Methods for Host-based Intrusion Detection with Deep Learning

JOHN H. RING 1V, University of Vermont, Department of Computer Science, USA and MassMutual,
Data Science

COLIN M. VAN OORT, SAMSON DURST, VANESSA WHITE, JOSEPH P. NEAR, and
CHRISTIAN SKALKA, University of Vermont, Department of Computer Science, USA

Host-based Intrusion Detection Systems (HIDS) automatically detect events that indicate compromise by adversarial appli-
cations. HIDS are generally formulated as analyses of sequences of system events such as bash commands or system calls.
Anomaly-based approaches to HIDS leverage models of normal (a.k.a. baseline) system behavior to detect and report abnormal
events and have the advantage of being able to detect novel attacks. In this article, we develop a new method for anomaly-
based HIDS using deep learning predictions of sequence-to-sequence behavior in system calls. Our proposed method, called
the ALAD algorithm, aggregates predictions at the application level to detect anomalies. We investigate the use of several
deep learning architectures, including WaveNet and several recurrent networks. We show that ALAD empowered with deep
learning significantly outperforms previous approaches. We train and evaluate our models using an existing dataset, ADFA-
LD, and a new dataset of our own construction, PLAID. As deep learning models are black box in nature, we use an alternate
approach, allotaxonographs, to characterize and understand differences in baseline vs. attack sequences in HIDS datasets
such as PLAID.

CCS Concepts: « Security and privacy — Intrusion detection systems; - Computing methodologies — Neural net-
works; Ensemble methods;

Additional Key Words and Phrases: Host-based intrusion detection systems; deep learning; system calls

ACM Reference format:

John H. Ring IV, Colin M. Van Oort, Samson Durst, Vanessa White, Joseph P. Near, and Christian Skalka. 2021. Methods for
Host-based Intrusion Detection with Deep Learning. Digit. Threat. Res. Pract. 2, 4, Article 26 (October 2021), 29 pages.
https://doi.org/10.1145/3461462

1 INTRODUCTION

In this work, we improve the state of the art for Host-based Intrusion Detection Systems (HIDS) utilizing
anomaly-detection. Intrusion Detection Systems (IDS) aim to automatically detect events indicating system
compromise by malicious adversaries. Due to the growing importance of security threats, this problem has re-
ceived considerable attention both in academic research [30] and from industry [53, 54, 57]. HIDS are a class of
IDS that monitor a computer system’s internals and interfaces to detect intrusions. Systems that utilize anomaly-
detection model normal system behavior and report abnormal events. The primary alternative to anomaly-based

Authors’ addresses: J. H. Ring IV, University of Vermont, Department of Computer Science, Burlington, VT, USA, 05401, MassMutual, Data
Science; email: jhring@uvm.edu; C. M. Van Oort, S. Durst, V. White, J. P. Near, and C. Skalka, University of Vermont, Department of Computer
Science, Burlington, VT, USA, 05401; emails: {cvanoort, Samson.Durst, vwhitel, jnear, ceskalka}@uvm.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2576-5337/2021/10-ART26 $15.00

https://doi.org/10.1145/3461462

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



https://doi.org/10.1145/3461462
https://doi.org/10.1145/3461462

26:2 .« J.H.RinglIVetal.

IDS is signature-based. Signature-based approaches operate similarly to a virus scanner: They report events
matching the signature of a known attack. For example, the MITRE ATT&CK Framework [55] is a set of sig-
natures, expressed as rules for detecting intrusions, that can be used to flag events for further examination.
Unlike signature-based approaches, anomaly-based approaches can detect novel attacks, as they are identifying
changes in behavior rather than a specific attack.

Network-based Intrusion Detection Systems (NIDS), the primary alternative to HIDS, examine network
events (i.e., traffic between hosts), rather than events occurring on a single host, and are thus distinct from
HIDS. NIDS have traditionally been simpler to deploy than HIDS, since they do not require modifying individual
hosts. However, as important services increasingly migrate to the cloud—where the network is under the control
of the cloud provider—deploying a network-based approach for intrusion detection is often not feasible. The
relative importance of HIDS research in the intrusion detection space is therefore increasing with the use of
cloud computing. We chose to focus on anomaly-based HIDS to create systems compatible with modern cloud
deployments that can protect against zero-day attacks.

Automated methods for HIDS are generally formulated as analyses of sequences of system events such as
bash commands or system calls [30]. System calls are the interface for userspace programs to request services
from the operating system’s kernel, such as starting a new process or reading a file. In HIDS research, system call
sequences are used as a proxy for understanding the behavior of a running program—we assume that a malicious
program will produce a very different pattern of system calls than baseline execution of a benign program. We
focus on the use of machine learning to distinguish between malicious and baseline behavior in sequences of
system calls.

1.1  Problem Statement & Contributions

Previous work has developed HIDS that operate on individual traces of system call sequences [21, 34] us-
ing publicly available datasets [10, 29, 41, 42]. Some of these prior works are also based on anomaly detec-
tion [8, 13, 58—-61]. All of these works consider system call traces generated by an individual process; however,
modern applications often use multiple processes, and modern attacks can impact one or more of these pro-
cesses. Furthermore, existing system call corpora used to develop these HIDS are limited and outdated. Thus,
the problems we address are how to modernize anomaly-based HIDS by incorporating analysis of multi-process
applications, how to develop algorithms and evaluation methods more relevant to modern systems and attacks,
and overall how to achieve more accurate detection of modern attacks.

We address these problems as follows: First, we present a novel approach for building HIDS based on unsu-
pervised deep learning. State-of-the-art in this domain demonstrates that models based on Long Short Term
Memory (LSTM) [21], and Gated Recurrent Unit (GRU) [34] architectures outperform prior SVM-based ap-
proaches and hence are the most promising technology in this space. The key technical contribution of our ap-
proach is an application-level classifier, called ALAD (Application-Level Anomaly Detection), to distinguish
between baseline and malicious behavior. ALAD groups’ system call sequences by program—rather than by pro-
cess, as was done in previous work [21, 34]. ALAD is simple to implement, and in our experiments produces
a statistically significant improvement in classification compared to previous work. We describe the ALAD ap-
proach in Section 4.5.

Second, we collect and release a new dataset of system call sequences, with modern attacks on multi-process
applications, used to support the development of our approach and validate our results. Our new dataset, called
PLAID, contains sequences from six modern exploits and penetration techniques as well as a large collection
from normal operation. We discuss the creation of PLAID in Section 3.

The third main contribution of our article is the application and evaluation of modern sequence-to-sequence
neural network architectures for anomaly detection. In Section 4, we compare a state-of-the-art architecture,
WaveNet [43], with replications of the LSTMs and GRUs used in prior work, using both ALAD and the trace-level
classifiers developed in previous work. We demonstrate our results on PLAID as well as the Australian Defence

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



Methods for Host-based Intrusion Detection with Deep Learning « 26:3

Force Academy Linux Dataset (ADFA-LD) [10], used by several closely related works [21, 34]. We completed
540 training and evaluation trials over combinations of dataset, model, and replicate. To our knowledge, this is
the largest comparison of deep learning models used in HIDS to date. We provide open source repositories for
all datasets and code! to facilitate reproducibility.

In addition, we address a common critique of deep learning, that it is “black-box,” in the sense that it struc-
turally obfuscates model details and does not provide practitioners with insights about why it works. We show
in Section 7, that recent techniques in corpora “divergence” visualization can still provide useful insights into
datasets. Specifically, we explore our new dataset along with the popular ADFA-LD to observe differences be-
tween normal and malicious sequences. This helps to explain the effectiveness of anomaly detection in this
application.

In summary, our primary contributions are as follows:

(1) Application Level Anomaly Detection (ALAD), a new classifier for groups of system call sequences.
(2) PLAID, a new dataset of modern system call sequences and attacks.

(3) A comparison of modern sequence-to-sequence neural network architectures for anomaly detection.
(4) The use of rank-turbulence divergence to visualize differences in system-call n-grams.

Note that (3) also subsumes a comparison with historical work, since References [21, 34] already demonstrated
superiority of deep learning approaches as compared to other historical approaches.

2 BACKGROUND & RELATED WORK

Intrusion detection systems (IDS) aim to automatically detect events indicating system compromise by malicious
adversaries and have been studied since at least 1980 [4]. Liu and Lang provide a comprehensive taxonomy of
the systems developed since then. IDS are typically classified according to their sources of data and detection
methods.

Network- vs. host-based intrusion detection. There are two major categories of data sources. Network-based
intrusion detection systems (NIDS) are deployed at the network level, and detect intrusions by examining net-
work traffic. Host-based intrusion detection systems (HIDS), which are the subject of this work, are deployed
on a single host and detect intrusions by examining events on that individual host. NIDS have traditionally re-
ceived more attention (e.g., References [3, 17, 25, 35, 36, 40, 46, 47, 49, 66, 68, 70-73]), because they are easier to
deploy, more efficient, and capable of detecting threats across multiple hosts. HIDS have the advantage of being
deployable in a cloud setting, in which the cloud provider controls the network infrastructure, and are capable
of detecting intrusions that do not produce abnormal network traffic. Our work focuses on HIDS.

Data & datasets. Our work is focused on detecting intrusions using sequences of system calls. System calls are
the interface for userspace programs to request services from the operating system’s kernel, such as starting a
new process or reading a file. Forrest et al. first proposed using these sequences to detect intrusions by collecting
information about “normal” patterns of system calls and detecting system call sequences that deviate from these
patterns. Datasets of system call sequences include both baseline and attack sequences. Baseline sequences are
collected from programs running normally; attack sequences are collected from compromised programs behav-
ing abnormally (e.g., while an exploit is being used to attack the program).

