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Abstract—Network slicing provides introduces customized and
agile network deployment for managing different service types
for various verticals under the same infrastructure. To cater to
the dynamic service requirements of these verticals and meet the
required quality-of-service (QoS) mentioned in the service-level
agreement (SLA), network slices need to be isolated through dedi-
cated elements and resources. Additionally, allocated resources to
these slices need to be continuously monitored and intelligently
managed. This enables immediate detection and correction of
any SLA violation to support automated service assurance in a
closed-loop fashion. By reducing human intervention, intelligent
and closed-loop resource management reduces the cost of offering
flexible services. Resource management in a network shared
among verticals (potentially administered by different providers),
would be further facilitated through open and standardized inter-
faces. Open radio access network (O-RAN) is perhaps the most
promising RAN architecture that inherits all the aforementioned
features, namely intelligence, open and standard interfaces, and
closed control loop. Inspired by this, in this article we provides
closed loop and intelligent resource provisioning scheme for O-
RAN slicing to prevent SLA violations. In order to maintain
realism, a real-world dataset of a large operator is used to
train a learning solution for optimizing resource utilization in
the proposed closed-loop service automation process. Moreover,
the deployment architecture and the corresponding flow that are
cognizant of the O-RAN requirements are also discussed.

I. INTRODUCTION

Compared to the rigid legacy wireless architectures, fifth
generation (5G) technology promises to provide customized
networks for vertical industries (like automotive, healthcare,
agriculture, city management, manufacturing, etc.) with di-
verse service requirements. These diverse vertical services
bring about a wide range of performance requirements in
throughput, capacity, latency, mobility, reliability, position ac-
curacy, etc. 3GPP Rel-15 standards [1] introduced the concept
of Network slicing, for providing the foundation of a common
connectivity platform for these different services and satisfying
the diverse requirements of these services. Network slices are
logical networks that are provisioned with a set of isolated
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virtual resources on top of a shared physical infrastructure [2].
Network slicing can be realized by creating logical network
functions and decoupling them from physical infrastructure.
Currently, 3GPP Rel-17 standardization [1] activities on RAN
slicing envision to empower 5G network slicing as a tool
that operators can use to open up new source of revenue
by involving the application providers in customization of 5G
wireless design, deployment and operation for better support
of the applications.

With resources being deployed as virtual machines rather
than physical hardware, automation of service assessment
and resource orchestration are important. Automation enables
immediate recognition and correction of undesired events
over network slices, without explicit human intervention. This
evolution of zero-touch service assurance and closing the loop
between recognition and correction significantly reduces the
cost of creating flexible services adapted to the needs of
customers [3]. On the other hand, provisioning of swiftness in
the slice deployment, along with diverse service requirements
and heterogeneous architecture, makes it difficult to provide
resources and configure it dynamically as per diverse service
configurations [4]. Hence, advanced techniques are required
to achieve optimal resource utilization while satisfying the
requirements of multitude of services.

Given the development of machine learning (ML) tech-
niques, intelligence is becoming a viable option for handling
the heterogeneity of 5G wireless, including network slices [5].
The telecom industry has already demonstrated the use of ML
in many trial deployments. Interestingly, 3GPP standardization
has recently decided to look at ML with two different lenses:
(a) one for the network and (b) one for the radio interface. The
new 3GPP Rel-17 Study Item (SI) on the applications of ML
to 5G RAN is just completed, and Rel-18 Work Item (WI) for
standardization is approved to start from 2022 [6]. A separate
3GPP Rel-18 SI on application of AI-ML for improving the
efficiency of wireless channels and radio interfaces is also
approved to start from 2022 [7]. Hence, the de-facto wireless
standardization is already poised to embrace ML for future
5G/B5G wireless. On the other hand, the Open Radio Access
Network (O-RAN), an emerging new Radio Access Network
(RAN) architecture, which builds on two core pillars that are
intelligence and open interfaces, introduces specific ML-based
functions like the Radio Intelligent Controller (RIC) [8].

