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Impacts of sectoral, regional, species, and day-
specific emissions on air pollution and public health
in Washington, DC

M. O. Nawaz1,*, D. K. Henze1, C. Harkins1, H. Cao1, B. Nault2, D. Jo3, J. Jimenez4,
S. C. Anenberg5, D. L. Goldberg5, and Z. Qu6

We present a novel source attribution approach that incorporates satellite data into GEOS-Chem adjoint
simulations to characterize the species-specific, regional, and sectoral contributions of daily emissions for 3
air pollutants: fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2). This approach is
implemented for Washington, DC, first for 2011, to identify urban pollution sources, and again for 2016,
to examine the pollution response to changes in anthropogenic emissions. In 2011, anthropogenic emissions
contributed an estimated 263 (uncertainty: 130–444) PM2.5- and O3-attributable premature deaths and
1,120 (391–1795) NO2 attributable new pediatric asthma cases in DC. PM2.5 exposure was responsible for
90% of these premature deaths. On-road vehicle emissions contributed 51% of NO2-attributable new asthma
cases and 23% of pollution-attributable premature deaths, making it the largest contributing individual
sector to DC’s air pollution–related health burden. Regional emissions, originating from Maryland, Virginia,
and Pennsylvania, were the most responsible for pollution-related health impacts in DC, contributing 57% of
premature deaths impacts and 89% of asthma cases. Emissions from distant states contributed 34% more to
PM2.5 exposure in the wintertime than in the summertime, occurring in parallel with strong wintertime
westerlies and a reduced photochemical sink. Emission reductions between 2011 and 2016 resulted in
health benefits of 76 (28–149) fewer pollution-attributable premature deaths and 227 (2–617) fewer
NO2-attributable pediatric asthma cases. The largest sectors contributing to decreases in pollution-
related premature deaths were energy generation units (26%) and on-road vehicles (20%). Decreases in
NO2-attributable pediatric asthma cases were mostly due to emission reductions from on-road vehicles
(63%). Emission reductions from energy generation units were found to impact PM2.5 more than O3, while
on-road vehicle emission reductions impacted O3 proportionally more than PM2.5.This novel method is capable
of capturing the sources of urban pollution at fine spatial and temporal scales and is applicable to many urban
environments, globally.

Keywords: Ozone, Nitrogen dioxide, Particulate matter, Atmospheric modeling, Source attribution,
Washington, DC

1. Introduction
International, national, and local governments share the
common sustainability goal of reducing the environmen-
tal and public health burdens of poor urban air quality.

The “Global Health Observatory,” from the World Health
Organization (2021), currently estimates that 91% of the
world’s population is exposed to unhealthy levels of air
pollution. As countries around the world rapidly urbanize
(United Nations et al., 2019), the proportion of the global
population exposed to unhealthy levels of urban air pol-
lution increases. Cities must develop effective and
informed air pollution control policies to reduce the
major negative effects of pollution and to meet target
goals for sustainability. The United States regulates air
quality through National Ambient Air Quality Standards
(NAAQS) for many criteria air pollutants including fine
particulate matter (PM2.5), ozone (O3), and nitrogen diox-
ide (NO2; U.S. Environmental Protection Agency [EPA],
2014). Locally, cities like Washington, DC, or “DC” for
short, are able to enact more aggressive policy on air
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quality reductions; for example, the Sustainable DC 2.0
plan (DC Office of Planning [DC OP] and DC Department
of Energy and Environment [DC DOEE], 2018) specifically
targets air pollution reduction from the transportation
sector and considers the direct impacts of pollution expo-
sure in its health goals.

In this study, we will use “DC” or “the district” to refer
to the federal district, the “DC–MD–VA region” to refer to
the U.S. EPA NAAQS attainment region, and the “DC met-
ropolitan region” to refer to the larger surrounding region.

The aforementioned sustainability goals of DC build
upon multiple decades of improving air quality. For
annual averaged PM2.5, as distinct from total suspended
particles and PM10, primary and secondary NAAQS were
first established in 1997 (U.S. EPA, 2014) at a concentration
of 15.0 mg/m3. PM2.5 in the DC–MD–VA region was in
nonattainment of this standard until 2005, when concen-
trations fell below the NAAQS and have since remained
below the standard despite the introduction of additional
stricter near-road monitoring standards in 2012 (DC
DOEE, 2019). O3 pollution has been a greater issue in the
region; since 1997, the primary and secondary NAAQS for
O3 has been the “annual fourth-highest daily maximum
8-hr concentration” with standards set at 80 ppb, 75 ppb,
and 70 ppb in 1997, 2008, and 2015, respectively (U.S.
EPA, 2015). The region was designated as in moderate
nonattainment of the 1997 standard in 2004 and
improved to marginal nonattainment when considered
under the 2008 standard. Currently, under the stricter
2015 standard, the region has been designated as in mar-
ginal nonattainment; under the old 2008 standard, the
region is now in attainment (DC DOEE, 2019). One of
the major drivers of poor O3 mole fractions in DC and the
surrounding area is the bay breeze (He et al., 2014; Lough-
ner et al., 2014; Stauffer et al., 2015; Sullivan et al., 2019)
which recirculates pollutants back into the city. In the DC–
MD–VA region, NO2 mole fractions have never exceeded
the annual mean standards, originally established in 1971,
nor the 1-h daily maximum standards established in 2010
(DC DOEE, 2019).

A number of unique sources are suspected to be
responsible for the pollutant concentrations in DC; when
referring ambiguously to multiple pollutants, we will use
the term “concentrations” although the actual measure-
ment unit for O3 and NO2 is “mole fractions.” For PM2.5,
speciated observations can provide insight into its sources.
The NARSTO 2004 assessment (McMurry et al., 2004)
found the largest components of annual averaged PM2.5

in DC were sulfate and organic carbon, both primary and
secondary, followed by smaller proportions of ammonium
and nitrate. Since then, a number of coal powered electric
generating units (EGUs) near DC have closed (Russell et al.,
2017; Jolley et al., 2019), reducing a major source of SO2

emissions in the region which would affect the composi-
tion. A number of studies have found that urban PM2.5 in
the Atlantic U.S. forms predominantly secondarily. For
example, one study (Jimenez et al., 2009) examined the
composition of PM2.5 in New York City in both the winter
and summer and found that roughly half of the PM2.5, in
both seasons, were of total oxygenated organic aerosol

(OOA), which includes both secondary and primary
organic aerosol (OA), with the other half being secondary
inorganic aerosol (SIA). Hydrocarbon OA, a surrogate for
primary urban OA, made up about half of the total OOA in
the winter and less than a quarter in the summer. Another
study (Nault et al., 2020) also examined New York City, for
2015, and found that in the wintertime around 17% of
PM2.5 was anthropogenic secondary OA, 16% was primary
OA, and 67% was SIA.

For O3, precursor emissions from within the DC–MD–
VA region largely come from Maryland and Virginia; only
5% of volatile organic compounds (VOCs) and 8% of nitro-
gen oxides (NOx) emissions in the DC–MD–VA region are
estimated to come from DC (DC DOEE, 2019). High
mobile emissions of NOx are thought to be one of the
largest contributors to O3 in DC (Goldberg et al., 2016;
DC DOEE, 2019). One study (Goldberg et al., 2016) used
a tagging approach across a modeling domain of the east-
ern United States to perform a source apportionment of
O3 for the 10 worst air quality days in July 2011 in DC.
They concluded that mobile and EGU emissions, primarily
from Maryland, Pennsylvania, Ohio, and Virginia, contrib-
uted the most to these high ozone days in DC. Another
study (Moghani et al., 2018) considered regional emission
control strategies in the Mid-Atlantic for Delaware and
found that a 20% local emission reduction had no effect
on O3; however, a smaller 10% reduction across upwind
states resulted in O3 benefits between 1.9 and 2.5 ppb on
average. Additionally, throughout the United States,
regardless of the city or year, on-road mobile sources were
estimated to make the largest anthropogenic emission
contribution to O3 (Nopmongcol et al., 2017). It was esti-
mated that emission reductions from 2002 to 2011 re-
sulted in 5–10 fewer ozone exceedance days in the DC
metropolitan area (Loughner et al., 2020).

Exposures to the 3 air pollutants being considered here
(PM2.5, O3, and NO2) all have well-established relationships
with increased risk of negative health outcomes, and
regardless of their attainment statuses, concentrations of
these 3 pollutants in DC exceed the minimum levels at
which health impacts are observed (Burnett et al., 2014;
Turner et al., 2016; Malley et al., 2017; Anenberg et al.,
2018; Achakulwisut et al., 2019). PM2.5 exposure is associ-
ated with an increased risk of premature death from health
outcomes including chronic obstructive pulmonary disor-
der (COPD), ischemic heart disease (IHD), lower respiratory
illnesses (LRI), lung cancer (LC), type-II diabetes (T2D), and
stroke (Murray et al., 2020). O3 exposure is associated with
increased risk of premature death from COPD (Anenberg et
al., 2010). It should be noted the exposure metrics of “six-
month peak averaged, 1-hr daily maximum” (Jerrett et al.,
2009) and “annual averaged daily 8-hour maximum”
(Turner et al., 2016) that are often used in health impact
analyses of O3 exposure differ from the metrics used within
the O3 NAAQS. NO2 exposure—and not PM2.5 and O3—is
significantly associated with increased pediatric asthma
incidence (Achakulwisut et al., 2019).

A number of studies have examined the health impacts
of pollution exposure for DC. In 2016, an estimated 1,170
premature deaths occurred due to PM2.5 exposure in DC

Art. 9(1) page 2 of 30 Nawaz et al: Source attribution of air pollution in Washington, DC
D

ow
nloaded from

 http://online.ucpress.edu/elem
enta/article-pdf/9/1/00043/486592/elem

enta.2021.00043.pdf by U
niversity of C

olorado Boulder user on 18 D
ecem

ber 2022



and its surrounding metropolitan area (Anenberg et al.,
2019a); this area has a population nearly 5 times larger
than the population just living in the district. The results
of our study consider the district exclusively and not the
surrounding metropolitan area. Another study (Zhang et
al., 2018) estimated that in 2010, 157 PM2.5-related pre-
mature deaths and 21 O3-related premature deaths
occurred in DC. NO2 has been estimated to be responsible
for 390 new pediatric asthma cases per 100,000 children
per year in DC (Achakulwisut et al., 2019). Many studies
have more generally quantified health impacts by pollu-
tants, predominantly from PM2.5 and O3, throughout the
United States (Goodkind et al., 2019; Davidson et al.,
2020; Dedoussi et al., 2020).

Urban-scale health impact analyses require pollutant
exposures that can be estimated through a variety of
methods. Air quality models can simulate pollutant con-
centrations over large areas; however, they often fail to
accurately capture urban-scale spatial variability due to
the coarseness of their resolution (Punger and West,
2013; Ridder et al., 2014) and often have biases as they
are tailored to be accurate across large spatial extents.
Remote-sensing-derived concentrations can provide global
or regional pollutant coverage at resolutions that are
much finer than models across similar sized domains, and
remote sensing data can be incorporated into air quality
models through satellite downscaling (Lacey et al., 2017;
Cooper et al., 2020; Nawaz and Henze, 2020) to improve
the resolution and accuracy of exposure estimates. Here,
we introduce a novel method of incorporating satellite
downscaling into model-estimated exposure metrics for
PM2.5 and NO2. In doing so, source attributions of pollut-
ant exposures benefit from the improved accuracy of
satellite-based corrections.