Datasets of system call sequences are difficult to construct; as a result, most work in this area is evaluated on
just four datasets:

e The DARPA Intrusion Detection Dataset [29] (1998/1999)
e The KDD 99 Dataset [42] (1999)

Thttps://gitlab.com/jhring/uvm_ids.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.


https://gitlab.com/jhring/uvm_ids

26:4 « J.H.RinglIVetal

e The UNM System Call Dataset [41] (1998)
e The ADFA-LD Dataset [10] (2012)

Unfortunately, the DARPA, KDD, and UNM datasets are too old to be of practical use as representative of modern
host processes and attacks [37]. The ADFA-LD (Australian Defence Force Academy Linux Dataset) [10] dataset
was specifically designed to address limitations of previously collected datasets. In particular, they captured sys-
tem call traces on a server running a modern operating system (Linux) with realistic workloads (e.g., web brows-
ing and word processing) and attack sequences generated via real vulnerabilities in commonly used software.
For these reasons, the ADFA-LD dataset is often used for HIDS research, and previous work has demonstrated
that this realism translates into a much more challenging learning task, suggesting that realistic datasets are vital
for designing systems for practical deployment.

Nonetheless, the ADFA-LD dataset has a number of shortcomings. Since its release in 2012, typical workloads
on Linux servers have changed, so the dataset is no longer reflective of typical server behavior. The dataset was
captured on an i386 host, which though common at the time are rare in modern production environments. This is
important, because the system calls used by 1386 and x86_64 systems differ substantially, which makes it difficult
to directly compare or integrate ADFA-LD traces with those collected on modern systems. Finally, the normal
traces appear to be more reflective of a workstation, rather than server environment and are underspecified.
Each attack sequence is labeled with the process that generated it, but the baseline sequences are not similarly
labeled—so it is impossible to know what program was used to generate each sequence.

Signature- vs. anomaly-based methods. As mentioned earlier, there are two major methods of detection in HIDS
research: signature-based methods and anomaly-based methods. Signature-based methods are commonly used
to detect malware [5, 6, 63]; though they may also be used to detect known patterns of behavior that indicate an
intrusion [36, 38]. These methods typically have low false-positive rates and are efficient, but they can only detect
known attacks. Anomaly-based methods detect abnormal behavior by comparing against a model of normal
behavior; they have higher false positive rates, but are capable of detecting brand-new attacks. Anomaly-based
methods have been applied both to sequences of system calls and to other kinds of intrusion detection [8, 13, 58—
61]. Our work focuses on anomaly-based intrusion detection.

IDS based on machine learning. A number of machine learning-based intrusion detection systems have been
proposed by other authors. Liu and Lang provide a survey of these results. Machine learning approaches based
on supervised learning (e.g., References [2, 36, 38]) correspond to signature-based intrusion detection: They use
labeled training data including both baseline behavior and attacks to train classifiers that distinguish between
the two. These approaches cannot detect new kinds of attacks. Approaches based on unsupervised learning (e.g.,
References [9, 14, 15, 19, 21, 24, 34, 67]) correspond to anomaly-based intrusion detection: They train models of
baseline behavior using unlabeled training data containing only baseline behavior. Our work focuses on the use
of unsupervised deep learning to perform anomaly-based intrusion detection on system call sequences. Previ-
ous work in this area has used both traditional (“shallow”) machine learning and deep learning to build models
of benign system call sequences. For example, approaches based on Hidden Markov Models [15, 19, 24] and
support vector machines (SVM) [14, 67] have both been proposed. These methods worked well on datasets
collected in the 1990s but performed poorly on the more recent ADFA-LD [10]. In particular, methods that dis-
card the ordering information in system call sequences, including clustering and “bag of system calls” approaches
achieve reasonable accuracy on legacy datasets but fail on ADFA-LD. Due to this recent approaches focus on tech-
niques that leverage ordering information, of which deep-learning has been shown to be the most promising.
Kim et al. compared a long short-term memory (LSTM) model that k-nearest neighbor and k-means cluster-
ing achieve state-of-the-art performance with the LSTM. Chawla et al. use a combined convolutional/recurrent
(CNN/RNN) architecture, and obtain similar performance LSTMs with less training time. These deep-learning

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



Methods for Host-based Intrusion Detection with Deep Learning « 26:5

based approaches represent the state-of-the-art in anomaly-based HIDS, and we use them for comparison in our
empirical evaluation.

Visualisation. Various visualization techniques have been used to aid human analysts and users in identify-
ing suspicious activities and emerging threats in the cyber-security realm [11, 62]. Recent work in the field of
Complex Systems provides analytical methods and corresponding visualizations for comparing various states
of a system [12]. These advances have not previously been applied in the cyber-security domain, though the
divergent nature of attack vs. baseline system call sequences is a natural fit for the application.

3 THE PLAID DATASET

As with all machine learning techniques for IDS, our approach to training and testing models for HIDS relies
on corpora of events, in our case system calls. Since we are developing an anomaly detection system, training
corpora must contain baseline and attack data as described above in Sections 1 and 2. Given the shortcomings of
ADFA-LD discussed in Section 2, we developed a new dataset, named PLAID, with modern system calls, and a
richer, more current set of attacks. The PLAID Lab Artificial Intrusion Dataset is an open source dataset intended
to support the work described here, and to support research in the broader community. PLAID features modern
exploits carried out against a contemporary Linux server deployment and is publicly available [50].

3.1 Host Configuration

Ubuntu 18.04 LTS [32] was selected as the host Operating System (OS) for PLAID. Ubuntu is a secure modern
Linux distribution and the most popular choice of OS for use on public clouds such as AWS and Microsoft Azure.

Commonly used remote administrative services FTP and SSH [69] were installed through Ubuntu’s default
package manager and enabled with their default configurations. Redis Version 4.0.14 [52], an open source in-
memory data structure store, was manually installed on the host and configured to allow connections on the
local network. A malicious client side executable [64] was placed on the machine, simulating a successful social
engineering attack. Nginx Version 1.14.0 [48] and php-fpm Version 7.1.33 [18] were installed on the host and
configured to serve a basic website, a common deployment of the world’s most popular web server [33].

This host configuration represents a reasonable approximation of a modern production Linux server offering
remote access, high performance data storage, and web hosting.

3.2 Network Setup

Our experiment testbed consists of three Virtual Machines (VMs): our host, an attack machine, and a router.
The attack VM is an instance of Kali 2019 [28], a Linux distribution designed for penetration testing. We con-
nected our attack and host VMs on a local network through a bare-bones instance of Ubuntu 18.04 LTS serving
as a router. All three VMs were run using VirtualBox Version 6.1 [44] on a single physical machine. Detailed
setup instructions of VM network configuration are available on the project GitLab [50].

3.3 Attack Overview

Our host machine was exploited from six different attack vectors.

(1) The Redis attack [39] exploits a vulnerability in the “extension” functionality provided in the Redis in-
memory database to execute arbitrary code. An exploit for the vulnerability was developed in 2018 and is
available in Metasploit.

(2) The PHP-FPM attack [26] (CVE-2019-11043) exploits a vulnerability present in the combination of nginx
and php-fpm to execute arbitrary code. An exploit for this vulnerability was developed in 2019 and is
available on GitHub.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



26:6 « J.H.RinglIVetal.

(3) The privilege escalation attack [65] (CVE-2016-5195, also called DirtyCow) uses a malicious CSE that
exploits a vulnerability in the Linux kernel to obtain a shell with root privileges.

(4) The brute-force attacks [27] represent the use of a traditional brute-force password-cracking application
(Hydra) to discover users’ passwords over SSH and FTP.

3.4 Data Collection

System call traces were generated by starting the target application with strace—a userspace utility capable
of monitoring interactions between processes and the Linux kernel. Each exploit was run and monitored for 10
trials, fully restarting all affected services between each trial. The result of each trial is a series of files containing
system calls for example: execve brk access access openat fstat mmap close. . . Each individual file
corresponds to a single process of the program’s execution and is labeled with the process ID.

Since the intended use of this dataset is the development of anomaly-based IDS, we require baseline data
approximating normal operation. This baseline dataset was generated by monitoring a wide variety of common
operations on the host with no active attacks in progress. Specific items in the set of common operations were
chosen for two reasons. The first is to be representative of the wide range of computational tasks performed
in modern-day enterprise environments. The second is to achieve a high degree of behavioral overlap with the
previously described attacks. The chosen baseline operations are:

o Transfer of files to and from the host using FTP

e Host access via SSH and modification of configuration files

e Simulation of web traffic using Apache Bench

o Redis interactions

e Download files from the internet with curl

e Execution of rustup, the Rust programming language install script [23]

o PHP and Redis test suites

e Compilation of small and large programs

e Deployment of small programs that involve: reading from disk, non-trivial computation, and standard 10

We encode meta-information in the directory structure in the same manner as the ADFA dataset. The gener-
ated data was split into two toplevel directories—attack and baseline. Inside the attack directory is a subdirectory
for each trial labeled with the exploit and trial ID. These subdirectories contain all collected system call trace files
from the corresponding exploit trial. Similarly, the baseline directory contains a subdirectory for each baseline
operation. These subdirectories contain all collected system call traces associated with the baseline operation.

4 DEEP LEARNING MODELS AND THE ALAD ALGORITHM

In this section, we describe the ALAD algorithm, the underlying deep learning models it uses, and our evaluation
and experimental methods. We also explicitly state our research hypotheses, as Hypotheses 1 and 2 below. We
return to these hypotheses in Section 6 and discuss how our experimental results support or refute them.

4.1 Method Overview and Definitions

Our approach to anomaly-based intrusion detection is a two-stage process similar to that of Kim et al. but differs
substantially in implementation. We implement a full detection pipeline consisting of two main stages. The
first stage models the system call language using deep neural networks trained exclusively on baseline data. The
second stage performs anomaly prediction using the model(s) from the first stage as well as an anomaly classifier.