In this article we provide an ML-based resource-
provisioning scheme for Network slicing in the O-RAN frame-
work to prevent Service Level Agreement (SLA) violations.
A concrete practical example is discussed to explain details
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on the deployment architecture and the end-to-end workflow.
In this intelligent scheme, AI techniques are used to perform
predictions of future SLA violations and perform corrective
actions in advance. Specifically, a recurrent neural network
model is utilized to predict the amount of resources required
over each slice, given the volume of traffic it carries. End
to end O-RAN setup has been used for evaluation of the
intelligent closed control loop, resource provisioning scheme,
for Network slicing and control the physical resources and the
cloud resource of the slices, respectively. This closed control
loop operation continues until the defined SLAs are met. It
is worth clarifying that the proposed O-RAN based intelligent
and automated setup is the first proposal of it’s kind that can
help in dynamically optimizing the over-served and under-
served users in a slice, as the current implemented approaches
in real-world networks are static solutions.

II. PRELIMINARIES

5G marks the transition to a more dynamic network ar-
chitecture by introducing the concept of slicing. While the
exact implementation of network slicing is operator specific,
standards development organizations (SDOs) have provided
template frameworks to facilitate this implementation 1. A
general framework of slicing implementation consists of two
main phases i) slice instantiation and ii) resource orchestration
over slices. During the first phase, a suitable set of network
functions are configured to create a certain slice based on the
defined slice specifications. Subsequently, the desired infras-
tructure resources for these network functions are allocated
to meet the slice SLA requirements [9]. The isolation of
resources on each slice is the key in preventing SLA violation
between the slices. In general, there are two approaches for
slice isolation: static and dynamic. In the static slicing, full
isolation of the resource is guaranteed, albeit at the cost of
possible over-provisioning of the resources. On the other hand,
in a dynamic scenario, resources are multiplexed among the
slices, by using advanced resource sharing and provisioning
techniques.

Fig. 1. Intelligent and closed-loop resource provisioning for O-RAN slice
automation.

1ORAN Alliance, “O-RAN working group 1: Study on O-RAN slicing”,
Tech. Rep., Oct. 2020.

As networks are becoming more dynamic and the resources
are more heterogeneous, ML is needed to handle optimization
of the networks and resources. It enables automation of
resource modification and adaptation without human inter-
vention. An automated network is based on a closed-loop
control with adaptability enabled through feedback [10]. Many
initiatives are focused on automated resource management for
network slicing by using open platforms and open source tools,
with the objective to provide automation across potentially
multi-tenant slices and simplify resource orchestration [11].
Given that the O-RAN architecture is based on the principles
of openness and intelligence, it can assist in providing predic-
tive and closed-loop service automation by intelligently and
dynamically orchestrating resources over the slices and main-
tain resource isolation. O-RAN architecture aims to reduce the
proprietary implementation of hardware and software which
in turn helps in increasing operational savings by establishing
open standards. Additionally, openness of RAN components
expedites the provisioning of new services for users. Moreover,
intelligent RAN also reduces human intervention in the loop
and increases the accuracy to handle the network complexity.
The following are the main functional entities and interfaces
(Fig. 1):

1) Non-RT RIC: The Non-Real Time (Non-RT) RIC (Ra-
dio Intelligent Controller), which is part of the Service
and Management Orchestration (SMO) system, provides
a platform to deploy optimization applications, called
rApps.

2) Near-RT RIC: The Near-Real Time (Near-RT) RIC,
which is deployed closer to RAN nodes, provides an-
other platform to deploy optimization applications, called
xApps.

3) E2 Nodes: These nodes correspond to infield deployed
RAN nodes supporting O-RAN standardized interfaces,
like E2 and O1. E2 interface is between Near-RT RIC
and E2 Nodes and is used by Near-RT RIC to configure
E2 nodes based on policy formed at Near-RT RIC. O1
interface is between E2 nodes and the data collector. It
is generally used by Service Management and Orches-
tration (SMO) Framework to collect RAN Performance
Management (PM) statistics from E2 nodes.

4) O-Cloud: O-Cloud corresponds to cloud computing plat-
form where some of the functions of the RAN nodes
and Near-RT RIC are deployed. There is an O2 interface
between O-Cloud and SMO Framework. It is utilized to
collect cloud statistics through data collector in SMO. It
is also utilized to configure O-Cloud with the help of
Service Orchestrator (SO) through policies formed at the
Non-RT RIC.