Source apportionment methods can use both in situ
measurements and air quality models to identify the
sources of pollutant exposures. Classification approaches,
like positive matrix factorization (Thurston et al., 2011),
involve the measurement of multiple source types prior to
the measurement of the components of a receptor, like
PM2.5. Chemical transport model tagging approaches
(Goldberg et al., 2016) track emissions from aggregated
classes of sources. These 2 approaches are capable of iden-
tifying a limited number of predefined regional and sec-
toral sources across a single time period. If a source
apportionment at a finer temporal or spatial resolution
is needed; however, it can become labor intensive, exper-
imentally challenging, or computationally expensive to
identify contributions in these ways. Adjoint model sensi-
tivity analysis is an alternative approach (Pappin and
Hakami, 2013; Lee et al., 2015) for efficiently calculating
the response of a small number of pollutant exposure
metrics to a very large numbers of sources, which can be
useful for the tailoring of cities’ air quality and health goals.

In this study, we present a high-resolution, satellite-
constrained source attribution for DC. We leverage
remote-sensing-derived surface-level data for PM2.5 and
NO2 along with simulated surface mole fractions of O3 to
assess urban-scale pollution-related health impacts. We
incorporate remote-sensing-derived concentrations into

adjoint sensitivity analyses (Henze et al., 2007; Zhang et
al., 2015) to calculate the unique contributions from indi-
vidual emission species and sectors across the continental
United States on a daily basis at a 0.1� � 0.1� spatial res-
olution for 3 different air pollutants: PM2.5, O3, and NO2.
We present source apportionments for 2 health impacts: air
pollution–related premature deaths and new pediatric
asthma cases to compare pollutants and characterize the
sources of health impacts and benefits more directly. We
compare results for 2011 and 2016 to quantify how pollut-
ant exposures, health impacts, and source contributions
have changed in DC across this 5-year period. The unique-
ness of this approach derives from its ability to characterize
the impact of anthropogenic emissions from a single day
on multiple pollutant exposures and their associated health
impacts. Although this method fails to capture intracity
contributions as well as regional models, the value of the
approach demonstrated here is that it can be applied with-
out the need for high-resolution, computationally expen-
sive, regional modeling, which affords application to other
cities throughout the globe where regional models are
unavailable or less accurate.

2. Methodology
2.1. Pollutant surface concentrations

To improve the agreement between model-simulated pol-
lutant concentrations and in situ observations, we incor-
porate remote-sensing-derived surface levels of PM2.5

concentrations and NO2 mole fractions into the adjoint
simulations. For estimating annual PM2.5, we use the va-
lues from the satellite-derived product of van Donkelaar et
al. (2016) for 2011. In recent years, multiple new satellite-
derived PM2.5 estimates (Shaddick et al., 2018; Hammer et
al., 2020) have emerged that extend beyond the data set
used here in terms of methodology or resolution. While
significant differences arise in other parts of the world, the
updates over North America are more modest, in the
range of 2–5 ug/m3. Regardless, we find good agreement
between the van Donkelaar et al. (2016) values and the in
situ AQS measurements (normalized mean bias [NMB] of
22.2%) in the DC area. For NO2, we oversample columns
from the TROPOspheric Monitoring Instrument (TROPO-
MI) between May 2018 and June 2019 to get an annual
averaged equivalent product with complete coverage
across our domain. The TROPOMI data used here currently
represent the state-of-the science for NO2 remote sensing.
We chose this period because TROPOMI columns were
unavailable during our study year, and while columns
from the Ozone Monitoring Instrument (OMI) were avail-
able, the spatial resolution of the latter is much coarser
(13 km� 25 km) than that of TROPOMI. The oversampling
of the TROPOMI NO2 columns is done at 0.01� � 0.01�

resolution. These TROPOMI columns are then further con-
verted to surface mole fractions following a methodology
(Cooper et al., 2020) that is outlined in Section 2.3. We
convert columns to surface mole fractions because NO2

exposures are calculated using surface mole fractions.
Hourly O3 mole fractions were simulated for a year using
a forward model simulation of GEOS-Chem; the 1-h max
values for each day in the 6-month peak O3 period were
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averaged to calculate the O3 exposure. Surface concentra-
tions of all 3 pollutants, overlaid on top of the DC metro
area, are presented in Figure 1. We compare simulated
pollutant concentrations, along with their satellite cor-
rected forms, against in situ observations from monitoring
stations for PM2.5, O3, and NO2 in 2011. In situ data were
obtained from 3 monitoring stations: the River Terrace,
McMillan, and Hains Point sites for 2011.

2.2. Emissions

We use the U.S. EPA’s National Emission Inventory (NEI)
version 2.1 for a base year of 2011 to input anthropogenic
emissions every hour in our simulation. The NEI includes
emissions from northern Mexico and southern Canada.

The spatial extent of the inventory is presented in
Figure 1. We use NEI 2011v2.1 emissions processed using
the Sparse Matrix Operator Kernel Emissions (SMOKE) for
GEOS-Chem (Travis et al., 2016) and input total surface
emissions at the first model level and stack emissions at
higher levels. We consider 16 species shown in Table 1.
NOx emissions are calculated by combining emissions of
NO, expressed in units of kg NO2, with emissions of NO2.
GEOS-Chem considers all emissions of NOx as NO; the
chemical time step of the simulation is 1 h, and so the
rapid cycling between NO and NO2 means that there is
little difference whether NOx is emitted as NO or NO2.
Additionally, we calculate anthropogenic secondary
organic aerosol (SOA) precursors using emissions of

Figure 1. Surface-level concentrations of pollutants and model and emission domains. Surface-level
concentrations of PM2.5 (A) and mole fractions of O3 (B) and NO2 (C) used to calculate cost functions. The
concentrations for PM2.5 and mole fractions for NO2 are satellite-derived while the O3 mole fractions are model
simulated. Extent of the U.S. Environmental Protection Agency National Emission Inventory (NEI) as implemented in
GEOS-Chem and GEOS-Chem nested U.S. (GC) domain in blue and red, respectively (D). As referred to in the text,
“purple” indicates the areas of overlap between the GEOS-Chem domain and the NEI domain. DOI: https://doi.org/
10.1525/elementa.2021.00043.f1
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carbon monoxide (CO), benzene, toluene, and xylene fol-
lowing a recent update (Nault et al., 2020). For regions in
our modeling domain outside of the NEI 2011 emission
domain, we use the Task Force on Hemispheric Transport
of Air Pollution (HTAP) emissions inventory for all anthro-
pogenic species. This corresponds to the red, but not pur-
ple, region in Figure 1. For nonanthropogenic emissions,
we include biogenic (Guenther et al., 2006), biomass burn-
ing (van der Werf et al., 2010), dust (Zender et al., 2003),
lightning NOx (Murray et al., 2012), soil NOx, and other
natural emissions in our simulation.

The SMOKE-processed NEIv2.1 emissions we use are sep-
arated into 11 sectors shown in Table 1.We denote the NEI
“non-ipm point” (ptnonipm) sector as “industry” as this
sector is made up of refineries, industrial plants, and waste
combustors; however, aircraft emissions are also considered
in this group. The “othpt” sector is made up of point
sources in Canada. Nonroad emissions include emissions
from recreational, construction, industrial, lawn and gar-
den, agriculture, commercial, logging, airport support,
underground mining, oilfield, recreational marine, and
nonlocomotive railroad vehicles. We further subdivided the
original aggregate “surface” category to isolate an “other-
surface” sector. To avoid confusion within the text, we will
still refer to this sector as the “surface” (SF) sector. This SF
sector includes emissions from commercial cooking, non-
EGU fuel combustion, gas stations, nonpoint industrial pro-
cessing, solvents, waste disposal, fugitive dust, and oil and
gas. We present the proportional breakdowns of subsectors
for all available species in the supplemental (S1) for the SF
sector. It also includes the nonplume components of EGUs,
oil and gas, and industry. The “shipping” sector specifically
refers to emissions from category 3 marine vessels.

Residential (RES) emissions were isolated from the sur-
face category as follows: Using emissions from NEI 2016
version “fh,” we combine the NEI 2016 sectors that make
up the SF sector and determine the fraction of this sector
that is made up of residential wood combustion emis-
sions. In doing so, we get a residential fraction for each
month, species, and grid cell at the 0.1� � 0.1� spatial
resolution.We then apply these residential fractions to the
2011 NEI emissions to separate the RES emissions from
the surface category.

As described in Section 3.5, monthly NEI 2016 emis-
sions are combined with our simulated source sensitiv-
ities, calculated for 2011, to quantify changes in
pollutant exposures between 2011 and 2016; however,
the 2016 NEI emissions have greater sectoral granularity
than the 2011 NEI emissions. In order to compare these

directly, we aggregate all of the NEI 2016 subsectors into
their corresponding sectors in NEI 2011 with the excep-
tion of the residential wood combustion sector, which is
already disaggregated in the 2016 NEI.

In the NEI 2011, as implemented in GEOS-Chem,
a number of sectors only include the in-line plume rise
emissions. These sectors include EGUs, peaking EGUs, oil
and gas, other point, and industry. When considering sec-
toral source apportionment for 2011, when referring to
these sectors, we are specifically referring to the plume
rise emissions. There are components of some of these
sectors that are emitted at the surface level and included
in the surface sector that are not considered in our defini-
tions of the sectors. Comparing the plume rise total emis-
sions to the totals as reported in the NEI 2011 TSD (EPA,
2015), this surface-level component for EGUs is small;
however, this is not the case for the other sectors. This
should be considered when interpreting results for 2011.

All 2011 sectors that contain only in-line plume rise
emissions are not directly comparable to their 2016 ana-
logues because the 2016 sectors include nonplume rise
emissions that were grouped in the “surface” category in
2011. We have avoided making direct comparisons
between the years for most of these sectors. For EGUs,
we compare 2011 and 2016 contributions with one
caveat; we consider differences in 2011 and 2016 values
as lower bounds of the changes between these 2 years.
While a majority of EGU emissions in 2011 were plume
rise, as calculated by comparing the NEI 2011 TSD (EPA,
2015) totals to the SMOKE-processed emissions, there was
a substantial component (12%) of these that were non-
plume rise emissions. Given this, our estimate of 2011
EGU emissions is an underestimate; when calculating
changes in emissions between 2016 and 2011, reductions
calculated in this work can be thought of as a lower bound
of the actual reductions that occurred for the EGU sector.

2.3. GEOS-Chem adjoint

For our source apportionment, we use the GEOS-Chem
adjoint model (Henze et al., 2007) v35n for sensitivity
analyses at the 0.5� � 0.667� horizontal resolution in the
nested U.S. domain. The adjoint originally corresponded to
v8-02-01 of the GEOS-Chem forward model and has been
updated to version 10 of the forward model. We have
included additional updates (Nault et al., 2020) to incor-
porate a new SOA scheme in both the forward and adjoint
simulations. We conduct 12 two-month adjoint simula-
tions in 2011, for each of the 3 pollutants, and only force
the adjoint for the second month, in each simulation, to

Table 1. National Emissions Inventory (NEI) 2011 definitions. DOI: https://doi.org/10.1525/elementa.2021.00043.t1

Species Nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), sulfate (SO4), ammonia (NH3), >¼C4-alkanes (ALK4),
acetone (C3H6O), methyl ethyl ketone (C4H8O), propene (C3H6), propane (C3H8), formaldehyde (CH2O), ethane (C2H6),
acetaldehyde (C2H4O), primary elemental (black) carbon (BC), and primary organic carbon (OC)

Sectors Agriculture (AG), shipping (SHP), energy generation units (EGU), peaking energy generation units (EGUPK), oil and gas
(OG), on-road (ONR), on-road California and Texas (ONRCATX), other point (OTHPT), industry (IND), surface (SF), and
residential (RES)

Species and sector definitions for the U.S. Environmental Protection Agency NEI for base year 2011 version 2.1.
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capture the impact of emissions from the first month on
the second month. This requires 36 unique runs which,
while computationally intensive, is feasible in contrast to
the approximately 400 million runs that would be needed
to conduct the same calculations using finite difference or
other forward-modeling-based methods. For the December
2010 portion of the simulation, we use the NEI emissions
for December 2011. We input NASA Global Modeling and
Assimilation Office GEOS-5 meteorological fields for 2011.