4.1.1 Trace Probability. The first stage in our pipeline is a system call language model, which specifies the
probability distribution for the next system call in a sequence given all prior system calls in that sequence. If we
have a system call trace t = xy,x3,x3, ..., xp, then we can calculate the probability of the sequence occurring

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



Methods for Host-based Intrusion Detection with Deep Learning « 26:7

with Equation (1).
p(t) = [ | plilxri-a). (1)
i=1

Recall that each event x; is a system call as described in Section 3. Models trained exclusively with baseline data
estimate this probability distribution for a host’s normal operation. Thus, we can formally define a model M as
a mapping from traces t to a probability (real number) value. Details of the neural network architectures used
and their training methodologies can be found in Sections 4.2 and 4.4, respectively.

4.1.2  Trace-Level Anomaly Detection (TLAD). The second stage in our pipeline uses the probabilities gener-
ated by the first stage to classify a trace as baseline or anomaly. Specifically, a model M trained on baseline
sequences can be used to classify a trace t as anomalistic if it has low probability. Taking the negative log of
M((t) (its negative log-likelihood) results in low values if t is not anomalistic, and high values if it is. A standard
approach (e.g. [21]) to anomaly detection sets a threshold 6 and classifies a trace t as anomalistic if its negative
log-likelihood exceeds the threshold. Formally, trace-level anomaly detection TLAD is defined as follows,
given a model M and threshold 6:

1 if —log(M(t)) > 0,

0 otherwise.

TLAD(t) = {

4.1.3  Application-Level Anomaly Detection (ALAD). A drawback of TLAD is that it considers only a single
process at a time, whereas attacks typically target applications and can impact multiple processes. We propose
an algorithm that aggregates predictions for all processes associated with an application. As discussed above
in Section 3, process traces are endowed with application meta-information in corpora, which we can use to
group traces into sets A as described below in Section 4.5. Furthermore, there is nothing special about this meta-
information; in particular, it is easily available to any system in practice. These sets A can be provided as input
to our ALAD algorithm to predict whether an application is benign or malicious. Formally:

ALAD(A) = let{ty,....ty} = A,
let m = median(—log M(ty), ..., —log M(t,)),
1if m > 0 otherwise 0.
Figure 1 illustrates our complete pipeline using ALAD.

4.1.4 Research Hypotheses. With the above definitions in place, we can now state our explicit research hy-
potheses as follows:

HypoTHEsIs 1. WaveNet will outperform the LSTM and combined CNN/RNN architectures used in prior work
[9, 21].

HypotHEsts 2. ALAD will outperform TLAD as an IDS mechanism.

We discuss the performance metrics and evaluation methodology for both TLAD and ALAD in Section 4.5. In
Section 5, we compare the performance of several models from each architecture (WaveNet, LSTM, CNN/RNN)
and show how ALAD yields significant performance improvements compared to TLAD.

4.2 Model Architectures

Intrusion detection is a less-explored application for the machine learning community, though many advances
in the field are relevant. In particular, if we formulate the anomaly-based IDS as sequence-to-sequence learning
problem, then we can leverage cutting-edge techniques from an active area of research in the deep learning
community. We investigate and compare several models that are adapted from recent deep learning research.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



26:8 <« J.H.RingIVetal.

: Training
Test Split Data Program,
— p(ty)
0]
Programy
t
S
o
pits) Programp
g (Ol 8 Threshold
S 15 xq.x2, % > g Program;
® (52 2§ PR U pltg) ' gramg
2|l [ l & T £ plte) Programg
70 Xq. X2, X3 Trained pit7
oo (o]
tg: Xy %2 %5 | ECH pits) .
rograms
9" X1, X2, X3 l Programy
[ hoxixexs | pltg)
1 k3 Pltio)

Fig. 1. An illustration of our entire pipeline. Starting on the left is a testing split consisting of attack (red) and baseline
(blue) system call traces. These are submitted to a model of normal behavior—the model is a result of training exclusively on
baseline traces. The model is first used to obtain the probability of occurrence of each process trace in our test set. Then, we
use trace metadata to group trace probabilities by application. Finally, we test the aggregation (median) of these grouped
probabilities against a threshold 6 resulting in a classification for each program.

All models used in this work feature the same high-level layout. The integer-encoded system calls are fed into
a learned embedding layer. The embedding layer is followed by one of the architectures described above that
outputs a probability distribution over system calls at each time step.

Our first candidate model is the WaveNet architecture [43], an audio generation model developed by Google
DeepMind. WaveNet can serve as a drop-in replacement for LSTM-based architectures, which are commonly
used on sequence-to-sequence problems. WaveNet employs discrete convolutions to capture context information
and inform predictions, rather than the recurrent connections seen in LSTMs. This allows WaveNet to achieve
superior performance with shorter training time as compared to LSTM-based architectures.

Our second and third candidates replicate the architectures from two prior approaches performing anomaly
detection on ADFA-LD. They are an LSTM language architecture from Kim et al., and the combined CNN/RNN
architecture from Chawla et al. The LSTM architecture is simply a variable number of LSTM layers followed by
dropout leading into a dense layer. The combined CNN/RNN model features multiple one-dimension convolu-
tional layers stacked on top of a GRU followed by a dense layer.

We implemented these architectures in Python using TensorFlow version 2.1 [1] and provide our source code
on GitLab [50].

4.3 Data

We constructed separate training, testing, and validation subsets for both ADFA-LD and PLAID. A separate dense
integer encoding was used for each dataset, as they were generated on machines using different instruction set
architectures. The testing sets feature a 1:1 ratio of attack and normal traces while the training and validation
sets contain exclusively normal traces.

4.3.1 ADFA-LD. The ADFA-LD data directory consists of three folders: attack, training, and validation. Re-
spectively, these contain 746, 833, and 4,373 system call traces of varying lengths. The 175 unique system calls in
ADFA-LD originally represented by a sparse integer encoding are refactored into a dense encoding for computa-
tional efficiency. The training and validation folders contain traces of normal operation while the attack folder
features all attack traces.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



Methods for Host-based Intrusion Detection with Deep Learning « 26:9

We use this data to construct our own training, testing, and validation splits as follows: The ADFA training
and validation folders are merged, consolidating all normal traces. Our test set was created by combining the
attack sequences with 746 randomly selected normal sequences resulting in a 1:1 ratio of attack and normal
sequences. The unused normal traces were then randomly split into training and validation sets with an 80:20
ratio resulting in 3,567 sequences selected for training and 892 for validation. Note that the original ADFA data
split is not used in this article and all further references to training, testing, and validation refer to our own data
splits.

4.3.2  PLAID. Pre-processing of the PLAID dataset was done similarly. PLAID consists of two top-level direc-
tories, attack and normal, named for the type of traces they contain. A total of 1,494 traces with a length less than
8 or greater than 4,495 were discarded. The remaining traces consisting of 228 unique system calls were encoded
with a dense integer representation. These bounds correspond to the smallest and largest sequences present in
ADFA-LD. The test set is constructed by combining all 1,145 remaining attack sequences with an equal number
of randomly selected normal traces. The remaining unused normal traces are then randomly split into training
and validation sets with an 80:20 ratio resulting in 29,626 sequences selected for training and 7,407 for validation.

4.3.3 Complexity. We note that size of these datasets may seem small for deep learning applications; this
observation, however, fails to consider the size of the overall landscape. There are k" possible system call traces
of length n, where k is the vocabulary size of system calls. The Linux kernel currently features over 300 unique
system calls resulting in over 27 million possibilities for traces of length three. With a length of 4,495, the land-
scape for the largest traces under consideration is much larger than the number of floating-point operations the
universe could have performed thus far [31]. Given the complex landscape of system call traces, it is unsurprising
that deep learning is required to achieve state-of-the-art performance.

4.4 Model Training & Configuration

For each architecture described in Section 4.2, we build three models with differing hyper-parameters to be used
in an ensemble. The models, written M; for i € {0,1,2} and M € {CNN/RNN, LSTM, WaveNet}, are ordered by
increasing number of parameters.

Selecting optimal hyper-parameters is a notoriously difficult task due to the large search space and compu-
tational cost of exploration. We used a Gaussian process optimizer to inform the search, aiding in the selection
of hyper-parameters for our WaveNet models [56]. Ultimately, we selected three WaveNet configurations all
with eight WaveNet blocks and no regularization. The models differed only by the number of filters in each
convolutional layer, which were 128, 256, and 512, respectively.

For the replicated architectures, we used the hyper-parameters specified in their respective papers. For the
LSTM architecture, this was a single LSTM layer with 200 cells, a single LSTM layer with 400 cells, and two
LSTM layers with 400 cells. The CNN/RNN models differed in both the number of 1D convolutions 6, 7, 8, and
number of GRU units 200, 500, 600, respectively. The number of filters in each convolutional layer was set to
match its WaveNet counterpart as the value was unspecified in the original work.

