field is
inhomogeneous to temporarily shorten T to reduce ringing. Fur-
thermore a diode ladder, shown in Fig. 3, serves to terminate the
dissipating energy of the high-Q probe quickly after the RF pulse
ends, again to reduce the ringing. The conventional coil detection
does not have this diode ladder.

The Rb cells are optically pumped at the D; line to polarize the
atoms. The pump laser is modulated through the current of the
tapered optical amplifier, but could be better controlled with an
acousto-optic modulator. The signal is then acquired from a
linearly-polarized and off-resonant probe beam orthogonal to the
pump light direction. The beam passes back and forth through
the cell more than 30 times, for increased sensitivity, before being
detected by a balanced polarimeter.

2.3. Design of the Double-tuned Resonance Circuit

A tank circuit was designed to resonate at two distinct frequen-
cies f, and f,, implementing only reactive elements to minimize
resistance and power loss delivery to the probe. The circuit is com-
prised of four main components: the sample coil that hosts the
samples, a trap network to create a pole at frequency fr,,,, a match-
ing component made to impedance match the circuit to a 50 Q
load, and a series coupling capacitor that will be used to shift the
two frequencies to the target. The basic design is based on that
of [42]; by considering the admittance Y = 1/Z of the circuit given
in Fig. 3,

ER(YMutch) + ER(YLoad) = 1/5097 (1)
S(YMatch) = *S(YLoad)y (2)

where Y, is the admittance of the load, Y is the admittance of
the matching element. Eqs. (1) and (2) must be satisfied at f; and fj
to provide a unique solution for the four unknowns L;, Ly, Cy,C, of
the circuit. Initial design proceeded with assumption of
idealized components. Numerical methods were used afterwards
to find the final values, taking into account resistances and using
Egs. (1) and (2).

In the limit that the solenoid resistance R is the only significant
resistance, Eq. (1) becomes

RF

Spectrometer| Current Control

Rx

Tuning Coil

Probe Fibers

Fig. 1. Experimental setup used for atomic magnetometer detection. The explosive samples are placed in the excitation coil to produce the RF field. The magnetometers M1
and M2 are then tuned to the NQR frequency using the shim and tuning coils and optical signals acquired using a balanced polarimeter; the fiber-coupled lasers are not

shown.
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Fig. 2. Spin-Lock Spin-Echo (SLSE) sequences, interleaved between ammonium nitrate and potassium chlorate. The radio-frequency pulses used to excite and refocus the
nuclei are shaded in blue; an offset field was applied during this time. Light pulses that pump the sensors are defined by the green shading, and are adiabatically ramped up
and down to avoid perturbations before acquisition of the NQR signal, shaded in yellow. Interleaved sequencing was repeated over 256 times, with no wait times between

different sequences.

@ |

ZMatc

|
50 Q RM%
S

h

Ly Ry Ly 3
ZTrap
ZTune

R, %
ZLoad

4 Diode
Ladder

m_[:], ........ m

Fig. 3. The tuning network is defined by the coupling capacitor (C;) and trap elements (L, and C;) with an overall impedance Zr,,.. The circuit’s load would be the equivalent
series connection between the sample coil and tuning network with impedance Z;oqg = Zrune + iLs + R, where the resistance of the diode ladder is included into R;. The total
impedance of the circuit is then the parallel combination between the matching network and load Zyq¢ch||Z10ad-

50Q = (RS + Xipqa)/Rs, 3)

where X;,qq is the reactance of the load, as per Fig. 3. Expanding X 44
in terms of its circuit elements, Eq. (3) can be rewritten as

Xioad = Xtune + 0Ls = 1/ (50Q)Rs — R? < 509, (4)

where Xrype = Xrrqp — 1/C; is the equivalent reactance of the trap
and tuning capacitor shown in Fig. 3. Eq. (4) is to be satisfied at
the two frequencies, using the three components of the tuning net-
work. An additional equation is obtained by the LC trap circuit, cre-
ating a pole at fr,,, between the two frequencies,

1
VLG

design of fr,,, = (fL +fy)/2 is a natural choice. Fig. 4a shows the
graphical solution to Eq. (4) in the limit of negligible R;, refined
experimentally. The reactance measured from the tuning network
and L from Fig. 4a, show that Eq. (4) is satisfied at target frequen-
cies f; and f.