More specifically, in this sensitivity analysis, the adjoint
model calculates the gradient (lE) of a cost function (J)
with respect to emissions (E) of distinct species at distinct
grid cells and on specific days. We define unique cost
functions for each of the 3 pollutants; these cost functions
represent commonly used metrics for the analysis of
health impacts: annual averaged population-weighted
PM2.5 (Burnett et al., 2014), 6-month peak averaged 1-h
max O3 (Jerrett et al., 2009), and annual averaged
population-weighted NO2 (Achakulwisut et al., 2019).
These 3 pollutant metrics will be referred to as
“exposures” in the rest of this text. All 3 of these exposures
are calculated for DC for 2011. We incorporate annual
average equivalent satellite data into the PM2.5 and NO2

adjoint simulations to increase the resolution of our
urban-scale exposure estimates for these 2 pollutants.
When exposures are calculated at too coarse of a resolu-
tion, low concentrations from less populated areas sur-
rounding the city may be averaged into the exposure,
lowering the value and underestimating health impacts
(Punger and West, 2013; Ridder et al., 2014). The resolu-
tion of the exposure estimate is most critical for shorter
lived species like primary PM2.5 and NO2 as they are less
mixed and have greater spatial variability. The lifetime of
NO2 is on the order of a day and the lifetime of PM2.5 is on
the order of 1–2 weeks (Doherty et al., 2017), respectively.
For most of the year, the lifetime of O3 is longer; at 40� N
and at the surface, O3 lifetimes span from around 8 days
in the summertime to 100 days in the wintertime (Sein-
feld and Pandis, 2016).

First, we will discuss the cost function for PM2.5:

JPM2:5 ¼

X
i2D Pi � �XI

sati
SATI

SATI

�X 0
I

 !
X

i2DPi
i

: ð1Þ

Here, i refers to spatial indexing at the 0.1� � 0.1�

resolution of the satellite-derived product and I refers to
spatial indexing at the 0.5� � 0.667� resolution of the
model, �XI represents annual averaged PM2.5 output from
the forward model, sati is a satellite-derived product (van
Donkelaar et al., 2016), SATI is this same product aver-
aged at the coarse model resolution, Pi

i is a fine resolution
population estimate (Center for International Earth Sci-
ence Information Network, 2018), and D is the set of all
grid cells within our cost function domain—in this case
DC. For the purpose of calculating the adjoint forcing, we
treat the ratios sati

SATI
and SATI

�X0
I
as constant; �X 0

I is the same
annual averaged PM2.5 output from the forward model as
�XI but is assumed to be constant when calculating the

derivative. The rescaling process is illustrated in the sup-
plemental (S2).

Next, we consider the cost function of O3:

JO3 ¼

X
i2D Pi � �XIð ÞX

i2DPi
: ð2Þ

This cost function is similar to that of PM2.5 except
without the satellite rescaling as there is no equivalent
satellite-derived O3 product. Here, �XI refers to 6-month
peak averaged 1-h max O3 from the forward model.

Finally, we consider the cost function of NO2:

JNO2 ¼

X
i2D Pi � OI � ki �

SNO2

O0
I

� �
� ðviO0

I � Ofree troposphere
I Þ

ðO0
I � Ofree troposphere

I Þ

 !
X

i2DPi
:

ð3Þ

Here, i refers to spatial indexing at the 0.01� � 0.01�

resolution of the satellite-derived product and I refers to
spatial indexing at the 0.5� � 0.667� resolution of the
model. In applying this approach, we are assuming that
the relative spatial variability of annual mean NO2 col-
umns over the DC area has not changed significantly
between 2011, the model simulation year, and 2018–
2019, the TROPOMI NO2 column years.We apply a satellite
column downscaling (Cooper et al., 2020). This method
makes use of 3 factors applied to simulated NO2 columns.
First, we account for subgrid variability in the lower por-
tion of the NO2 column to improve the horizontal resolu-
tion of our simulated columns. Second, we apply a surface
to column ratio which represents the fraction of the col-
umn at the surface level and converts the column from
units of molecules

cm2 to a mixing ratio in ppbv. Lastly, we apply
an urban to rural scaling factor for grid cells with column
magnitudes greater than 11� 1015 molecules

cm2 . This scaling fac-
tor is calculated by applying this analysis at both the sur-
face and boundary layer and taking the ratio of the two;
the factor differentiates urban and rural regimes. Here, OI

is the annual averaged tropospheric NO2 column from the
forward model output; we use the term O0

I to refer to the
same annual averaged tropospheric NO2 column as OI but
is assumed to be constant when calculating the derivative.
The polluted to remote scaling term, ki, is calculated fol-
lowing the previously mentioned study (Cooper et al.,
2020), SNO2 is the annual averaged forward model simu-
lated surface NO2 mole fractions, vi is a spatial variability
term calculated by comparing fine-resolution (0.01� �
0.01�) oversampled TROPOMI NO2 columns to the average
TROPOMI NO2 column within the coarse-resolution (0.5�

� 0.667�) model grid box and Ofree troposphere
I is the portion

of the modeled NO2 column in the free troposphere.
We assume that the overpass bias remains constant
throughout the whole day and thus use it to characterize
fine spatial variability, vi, in the daily model simulated
columns. The NO2 downscaling procedure is illustrated
in Figure 2; k (panel 1) is ki, surface to column

(panel 2) is SNO2
OI

� �
, lower column variability (panel 3) is
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ðviOI�Ofree troposphere
I Þ

ðOI�Ofree troposphere
I Þ

, scaling factor (panel 4) is the 3 prior terms

combined, simulated NO2 column (panel 5) is OI and the
downscaled surface NO2 (panel 6) is calculated by com-
bining the scaling factor with the simulated NO2 column.

These 3 cost functions, which we now refer to generi-
cally as J , are calculated using output from the forward
model. Once the forward model simulation finishes and
the cost functions are calculated, the adjoint simulation
begins and calculates gradients of these cost functions
with respect to emissions. The emissions we consider are
BC, OC, NH3, NOx, SO2, CO, and VOCs. We report only
sizable sensitivities for each pollutant: For PM2.5, we
exclude direct emissions of CO; for O3, we consider NOx,
VOCs, and CO; and for NO2, we only consider NOx. These
gradients are calculated as:

lI ;k;d ¼ rEI ;k;d J ¼
qJ

qEI ;k;d
: ð4Þ

Here, lI ;k;d is the sensitivity or “gradient” of each of
these cost function to their respective emissions para-
meters of species k at grid cell I on day d and EI ;k;d refers
to the emissions of species k at location I on day d.

These gradients are calculated at the model resolution
0.5� � 0.667�; but we consider them at the resolution of
the NEI emissions (0.1� � 0.1�) in order to better resolve
contributions at finer resolutions. In doing so, we assume

that sensitivities at the coarse scale are constant, which
fails to account for subgrid scale variabilities and intro-
duces uncertainty. Ultimately, sensitivities are calculated
at the coarse model resolution; however, we calculate con-
tributions at the finer resolution of the NEI to improve the
identification of regional and point sources to DC’s pollu-
tion exposure.

For every grid cell, we multiply the sensitivity of the
cost function to emissions from that grid cell of species k
and day d with the NEI emissions in the same grid cell of
the same species k, sector s, and the same day d. By mul-
tiplying these 2 quantities for every grid cell, we deter-
mine the unique contribution from emissions of a specific
species, sector, and day to each of the 3 pollutant expo-
sures:

dJi;k;s;d ¼ ðli;k;s;d � Ei;k;s;dÞ: ð5Þ

Here, we refer to dJi;k;s;d as the contribution to one of
the pollutant exposure cost functions from emissions at
location i, on day d of species k and of sector s. Ei;k;s;d

represents the NEI emission from grid cell i which we
consider at daily, d, temporal resolution and are separated
by species k and sector s. In the supplemental, we present
the annual averaged adjoint sensitivities of all 6 anthro-
pogenic precursor species of PM2.5 (BC, OC, NH3, NOx, SO2,
and VOCs) along with a time series of daily sensitivities for
all species (S3). Sensitivities for O3 and NO2 are also

Figure 2. NO2 satellite downscaling method. Illustration of the NO2 downscaling procedure from Cooper et al.
(2020) for estimating surface mole fractions from remote sensing observations of NO2 columns, here modified for
application to model simulated columns. DOI: https://doi.org/10.1525/elementa.2021.00043.f2
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presented in the supplemental (S4 and S5). In all our
results, we only present the contributions from anthropo-
genic emissions, as they are of most interest for air quality
control policies, although contributions from natural
sources are included in our modeling.

2.4. Health impacts

We calculate premature deaths from PM2.5 exposure fol-
lowing the methodology of the Global Burden of Disease
(GBD) 2019 study (Murray et al., 2020) and calculate COPD
premature deaths from O3 exposure using a log-linear
exposure response model (Jerrett et al., 2009). For PM2.5,
though the GBD 2019 methodology is currently the state-
of-the-science technique, it generally estimates less pre-
mature deaths than another recently developed exposure
response model, the Global Exposure Mortality Model
(GEMM; Burnett et al., 2018). We consider the additional
uncertainty introduced by the choice of concentration-
response model in Section 3.5. The study used for the
O3 health impact assessment considers the relationship
between 1-h max O3 exposure and premature death and
only considers respiratory death; however, a more recent
study (Turner et al., 2016) relates the maximum daily 8-h
average O3 exposure to premature deaths and includes
additional nonrespiratory causes that result in higher es-
timates of premature deaths. Pediatric asthma cases from
NO2 exposure are calculated using a log-linear exposure
response model (Achakulwisut et al., 2019). All mortality
rate and population data considered are exclusive to the
federal district and do not include the surrounding met-
ropolitan region. Age-stratified population data for DC
during 2011 and 2016 are retrieved from the GBD
Exchange Results tool for DC. Age-stratified mortality
rates for DC for IHD, STROKE, COPD, LC, LRI, and T2D
along with pediatric asthma incidence rates for DC during
2011 are retrieved from the GBD Exchange Results tool for
DC (http://ghdx.healthdata.org/gbd-results-tool: accessed
November 2020) for 2011. For 2016, pediatric asthma
incidence rates are calculated using emergency depart-
ment visits with a primary diagnosis of asthma from the
DC Hospital Association compiled by the State Health
Planning and Development Agency.We combine mortality
or incidence rates and population estimates for DC with
attributable fractions (AF) calculated as:

AFðzÞ ¼RRðzÞ � 1
RRðzÞ : ð6Þ

Here, z is a pollutant exposure which can represent
either the total exposure or this same total with the
anthropogenic contribution, dJi;k;s;d removed. In the latter
case, we evaluate the AF of a case in which a specific
anthropogenic contribution of unique location, species,
sector, and day, is removed from the total exposure in
DC. RR is the relative risk—the ratio of the risk of a health
outcome occurring in an exposed population versus an
unexposed population.

For PM2.5, we estimate the age-specific relative risk for
IHD, LC, STROKE, LRI, T2D, and COPD using the relative
risk look-up tables from GBD 2019. These tables relate

exposure levels to relative risks for the aforementioned
health impacts. Between exposure levels in these tables,
we linearly interpolate relative risks. We calculate the rel-
ative risks for COPD from O3 exposure using the log-linear
exposure response model (Jerrett et al., 2009):

RRðzÞ ¼ expbDz; ð7Þ

where b is the concentration response factor that expresses
the log slope of the relationship between risk of premature
death and ozone exposure and Dz is the exposure with
a counterfactualmole fraction removed.Weuse anestimated
relative risk of death fromCOPDof1.027per 10ppbO3mole
fraction increment (Jerrett et al., 2009).We use a counterfac-
tual O3 mole fraction of 37.6 ppb in following with other
studies (Cohen et al., 2017; Zhang et al., 2018).

For NO2, we use the log-linear model (Achakulwisut et
al., 2019) which takes the same form as Equation 7 with
a relative risk of pediatric asthma cases of 1.26 per 10 ppb
NO2 mole fraction increment and a counterfactual NO2

mole fraction of 2 ppb. Using this model, we calculate the
relative risk for new pediatric asthma cases.