We trained all of our models using the Adam optimizer [22] with a learning rate of 0.0001. Gradient clipping
with a maximum norm of 5 was applied to ensure training stability [45]. Models were trained for a fixed number of
epochs, 300 and 30 for ADFA-LD and PLAID, respectively, with a batch size of 32. A differing number of training
epochs were selected for ADFA-LD and PLAID, as the latter contains over eight times for training data. By using
both a fixed number of training epochs and batch size for all models, we ensured they received the same number
of gradient updates allowing for a fair architecture comparison. Sparse categorical cross-entropy was used as
the loss function for all models. The number of parameters, training time, and other summary information for
each model is detailed in Table 1.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



26:10 « J.H.RinglIVetal.
Table 1. Accuracy Comparison: ALAD vs. TLAD
Params. | Training Time | Eval. Time AUC TLAD FPR TLAD AUC ALAD FPR ALAD
(h:m:s) (s) (TPR = 1) (TPR = 1)

ADFA
CNN/RNN, 552,096 1:41:55 £ 2:29 | 29.6+ 0.9 | 0.785+0.006 | 0.843 +0.030 | 0.9817 +0.003 | 0.085" +0.014
CNN/RNN; 2,528,472 | 2:48:15+ 2:14 | 29.5+ 0.8 | 0.802+0.005 | 0.863 +0.076 | 0.985 +0.002 | 0.1127 +0.037
CNN/RNN, 7,841,280 4:53:42 +3:25 | 331+ 4.9 | 0.800+0.007 | 0.887 +0.082 | 0.9867 +0.002 | 0.1207 +0.055
LSTM, 391,376 1:43:23 + 2:56 | 27.0 £ 0.8 | 0.726 £0.013 | 0.962+0.068 | 0.924" +0.013 | 0.2557 +0.060
LSTM; 1,422,576 2:50:30 +3:08 | 273+ 0.9 | 0.759+0.017 | 0.873 +0.070 | 0.9647 +0.015 | 0.118" +0.044
LSTM, 2,704,176 | 4:36:27 £5:05 | 458+ 0.5 | 0.793+0.005 | 0.795 +0.009 | 0.983" +0.002 | 0.074" +0.010
WaveNet, 1,111,664 | 1:19:33 + 0:48 | 393+ 3.7 | 0.815+0.004 | 0.795+0.050 | 0.986" +0.001 | 0.1447 +0.062
WaveNet; 4,346,736 | 2:58:54 +0:59 | 385+ 3.3 | 0.830+0.007 | 0.827 +0.038 | 0.993" +0.001 | 0.036" +0.008
WaveNet, 17,206,640 | 8:15:56 +3:22 | 459+ 6.8 | 0.828+0.017 | 0.837 +0.047 | 0.993" +0.004 | 0.048" +0.065
PLAID
CNN/RNN, 569,533 1:02:58 + 1:06 | 457+ 7.4 | 0.854+0.024 | 0.719+0.209 | 0.980T +0.009 | 0.2207 +0.189
CNN/RNN; 2,561,809 1:41:30 + 1:36 | 47.2+ 3.9 | 0.844+0.030 | 0.625+0.147 | 0.9707 +0.017 | 0.248" +0.199
CNN/RNN, 7,879,917 | 2:54:41+2:06 | 48.9+ 5.4 | 0.810+0.029 | 0.683 +0.143 | 0.9457 +0.039 | 0.3127 +0.161
LSTM, 412,629 | 1:01:48 + 1:34 | 39.2+ 4.0 | 0.886 +0.008 | 0.543+0.096 | 0.985" +0.004 | 0.185" +0.056
LSTM; 1,465,029 | 1:41:17 +2:33 | 39.1+ 6.0 | 0.883+0.060 | 0.572+0.136 | 0.968" +0.097 | 0.2547 +0.169
LSTM; 2,746,629 | 2:42:03 £3:28 | 677+ 4.8 | 0.889£0.011 | 0.459 +0.117 | 0.9857 +0.006 | 0.198" +0.135
WaveNet, 1,120,409 | 0:51:48 + 0:41 | 68.4+13.8 | 0.796 +0.036 | 0.661+0.143 | 0.936" +0.046 | 0.4287 +0.241
WaveNet; 4,362,265 1:51:19 + 0:55 | 79.4+15.1 | 0.772+0.024 | 0.711+0.172 | 0.9157 £0.039 | 0.558 +0.202
WaveNet; 17,235,737 5:01:33 + 2:35 | 93.2+20.3 | 0.798 +0.079 | 0.660 +0.142 | 0.9227 +0.125 | 0.523 +0.296

We note that our proposed classification methodology (ALAD) results in a significantly higher AUC for all models under
consideration. All models were trained and evaluated on a NVIDIA Tesla V100 with 32 GB VRAM provided by the Vermont
Advanced Computing Core. Training and performance metrics above are reported as the mean of 30 trials + one standard deviation.
In total, this table summarizes the results of 540 training and evaluation trials. Total training time for the 540 models, not including
hyper-parameter tuning, was over 62 days. We the relative efficiency of WaveNet whose smallest configuration had the fastest
training time despite having over twice the parameters of the smallest model. ALAD performance metrics marked with { are
statistically distinct (two-sided t-test, p < 0.001) from their TLAD counterpart. Evaluation time is how long it took the model to
output the probability distribution for all sequences in the test set. Bolded results are the best in their respective column and
dataset combination.

4.5 |D Classifier Evaluation

We completed 540 evaluation trials over combinations of dataset, model, and replicate. The nine model configu-
rations outlined in Section 4.4 were trained and evaluated for 30 replication trials on both ADFA-LD, and PLAID.
Our evaluation compares the ALAD and TLAD classification algorithms using these underlying models.

Both PLAID and ADFA-LD group traces by attack trial, allowing us to aggregate traces at the application level.
The ADFA-LD baseline data does not include program grouping information, so we randomly sampled synthetic
programs of equal size from the normal portion of the test set. For sake of consistency, we use the same process
on PLAID.

In practice, we bootstrapped the baseline groups with 30 trials for each replicate model. This mitigates statis-
tical errors from the random sampling, such as selection of an unrepresentative grouping. Thus, the single value
result is the mean of the bootstrapped operations.

By varying the threshold value 0, we obtained Receiver Operating Characteristic (ROC) curve for our
classifiers—a common means of evaluating binary classification systems. The x-axis of the curve shows the false
positive rate, while the y-axis shows the true positive rate. In this case, the curve visualizes the tradeoff between
detection and false alarm rate. We summarize the performance of a model into a single value using the Area
Under Curve (AUC) metric. In addition, we report the False Positive Rate (FPR) where the True Positive
Rate (TPR) is one. The reported value for a given metric such as AUC (discussed below in Section 5) is the mean

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



Methods for Host-based Intrusion Detection with Deep Learning « 26:11

Table 2. Performance Metrics for All Ensembles under Consideration

AUC TLAD FPRTLAD AUC ALAD FPR ALAD

(TPR = 1) (TPR = 1)

ADFA

Avg. CNN/RNN | 0.800 +0.004 | 0.842 +0.030 | 0.985" +0.002 | 0.1257 +0.027
ReLU. CNN/RNN | 0.800 +0.004 | 0.847 +0.041 | 0.9857 +0.002 | 0.1317 +0.041
Avg. LSTM 0.765 £ 0.006 | 0.903 +0.079 | 0.966" +0.006 | 0.228" +0.030
ReLU. LSTM 0.766 £ 0.005 | 0.903 +0.079 | 0.966" +0.006 | 0.2317 +0.029
Avg. WaveNet 0.870 +0.008 | 0.712+0.071 | 0.998" +£0.001 | 0.026' +0.005
ReLU. WaveNet | 0.871+0.008 | 0.692 +0.079 | 0.998" +0.001 | 0.0277 +0.005
Hybrid, 0.800 +0.005 | 0.661+0.023 | 0.9757 +0.004 | 0.153" +£0.030
ReLU. Hybrid, 0.801 +0.005 | 0.543+0.050 | 0.976" +0.003 | 0.1507 +0.030
Hybrid, 0.820 £0.009 | 0.609 +0.017 | 0.9817 +0.007 | 0.098" +£0.039
ReLU. Hybrid, 0.822 +0.009 | 0.504 +0.019 | 0.9817 +0.007 | 0.100T +0.037
Hybrid, 0.847 £0.005 | 0.547 +£0.029 | 0.990" +0.002 | 0.0477 +0.008
ReLU. Hybrid, 0.848 +0.005 | 0.485 +0.034 | 0.9907 +£0.002 | 0.047% £0.008
PLAID

Avg. CNN/RNN | 0.919 +0.012 | 0.499 +0.058 | 0.9937 +0.004 | 0.1197 + 0.042
ReLU. CNN/RNN | 0.919 +0.012 | 0.481 +0.050 | 0.9947 +0.004 | 0.1277 +0.051
Avg. LSTM 0.929 +0.020 | 0.394+0.103 | 0.9947 +£0.009 | 0.099" +0.141
ReLU. LSTM 0.930 +0.012 | 0.380+0.098 | 0.9957 £0.006 | 0.098" +0.140
Avg. WaveNet 0.884 +£0.055 | 0.559+0.124 | 0.9777 £0.055 | 0.1977 +£0.135
ReLU. WaveNet | 0.886 +0.047 | 0.531+0.058 | 0.9787 +£0.047 | 0.1907 +0.098
Hybrid, 0.929 +0.003 | 0.477 +0.076 | 0.996" +0.001 | 0.063" + 0.046
ReLU. Hybrid, 0.929 +0.003 | 0.466 +0.066 | 0.9967 +0.001 | 0.065 +0.046
Hybrid, 0.922 £0.037 | 0.512+0.118 | 0.9897 +£0.034 | 0.1137 £ 0.165
ReLU. Hybrid, 0.923 +£0.030 | 0.485+0.066 | 0.9907 +0.026 | 0.103" +0.125
Hybrid, 0.914 +0.054 | 0.479 +0.120 | 0.986" £0.050 | 0.092F £0.117
ReLU. Hybrid, 0.915 + 0.049 | 0.459 +0.067 | 0.986" +£0.048 | 0.0897 +0.102

We note that ALAD results in a significantly higher AUC for all ensembles under
consideration. Homogeneous ensembles, designated by architecture, contain all three model
configurations from that architecture. Heterogeneous ensembles, termed hybrid, contain
the the model from each architecture at the given configuration level. Performance metrics
above are reported as the mean of 30 trials + one standard deviation. ALAD performance
metrics marked with { are statistically distinct (two-sided t-test, p < 0.001) from their TLAD
counterpart. Bolded results are the best in their respective column and dataset combination.

of all 30 replicate trials. For ALAD, the reported AUC is the mean of 900 operations—30 replicate trials each with
30 bootstrap groupings.

Finally, we also consider the same evaluation strategies for ensembles. We consider two ensemble types: a
simple averaging and the ReLU ensemble method from Kim et al. An ensemble of each type was constructed
for each architecture and configuration level, resulting in 12 total ensembles. All ensembles consist of three
models—either the three configurations from a given architecture or the three different base models with the
same configuration index.