To then impedance match the circuit to 50 Q, Eq. (2) becomes

*XMatch = SOQ(RS/XLoad)7 (6)

()

27'Ef Trap —

using Eq. (3). By choosing to use a matching inductor, as opposed to
a matching capacitor, X;,4q is fixed as negative. Furthermore, to sat-
isfy Eq. (6), the load reactance must be adjusted so that

XLoad(wL) _ fH

Xioad (W) - E @

The pole produced by Eq. 5 provides a condition for double match-
ing, resulting in two resonant peaks shown in red in Fig. 4b. Circuit
resonances are shifted upwards to meet requirements of Eq. (4)
with finite R;, and to ensure positive admittance required by a
matching inductor. The matching inductor can then be chosen to
roughly match Eq. (6) for the two resonances. When including finite
resistances of the inductors, fine tuning of all elements are made to
fit Eq. (1) and (2), as shown in Fig. 4b. The resulting impedance
matching is shown in Fig. 5a. The RF field strengths used for NHy-
NOs in both detection methods are given in Fig. 5b, where fields
> 0.1 mT were achieved when the circuit is powered by a 1 kW
amplifier. The field strength of the excitation and refocusing pulses
used for magnetometer detection were increased to account for the
shorter pulse decay.

3. Results

Signal-to-noise ratio (SNR) for both detection techniques were
very similar for ammonium nitrate (AN) and potassium chlorate
(PC) as shown in Fig. 6. The detection by the magnetometers, how-
ever, took half the time as conventional, due to interleaving; where
time lost between changing receiver circuits for the NQR experi-
ments are excluded. Excitation parameters and data processing,
were the same for both techniques. Matched filtering was applied
to the spectra of PC, both to the echo train and individual echoes to
improve the SNR [40]. From Figs. 6b and d, the low SNR is due to
the short acquire time limited by the material. For PC, the echo
train decay time is 26 ms, and the echo is Gaussian in time with
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(b) Experimentally measured admittance of both the load
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closely to the constraints set by Eq. (1) and (2).

Fig. 4. The double resonant tank circuit is shown in Fig. 3, to impedance match at frequencies f, = 423.3 kHz and f; = 531.2 kHz. The LC trap formed by Z,, creates a pole at
frrap = 483.3 kHz to achieve double resonance. The general procedure to satisfy Eq. (1) and (2) is shown in Fig. 4a and b.
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(a) Reflected power measurement of the circuit after con-
struction. The high-Q probe provides a Full-Width at Half
Maximum (FWHM) of 5.8 kHz, and 9.1 kHz at fr and fgy

respectively.
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(b) Inclusion of the high-power diodes fully terminates the
dissipating magnetic energy in ~70 us after the RF pulse
ends, while the natural decaying signal continues for well

over 600 us.

Fig. 5. Reflected power after circuit construction is shown in Fig. 5a and the RF pulses produced for NH4NO3 across both setups are shown in Fig. 5b.

a half-width-half-maximum (HWHM) linewidth of 0.3 ms. In con-
trast, AN has an echo train decay time of 4 s with a HWHM of 1 ms.
The total effective acquire time was kept consistent across both
detection methods at 524 s and 19.7 s for AN and PC respectively,
and includes the echo window, the number of echoes and sequence
repetitions.

Measured values of the signals, for conventional and magne-
tometer detection, were close to estimates based on modelling
with bound surface currents, as shown in Table 1. The fields pro-
duced by PC are expected to be larger than AN due to the sample
masses. In addition, lower field strengths are expected from con-
ventional coil detection because the physical space of the bottle
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Fig. 6. The spectrum obtained for KCIO; (left column) and NH4NOs (right column) are compared across both detection methods. As shown in the inset, a sample of PC is above
Magnetometer 1 (M1) and AN above Magnetometer 2 (M2). Spectra for AN are centered at 423.3 kHz, while the spectra of PC are centered at 531.2 kHz. The spectrum of both
explosives using conventional coil detection are shown in Figs. 6a and b, while the spectra obtained using interleaved magnetometer detection are shown in Figs. 6¢ and d.