With the relative risks calculated, we can estimate the
number of cases or the number of premature deaths from
health outcome O as:

O ¼ P � BRO � AFðzÞ: ð8Þ

The number of excess health outcomes O is equivalent
to the product of the age-related population of the dis-
trict, P (Murray et al., 2020), the baseline mortality or
incidence rate of the same health outcome, BRO (Murray
et al., 2020), and the AF of exposure z as calculated by
substituting the relative risks from Equation 7 into Equa-
tion 6 for O3 and NO2 and by using RR values from the
look-up table for PM2.5. The population and baseline rates
are provided at the district level. The value z is the pop-
weighted exposure of the district calculated following
Equations 1–3. The AF is calculated twice for each grid
cell, one time using the baseline pollutant exposure in DC,
and another using that same baseline exposure with the
source contribution removed. We take the difference
between these attributable fractions multiplied by the
population and baseline rate data to estimate the number
of outcomes contributed by a specific source to health
impacts in DC. By taking the difference in these 2 out-
come estimates for every source category, we estimate the
health impacts contributed by emissions for each grid cell.
For all health impact analyses, we only consider the po-
pulation living in the federal district, not the surrounding
metropolitan area. Age-stratified population for 2011 and
2016 is provided in SI Table 1.

3. Results
3.1. Comparison to observations

We characterize the performance of the simulated concen-
trations from GEOS-Chem by comparison with in situ con-
centrations at 2 distinct timescales. First, we evaluate
performance at the long-term timescales of pollutant
exposure (Table 2) at which we calculate the adjoint cost
functions, and second, we evaluate performance at the
daily temporal resolution (Figure 3) at which we perform
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Table 2. Simulated and in situ pollutant concentration comparison at exposure timescales. DOI: https://doi.org/
10.1525/elementa.2021.00043.t2

Pollutant

DC Measurement Location

Hains Point Monitor (HP) McMillan Monitor (MM) River Terrace Monitor (RT)

Simulated annual PM2.5 14.0 ug
m3 14.0 ug

m3 13.5 ug
m3

Satellite-corrected simulated annual PM2.5 13.4 ug
m3 12.4 ug

m3 13.5 ug
m3

Observed annual PM2.5 11.0 ug
m3 11.2 ug

m3 10.4 ug
m3

Simulated 6-month peak 1-h max O3 72.2 ppbv 72.2 ppbv N/A

Observed 6-month peak 1-h max O3 57.7 ppbv 53.6 ppbv N/A

Simulated annual NO2 7.7 ppbv 7.7 ppbv N/A

Satellite-corrected simulated annual NO2 16.9 ppbv 16.6 ppbv N/A

Observed annual NO2 14.6 ppbv 15.7 ppbv N/A

Concentrations for all 3 pollutants (PM2.5, O3, and NO2) at 3 monitoring sites in DC: HP, MM, and RT. Simulated and observed
values are available for all 3 pollutants; for PM2.5 and NO2, the satellite-corrected simulated concentrations are included. Exposure
timescales for PM2.5 and NO2 are annual averages; for O3, the exposure timescale is the 6-month peak period. For PM2.5,
concentrations were observed on 86, 347, and 344 days from HP, MM, and RT, respectively. For O3, mole fractions were observed
on 356 and 359 days from HP and MM, respectively. For NO2, mole fractions were observed on 356 and 363 days from HP and
MM, respectively.

Figure 3. Simulated and in situ pollutant concentration comparison at the daily timescale. Comparison
between simulated and observed concentrations of the 3 study pollutants: PM2.5 (A), O3 (B), and NO2 (C). Green
indicates modeled concentrations; blue indicates satellite-corrected-simulated concentrations and red indicates
observed concentrations. Monitoring data are averaged across all sites that recorded an observation for each day.
Simulated and satellite-corrected values are taken for each site and then averaged across all sites. All data presented
here are for 2011. Bias is modeled–observation. DOI: https://doi.org/10.1525/elementa.2021.00043.f3
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our source attribution. By considering performance at
these 2 distinct timescales, we characterize larger systemic
biases in our model across longer periods and characterize
uncertainty in the daily source attribution by considering
the correlation between model simulated concentrations
and observations. For PM2.5 and NO2, we consider 24-h
averaged daily, but for O3, we consider the 1-h max value
for each day, so that the comparisons between the simu-
lated results and observations are consistent. The simu-
lated concentrations of PM2.5, O3, and NO2 have NMBs
of þ28.3%, þ25.0%, and –49.4% when compared to the
site-averaged annual average. Throughout the year, at the
daily timescale, simulated concentrations of PM2.5, O3,
and NO2 have correlation coefficients of 0.46, 0.65, and
0.56, respectively, when compared to daily in situ observa-
tions indicating modest correlation at the daily timescale.
For PM2.5 and NO2, the exposure timescales are annual
averages, and for O3, it is the 6-month peak average.When
satellite-derived data are used to scale simulated output,
through rescaling for PM2.5 and downscaling for NO2,
biases decrease to þ22.2% and þ11.8%, respectively.
When annual average remote-sensing-derived data are
included in the adjoint cost function, the exposure and
sensitivity calculations more accurately represent ground-
level in situ observations. This improvement in simulation
accuracy is due to 2 distinct approaches: satellite
“downscaling” and “rescaling.” First, in downscaling,
satellite-derived data account for variability at much finer
resolutions than our model is capable of, allowing for the
quantification of subgrid variability in simulated surface-
level concentrations. This approach accounts for variability
over 30 times finer for PM2.5 and over 3,000 times finer
for NO2 than the native model resolution. Second, in re-
scaling, between the forward and inverse simulation, sim-
ulated PM2.5 concentrations are scaled to the satellite-
derived concentrations averaged to the model resolution;
this is not done for NO2 as there is a discrepancy between
the simulation year (2011) and the satellite-derived data
years (2018–2019). This improvement specifically occurs
in the cost functions, that is, the pollutant exposures; this
approach does not improve the resolution of emissions in
the model simulation.

Although both downscaling and rescaling contribute to
improved performance across long-term timescales
through reduction in biases, they have only minor effects
on correlation since they are computed at the annual
average timescale. Although not done here, the positive
O3 bias would be lowered if we compared mole fractions
at 2 m as opposed to the first layer (approximately 65 m;
Travis and Jacob, 2019) which we discuss in greater detail
in Section 3.5. Overall, we calculate cost-function values of
12.4 ug

m3, 74.5 ppbv, and 15.8 ppbv for PM2.5, O3, and NO2,
respectively.

3.2. Annual source attribution

We calculate emission contributions to pollutant expo-
sures by considering distinct species and sector groups
at a daily temporal resolution and at the 0.1� � 0.1�

spatial resolution of the NEI. These contributions are

aggregated across space into large regions, primarily
states, and across time into a single end point while main-
taining the species and sector groups. Through this aggre-
gation, we identify the extent to which emissions from
individual regions, sectors, and species contribute to
adverse health impacts across a single year, 2011, in DC.
We perform a source apportionment of pollution-related
premature deaths from PM2.5 and O3 exposure (Figure
4A) and perform a source apportionment of NO2-related
new pediatric asthma cases (Figure 4B). By performing
source apportionments for health impacts, as opposed
to concentrations, we simplify comparisons between indi-
vidual pollutants and contextualize the impacts of emis-
sions across all pollutants. To obtain a unified pollutant
source apportionment, these health impacts could be fur-
ther aggregated through an economic impact analysis;
however, this is beyond the scope of this study.

3.2.1. Source contributions to pollution-related

premature deaths

Anthropogenic emissions of pollutant precursor species
contributed 263 (health impact assessment uncertainty:
130–444) pollution-related premature deaths to DC in
2011 (Figure 4A) or 5% (2–7) of all deaths in DC in
2011. Of these pollution-related premature deaths, PM2.5

exposure accounted for 9.4 times more premature deaths
than O3, even though the attainment status of PM2.5 is in
better compliance with the NAAQS than O3 in the DC–
MD–VA nonattainment area. Because of this, the sources
of pollution-related premature deaths more closely resem-
ble the sources of PM2.5 exposure than O3 exposure.
Source apportionments for all 3 individual pollutant ex-
posures are available in the supplemental (S6–S8).

The sectoral sources of pollution-related premature
deaths were relatively diverse, with 7 of the 10 sectors con-
sidered contributing 5% or more of the premature deaths in
DC. Emissions from the surface sector contributed to pre-
mature deaths primarily through PM2.5-related premature
deaths (94%) rather than O3-related premature deaths.
From the surface sector, emissions of OC, VOCs, and NOx

were the highest contributors making up 36%, 31%, and
14%, respectively, of all surface contributions. Surface emis-
sions come from a wide variety of subsectors (S1) with the
ones that contributed the most from these species being
solvent use, gas stations, residential nonwood combustion,
industrial combustion, and locomotives.

On-road vehicle emissions contributed 23% of all
pollution-related premature deaths. This large contribu-
tion is consistent with expectations as the mid-Atlantic
region has high-traffic volumes. A majority of on-road
vehicle emission contributions to pollution-related prema-
ture deaths were from contributions to PM2.5 exposure
(82%) rather than O3 exposure (18%); however, O3-related
premature deaths were proportionally higher than for
other sectoral contributions to pollution-related prema-
ture death. This is due to the strong sensitivity of O3

exposure to NOx which, across both pollutants, made up
42% of on-road contributions to pollution-related prema-
ture deaths. Following NOx, on-road vehicle emissions
contributions from VOCs (27%) and primary
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carbonaceous aerosols (18%) were the largest. Contribu-
tions from on-road vehicle emissions primarily came from
DC and its surrounding area (MD, VA, and PA) for both
PM2.5 (66%) and O3 (72%). This is due to 2 reasons: on-
road vehicle emissions from DC and its surrounding area
are high, making up 8.2% of total on-road vehicle NEI
emissions in 2011 as implemented in GEOS-Chem, and
locations further away from DC are more likely to have
very small or negative NOx sensitivities.

In 2011, large EGU emission contributions to pollution-
related premature deaths in DC came from a wide spatial
range spanning from southern Maryland to the Ohio River
Valley. Post 2011, however, EGU closures resulted in
decreased contributions as discussed in Section 3.4. EGU
contributions to air-pollution-related premature deaths
were almost exclusively of SO2 (72%) and NOx (24%). EGU
emissions from distant states contributed proportionally
more than other sectors; 63% of all EGU contributions
came from states beyond DC and its surrounding area

with major contributions from Ohio River Valley states
like Ohio (13%), West Virginia (11%), Kentucky (5%), and
Indiana (5%).

Across all sectors, local and regional emissions (DC,
MD, VA, and PA) unsurprisingly contributed the most
(57%) to pollution-related premature death. NOx concen-
trations in rural areas are generally biased low due to the
overactive conversion of NO2 to terminal sinks of Ox like
HNO3 (Canty et al., 2015; Goldberg et al., 2016; Travis et
al., 2016) in many chemical transport models including
GEOS-Chem. This could result in an over attribution of O3

to local sources. Beyond local and regional contributions,
long-range emissions from further away states like Michi-
gan, North Carolina, West Virginia, and Ohio contributed
14% to DCs pollution-related premature deaths. Consid-
ering the highest sectoral contributors on a state-by-state
basis is useful for developing targeted emissions mitiga-
tion policies. In Maryland and Virginia, the 2 largest con-
tributing states, on-road vehicle, and surface emissions

Figure 4. Annual source apportionment of health impacts. Annual source apportionment of premature deaths (A)
and asthma incidence (B). Pie charts indicate total sectoral and species apportioning across the entire domain and
time period. In the pie charts, values below 5% are not labeled. The columns indicate state apportioning, sectoral
apportioning of each state, and species contributions to each sector state combination. All locations within the
domain that are not considered in this figure are lumped into the rest-of-domain region; these are locations that
contributed less than 6 premature deaths and 30 new asthma cases. For the state-level breakdowns, all sectors that
have small contributions are combined into an “OTH” category; the pie charts, representing the sectoral breakdowns
across the domain, do not have an “OTH” category. DOI: https://doi.org/10.1525/elementa.2021.00043.f4
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contributed the most to pollution-related premature
deaths; this is consistent with the domain-wide sectoral
breakdown. Some states, however, exhibit divergent sector-
al breakdowns. In Pennsylvania, the third highest contrib-
uting state, contributions were more evenly distributed
across EGU, on-road vehicle, surface, and agricultural emis-
sions. Regional patterns in the chemical species of contri-
butions are more difficult to interpret than sectors.
Regional variability in contributions is more closely linked
to sectors than chemical species; for example, where there
are more on-road emissions, there will generally be more
NOx emission contributions, and where there are more EGU
emissions, there will generally be more SO2 emission con-
tributions. While our methodology allows us to identify
such regional species relationships (S13), we focus primarily
on the sectoral relationships here.