5 RESULTS

We present performance metrics, namely, ROC, AUC, and FPR at complete detection for all models, in Table 1.
Separate columns exist for both metrics over each combination of model, dataset, and classifier method. These
metrics are reported as the mean of the 30 replicate trials + one standard deviation. In all cases ALAD significantly
increased AUC (two-sided t-test, p-val < 0.001) when compared to TLAD. We also observe a significant reduction

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



26:12 « J.H.Ring IV et al.

1.0 104 2
7 ,
7
7’
o
,/
0.8 4 0.8 4 7’
7
7
/l
Q @
% 3 /
< 0.6 < 0.6 - 7
[ 4 4
= 2 7’
= = g
3 3 7
a a 4
o 0.4 v 0.4 JRe
2 2 ,
= (= ,,/
024 /’ —— CNN_RNN_1 AUC: 0.802 # 0.005 024 ,/ —— CNN_RNN_1 AUC: 0.985 + 0.009
,/’ —— LSTM_2 AUC: 0.793 + 0.005 ,/' —— LSTM_2 AUC: 0.984 * 0.010
s —— WaveNet_1 AUC: 0.830 + 0.007 7 —— WaveNet_1 AUC: 0.993 + 0.006
0.0 —— WaveNet Relu Ens. AUC: 0.871 + 0.008 00d b7 —— WaveNet Relu Ens. AUC: 0.997 + 0.004
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
(a) ADFA TLAD (b) ADFA ALAD
1.0 1 1.0 =
7
L 4
7’
7
,/
0.8 q 0.8 f 7’
7
4
7
] 2 e
© © 7
« 0.6 1 < 0.6 Re
[ o 7
2 2 7’
= =3 7’
G G ,
o o 7’
Q. a 4
o 0.4 v 0.4 PRe
2 2 -
= [ L’
021 ,/’ —— CNN_RNN_O AUC: 0.854 + 0.024 021 ,/' —— CNN_RNN_O AUC: 0.974 + 0.020
I,’ —— LSTM_2 AUC: 0.889 + 0.011 l,’ —— LSTM_2 AUC: 0.989 + 0.009
7 —— WaveNet_2 AUC: 0.798 + 0.079 7 —— WaveNet_2 AUC: 0.924 + 0.128
004 ¥ —— LSTM Relu Ens. AUC: 0.930 + 0.012 004 ¥ —— LSTM Relu Ens. AUC: 0.996 + 0.006
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
(c) PLAID TLAD (d) PLAID ALAD

Fig. 2. ROC curves for the highest-performing single model from each architecture along with the highest-performing en-
semble on ADFA (top) and PLAID (Bottom). Models were evaluated using both the TLAD (left) and ALAD (right). ROC curves
show the mean and standard deviation for 30 trials. The legend reports the mean AUC and its standard deviation. For all
models ALAD significantly improved performance.

in the FPR at complete detection in the vast majority of cases. WaveNet proved to be the strongest performer on
ADFA, while LSTM models had the strongest performance on PLAID.

In Figure 2, we show ROC curves for the highest-performing model from each architecture, and the single best
ensemble. We present our performance metrics for all 12 ensembles in Table 2. The traditional TLAD is shown on
the left, and our proposed ALAD is on the right. We note the higher ROC curves when using ALAD showing the
lower false positive rates at all levels of detection. Of additional interest is that there is no clear winner in terms
of model architecture or even model size. Models tended to have a higher performance on PLAID compared to
ADFA-LD at the trace level, except WaveNet.

Figures 3 and 4 show ROC curves for all models and ensembles on ADFA-LD and PLAID, respectively, using
TLAD. We use an identical evaluation methodology to Kim et al. and Chawla et al. at the trace level, so we
would expect model performance to be similar to the original work despite the differing data splits and training
methodology. This was the case for our CNN/RNN models, which had AUCs similar to their originally reported

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



Methods for Host-based Intrusion Detection with Deep Learning « 26:13

1.0 1 1.0 A
0.8 0.8 4
] 3
o o
< 0.6 < 0.6
v (4
2 2
= =
@ @
o o
a a
o 041 o 0.4
2 X 2
= _#—— CNN_RNN_O AUC: 0.785 + 0.006 . LSTM_O AUC: 0.726 + 0.013
024 ,,’ —— CNN_RNN_1 AUC: 0.802 + 0.005 024 //’ —— LSTM_1 AUC: 0.759 % 0.017
’ e —— CNN_RNN_2 AUC: 0.800 + 0.007 ' —— LSTM_2 AUC: 0.793 # 0.005
‘< —— CNN_RNN Avg. Ens. AUC: 0.800 + 0.004 —— LSTM Avg. Ens. AUC: 0.765 + 0.006
0.0 —— CNN_RNN Relu Ens. AUC: 0.800 + 0.004 0.0 —— LSTM Relu Ens. AUC: 0.766 + 0.005
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
(a) CNN/RNN (b) LSTM
1.0 1.0 A -
7
7’
7
7’
,/
0.8 0.8 4 PR
4
,/
1 3 e
] © 7’
< 0.6 < 0.6 7
v o td
> > 7’
= = 7’
v w
o o
a a
g 041 g 041 Hybrido AUC: 0.800 + 0.005
= 4 — WaveNet_0 AUC: 0.815 + 0.004 = Relu. Hybrid AUC: 0.801  0.005
024 _#”  —— WaveNet_1AUC: 0.830 % 0.007 024 Hybridy AUC: 0.820 & 0.009
7 —— WaveNet_2 AUC: 0.828 + 0.017 Relu. Hybrid; AUC: 0.822 + 0.009
7 "
’ —— WaveNet Avg. Ens. AUC: 0.870 + 0.008 L’ ~— Hybrid; AUC: 0.847 + 0.005
0.0 1 —— WaveNet Relu Ens. AUC: 0.871 + 0.008 0.0 1 —— Relu. Hybrid; AUC: 0.848 + 0.005
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
(c) WaveNet (d) Hybrid

Fig. 3. Figures 3(a) to 3(c) feature ROC curves for all trained models as well as homogenous ensembles on ADFA. Figure 3(d)
shows the ROC heterogeneous ensembles constructed from model of all three architectures for each hyper-parameter con-
figuration. ROC curves show the mean and standard deviation for 30 trials using TLAD. The legend reports the mean AUC
and its standard deviation. We note that the LSTM and CNN/RNN ensembles under-performed some of their constituents
while the WaveNet ensembles performed better.

values. We failed to replicate the high performance at the trace level of Kim et al., but our smaller LSTM model
performed similar to the LSTM model used in Chawla et al. We did see a performance improvement from the
use of ensembles and note that the ReLU ensemble was the top performer for both datasets, beating out the
averaging and hybrid ensembles. Despite this, we were unable to replicate the strong performance of the ReLU
ensemble shown in Kim et al. and note that its performance is virtually indistinguishable from the averaging
ensemble.

In Figure 5, we compare validation loss at the final epoch to model performance as measured by the ROC AUC
score. One might expect a lower validation loss to correspond with a higher ROC AUC score, however, we do
not observe this empirically.

In summary, ALAD resulted in a significant AUC improvement for all models on all architectures and datasets
under consideration. This improvement comes at virtually no additional computational overhead, compared to
TLAD.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



26:14 « J.H.Ring IV et al.

1.0 4 1.0 4
0.8 0.8
2z 3
o o
< 0.6 < 0.6
o [
2 2
E G
o o
a. Q.
o 0.4 o 0.4
2 ) 2
= _#—— CNN_RNN_O AUC: 0.854  0.024 = ,#7 — LSTM_0 AUC: 0.886 + 0.008
021 ,/’ ——— CNN_RNN_1 AUC: 0.844 + 0.030 021 ,/’ —— LSTM_1 AUC: 0.883 + 0.060
' JRe —— CNN_RNN_2 AUC: 0.810 * 0.029 ’ JRe —— LSTM_2 AUC: 0.889 + 0.011
’/' —— CNN_RNN Avg. Ens. AUC: 0.919 + 0.012 ,/’ —— LSTM Avg. Ens. AUC: 0.929 + 0.020
0.0 —— CNN_RNN Relu Ens. AUC: 0.919 + 0.012 0.0 1 —— LSTM Relu Ens. AUC: 0.930 + 0.012
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
(a) CNN/RNN (b) LSTM
1.0 4 1.0 4 -
7’
0
'
'
/I
0.8 0.8 R
e
,/
2 1 4
© I 7’
< 0.6 o« 0.6 JRe
3 [ 7’
2 2 ,
= = 7
@ @
o o
a a
[ 0.4 ) 0.4 1 Hybrido AUC: 0.929 + 0.003
= g .
i _# — WaveNet_0 AUC: 0.796  0.036 . Relu. Hybridp AUC: 0.929 + 0.003
021 _»7  —— WaveNet 1AUC: 0.772 + 0.024 024 Hybrid; AUC: 0.922 £ 0.037
7 —— WaveNet_2 AUC: 0.798 + 0.079 Relu. Hybrid; AUC: 0.923 + 0.030
7 :
JRe —— WaveNet Avg. Ens. AUC: 0.884 + 0.055 PR — Hybrid; AUC: 0.914 + 0.054
0.0 1 —— WaveNet Relu Ens. AUC: 0.886 + 0.047 0.0 1 4 —— Relu. Hybrid; AUC: 0.915 + 0.049
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
(c) WaveNet (d) Hybrid

Fig. 4. Figures 4(a) to 4(c) feature ROC curves for all trained models as well as homogenous ensembles on PLAID. Figure 4(d)
shows the ROC heterogeneous ensembles constructed from model of all three architectures for each hyper-parameter con-
figuration. ROC curves show the mean and standard deviation for 30 trials using TLAD. The legend reports the mean AUC
and its standard deviation.

6 DISCUSSION
6.1 Hypotheses

Testing our first of two hypotheses formulated in Section 4.1.4, namely, that WaveNet would be the top-
performing architecture, produced mixed results. On ADFA, the dataset on which all models were tuned,
WaveNet was indeed the top performer, supporting our hypothesis. However, WaveNet was the poorest per-
former on PLAID. There are two plausible explications for this behavior: WaveNet models may have overfit to
the training data, or the architecture could be more sensitive to tuning.