Localization of the two explosives is obtained by comparing signals from the two magnetometers M1 (middle row) and .M2 (bottom row).

Table 1
Measured and predicted field strengths for both materials and methods.

Conventional
Predicted (fT)

Measured (fT)

Quantum Magnetometer
Predicted (fT) Measured (fT)

AN 14
PC 22

112+14
21+6

31 30+4
48 36+15

only partially filled the detector coil. Spectra obtained for both
detection methods are shown in Fig. 6. The spectra for PC across
both methods are broader due to its linewidth.

Ambient room noise is consistent with ~30 fT/+/Hz for conven-
tional and ~80 fT/v/Hz for magnetometer detection. The difference
suggests equipment associated with the magnetometer con-
tributes more environmental noise, which in principle could be
eliminated with careful shielding of the equipment. From Fig. 73,
subtraction reduces the noise by a factor of 5 when the RF pulse
is not activated. Furthermore, a baseline sensitivity of 2 fT/vHz is
measured for one sensor when the atoms are not pumped, giving
the lower limit to the sensitivity. With the RF pulse, and the
accompanying offset field pulse, the noise is not common-mode
as shown in Fig. 7b, and is not coherent with the RF pulse as shown
in Fig. 7c. The lack of coherence with the offset pulse and between
sensors suggests the noise arises from spin dynamics occurring

from the combination of the inhomogeneous offset pulse and the
light pulse. When the pulse is not aligned with the static field, a
transverse fictitious magnetic field is created, resulting in noise.

4. Conclusion

A method for interleaved NQR detection using atomic magne-
tometers was demonstrated using the “N line of AN and 3°K line
of PC. This technique provided a means of utilizing the dead time
present from the long T; time of AN and to a lesser extent, the
T, of PC. Since changing the sensor’s frequency only required
changing the current applied to the magnetometer’s tuning coil,
additional resonance frequencies could be easily accommodated,
providing a scalable solution. Furthermore, the location of the
explosives were determined by using a pair of magnetometers.
For comparison, conventional coil detection was conducted
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Fig. 7. The noise spectra for AN magnetometer detection are shown, all spectra are normalized with respect to the noise of M2, shown on the far right. (a) When no RF pulse is
used, common mode noise is effectively subtracted. The fundamental noise limit across M1 and M2 are shown in dashed lines when the light pulse is also removed. (b) With
the RF pulse active, common-mode noise is not effectively subtracted out. (c) Furthermore, phase cycling, standardly used to reduce noise, is also ineffective. Details discussed

in the text.

sequentially for both samples, because of the receiver tuning. Both
techniques showed similar SNR, but with the magnetometers only
taking half the time from detection interleaving.

Although the demonstration of interleaving was successful, the
magnetometers were susceptible to noise generated with the com-
bination of the excitation and pump-light pulses. When the RF
pulse was inactive, subtraction of common-mode noise between
the two unshielded sensors was shown to improve the sensitivity
by a factor of 5. In the presence of an RF pulse however, this sub-
traction was no longer effective; the pump-light pulse was not
strong enough to remove the effect of the RF pulse. Ringing within
the excitation circuit, for instance from magneto or piezo electric
ringing, was also ruled out, as noise coming through the excitation
coil would be common to both sensors. While a detuning field par-
tially mitigated the effects of the RF pulse, it also misaligned the
static field from the pump light, an effect exacerbated by instru-
mental lag time. Therefore, the resulting noise was no longer
coherent with the RF pulse, so standard phase cycling techniques
were ineffective.

Future work will explore other ringing mitigation techniques
such as spin-damping through active feedback [43], one-sided
excitation coils [32], and improved timing and alignment between
pump and tuning fields to avoid triggering fictitious magnetic
fields [14]. If these techniques are successful, such that noise can
be brought down to the base noise of the sensors, 2 fTv/Hz, sensi-
tivity would improve to be an order of magnitude better than con-
ventional coil detection. Coupled with the ability to rapidly tune,
and therefore interleave detection between different materials,
potential benefits of developing and using atomic magnetometers
is clear.
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