3.2.2. Source contributions to NO2-attributable

pediatric asthma cases

Next, we consider the source contribution to NO2-attrib-
utable pediatric asthma cases (Figure 4B). Anthropogenic
emissions of NOx were responsible for 1,120 (391–1,795)
new pediatric asthma cases in DC for 2011 or 32% of all
new pediatric asthma cases. We note the persistence of
these NO2-related health impacts despite attainment of
both the 1971 annual mean and 2010 1-hr max NAAQS
in the DC–MD–VA region.

Two factors drive the sectoral contribution to pediatric
asthma cases in our analysis: the exclusive NOx sensitivity
and the strong local signal due to the short lifetime of
NO2. Chemical transport models generally underestimate
the recycling of NO2 leading to shorter effective lifetimes
(Canty et al., 2015; Romer Present et al., 2020) which
could enhance the local signal in our analysis. Because
of this, sectors with the most NOx emissions and sectors
that have proportionally higher emissions in DC and the
surrounding area contribute the most to new pediatric
asthma cases. One sector that has both of these qualities
is the on-road sector which contributes a majority of the
NO2-attributable asthma case in DC; 92% of contributions
from this sector come from local and regional sources
(DC–MD–VA–PA). The next 3 largest sectors, surface, non-
road and EGU, all have large local and regional contribu-
tions of 87%, 94%, and 79%, respectively. The EGU sector
has the smallest local and regional contribution of these
sectors due to distant contributions from Ohio River Val-
ley states ranging from 2% to 6% per state. The short
lifetime of NO2 is most apparent when considering total
state contributions. Maryland and Virginia combined
makeup 77% of asthma contributions followed by Penn-
sylvania (6%) and DC (6%). The contributions of emissions
from other, more distant, states are much smaller for NO2-
attributable new asthma cases than for PM2.5- and O3-
attributable premature deaths.

3.2.3. Spatial distribution of source contributions

Here, we focus on quantifying the role of local versus
regional versus distant contributions to pollutant expo-
sures in DC. Denoting the center of DC as 38.9�N,
77.0�W, in this section, we consider “local” contributions

as coming from emissions from grid cells with centroids
within 0.5� latitude and longitude of the center of DC.We
consider “regional” contributions as those coming from
within 2.0� latitude and longitude of the center of DC.
We consider “distant” contributions as those coming from
beyond 15� latitude and longitude of the center of DC.We
use the term “extra-regional” to refer to all emissions out-
side of the “regional” area including “distant” emissions.
We also identify contributions from specific distant point
sources and sectors.

Previously, we considered the spatial distribution of
contributions in terms of adjoint sensitivities calculated
at the resolution of model grid cells (0.5� � 0.667�) aggre-
gated up to the state level. Here, we further improve the
resolution of these spatial contributions by putting the
model sensitivities on the fine resolution (0.1� � 0.1�) grid
of the NEI as implemented in GEOS-Chem. In doing so, we
assume that there is no subgrid variability in the sensitiv-
ities and that sensitivities remain constant at this fine res-
olution across the larger model grid cells. This assumption
introduces error in our analysis. At this finer resolution,
there would naturally be areas of higher and lower sensi-
tivity. Influences from topography, proximity to DC, and
meteorological factors, which all vary at this fine resolution,
could impact whether a pollutant exposure would be more
or less sensitive to emissions from a fine grid cell. Despite
these limitations, a benefit of this approach is that contri-
butions from individual point sources, road systems, and
smaller regions of states are identifiable (Figure 5). Because
of this, we will consider emission contributions at the fine
resolution of the NEI (0.1� � 0.1�). The spatial distribution
of sectoral contributions is discussed in this section, and the
spatial distribution of species contributions is presented in
the supplemental (S13). We mark the prominent locations
discussed in this and the following sections in the supple-
mental (S16) and recommend referring to this when spe-
cific locations in the area surrounding DC are discussed.

Some spatial emission contribution patterns occur sim-
ilarly for all 3 pollutant exposures. Emissions from within
and directly surrounding DC contribute the most to all
pollutant exposures. Local emissions, as described above,
contribute 29%, 34%, and 69% of PM2.5, O3, and NO2

exposures, respectively. These 100 grid cells represent only
0.03% of the total area of the NEI. Local emissions con-
tribute over twice as much to NO2 exposure than the
other 2 pollutants which is consistent with the shorter
lifetime of NO2 as discussed previously. Another common
feature across all 3 pollutants is large emission contribu-
tions from 2 highways, I95 and I81. Additionally, emis-
sions from point sources, primarily from EGUs, in
western Pennsylvania and along the border of Ohio and
West Virginia contribute to all 3 pollutants with varying
magnitudes.

Although both regional and distant emissions contrib-
ute to DC’s PM2.5 exposure, 53% of DC’s PM2.5 exposure is
contributed by regional emissions as defined above. Emis-
sions from Richmond, VA (37.5�N, 77.4�W) and the sur-
rounding area (0.3� around this point), which we consider
as “regional,” contribute 1.8% of all PM2.5 exposure in DC.
A few notable sites fall outside of the “regional” domain.
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Emissions from New York City (40.7�N, 74�W) and the
surrounding area (0.3� around this point) contributed
0.8% of DC’s PM2.5 exposure. Although it was decommis-
sioned in 2018, in 2011, emissions from the Inco Super-
stack in Sudbury, Ontario (46.4�N, 81.2�W), contributed
0.3% of all anthropogenic PM2.5 exposure in DC.

Regional emissions contribute 59% of O3 exposure,
proportionally more than their contributions to PM2.5

exposure. This is partially due to above average NOx emis-
sions in the region surrounding DC to which O3 is more
sensitive to than PM2.5. O3 exposure has a larger contri-
bution from “distant” emissions, as described above, with

this category making up 6.7% of O3 contributions com-
pared to 5.8% of PM2.5 and 0.4% of NO2. Emissions from
Richmond, VA, contributed 2.4% of the anthropogenic
contribution to O3 exposure.

A cluster of power plants within 0.3� of Morgantown,
WV (39.6�N, 80.0�W), with the largest emissions coming
from 3 EGUs (Hatfield’s Ferry Power Station, Fort Martin
Power Station, and Longview Power) contribute propor-
tionally more to O3 exposure (1.1%) than to PM2.5 expo-
sure (0.6%). At the same time, power plants near
Parkersburg, WV (39.3�N, 81.6�W), with the largest emis-
sions coming from 2 EGUs (Muskingum River and

Figure 5. Gridded contributions to the 3 pollutant exposures. The spatial distribution of annual contributions of
emissions to exposures of PM2.5, O3, and NO2. Grid cells where emissions contributed less than 10 pptv, 10 pptv, and 3
ng/m3 to DC’s annual exposures to PM2.5, O3, and NO2, respectively, are not shown. Total (TOT) contributions for each
pollutant are given in the first row; subsequent rows show the spatial distribution of contributions from the 4 highest
contributing sectors: nonroad (NON), energy-generation units (EGU), surface (SF), and on-road (ONR). DOI: https://
doi.org/10.1525/elementa.2021.00043.f5
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Pleasants Power Station), contribute more to PM2.5 expo-
sure (0.5%) than to O3 exposure (0.3%) in DC. These dif-
ferences are initially somewhat counterintuitive as we
expect that transport would be one of the strongest dri-
vers for extra-regional contributions which would be con-
stant across pollutants. This difference, however, can be
explained by the speciation of emissions. The sites around
Morgantown emitted 50.9 Gg of NOx and 17.6 Gg of SO2

in 2011, while the sites around Parkersburg emitted
6.8 Gg of NOx and 56.1 Gg of SO2 in 2011. Despite its
further distance, the higher SO2 emissions of the sites near
Parkersburg lead to higher PM2.5 exposure contributions
in DC.

3.3. Pollutant exposure contributions at finer

temporal scales

At annual timescales, on-road vehicle NOx emissions, pri-
marily from DC and its surrounding area, contribute the

most to DC’s air pollution and its associated health impacts.
However, decomposing this source attribution temporally
to individual months and subsequently including seasonal
changes reveals the complexity inherent to source attribu-
tion. Policies that consider this added complexity can
increase their effectiveness beyond decisions made solely
based on annual source apportionment, which may fail to
completely characterize dynamic monthly changes in emis-
sions and meteorology. In the following analysis, we con-
sider seasonal changes in meteorology, transport, and
atmospheric chemistry—contained within the daily sensitiv-
ities—along with seasonal changes of the magnitude of
emissions from daily NEI emissions to characterize the over-
all seasonality of source contributions across regions, sec-
tors, and species (Figures 6 and 7).

During the summertime in the eastern United States,
the jet stream weakens and shifts northward yielding
meteorological conditions that are more conducive for

Figure 6. Seasonal variations in PM2.5 sources. Normalized monthly PM2.5 contributions from regions (A), sectors
(B), and species (C). Percentage of total annual contribution for each month is given above each column. Labels for
regions, sectors, and species are given to the right of the normalized plots. Regions that contribute less than 3% to
a given month are grouped into the rest-of-domain category. All sectors and species are included for each month;
however, sectors that contributed less than 2% to a month are not labeled for that given month. DOI: https://doi.org/
10.1525/elementa.2021.00043.f6
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O3 formation (Kousky and Ropelewski, 1997). During this
time, OA formation from emitted VOCs and sulfate forma-
tion from emitted SO2 may be more favorable due to more
active photochemistry (Kim et al., 2015). In the winter-
time, colder and wetter conditions are more favorable for
emitted NH3 to form ammonium nitrate and less favor-
able for O3 formation due to a reduced photochemical
source (Zhang et al., 2015). Our simulation captures this
seasonality in composition; sulfate and SOA concentra-
tions are 19% and 41% higher in the summertime than
in the wintertime while ammonium nitrate is 126% high-
er in the wintertime than in the summertime. Beyond
meteorological seasonality, there is seasonality to anthro-
pogenic emission behaviors; higher temperatures in the
summer lead to an increased demand for air conditioning
and subsequently more EGU emissions. In the wintertime,
cooler temperatures prompt increased residential natural
gas and wood combustion. There is also inherent season-
ality to natural emissions, for example, biogenic emissions

are higher in the summertime in the eastern United States
prompting more SOA formation. We present the seasonal
source apportionment in terms of exposures, as opposed
to health impacts, to characterize seasonal contribution
differences across pollutants.

3.3.1. Seasonal PM2.5 source apportionment

We present normalized monthly emission contributions to
PM2.5 exposure separated into the 3 previously considered
source groups of regions, sectors, and species (Figure 6).