Our second hypothesis, namely, that ALAD would yield superior performance compared to TLAD, was fully
supported by our analysis. For all models and datasets under consideration there was a statistically significant
(two-sided t-test, p-val < 0.001) improvement under ALAD. We speculated that this is due to the fact that some
attack traces may in fact be benign. This is an unavoidable artifact of the collection methodology. The attack set

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



Methods for Host-based Intrusion Detection with Deep Learning <« 26:15
0.850 -
L ] . 5
o S ,‘.’ ‘.\"
0.825 - o 8°550%%
L A [ ]
o
o o ot
0.800 A ® ® o® ..),‘: °
Y 0775 - ® o CNN/RNNp
g ’ ® CNN/RNN;
S CNN/RNN
Z 0,750 - ® /RNN,
® LSTMp
0.725 - . ¢ ¢ ISTM
' e LST™M;
0.700 WaveNety
’ ® ® WaveNet;
L]
WaveNet;
0.675 -

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275
Validation Loss

Fig. 5. Validation loss compared to performance for all models on the ADFA dataset. Typically, one expects lower validation
loss to correspond with higher performance. Here, we see no strong correlation between validation loss and performance.
We note that anomaly detection results in a special case, as the training task (system call prediction) is not same as the
evaluation task (attack classification).

contains all traces, each representing a distinct process, of a program during a successful attack. The effects of a
modern attack are seen across multiple processes [10]. Precisely identifying the affected processes would require
knowing exactly what system calls would have been issued in the absence of an attack.

6.2 Practical Concerns & Use Cases

The information in Tables 1 and 2 allows practitioners considering a deep learning IDS deployment to make in-
formed decisions about the tradeoffs between detection, false alarms, and computational cost. These tables show
the primary drawback of deep learning-powered IDS, long training, and non-trivial evaluation times. For real-
time detection the time and computational requirements may be too expensive for some applications. However,
in addition to real-time detection, IDS may also be used in a retrospective analysis. In a retrospective analysis,
IDS may be used to identify which systems or applications were affected, helping analysts identify the impact of
a breach or informing their search.

While PLAID improves upon ADFA-LD there is still a need for more comprehensive datasets. To be effective,
IDS must be trained on baseline data reflective of their host. To meet this requirement practitioners must train
the systems they wish to deploy on data collected locally. Additionally, the system must be (at least partially)
retrained when any significant changes occur, such as the deployment of a new application.

6.3 Implementation Decisions

A deployment of any form of anomaly detection requires practitioners to select a threshold 6. This is an obstacle
for practitioners, as there is no way to know a priori the estimated probability the model will assign an attack
sequence. Fortunately, there are two informed methods through which practitioners may select this value. First,
one may use results on an existing corpus such as PLAID or ADFA. Second, one could utilize baseline sequences
from their own production system, selecting a threshold that results in FPR they are able to handle. Of course,
while neither of these choices guarantee complete detection, they provide a means to achieve strong performance

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



26:16 « J.H.RinglIVetal.

Divergence contribution ODﬁB.T(%)
4 3 2 1 0 1 2 3 4
T T T T T T T T T
read
setitimer
openat 25
close 12

Q: PLAID Baseline Qy: PLAID Attacks

Instrument: Rank-Turbulence Divergence ¢josg

a=1/3
v

0 14 1/2 341 322 3 5
times
mmap 37
fstat
select
T r madvise 2082
o e shutdown

munmap 12+25
unlink 2877
futex 1842
execve 1130
Iseek 1327
recvfrom
stat
readv >
getsockopt
chmod 3273
poll
mprotect (=9
faccessat
<armdir 45=104
readlink 3366
agetrusage 18104
Tecvmsg
unlinkat 3567
<avfork 50104
setgroups
getppid 2716
getpid
astatx 55104
fentl 15=22
chown
write

Balances:

96.0% total counts 4.0%
95.8% all T4.8%

100 3
Counts per cell Y, X 1,000 1,000 26.3% exclusive syscalls 5.6% 51.9%48.1%

Fig. 6. Comparison of system call rankings between attack and baseline traces in PLAID. Note that some of the most fre-
quently utilized system calls, read and close, are among the largest contributors to divergence.

with an anomaly-based IDS. There is no wrong choice for a threshold value, only tradeoffs between detection
and false alarms.

Model selection is yet another obstacle for practitioners deploying a deep learning-powered IDS. Typically, in
deep learning, one performs this task by selecting the model with the lowest validation loss. Unfortunately, we
observed no strong correlation between AUC and validation loss. For this reason, we recommend practitioners
select their models based on their performance on reference datasets such as PLAID and ADFA. Additionally,
this result underscores the need for researchers to continue to expand upon existing datasets.

Surprisingly, while we did see improvement from the use of ensemble, the effect was small compared to the
performance achieved by the highest-performing models. Additionally, while the ReLU ensembles outperformed
their average ensemble counterparts, performance gains were marginal. As the creation of an ensemble requires
duplicating training and evaluation costs, we believe it to be not worth the effort for this application.

7 VISUALIZING DIFFERENCES BETWEEN BASELINE AND ATTACKS

While deep learning is an effective ML approach in many applications, it suffers from its “black box,” unin-
terpretable nature. Although methods are being developed to interpret deep learning models, they fall short,
especially for insights into high-stakes decision making [51]. This is not necessarily an argument against the use
of deep learning for HIDS, since ML models are often just one component of a “observe, orient, decide, act” loop
in security operation centers that also incorporate human analysts. However, interpreting data and predictive
features in data is often critical for security practitioners. Instead of leveraging ML models for computational
insights, we argue that other techniques can be leveraged, orthogonal to model development.

Two recently proposed techniques are “allotaxonometry” and “rank-turbulence divergence” [12]. These highly
general methods leverage information-theoretic techniques for visualizing differences in datasets with complex

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



Methods for Host-based Intrusion Detection with Deep Learning « 26:17

—— y=10700243x+45782 64 —— y=10-0.0383x+54076
5 4 y =10700494x+43357 y=10-00311x+42431
—— Baseline 5 4 —— Baseline
4 —— Attack Attack
z 2 41
c c
S 3 E
g° g
Iy =34
S S
g 27 g
24
14
14
04
0
0 25 50 75 100 125 150 175 0 20 40 60 80 100 120 140
Rank of System Call 1-grams Rank of System Call 1-grams

Fig. 7. Rank frequency plots of system calls for attack and baseline traces in ADFA-LD (left) and PLAID (right). Fit lines were
obtained using Huber regression. Observe that system call usage roughly follows an exponential rank frequency distribution.
This differs from natural language, where word frequencies follow a power-law distribution [20].

structure, such as natural language text, baby names, and mortality-cause databases. These techniques are espe-
cially relevant in our application space, since anomaly-based HIDS rely on the fact that significant differences
exist between normal and malicious operations. Quantifying such differences not only sheds light on features
potentially exploited by models, but also potentially new types of analysis. In this Section, we explore the dif-
ferences between attack and normal traces for both datasets used in this study, using allotaxonometry and rank-
turbulence divergence.

In Figure 6, we display the differences between attack and normal uni-grams using an allotaxonograph. This
instrument features a rank-turbulence histogram on the left and a rank-turbulence divergence shift on the right.
We compute the relative rate of usage for each uni-gram in the baseline and attack sequences separately, then
order system calls using tied-rank. Ranks for system calls that are found in one distribution but not the other are
replaced with the maximum rank of the joint distribution. The 2D histogram on the left displays the distribution
of uni-grams found in the baseline and attack sequences as well as the overlap between the two distributions.
System calls on the left side of the histogram are often used in the baseline sequences, whereas system calls that
are highlighted on the right side of the histogram are often used in attack sequences. System calls that are used
in both systems equivalently can be seen in the middle.

Of particular interest is that commonly used system calls (e.g., open, close, and times) display relatively high
rank-turbulence divergence in both datasets. This is in contrast to natural language where rankings of the most
common words tend to be stable across corpora [12]. Additionally, the most dangerous system calls [7] are not
top contributors to divergence. This suggests that focusing exclusively on dangerous system calls could result
in failures to detect intrusions. Additional allotaxonographs of uni- through tri-grams of both datasets are in
Appendix A. We also contrast the raw frequencies of system calls found in baseline and attack traces for both
datasets in Appendix B.

In Figure 7, we show that system call usage roughly follows an exponential rank frequency distribution. The
rank frequency system call bi- and tri-grams appears to approximate a power-law with an exponential cutoff in
the tail. Natural language corpora tend to be and stay power-law like for uni- through tri-grams with the tail
starting to flatten [20]. Thus, system call corpora becomes more power-law, while not quite reaching a power-
law distribution while natural language corpora continue to follow a power-law distribution. Additional rank
frequency plots for bi- and tri-grams are located in Appendix B. In all of these figures, we clearly see substantial
differences between attack and normal system call distributions.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



26:18 « J.H.RinglIVetal.

8 CONCLUSION

In this article, we developed new methods for host-based intrusion detection systems (HIDS). Our funda-
mental approach to intrusion detection is to develop models for predicting “normal,” a.k.a. baseline behavior,
and then leveraging those models to detect malicious behavior as anomalistic. This approach has the benefit of
being able to detect novel attacks, as well as known ones. We used deep learning models to achieve high levels
of prediction performance.

Our work makes four primary contributions in the area of HIDS research. First, we collected and publicly
released PLAID, a new system-call dataset for developing and evaluating IDS. Second, we developed ALAD
(Application-Level Anomaly Detection), a new classification method for anomaly-based IDS. Third, we presented
the largest comparison to date of deep learning architectures applied to this domain. Fourth, we explored new
visualization methods, based on information-theoretic corpus divergence measures, for exploring HIDS datasets.