5) AI Server: AI Server hosts the platform for training
machine learning models required for RAN optimization.
For that purpose, we have utilized a dataset captured from
E2 nodes of a real-world cellular network. The required
data are collected through the data collector located in the
service management and orchestration SMO layer. The
intelligent prediction modelis trained in a proprietary AI
server and deployed in the Non-RT RIC as rApp.
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The two main components, to embed intelligence in O-RAN
architecture and enhance the functionality of the traditional
networks, are radio intelligent controllers, namely non-RT RIC
and near-RT RIC. For the purpose of slicing, non-RT RIC
collects key performance indicators (KPIs) related to slices,
as well as the parameters that are used to configure them.
These parameters and performance metrics are also sent to
near-RT RIC to apply dynamic slice optimization for achieving
SLA assurance. Based on the decision, network resources are
controlled by near-RT RIC through the E2 interface and cloud
resources by non-RT RIC through O2 interface 2. Please refer
to [8], for detailed description of O-RAN goals, architecture
and challenges.

III. DEPLOYMENT ARCHITECTURE

With inspirations from software community we go a step
ahead to integrate ORAN with real network components, along
with our proprietary AI server, to form an inter-operable,
end-to-end setup for testing dynamic resource provisioning
in network slicing, using real world data. Our proposed RIC
applications (i.e., Predictive Closed Loop (PCL) rAPP and
PCL xAPP) checks the aforesaid network slicing use case in a
closed loop automation environment. We believe this will fur-
ther strengthen the O-RAN and network community to tackle
stringent network slice resource management requirements,
without the intervention of operators and prevent the SLA
violation of the network slice(s). Our setup consists of wide
range of Base Stations with variety of traffic patterns to make
our solution more realistic and widely implementable. Fig. 2
represents the structure of deploying the proposed predictive
closed-loop service automation.

Our real-world demo testbed includes open network au-
tomation platform (ONAP) and O-RAN software community
projects hosted by Linux foundation that are publicly available
to demonstrate the Predictive Closed Loop Automation. ONAP
provides all the necessary functionalities related to service
management and orchestration. The ONAP framework also
provides an adapter to integrate proprietary AI server that
is necessary to perform data training etc. This is expected
to depict the Non-RT RIC functionality as listed in WG2
of O-RAN Alliance2. O-RAN SC provides all the necessary
functionalities for Near-RT RIC, simulating the E2 Nodes (O-
DU, O-CU etc.). The Cherry Release of the O-RAN SC is
considered for the setup3. The network slices comprise of
these E2 nodes. (Note that: O-DU (Open-DU) is the distributed
unit that sits close to the radio unit and runs the Radio Link
Control (RLC), Medium Access Control) MAC, and parts
of the Physical (PHY) layer and O-CU (Open-CU) is the
centralized unit that runs the Radio Resource Control) RRC
and Packet Data Convergence Protocol (PDCP) layers. The
information flow between components inside ONAP will flow
through Data movement as a platform (DMaaP )

2 which is a
premier platform for high performing and cost effective data
movement services that transports and processes data from

2https://www.o-ran.org
3https://docs.o-ran-sc.org/en/latest

any source to any target with the format, quality, security, and
concurrency).

1) Considering the network slicing feature is not yet de-
ployed by any operator in the world, we have mapped
the existing 4G network data. Mapping of this real world
data set to network slicing will be discussed in the next
section. Field data collected from operator network is
reported periodically via the O1 interface (defined in Sec-
tion 2) to the Virtual Event Streaming (V ES) collector

2

similar to that reported by an eNB in a commercial
network data. Virtual Event Streaming (VES) Collector
is a RESTful collector for processing JavaScript Object
Notation (JSON) messages. (Please note that JSON is
a text-based data interchange format to maintain the
structure of the data). The related RAN statistics for
each slice, including the number of active users per slice,
volume of data and Physical Resource Blocks (PRB)
utilization per slice are collecting in this manner. It is
worth noting that there will be minimal processing for
converting counters to KPIs and tag slice identifier (ID) at
the data collector. Additionally the cloud resources related
statistics are collected, such as virtual machines (VMs),
computing units, memory units, from O-cloud (defined in
Section 2) over O2 interface (defined in Section 2).

2) The KPI information is sent to the proprietary AI Server
which is installed on a different server where data clean-
ing, data training and data prediction happens.

3) In order to learn the network or cloud usage pattern
and predict the future values of the target parameters,
an ML model is trained in the AI server. The trained
model is utilized to predict the related KPIs which reflects
the priority of the slice based on the network and cloud
resource usage patterns.

4) The outcome of the prediction is sent back to predictive
closed loop (PCL) rAPP (rAPP defined in Section 2) that
is running as an application in Non-RIC platform.