Normalization for each month is done by dividing each
source category contribution by the total anthropogenic
contribution from the month. Sectoral contributions have
among the strongest seasonality for PM2.5. RES wood com-
bustion emissions contribute 70.1 times more in the win-
tertime, defined to be December through March, than in
the summertime, defined to be May through August; this
is unsurprising as more residential wood combustion oc-
curs in the winter. In contrast, in the summer, EGU

Figure 7. Seasonal variation in O3 sources. Normalized monthly O3 contributions from regions (A), sectors (B), and
species (C). Percentage of total annual contribution for each month is given above each column. Labels for regions,
sectors, and species are given to the right of the normalized plots. Regions that contribute less than 3% to a given
month are grouped into the rest-of-domain category. All sectors and species are included for each month; however,
sectors that contributed less than 2% to a month are not labeled for that given month. DOI: https://doi.org/10.1525/
elementa.2021.00043.f7
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emissions contribute 159%more than in the winter which
corresponds with increased energy demand from heavier
AC usage. Surface sector emissions peak in the wintertime
with 71% larger contributions than in the summertime;
the above average wintertime contributions come primar-
ily from emissions of OC, NH3, and VOCs which, at annual
time scales, are mostly associated with waste disposal,
industrial combustion, and solvent use (S1). Nonroad vehi-
cle emission contributions are 99% higher in the summer-
time than in the wintertime. This contribution peak
corresponds with national emission increases of 60%,
83%, and 61% from the 3 most emitted species from the
nonroad sector, VOCs, NOx, and OC. Adjoint sensitivities
calculated for these 3 species are 17%, 121%, and 3%
higher in the wintertime than in the summer indicating
that this higher summertime nonroad contribution per-
sists despite unfavorable formation conditions. Agricul-
tural, industrial, and on-road contributions remain
relatively constant throughout the year with summer con-
tributions –19%, þ21%, and –2% the winter values. The
latter 2 are not surprising as these sectors emission pat-
terns remain relatively stable throughout the year; how-
ever, we would expect agricultural contributions to share
a somewhat similar seasonality with NH3 contributions.
This difference in seasonality is explained by emission
patterns. During the summertime, agricultural emissions
contribute 75% of all NH3 contributions, while in the
wintertime, agricultural contributions dip making up only
46% of NH3 contributions. In contrast, NH3 sensitivities in
the wintertime are 300% larger than in the summertime.
This suggests that increased agricultural emissions in the
summertime are mitigated to some extent by less favor-
able PM2.5 formation conditions, resulting in relatively
consistent agricultural contributions year-round.

Of all the source categories, regionality has the weakest
relationship to seasonality. Across all months, emissions
from local and regional sources (DC, MD, PA, and VA)
contribute the largest portion of anthropogenic PM.2.5

exposure in DC; the local contribution from emissions in
each month ranges from 46% in April to 69% in Septem-
ber. For every month, the 3 largest regional contributors
are Virginia, Maryland, and Pennsylvania, albeit in varying
order. In the wintertime, high contributing colder states at
more northerly latitudes (PA, OH, MI, IN, IL, and NY) con-
tribute 14% more to PM2.5 exposure than in the summer-
time, due to higher residential contributions from this
region across this period. Considering the EGU sector, the
high contributing Ohio River Valley States (PA, OH,WV, IN,
and KY) contribute 14% more in the summertime, when
there is an increased demand for energy, than in the win-
tertime. As some states fall in both groups, this summer-
time–wintertime difference is less pronounced than when
considering sectoral seasonality exclusively from regional-
ity as considered previously. Even though local and
regional emissions contribute the most throughout the
year, one interesting feature of the regional seasonality
is the increased contribution from emissions from distant
locations, defined to be all states excluding the nearby
states (DC, MD, PA, VA, OH, MI, IN, IL, WV, KY, TN, NC, and
NJ), in the wintertime. These distant states contribute 34%

more in the wintertime than in the summertime owing to
stronger wintertime westerlies and longer chemical life-
times of many species owing to reduced photochemical
and physical sinks.

Species emission contributions also have strong sea-
sonal patterns for PM2.5 exposure. All species except BC
and NOx have large differences in contributions between
summer and winter. Emissions of SO2 and VOCs contrib-
ute more in the summertime with 171% and 47% larger
contributions; this is consistent with seasonal patterns of
PM2.5 composition in the southeastern United States (Kim
et al., 2015) as in the summertime there is increased pho-
tochemistry driving the oxidation chemistry needed for
the formation of sulfate and SOA. On the other hand,
emissions of NH3 and OC contribute more in the winter-
time with 105% and 236% larger contributions. For NH3,
as discussed previously, there are higher wintertime sen-
sitivities due to more favorable formation conditions of
ammonium nitrate (Guo et al., 2019). Emissions of OC
contribute more in the winter for a different reason, as
sensitivities are only 17% higher in the wintertime. For
OC, the increased residential emissions during the winter-
time, transitioning from 1.6% of OC contributions in the
summertime to 41% of OC contributions in the winter-
time, are responsible for the large seasonal differences.
Overall, our methodology allows us to disentangle the
relationships between regions, sectors, and species to
accurately identify the driving forces for seasonal changes
in contribution.

3.3.2. Seasonal O3 source apportionment

We characterize seasonality in this discussion by compar-
ing emission contributions from the middle of the period,
or the summertime peak (June, July) to the shoulder sea-
son (April, September). There were small emissions con-
tributions from March; however, they were in total less
than 0.1% and thus are excluded from this discussion.
Local and regional emissions (DC–MD–VA–PA) contribute
71% and 70% of O3 exposure contributions in June and
July; however, they only contribute 43% and 58% of O3

exposure contributions in April and September. This is
consistent with expectations; during the middle of sum-
mer, there is a larger photochemical sink than during the
shoulder season which shortens the lifetime of many che-
mical species. Emissions from the Ohio River Valley states
contributed 5.5 times more in the middle of the period
than at the ends of it, making up 9% of contributions at
the ends of the period compared to 21% of contributions
in the middle of summer; this corresponds to increased
EGU demand and emissions. While summertime NOx sen-
sitivities were 27% higher in the peak than in the
shoulders, the more favorable O3 formation conditions
in the peak are not nearly strong enough to fully explain
the shift in contributions.

Sectoral seasonality of contributions to O3 exposure
was, generally, less pronounced than regional seasonality.
In the middle of summer, emissions from on-road vehi-
cles, nonroad vehicles, and EGUs contributed 44%, 15%,
and 9% of all contributions compared to 41%, 18%, and
13% during the shoulder season. Surface emissions were
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the only source to exhibit a decrease during the middle of
summer. During the shoulder season, surface emissions
contribute 22% of all O3 exposure contributions; however,
during the middle of summer, they only contribute 17%.
Despite this, surface emissions still contribute 100%more
O3 exposure contributions in the middle of summer than
in the shoulder season; this indicates that the propor-
tional surface contribution decrease in the peak of sum-
mer is more a product of other sectors having larger
proportional increases than changes to emission patterns
or sensitivities.

Finally, considering species seasonality, contributions
from emissions of VOCs and CO make up their largest
proportional contributions in the shoulder season; they
contribute 16% and 8% compared to 8% and 3% during
the middle of summer. During the middle of summer,
there is a greater availability of nonanthropogenic VOCs,
from biogenic emissions that contribute to O3 formation.
As a result, more O3 is formed overall but proportionally
less is contributed by anthropogenic VOCs. NOx contribu-
tions have the opposite seasonal pattern of VOCs and CO
proportionally peaking at 89% in the middle of summer
compared to 75% during the shoulder season. During the
peak of summer, more active photochemistry causes
quicker NOx cycling and in turn more formation of O3

corresponding with the modeled summertime NOx contri-
bution peak. Beyond this, seasonal patterns in nonroad
and on-road emissions contribute to higher NOx

contributions in the middle of summer.We do not include
normalized NO2 monthly source apportionment in this
discussion as the seasonality of NO2 is even less pro-
nounced than O3; however, a similar figure can be found
in the supplemental (S9).

3.3.3. Daily emission contributions to pollutant

exposures

As presented above, disaggregating annual source appor-
tionments to the monthly timescale improves character-
ization of the sources of pollution in DC through the
consideration of seasonality; however, short-term dynamic
changes of the factors involved in pollutant formation like
a shift in the average advection direction, a period of
sustained higher or lower temperatures, a high precipita-
tion period, or a unique emission event are not considered
when source apportionments are performed at the
monthly level. In this section, we present daily contribu-
tions, considering how emissions from a single day con-
tribute to pollutant exposures, for PM2.5 exposure, while
still maintaining the source categories of regions, sectors,
and species. We present an example of these daily source
contributions (Figure 8) for PM2.5 exposure for the month
of October; in this month, a unique emission event occurs
with a proportionally large annual contribution. Daily con-
tributions for all available months across all 3 pollutants
are presented in the supplemental (S10–S12). Although
we briefly discuss O3 and NO2 daily contributions here,

Figure 8. Daily contributions to PM2.5 exposure in October. Daily emission contributions to PM2.5 exposure in
October separated by region, species, and sector. The area plot shows the absolute amount contributed by different
source categories for each day. Vertical black lines block out contributions from specific days; for most days, a pie chart
is included that shows the relative breakdown of sources for the specific category. Pie charts are excluded for days
when at least one source category had a negative contribution. The 13 highest contributing regions are presented; all
other regions are grouped into the “rest-of-domain” category. All sectoral and species contributions are included.
DOI: https://doi.org/10.1525/elementa.2021.00043.f8
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most of the discussion of daily emission contributions to
O3 and NO2 exposure are included in the supplemental.

Overall, for longer lived species with more diverse
sources, like PM2.5 and O3, a daily source apportionment
approach captures unique events by identifying both the
sources of emissions and the magnitude of their contribu-
tions over some period of time. This approach simulta-
neously quantifies how emissions from a day or period
contribute to a pollutant exposure and where those con-
tributions came from. However, the daily source appor-
tionment approach is less beneficial for shorter lived
species, like NO2, as there is little daily variation in
sources.

For daily variability in pollutant contributions, it is use-
ful to quantify daily variability in emissions as well to
identify whether emission patterns or adjoint sensitivities
are the major driver for variability for a given pollutant
and species. For PM2.5 precursor species, consider the
emission variability for BC (73%–117%), OC (74%–
125%), NH3 (63%–194%), NOx (85%–110%), SO2 (78%–
122%), and VOCs (87%–125%) where ranges indicate the
ratio of the least and most emission from a single day to
the mean value of the month.

We consider how daily emissions from October (Figure
8) contribute to DC’s annual PM2.5 exposure. The most
notable feature in October was a period of increased emis-
sion contributions between October 6 and 10; PM2.5 pre-
cursor emissions during this 5-day event contributed 0.4
ug/m3 or 2.6% of all anthropogenic contributions to
annual PM2.5 exposure in DC. On average, emissions dur-
ing this period contributed 1.9 (1.5–2.5) times the average
daily contribution in 2011. Across this 5-day period, emis-
sions from Maryland (32%), Virginia (23%), Pennsylvania
(21%), and New York (5%) made up most of the contribu-
tions. Although emissions from New York were relatively
small in magnitude, proportionally they were higher than
average; emissions contributed 4.7 times more, as a daily
average, compared to the rest of the year and emissions
during this 5-day period alone contributed 6% of all of
New York’s emission contributions to DC’s PM2.5 exposure.
Across all states, over this 5-day event, on-road vehicle
(32%), surface (30%), nonroad (17%), and agricultural
(7%) emissions that originated from VOCs (34%), NOx

(25%), OC (16%), and NH3 (13%) contributed the most
to PM2.5 exposure in DC. Most notably, during this event,
on-road vehicle emissions and NOx emissions contributed
proportionally more than during the rest of the month
when these emissions contributed 25% and 17%,
respectively.

Across this period, and throughout most of the year,
the variability in adjoint sensitivities, which include mete-
orological variability, contributed more to the daily vari-
ability in source contributions than day-to-day variability
in the emissions themselves. Daily contributions to PM2.5

exposure have sizable differences from the monthly mean
contributions; they vary from 28% to 284% of the
monthly mean value. Comparing this variability to emis-
sions variability, we find that most of the day-to-day var-
iability is explained by meteorology, characterized by the
adjoint sensitivities, and not from the emissions. This is

also true for the other 2 pollutants, as discussed in the
supplemental.