Evaluating the performance of advanced methods, such as alternative deep learning models, requires compre-
hensive benchmarking that cannot be accomplished with the use of a single dataset. In our own architecture
comparison, the use of either PLAID or ADFA-LD independently might lead to a conclusive answer that is
different from the relatively inconclusive results that we observed during a comprehensive evaluation. By in-
troducing PLAID, we hope to empower the community to better evaluate new and existing HIDS models.

ALAD offered significantly better performance than TLAD regardless of the selected deep learning architecture
or training dataset. This indicates that the inclusion of a relatively minimal piece of meta-data, application-level
labels can greatly impact IDS performance. The consistent benefit of ALAD begs the question, what other data
or meta-data elements should be considered when constructing HIDS?

The results of our architecture search were fairly inconclusive with respect to classification performance, with
WaveNet performing best on ADFA-LD and the LSTM model performing best on PLAID. However, WaveNet
required approximately 60% less training time to converge on both ADFA-LD and PLAID when compared with
similarly sized LSTM and GRU models. Thus, practitioners looking to train deep learning empowered HIDS
quickly or scale up to massive datasets may prefer architectures composed primarily of convolutions over those
composed of recurrent layers.

In our application of allotaxonographs to ADFA-LD and PLAID, we identified clear differences between system
calls created by baseline and malicious behavior. These differences may lead to additional insights into datasets
why deep learning models outperform traditional machine learning models for HIDS. Future work should con-
tinue to investigate quantitative methods for corpus divergence to improve the interpretability of HIDS.

Overall, our results represent a significant improvement in the state-of-the-art in anomaly-based HIDS. We
provide a useful new dataset for the broader HIDS research community and a blueprint for developing deep
learning-empowered HIDS by presenting clear evaluation methodologies and reproducible results. Finally, we
highlight opportunities for adapting these tools to particular domains.

ACKNOWLEDGMENTS

The authors are grateful for the computational facilities provided by the Vermont Advanced Computing Core.
We are thankful to Thayer Alshaabi for assistance generating allotaxonographs and for helpful conversations.
Finally, we are grateful for feedback provided by David R. Dewhurst.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



Methods for Host-based Intrusion Detection with Deep Learning « 26:19

A ALLOTAXONOGRAPHS

Divergence contribution (5DF/3 (%)
5 0 5

Q): ADFA Baseline Q,: ADFA Attacks

Instrument: Rank-Turbulence Divergence peqf

poll
open 28
close 313
gettimeofday
read |2
510 nanosleep
times
access 510
write 510
setitimer
unlinkat
time
pipe 2019
mprotect 017
futex
<exit 34=79
socketcall
brk 15=24
waitpid 1625
<getrusage 1379
fallocate
clone 1827
setpgid
sigreturn
munmap 1115
<fehdir 4779

a=1/3
v

0 14 1/2 341 322 35 o

) =0.263

fsync 7
<avfork 48=79

gettid

kill 3350

alarm
<asetpriority 5179
rename 3652
getpgrp

writev

ipc

execve 2432
<fchmod 51
dup 29+
<fchownat 5579

Balances:
87.9% total counts
100.0% all syscalls

16.1% exclusive syscalls 0.0% 50.7%—49.3%

100
Counts per cell %, 1,000 1,000 s
5

Fig. 8. Comparison of system call rankings between attack and baseline traces in ADFA-LD. Note that some of the most

frequently utilized system calls, poll and read, are among the largest contributors to divergence. Of additional interest is
that the most dangerous system calls are not top contributors to divergence.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



26:20 « J.H.Ring IV et al.

Qy: ADFA Baseline
read

Q,: ADFA Attacks Divergence contribution 6D}, (%)

0.6 04 02 0 0.2 04 0.6
T T T T T T

. read
Instrument: Rank-Turbulence Divergence

— poll poll
s eIl
open read 319
read read 13
times read
gettimeofday time
access open (=12

0 14 12341 322 35 o

DYL(Q, [ Q) = 0.386
”

3 3 W H write write
- 2 read close

time write
nanosleep nanosleep
! 1

mg
close close 1175
close access )52
poll read
gettimeofday gettimeofday
futex time
time gettimeofday
apoll pipe 54-1.051
mprotect mprotect 10-35
close munmap 1155
gettimeofday futex
write read 2092
setitimer read
gettimeofday socketcall
socketcall alarm >
read write 2390
<uname brk 851,051
poll times
¢ apipe clone 901051
10 write gettimeofday
alarm readlink >
socketcall readlink >
2 S <brk joetl 931,051
100 ’ brk brk 20112
Balances: alarm open >
88.1% total counts 11.9% read setitimer
writev mremap >

1,000 %,

93.1% all syscalls 43.0%
Counts per cell

10,000 10,000

61.3% exclusive syscalls 16.1% 52.2%—47.8%

Fig. 9. Comparison of system call bi-gram rankings between attack and baseline traces in ADFA-LD. Similar to uni-grams,

frequent bi-grams remain top contributors to divergence. We see a larger portion of bi-grams appearing only in one split
compared to uni-grams.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



Instrument

a=1/3
v

;: PLAID Baseline

Rank-Turbulence Divergence

openat read

0 14 1/2 341

Q) = 0.467

1,000
Counts per cell

322 3 5

Methods for Host-based Intrusion Detection with Deep Learning « 26:21

. R R
Divergence contribution 6D}, (%)
0.6 0.4 0.2 0 0.2 0.4 0.6
T T T

read read
2210

y: PLAID Attacks

//

fstat read
openat read |0
Istat Istat 470
write write 212
read fstat
fstat getewd
times read
poll times
accept poll
times stat
chdir times
read select
<openat Istat 351,013
<execve execve - 1,013
chdir fstat
select read
openat fstat
write setitimer
1 setitimer accept
shutdown recvfrom
write shutdown

munmap munmap
read lseck 200
<lseek write 131,013
Y getewd chdir
& recvfrom recvirom
close openat 1150
getsockopt getpid >
<Awrite lseek 521,013
getpid getsockopt >
recvirom close
setitimer write
read Istat
close setitimer
close stat 1564
read write
write read
faccessat faccessat >
nanosleep openat

Balances:
96.1% total counts 3.
92.4% all syscalls 39.7%

xelusive syscalls 19.1%

10,000 10,000 52.1%—47.9%

Fig. 10. Comparison of system call bi-gram rankings between attack and baseline traces in PLAID. Similar to uni-grams,
frequent bi-grams remain top contributors to divergence. We see a larger portion of bi-grams appearing only in one split

compared to uni-grams.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



26:22 « J.H.Ring IV et al.

€;: ADFA Baseline Qy: ADFA Attacks

Instrument: Rank-Turbulence Divergence
read read read
a=1/3

v

poll poll poll

0 14 1/2 341 322 35

DY (0 ]| Q2) = 0.482

0.00

3

‘D 0
— 7

oS
S
PRI
< ‘.‘%
B
o ’f;’.: }:"‘t s 2
O &R ISR &
URSGERREARY
P X XPSARIII X
R0/ AP
20219 021501 1208 &
Fon IR b
KOS\ soc...arm
RS
100 4 00"‘"“ 100
10 B B, NG \ R Gosockollgt
%, €5 read wii link pp...a $ o
% x{f 1 Y fink 1§ &
100 0:2;.6/ time uti return...cad @Y’
% L9001 0 Lo 1000, N
1,000 P fat fc...ead > Balances:
NS 88.6% total counts 11.4%
10,000 /\‘ & 86.7% all syscalls 39.4%
Counts per cell 10,000 10,000 -\\-i‘\ 69.8% exclusive syscalls 33.6%

Fig. 11. Comparison of system call tri-gram rankings between attack and baseline traces in ADFA-LD. A slightly larger
portion of tri-grams are present only in one set compared to bi-grams. This suggests that longer n-grams help to differentiate

between sets.

. - R

Divergence contribution ‘5D1/3,7 (%)

0.15 0.1 0.05 0 0.05 0.1 0.15
T T

T T T T T
poll poll poll
read read read |6
gettimeofday gettim...day
poll read poll
write write write 323
close access open | ()
read poll poll
close close close =191
gettimeofday time time
A7

access open read
futex futex futex 2
futex futex time
poll poll read
write gettimeofday time
open open open (=18
futex time write
time write gettimeofday
time time gettimeofday
time gettimeofday time
nanosleep nanosleep...cep
read read close 10580
read close munmap - 01
write read write 19305
mprotect mprotect m...ect 733
open read close 18151
gettimeofday futex futex
<close poll write 705,129

close munmap open 16103
<uname brk brk & 5,129
<ugetrlimit uname brk 825,129
read poll read
socketcall close close 50001
close close poll 15500
gettimeofday socket...day
unlinkat unlinkat u...kat
poll socketcall soc...all 23119
socketcall gettimeo...day

poll write futex 752,315

51.7%—48.3%

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



Methods for Host-based Intrusion Detection with Deep Learning « 26:23

;: PLAID Baseline

Instrument: Rank-Turbulence Divergence

write write write 108
read read read
fstat read close

Q»: PLAID Attacks Divergence contribution JD{‘/W(%)
- openat read close 2—13
P Istat Istat Istat 3105

0.2 0.1 0 0.1 0.2
T T T T
read read re- //
2.05x10
times read read

T
561x10° T5.61x10 poll times read
accept poll times
chdir times stat>
fstat getewd chdir
fstat fstat getewd
times stat write
stat write setitimer
stat openat read 12117
select read fstat >
close stat openat 14436
read fstat read
read close openat 10="129
write read select >
1 close openat read 11130
recvfrom close setitimer
close setitimer accept
write shutdown recvfrom
shutdown recvfrom r...rom
recvfrom recvfrom close
e’ 8 setitimer accept poll
N chdir fstat read
getewd chdir fitat
close chdir times
write setitimer write
read Istat stat
<munmap munmap munmap 35
<openat Istat Istat 30+
lstat openat Istat 12
write write read
read select read
setitimer write shutdown

a=1/3
v

0 1/a 12341 322 35

) = 0.607
Jwrite wri...itg

100

1,000 Balances: dexecve execve execve 163,012
96.29% total counts 3.8% readireadilstat
read close stat 1305
10,000 92.8% all syscalls 22.9%

10,000 10,000 54.0%—46.0%

Counts per cell 83.0% exclusive syscalls 3

Fig. 12. Comparison of system call tri-gram rankings between attack and baseline traces in PLAID. A slightly larger portion of

tri-grams are present only in one set compared to bi-grams. This suggests that longer n-grams help to differentiate between
sets.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



26:24 « J.H.Ring IV et al.