5) PCL rAPP is an application host, part of Non-RT RIC. It
also coordinates the formation of prediction results based
on KPI prediction data and requirement of different slices
based on slice level SLAs for network and cloud re-
sources. PCL rAPP also prepares the RAN slice descrip-
tor based on prediction results for configuring network
resources. RAN Slice Descriptors are the files containing
description of RAN slices (within a node of a RAN) and
its related instantiation and orchestration rules. RAN slice
descriptors contain slice IDs, public land mobile network
(PLMN) ID, layer level individual descriptor and time
stamp. The layer level network parameters that need to
be scaled up/down in the individual layer slice descriptor
and time stamps, can also be provided.

6) PCL rAPP forms the prediction results for cloud re-
sources and shares it with SDN-C/R which is responsible
for configuration O-Cloud. (Please note that SDN-C/R is
a Software Defined Network controller which is built on
the common controller framework that assigns, manages
and provisions network resources with the help of radio
interfaces.)
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Fig. 2. Structure of deploying the proposed predictive closed-loop service automation in O-RAN slicing.

7) RAN slice descriptors will be passed on, over A1 in-
terface by A1-controller, as a JSON policy to xAPP
(xAPP defined in Section 2) using xAPP manager in
Near-RT platform. The function of xAPPs applications is
to provide programming capability for RAN component
(O-CU/O-DU).

8) xAPP will trigger the scaling up/down of network re-
sources as defined in RAN slice descriptor by sending
control message over E2 with the help of E2 Term
and E2 Manager (inside Near-RR RIC platform). We
define events in a way to change their parameters in
E2 termination function (inside Near-RT RIC platform).
Event definition is based on in the ASN format. It is a
control message that specifies the event and state. Based
on the proposed scheme, we require to define the new
values related to PRB utilization and number of users per
slice based on the prediction results prepared (by rAPP)
with the help of predicted KPIs and their respective SLAs.

9) On the other hand, O2 Client (inside SDN-C/R) helps in
configuring (scale up/scale down) the cloud resources di-
rectly through O2 interface based on the prediction result
output using O2 server in O-Cloud. If, due to prediction
in a particular time instance, the PCL rAPP decides that
the particular service is of less priority, it can bring down
the cloud resources of a slice via O2 interface with the
help of SDN-C/R. The deactivated cloud resources can
also be activated based on the requirement of the service
using same interfaces.

10) In case of any change in the data pattern or any new
service request, O-CU/O-DU will send the feedback to
Non-RT RIC through Near-RT RIC for re-training of the
data. In case of any change in the training and prediction

data, PCL rAPP will re-configure the cloud resources
through SDN-C/R.

IV. PROPOSED FRAMEWORK: INTELLIGENT RESOURCE
PROVISIONING

We now introduce our intelligent and automated resource
provisioning scheme tailored for the O-RAN slicing archi-
tecture. Our proposed scheme learns temporal patterns of
the traffic over four different traffic bearers with different
service requirements by utilizing a deep learning based neural
network. Such a learning is used to predict the number of
users, volume of data and resource utilization for different
cells in the network. To prevent a potential SLA violation,
network resources are re-allocated accordingly. In fact, the
goal is to utilize a commercial off-the-shelf (COTS) learning
approach and incorporate intelligence in O-RAN architecture
to proactively predict the resource requirements for efficient
slicing.

Similar to legacy wireless networks, in 5G, standardized
QoS identifier (5QI) are specified for bearers carrying different
type of traffic corresponding to different types of services. The
corresponding values of QoS to each identifier are provided
in [12]. Therefore, bearers with different 5QI can be consid-
ered as RAN slices, as they are carrying traffic of different
service types. Therefore, bearers with different 5QI can be
observed as a way of representing a slice given the limited
implementation of slicing in real-world networks as of today.