3.4. Exposure contribution changes between 2011
and 2016
In this analysis, we consider the changes in exposure asso-
ciated with changes to emissions between 2011 and 2016
(Figure 9A), quantifying how decreases in specific aerosol
and ozone precursor emissions resulted in substantial
health benefits of reduced premature deaths and new
pediatric asthma cases. As the changes in emissions from
2011 to 2016 are smaller than the 100% changes consid-
ered for the source attribution of 2011 presented above,
the results in this section are more accurately captured by
our linear response estimates as discussed in Section 3.5.
We combine sensitivities calculated using 2011 meteorol-
ogy with emissions from 2016 to estimate the contribu-
tion of emissions to pollutant exposures; this allows us to
assess the impact of emission changes without consider-
ing changes in meteorology.

For the source attribution of changes in both prema-
ture deaths and new asthma cases, we forego discussion of
the surface, oil and gas, and industry sectors due to dif-
fering sectoral definitions between the NEI 2011 and NEI
2016. We do compare changes in EGU and other-point
contributions with an important caveat; due to changes
in methodology of the NEI, there are components of both
the EGU and other-point sectors, as defined in the NEI
2016, that are in the surface sector. Any comparisons of
these sectors between 2011 and 2016 can be considered
as lower bound estimates of changes. The 2011 emissions
and subsequently contributions from these 2 sectors are
underestimated.

3.4.1. Source attribution changes of air pollution-

attributable premature deaths

Anthropogenic emission reductions between 2011 and
2016 resulted in net decreases of 76 (28–149) premature
deaths (–29%) in DC. For PM2.5-attributable premature
deaths, decreases of 59%, 35%, 34%, and 30% in the
EGU, other-point, nonroad, and residential sectors, respec-
tively, were the largest changes. Although on-road vehicle
absolute contributions to premature deaths decreased
more (12; 4–23), than both the nonroad (10; 4–19), and
residential (5; 2–10) sectors, due to its large contribution
in 2011, the on-road vehicle contributions had a smaller
percentage difference at 24%.

O3-attributable premature deaths decreased overall
between 2011 and 2016. Five of the 6 considered sectors
had O3-attributable health impact reductions between
2011 and 2016: other-point (50%), EGU (28%), on-road
(27%), nonroad (21%), and residential (11%). Meanwhile,
one sector had increased O3-attributable premature
deaths: shipping (86%). This breakdown is similar to that
of PM2.5 where emission reductions from all but one (ship-
ping) of the 7 considered sectors led to reductions in
PM2.5-related premature deaths; note that there is one
fewer sector (agriculture) in this comparison for O3 owing
to its negligible VOC emissions.

Art. 9(1) page 18 of 30 Nawaz et al: Source attribution of air pollution in Washington, DC
D

ow
nloaded from

 http://online.ucpress.edu/elem
enta/article-pdf/9/1/00043/486592/elem

enta.2021.00043.pdf by U
niversity of C

olorado Boulder user on 18 D
ecem

ber 2022



Overall, EGU emission reductions were proportionally
much more impactful for PM2.5 than for O3, while on-road
emission reductions were proportionally more impactful
for O3 than for PM2.5. For EGU reductions, it is possible
that the severity of the difference between PM2.5 and O3

impacts is reduced when considering the unaccounted for
“surface” component of EGU emissions; however, since
this surface level EGU component is a small fraction at
the national level, it likely has only a minor impact.

We next consider the source attribution of these expo-
sure contributions broken down by death decreases (Fig-
ure 9B) as distinct from increases (Figure 9C) to capture
the different source groups responsible for changes in
health impacts. We define “decreases” to be any species,

sector, and region combination that had a decreased rel-
ative contribution between 2011 and 2016 while
“increases” are defined as any species, sector, and region
combinations that had an increased relative contribution
between 2011 and 2016. Although we avoid comparing
the surface, oil and gas, and industry sector contribution
changes directly as mentioned above, we do consider over-
all changes from these sectors in a “miscellaneous” group.
Total decreases were over 11 times larger than increases,
which should be kept in mind when comparing these 2
groups directly.

The sectors whose emissions contributed to largest rel-
ative decreases in air pollution–attributable premature
deaths between 2011 and 2016 were the EGU (56%),

Figure 9. Changes in the sources of pollution-related premature deaths between 2011 and 2016. Source
attribution of changes in pollution-related premature death between 2011 and 2016 considering (A) net changes in
PM2.5 and O3 exposure contributions, broken down further by (B) decreases and (C) increases of air pollution–related
premature deaths. Pie charts indicate domain-wide proportions of sectors and species that contribute to decreases and
increases; categories that contributed less than 5% are not labeled. Additionally, state contributions, and their sectoral
contributions, to decreases and increases are included in the columns. DOI: https://doi.org/10.1525/
elementa.2021.00043.f9
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other-point (36%), nonroad (32%), residential (30%), and
on-road (25%). Of the 20 (10–34) fewer deaths contrib-
uted by the EGU sector, a majority came from emissions in
4 regions: Pennsylvania (20%), Ohio (17%), West Virginia
(11%), and Kentucky (6%). Net EGU emission contribu-
tions from Virginia were relatively unchanged as the in-
creases and decreases were of relatively similar
magnitude; however, this could be in part attributable
to our underestimate of EGU emissions in 2011 from not
accounting for nonplume rise EGU emissions. Most of the
decreased nonroad contributions came from 2 regions:
Maryland (29%) and Virginia (12%). A majority of the
15 (4–30) fewer premature deaths contributed by the
on-road sector came from Maryland (44%) and Virginia
(13%). The sector with the largest relative increases to air
pollution–attributable premature deaths was shipping,
with a 77% increase.

Proportionally, contributions from OC were similar in
both decreases and increases. SO2 reductions, however,
were responsible for 29% of premature death reductions
and less than 2% of premature death increases. This large,
reduced contribution from SO2 is attributable to the clos-
ing of EGUs, especially in states in the Ohio River Valley,
along with SO2 emission reductions in EGUs that re-
mained open. Of all SO2 reductions, the EGU sector was
responsible for 74% of decreases between 2011 and 2016.
Regionally, the largest SO2 reductions came from Ohio
(15%), Pennsylvania (14%), and West Virginia (9%). Over-
all VOC contributions decreased by 12 (4–26) premature
deaths; however, contributions from VOCs proportionally
were larger in increases (43%) than decreases (17%).
Regionally, all states in the eastern United States had net
decreases in pollution-related premature death contribu-
tions between 2011 and 2016. Maryland was responsible
for 19% of air pollution–attributable premature death
decreases while contributing very little to increases.

3.4.2. Source attribution changes of NO2-attribut-

able pediatric asthma cases

Between 2011 and 2016, anthropogenic emission reduc-
tions resulted in a net decrease of 227 (2–617) new pedi-
atric asthma cases. In Figure 10A, we consider these net
decreases across all sectors. Overall, the on-road, nonroad,
and EGU sectors were responsible for the most reductions
in asthma cases, despite increased contributions from
shipping. Decreases in on-road vehicle emissions had
larger health benefits for pediatric asthma cases (–56%)
than for premature deaths (–24%). Again, we consider
decreases (Figure 10B) as distinct from increases (Figure
10C). The on-road (63%) and nonroad (12%) sectors made
up large fractions of decreases and contributed very little
to increases. The shipping sector (13%) made up large
fractions of increases and contributed very little to de-
creases. The only sector that contributed both large in-
creases and decreases was the EGU sector; however,
large increases could in part be explained by our not
accounting for nonplume rise EGU emissions in the
2011 sectoral definition.

The large contributions to both decrease and increases
in the EGU sector can be further evaluated by considering

the spatial distribution of contributions. In Virginia, there
was a net increase in new pediatric asthma case contribu-
tions from EGUs between 2011 and 2016. Despite reduc-
tions from the on-road and nonroad sectors, increased
contributions partially from EGUs led to an overall
increased contribution from Virginia. It is possible that
this increased contribution from EGUs in Virginia is par-
tially attributable to our underestimating of EGU emis-
sions in 2011; however, based on the national
breakdown of plume-rise and surface EGU emissions, this
is unlikely a large enough factor to entirely account for
positive contributions. In all other states, however, EGU
contributions decreased; this is why overall there were
both relatively large increases and decreases in new pedi-
atric asthma case contributions from the EGU sector. Every
state besides Virginia contributed less asthma cases to DC
in 2011 than in 2016. Emission changes in Maryland alone
majorly benefited DC by contributing 170 (30–368) fewer
asthma cases, which made up 75% of all decreased reduc-
tions. Emission decreases from DC, Pennsylvania, and Ohio
resulted in reduced pediatric asthma incidence contribu-
tions with net decreases of 16 (1–39), 13 (0–35), and 7 (1–
15), respectively. Across all states with major decreases, the
on-road sector was always the sector with the greatest
decrease in contributions to NO2-attributable new pediat-
ric asthma cases.

3.4.3. Source attribution changes from all health

impacts

Considering both premature deaths and pediatric asthma
cases, reductions in the health burden of DC between
2011 and 2016 were primarily due to decreased on-road,
EGU, and nonroad contributions despite increased contri-
butions from shipping. Of the large regional health impact
contributors, emission decreases in Maryland were the
most beneficial to DC followed by DC itself and Pennsyl-
vania. The health impacts associated with changes in emis-
sions in Virginia were more mixed; emissions from
Virginia contributed less to premature deaths but more
to asthma cases in this 5-year time frame. Since we use the
same sensitivities for both 2011 and 2016, the above dif-
ference is directly comparing the changes attributable to
emission changes and not from changes in meteorology.
Across both health impacts, we estimate net decreases in
EGU contributions of at least 20 (10–34), fewer premature
deaths, and 26 (2–65) fewer new asthma cases.

3.5. Uncertainty analysis

Uncertainty is inherent in the 3 main steps of our analysis:
the forward model calculation of pollutant exposures, the
adjoint model calculation of pollutant exposure sensitiv-
ities, and the health impact analysis. While uncertainty in
the first 2 steps is addressed in the following paragraphs
and accounted for through the inclusion of satellite-
derived data, it is not formally considered in the uncer-
tainty bounds we report for the health impacts; for the
latter, we only consider the uncertainty in the health
impact calculation as it is typically (Lee et al., 2015; Anen-
berg et al., 2019b) the highest source of uncertainty in
health impact assessments (which we find to also be the
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case here as explained below) and because of the difficulty
in specifying the covariance between the health impact
calculation and the other sources of uncertainty that
would be needed to rigorously combine them.