A. ML Model Architecture and Settings

In this scheme, the number of active users for each bearer
is predicted for the next prediction time window. Moreover,
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TABLE I
SIMULATION PARAMETERS

LSTM/GRU Parameters
Parameter Value

Layers 2
No. of units/layer 150
Activation fx relu
Batch Size 24
of epochs 120

Optimizer Adam
Accuracy Tolerance range 1% of max value

BiLSTM Parameters
Parameter Value

Layers 2
No. of units/layer 150
Activation fx relu
Batch Size 24
of epochs 65

Optimizer Adam
Accuracy Tolerance range 1% of max value

SARIMA Parameters
Parameter Value

order (p,d,q,P ,D,Q,s) get from best fit model from autoarima
window size 24
Accuracy Tolerance Range 1% of max value

Server Details
Parameter Value

No. of eNB 17
No. of cells in each eNB 18
Server Dual Xenon Gold CPU
RAM 512 GB
CPU 48 cores with 2 threads per core
RNN API used Keras

the actual and the required number of physical resource blocks
(PRB) for each bearer are considered, as well. Based on the
minimum amount of the required PRBs for accommodating
the predicted number of active users on each bearer, resources
are provisioned in anticipation of SLA violation. In fact, to
prevent QoS degradation, resources are scaled down/up among
bearers based on the predicted amount of PRBs required for
each bearer. It is worth noting that our primary goal is more
focused on predicting the lack of balance of resources in the
network, while providing the prediction result to manage the
resources sufficiently ahead of time, by using RIC controllers.
The set of subsequent approaches to mitigate the resource
under/over-utilization is more related to the implementation
of network slicing of RAN which is beyond the scope of
this work. In order to calculate the average utilization of PRB
over each bearer, we utilize three other KPIs, namely active
user per traffic bearer, total volume of data carried over each
bearer and total downlink PRB (DL-PRB) utilization, which
provides the percentage usage of downlink PRBs for user plane
traffic [13] [14]. Moreover, the number of active UEs in the
DL per 5QI is defined as the mean number of active DRBs for
UEs in the DU. In addition, data volume per 5QI is the data
volume (amount of PDCP SDU bits) in the downlink delivered
to PDCP layer.

The simulation parameters are tabulated in Table I, where
p: trend autoregression order; d: trend integration order; q:
trend moving average order; P : seasonal autoregression order;
D: seasonal integration order; Q: seasonal moving average
order; s: no. of time steps for a single seasonal period. The
dataset, considered for the present simulation, belongs to a real

cellular networks in India. From the total data set, 80% of the
data is considered as training set and 20% is considered as
test set. It contains network measurements in terms of number
of active users for bearers, volume of data in GB, DL-PRB
utilization percentage, collected from 17 LTE eNBs (18 cells
in each eNB), over a duration of 31 days. We consider 4
different bearers including QCI1, QCI2, QCI5 and QCI9 in
the dataset. Examples of services with these QoS identifiers
can be, respectively, conversational voice, live video stream-
ing, IP multimedia subsystem (IMS) signalling and buffered
video streaming [12]. The 5QI in 5G are similar to QCI in
LTE [15] The model training is performed and the traffic of
the next hour is predicted where based on the periodicity of
the available data, the prediction window can be configured
accordingly. While the prediction is done on an hourly basis,
but when the prediction process is done the decision time is
in order of a few seconds. LSTM is an artificial recurrent
neural network (RNN) architecture used in the field of deep
learning. Unlike standard feedforward neural networks, LSTM
has feedback connections. It can not only process single data
points, but also entire sequences of data. In fact, the special
structure of LSTM unit makes it more effective in capturing
the dependency of neighboring data points in sequential data
while avoiding vanishing/exploding gradient issues. As traffic
data is a form of time sequence data in nature, LSTM has been
a proper choice in dealing with traffic data. There are of course
conventional approaches for dealing with sequential data such
as Autoregressive Integrated Moving Average (ARIMA), its
variants Seasonal Autoregressive Integrated Moving Average
(SARIMA), Bidirectional LSTM (BiLSTM) and Gated recur-
rent units (GRU), we tested our data using these approaches
as well as LSTM. As a comparison, in LSTM, BiLSTM
and GRU approach we have testing accuracy of 87%, 84%
and 83%, respectively. In addition, the accuracy of SARIMA
approach is 75%. The accuracy of ARIMA was found out to
be 8 to 9% lower than SARIMA. Also, we calculated Mean
Absolute Percentage Error (MAPE) of all the four models.
The comparison is provided in Table II. Based on the data-set
we have, the LSTM approach works well in the prediction
stage. To prevent the overfitting problem, a dropout layer is
usually added but in our case training accuracy is relatively the
same with the test accuracy, which indicates that there is no
overfitting problem in our models so, we avoided adding the
drop out layer as it reduced our model accuracies. It is worth
mentioning that our goal is not to provide contributions and
comparisons in the ML algorithm of choice, but rather to uti-
lize a commercial off-the-shelf (COTS) learning approach and
incorporate intelligence in O-RAN architecture to proactively
predict the resource requirements for efficient slicing.