Uncertainty in forward model calculations of pollutant
concentrations is introduced by meteorological and emis-
sions inputs and approximations or omissions in the pro-
cesses or chemistry represented by the model. To
compensate for forward model biases, for PM2.5, we per-
form a satellite rescaling to replace the simulated concen-
trations with a satellite-derived product that performs well
against out of sample cross-validated in situ observations
(R2 ¼ 0.81; van Donkelaar et al., 2016). By incorporating
satellite-derived data, there is a reduction in bias from

þ28% to þ22% for PM2.5. Additionally, we apply a satel-
lite downscaling to the simulated NO2 columns; here, we
perform a downscaling, as opposed to a rescaling, because
the simulation year, 2011, differs from the satellite prod-
uct years, 2018–2019. Uncertainty in the O3 simulation is
the greatest since it is the only pollutant we consider
without a satellite-based correction. A positive O3 bias has
been identified previously in GEOS-Chem (Travis et al.,
2016) and in other models (Butler et al., 2020; Turnock
et al., 2020) and arises in part due to comparing O3 mole
fractions from the lowest model level (approximately 65
m) to in situ observations much closer to the ground
(approximately 2 m). By adjusting lowest model level max-
imum 8-h daily average (MDA8) O3 (midpoint at 65 m) to

Figure 10. Changes in pollution-related new asthma cases between 2011 and 2016. Source attribution of
changes in pollution-related new asthma cases between 2011 and 2016 considering (A) net changes in NO2 exposure
contributions, broken down further by (B) death decreases and (C) increases of air pollution–related new pediatric
asthma cases. Pie charts indicate domain-wide proportions of sectors and species that contribute to decreases and
increases; categories that contributed less than 5% are not labeled. Additionally, state contributions, and their sectoral
contributions, to decreases and increases are included in the columns. DOI: https://doi.org/10.1525/
elementa.2021.00043.f10
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the height of aircraft observations (10 m), one study (Tra-
vis and Jacob, 2019) estimated an improvement in bias
from þ8 ppb to þ5 ppb in the southeast United States in
August–September 2013 compared to observations from
an aircraft campaign. Based on a simple global simulation
conducted by us at the 2� � 2.5� for 2010, we estimate that
over the 6-month peak period in the grid cell containing
DC correcting to the 2 m height would lead to a reduction
in NMB of 10% for MDA1 O3 with daily varying reductions
ranging from 2% to 30%. Generally, errors in model con-
centrations reflect the uncertainty introduced from model
inputs like meteorological fields and emissions; artifacts in
the output of our simulations formed from uncertainties in
the input are thus partially captured when comparing con-
centrations and exposures to in situ observations for 2011.
When considering the results for 2016, there would be
artifacts from the 2011 simulation that would differ if we
instead considered inputs for 2016; we do not consider this
uncertainty in our analysis. Overall, we calculate mean con-
centrations, in the form of the exposure metrics, that are
122%, 125%, and 112% the values of the comparable in
situ observations for PM2.5, O3, and NO2. All of these biases
are positive, so we likely overestimate source contributions
slightly; however, these errors are much smaller than those
introduced in other steps.

The adjoint calculation uncertainty comes from this
method providing only a first-order linear approximation
of source contributions. For OC and BC, there are no errors
owing to nonlinear effects as the model representation of
these species is linear. For NH3, NOx, SO2, and VOCs, since
this first-order approximation neglects higher order sensi-
tivities, the sensitivities calculated here will not necessarily
represent the changes in pollutant exposures for large
emissions perturbations. When comparing 2011 and
2016 directly, the overall emission perturbations are likely
smaller than the range in which this approximation breaks
down; however, this is not necessarily true when consid-
ering the 100% perturbations in individual years. We con-
servatively consider uncertainty introduced through this
nonlinearity by treating the sum of total contributions as
the central value and calculate a lower and upper bound
informed by the difference between the cost functions
and the sum of total contributions. While we consider
uncertainty bounds for all 3 pollutants, we apply a correc-
tion factor specifically for O3, the most nonlinear of these
pollutants for the conditions of this study, by scaling
adjoint sensitivities to the cost function values; a similar
approach has been done in another study (Ni et al., 2018).
Considering all of this, the anthropogenic contributions
are 16 (12–20) ug/m3, 75 (33–116) ppbv, and 19 (16–22)
ppbv for PM2.5, O3, and NO2, respectively. Comparing
these ranges to the central estimate as a percentage dif-
ference, we estimate errors of 24%, 55%, and 18% for the
same pollutants, respectively. Our estimates of the
changes in source contributions between 2011 and 2016
are likely more robust than the absolute contribution es-
timates for either of these years; these uncertainties are,
however, smaller than those in the health impact assess-
ment. We also note the source attributions are more accu-
rate in a relative sense than an absolute sense. Overall, we

choose not to combine these uncertainties with those
from the health impact calculation as we lack information
on the covariance between these 2 quantities; however,
both sources of uncertainty are important to consider.

Previous studies have considered to what extent the
linear (first order) response is accurate.

For O3, the root mean square error in first-order con-
tributions ranged from 1 to 4 ppb and 0.5 to 2.5 ppb
higher than higher order contributions for NOx and VOC
perturbations, respectively (Hakami et al., 2004), for 50%
perturbations. For PM2.5, second-order sensitivities were
calculated by Koo (2011) by performing separate adjoint
calculations with aviation emissions turned off at the
global 2� � 2.5� resolution in GEOS-Chem. Using these
sensitivities, first-order uncertainty ranged in magnitude

as (all in units of 10–9 (ugm3)/(
kg
m2s)): for NH3, –3 to 3; for NOx,

–2 to 2; and for SO2, –0.4 to 0.4. For comparison, the first-
order sensitivities of these precursors ranged in magni-

tude as (all in units of 10–9 (ugm3)/(
kg
m2s)): for NH3, –150 to

150; for NOx, –60 to 60; and for SO2, –60 to 60. Uncer-
tainty in the forward and adjoint modeling will have the
greatest impact on the overall magnitude of contribu-
tions, as opposed to their relative contributions. Because
of this, relative results in our study are more accurate than
overall totals.

The health impact analysis includes uncertainty in the
population estimates, the health outcome mortalities and
incidence, and the exposure response relationships used
to estimate the health impacts. The former is quantified
using the lower and upper bounds of the population,
mortality, incidence, and risk data reported by the GBD
2019. Epidemiological studies include uncertainty bounds
in the exposure response relationships. By considering the
lower and upper bounds across all 3 of these factors, we
can quantify uncertainty bounds around the total
pollution-relation health impacts can be calculated. There
is also additional uncertainty in the health impact analysis
introduced by the choice of the concentration–response
relationship used to estimate premature deaths. To
account for this for PM2.5, we reran our calculations using
the GEMM (Burnett et al., 2018) model and compared
them to the GBD 2019 estimates. For just PM2.5, the
GEMM estimated premature deaths of 319 in 2011 and
223 in 2016; this is larger than the GBD 2019 estimates of
237 in 2011 and 167 in 2016.

Overall, we find that for each unique contribution (�1
� 10–9) to health impacts in DC, impacts range (as a per-
centage difference comparing the central estimate to both
of the bounds) from –46% to þ61%, –94% to þ145%,
and –65% to þ60% for PM2.5, O3, and NO2, respectively.

Across all 3 pollutants, both the lower and upper
bounds of uncertainty in the health impact calculation
were larger than that introduced from the local-linear
adjoint approximation, the other large source of uncer-
tainty in this study.

4. Conclusion
In this study, we characterized the sources of air pollu-
tion–related health impacts in DC in 2011 and quantified
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changes in these health impacts between 2011 and 2016.
Anthropogenic emissions contributed an estimated 263
(130–444) PM2.5- and O3-attributable premature deaths
and 1,120 (391–1,795) NO2-attributable pediatric asthma
cases in Washington, DC, in 2011. PM2.5 exposure had the
most diverse sectoral sources of all 3 pollutants due in
large part to the differing sources of its precursor species.

Between 2011 and 2016, decreases in pollution-related
health impacts occurred due to decreases in anthropo-
genic emissions. Anthropogenic emission reductions re-
sulted in an estimated 76 (28–149) fewer air pollution–
related premature deaths and 227 (2–617) fewer NO2-
attributable pediatric asthma cases in DC between these
years. Decreases in air pollution–attributable premature
deaths primarily came from improvements in the EGU,
on-road, and nonroad sectors. These decreases present evi-
dence of the health benefits of closing coal power plants
near DC and transitioning to cleaner fuels for energy gen-
eration. The agriculture sector showed little change in
contributions between 2011 and 2016. Decreased contri-
butions to NO2-attributable pediatric asthma cases came
primarily from the on-road sector (63%) although de-
creases from the nonroad and EGU sectors also occurred.
From Virginia, EGU contributions to NO2-attributable new
asthma cases likely increased between 2011 and 2016; at
most, EGUs made up 34% of all increases in Virginia.
Reduction in emissions from Maryland were the most
responsible for decreases in asthma incidence (74%).

The novel approach presented in this work is applicable
to any region that falls within a nested domain at 0.5� �
0.667� or finer spatial resolution in GEOS-Chem and for
which a local or regional sector and species-specific emis-
sions inventory is available. By incorporating satellite-
derived surface-level pollutant concentrations into our
analysis, pollutant concentrations better match in situ
data and allow for more accurate calculation of exposures
and health impacts. By calculating adjoint sensitivities at
a daily time step, contributions from individual days can
be derived allowing for the identification of unique emis-
sion periods or events. By aggregating daily contributions
to the monthly timescale, seasonality of contributions to
pollutants can be identified.

There are multiple sources of uncertainty that should
be considered when interpreting these results. The accu-
racy of our simulated pollutants, compared to observa-
tions, depends upon the accuracy of the emissions
inventories and meteorological fields that are input into
our simulations; since we are presenting results at fine
temporal resolution, and since uncertainties in these 2
inputs are likely larger at finer temporal resolutions, any
uncertainty at the daily timescale would be higher than
for monthly or annual results. Our modeling setup does
not consider fugitive dust which could underestimate
total PM2.5 and in turn the relative sectoral contributions,
although dust is typically low in the eastern United States.
The adjoint sensitivities are calculated at a coarse spatial
resolution of 0.5� � 0.667�; at this resolution, it is impos-
sible to resolve fine scale sensitivities which results in an
underestimate of contributions near DC. As the coarse
scales of the sensitivity calculations performed here may

underestimate this hyperlocal (within the district) sensi-
tivity, we avoid commenting on the distribution of con-
tributions within versus outside of the district and
primarily focus our analysis on the distribution and char-
acterization of sources outside of this area.

Additionally, the response sensitivity relationship used
in the contribution calculation is only a first-order approx-
imation that is the most valid close to the input emission
magnitudes. When we consider larger changes in emis-
sions, as we do in our analysis for annual source contribu-
tions, the nonlinear emission responses are larger, and
thus, our results are less accurate. When calculating con-
tributions for 2016, we combine 2016 emissions with
sensitivities calculated with respect to 2011 pollutant ex-
posures; this could introduce error due to year-to-year
changes in meteorology and evolution of the chemical
regime between these 2 periods. To mitigate the uncer-
tainty introduced by this, we only consider annual results
for analysis of the difference between 2016 and 2011 and
ignore smaller timescales (e.g., daily contributions). When
incorporating NO2 satellite data into this analysis, we use
TROPOMI columns oversampled for a period including
parts of 2018 and 2019 since this is the earliest that TRO-
POMI data are available. This downscaling relationship
applied to the simulation for 2011 incorporates subgrid
variability from TROPOMI columns in 2018 and 2019
which are not necessarily consistent with subgrid variabil-
ities for 2011. While OMI columns are available for the
year of our simulation, the improved spatial resolution of
the TROPOMI product was more beneficial for resolving
urban-scale pollutant mole fractions. Beyond all these un-
certainties, there are large inherent uncertainties in the
risk exposure relationships used to estimate health im-
pacts (Anenberg et al., 2010; Cohen et al., 2017; Anenberg
et al., 2018; Achakulwisut et al., 2019).

With these uncertainties in mind, the results of this
work have a range of air quality policy implications. While
the air quality policy focus in DC has primarily been on O3

due to its current nonattainment of the 2015 8-h max O3

NAAQS, it was reductions in PM2.5 not O3 that accrued
more health benefits between 2011 and 2016. By consid-
ering the cobenefits from emission reductions of reduced
PM2.5-attibutable premature deaths and NO2-attributable
pediatric asthma cases, the health benefits of these reduc-
tions are made clear even if the NAAQS attainment status
of O3 remains unchanged. Such cobenefits allow local
governments to inform their citizens of the effectiveness
of emission reduction policies and actions. Calculating
contributions at a fine temporal resolution makes it pos-
sible to identify the impacts that emissions from an indi-
vidual day have on pollutant exposures and their
associated health impacts. The approach outlined in this
work presents a framework for characterizing the sources
of pollution at the urban scale that is applicable to other
cities throughout the world. However, calculating sensitiv-
ities at the coarse 0.5� � 0.667� resolution presents a chal-
lenge for accurately identifying the impacts that city
emissions have on the city itself. Using finer spatial reso-
lution emissions can partially mitigate this problem; how-
ever, ultimately this is a limitation of this framework and
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presents a need for further development of urban-scale
sensitivity calculations. Despite this limitation, our results
still show the value for multijurisdictional cooperation in
air quality management across municipal, county, state,
and federal levels.
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