B. ML Model Evaluation and Results

In this subsection, we elaborate on the performance of the
proposed intelligent scheme. Fig. 3 illustrates the performance
of the proposed approach. In the first subgraph, the purple
solid line represents the actual number of users in the slice
with QCI1 and QCI9 indicators (QCI1 and QCI9 form a slice
together), which varies over time given the dynamic traffic
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Fig. 3. Performance of the proposed intelligent and automatic resource provisioning scheme over slices. The first subgraph illustrates number of active UEs
over QCI1 (purple solid line), the constant (dotted red line) and adaptive (green line) limits on the number of UEs allowed in this slice. The second (resp.
third) subgraph represents the number of under or over-served UEs in the static (resp. dynamic) resource provisioning scenario. Last subgraph represents the
overall number of UEs not serviced optimally in terms of resources in static solution (yellowline) and dynamically optimized solution (green line).

TABLE II
ML MODEL COMPARISONS

Model Accuracies
Model Accuracy

LSTM 87%
SARIMA 75%
GRU 83%
BiLSTM 84%

MAPE
Model MAPE

LSTM 6.12%
SARIMA 12%
GRU 7.45%
BiLSTM 5.87%

load of the network. In order to quantify the performance of
the proposed approach, two scenarios are considered.

In the first scenario, we assume a constant limit on the
number of users allowed in this slice (this is the approach
currently implemented in real-world wireless networks). Cor-
respondingly, the number of PRBs allocated to the slice is
fixed and static over time. However, there might be instances
where the actual number of users on the slice is lower or
higher than the predefined fixed limit considered for resource
orchestration. The second subgraph in Fig. 3, demonstrates the
number of under/over-served users in the slice, in this scenario.

It is observed that there is a considerable amount of resources
that are under-utilized on this slice while it can ideally be
reserved for other slices having more resource needs.

On a separate scenario, we consider an adaptive limit on
the number of users allowed in this slice (green line in
the first subgraph). This adaptive limit is determined based
on the traffic predicted (output of the RNN model) on the
slice. Subsequently, the PRBs are re-orchestrated based on
the adaptive limit on the slice for every time frame. It is
notable that setting a high resolution time frame increases the
amount of signaling and computation to perform the resource
allocation. While considering a low resolution time frame
might lead to inefficient allocation of the resources. Adjusting
this trade-off is beyond the scope of this work. As observed in
the third subgraph, the number of over/under-served uses has
reduced significantly as resources are adjusted among slices
in an adaptive manner. The last subgraph represents the total
number of UEs that have been non-optimally served. It is
worth noting that while reducing the under-served users are
of importance to prevent SLA violation, decreasing the over-
served users matter from network perspective in order to keep
the expenditures low. A summation of under-served and over-
served users is indicated as non-optimally served UEs in Fig. 3.
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V. SUMMARY AND CONCLUDING REMARKS

This article provides an intelligent closed-loop SLA assur-
ance scheme for O-RAN slicing. The O-RAN architecture
enhances traditional network function with embedded intel-
ligence and open and standard interfaces. Building on the two
core principles of openness and intelligence, O-RAN facilitates
agile deployment and fast optimization of the slices that cater
for, potentially, different verticals. We develop an intelligent
and automated SLA assurance scheme through proactively re-
orchestrating the resources over different slices. To this pur-
pose, we utilize LSTM neural network to predict the number of
users, volume of data and resource utilization on each slice.
The effectiveness of the predictor model was demonstrated
using a real-world traffic dataset that is taken from a cellular
network in India. However, feedback loop to the ML model
considered is under investigation and presupposed to be our
future work. Based upon the predicted volume of traffic
and resource utilization of each slice, available resources are
dynamically adjusted to handle an under-served slice. The
proposed scheme is carried out in a closed-loop and automated
fashion without human intervention. A high-level architecture
and the corresponding flow are also provided.

Utilizing the proposed scheme on top of O-RAN architec-
ture brings in operational savings as a result of incorporating
intelligence and automation. Operators can mitigate a lot of
problems such as congestion, mobility management, etc. well
ahead of time. Adoption of O-RAN gives an opportunity to
the operators to integrate different intelligent solutions from
different providers and create more competition. This subse-
quently brings down the capital and operational expenditures.
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