B SYSTEM CALL FREQUENCIES

5 —— Baseline 6 —— Baseline
—— Attack —— Attack
5
4
z z 4
& 3 S
Fl F)
o o
£ £ 37
= 2
o 2 o
2 o
24
1
14
0 0
0.0 0.5 1.0 15 2.0 2.5 3.0 35 0.0 0.5 1.0 15 2.0 2.5 3.0
Rank of System Call 2-grams Rank of System Call 2-grams
51 —— Baseline 6 —— Baseline
—— Attack —— Attack
4 5
> > 4
2 3 2
v [
2 2
g g5
fre frs
o °
521 g
o 2, ]
14
1
0 01
0 1 2 3 4 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5
Rank of System Call 3-grams Rank of System Call 3-grams

Fig. 13. Rank frequency plots of system call bi- (top) and tri- (bottom) grams for attack and baseline traces in ADFA-LD (left)
and PLAID (right). The rank frequency appears to approximate a power-law with an exponential cutoff in the tail. Natural
language corpora tend to be and stay power-law like for uni- through tri-grams with the tail starting to flatten. In contrast
to system call corpora, which become more power-law like.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



26:25

Methods for Host-based Intrusion Detection with Deep Learning

v

logio Frequency

Fe
Fo

i y 5 "
e’ 3 2 3

rv

e

o
sched_get_pridrity
o

.
s
sigpendint

~9Etatised ]

118D wsAs

sefpid J
sched_setscheduler ]
Gmog 1

1 ohock 3
oll_create
epelereiie 3

iy 12
inati
Hrstxattr
init_module
rt_sigsuspend 4
reat
capset ]

eny
suijeseg mmm

Fig. 14. Comparison of system call usage between baseline and attack traces in ADFA-LD. System calls are in monotoni-
cally non-increasing order base on their frequency in baseline traces. Notice that usages of individual system calls differ

significantly between sets.
Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



26:26 + J.H.Ring IV etal

logio Frequency

to

4

%
Lo

t_sigaction |

close
openat -
mmap
read

epoll_wait |
sendto
getdents |
chmod
readlink |
ockopt
uniinkat -
fadvisesd
socket
nanosleep
dup 4

118D waysAs
.

tpriority |
e sostspend
Setsid |
mremap
sched_ yield J
otparp

setgroups -
symlinkat
ichown
getsid |

& ]

chown

alarm
inotify_add_watch
trncate |
signaitda

inotify.

getdents6d
inotify_init -
epoll_pwait |
readiinkat
epoll_create1 |

Peny e
sujeseg mmm

Fig. 15. Comparison of system call usage between baseline and attack traces in PLAID. System calls are in monotonically non-
increasing order based on their frequency in baseline traces. Notice that usages of individual system calls differ significantly
between sets. Of additional interest is the amount of clock_gettime calls in the attack split.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.



Methods for Host-based Intrusion Detection with Deep Learning « 26:27

REFERENCES

(1]

(2]
(3]
(4]
(5]

G

—

[7

—

[8

—

[9

—

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]
[21]

[22]
[23]
[24]
[25]

[26]
[27]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, lan Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, 2015. TensorFlow: Large-scale Machine Learning on Heterogeneous Systems.
Retrieved from https://www.tensorflow.org/.

Ehsan Aghaei and Gursel Serpen. 2017. Ensemble classifier for misuse detection using N-gram feature vectors through operating system
call traces. Int. J. Hybrid Intell. Syst. 14, 3 (2017), 141-154.

Ahmed Ahmim, Leandros Maglaras, Mohamed Amine Ferrag, Makhlouf Derdour, and Helge Janicke. 2019. A novel hierarchical intru-
sion detection system based on decision tree and rules-based models. In Proceedings of the 15th International Conference on Distributed
Computing in Sensor Systems (DCOSS’19). IEEE, 228-233.

James P. Anderson. 1980. Computer Security Threat Monitoring and Surveillance. Technical Report. James P. Anderson Company.
Ahmad Azab, Mamoun Alazab, and Mahdi Aiash. 2016. Machine learning based botnet identification traffic. In Proceedings of the IEEE
Trustcom/BigDataSE/ISPA. IEEE, 1788-1794.

Ahmad Azab, Robert Layton, Mamoun Alazab, and Jonathan Oliver. 2014. Mining malware to detect variants. In Proceedings of the 5th
Cybercrime and Trustworthy Computing Conference. IEEE, 44-53.

Massimo Bernaschi, Emanuele Gabrielli, and Luigi V. Mancini. 2000. Operating system enhancements to prevent the misuse of system
calls. In Proceedings of the 7th ACM Conference on Computer and Communications Security. 174-183.

Atul Bohara, Uttam Thakore, and William H. Sanders. 2016. Intrusion detection in enterprise systems by combining and clustering
diverse monitor data. In Proceedings of the Symposium and Bootcamp on the Science of Security. 7-16.

Ashima Chawla, Brian Lee, Sheila Fallon, and Paul Jacob. 2018. Host based intrusion detection system with combined CNN/RNN model.
In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 149-158.

Gideon Creech and Jiankun Hu. 2013. Generation of a new IDS test dataset: Time to retire the KDD collection. In Proceedings of the
IEEE Wireless Communications and Networking Conference (WCNC’13). IEEE, 4487-4492.

Tran Khanh Dang and Tran Tri Dang. 2013. A survey on security visualization techniques for web information systems. Int. J. Web Inf.
Syst. 9, 1 (2013).

Peter Sheridan Dodds, Joshua R. Minot, Michael V. Arnold, Thayer Alshaabi, Jane Lydia Adams, David Rushing Dewhurst, Tyler J. Gray,
Morgan R. Frank, Andrew J. Reagan, and Christopher M. Danforth. 2020. Allotaxonometry and rank-turbulence divergence: A universal
instrument for comparing complex systems. arXiv preprint arXiv:2002.09770 (2020).

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly detection and diagnosis from system logs through
deep learning. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 1285-1298.

Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo. 2002. A geometric framework for unsupervised anomaly
detection. In Applications of Data Mining in Computer Security. Springer, 77-101.

Eleazar Eskin, Wenke Lee, and Salvatore J. Stolfo. 2001. Modeling system calls for intrusion detection with dynamic window sizes. In
Proceedings of the DARPA Information Survivability Conference and Exposition II (DISCEX’01), Vol. 1. IEEE, 165-175.

Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A. Longstaff. 1996. A sense of self for Unix processes. In Proceedings
of the IEEE Symposium on Security and Privacy. IEEE, 120-128.

Kathleen Goeschel. 2016. Reducing false positives in intrusion detection systems using data-mining techniques utilizing support vector
machines, decision trees, and naive Bayes for off-line analysis. In Proceedings of the IEEE Region 3 Technical, Professional, and Student
Conference (SoutheastCon’16). IEEE, 1-6.

The PHP Group. 2016. PHP Hypertext Processor. Retrieved from https://www.php.net/releases/7_1_0.php.

X. A. Hoang and Jiankun Hu. 2004. An efficient hidden Markov model training scheme for anomaly intrusion detection of server
applications based on system calls. In Proceedings of the 12th IEEE International Conference on Networks (ICON’04), Vol. 2. IEEE,
470-474.

Martin Joos. 1936. The Psycho-Biology of Language. MIT Press.

Gyuwan Kim, Hayoon Yi, Jangho Lee, Yunheung Paek, and Sungroh Yoon. 2016. LSTM-based system-call language modeling and robust
ensemble method for designing host-based intrusion detection systems. arXiv preprint arXiv:1611.01726 (2016).

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).

Steve Klabnik and Carol Nichols. 2019. The Rust Programming Language (Covers Rust 2018). No Starch Press.

Andrew P. Kosoresow and S. A. Hofmeyer. 1997. Intrusion detection via system call traces. IEEE Softw. 14, 5 (1997), 35-42.
Phuangpaka Kuttranont, Kobkun Boonprakob, Comdet Phaudphut, Songyut Permpol, Phet Aimtongkhamand, Urachart KoKaew, Boon-
sup Waikham, and Chakchai So-In. 2017. Parallel KNN and neighborhood classification implementations on GPU for network intrusion
detection. . Telecommun., Electron. Comput. Eng. 9, 2-2 (2017), 29-33.

Emil Lerner. 2019. PHP-FPM Attack. Retrieved from https://github.com/neex/phuip-fpizdam.

OffSec Services Limited. 2013. Brute-force Password Attack. https://tools.kali.org/password-attacks/hydra.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.


https://www.tensorflow.org/
https://www.php.net/releases/7_1_0.php
https://github.com/neex/phuip-fpizdam
https://tools.kali.org/password-attacks/hydra

26:28 « J.H.Ring IV et al.

(28]
[29]

[30]
(31

(32
(33

[ R}

(34]
(35]
(36]
(37]

(38

[t

—
S
=

s

[50]

OffSec Services Limited. 2019. Kali Linux. Retrieved from https://www.kali.org/.

Massachusetts Institute of Technology Lincoln Laboratory. 1998/1999. DARPA Intrusion Detection Evaluation Dataset. Retrieved from
https://www.Il.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset.

Hongyu Liu and Bo Lang. 2019. Machine learning and deep learning methods for intrusion detection systems: A survey. Appl. Sci. 9, 20
(2019), 4396.

Seth Lloyd. 2002. Computational capacity of the universe. Phys. Rev. Lett. 88, 23 (2002), 237901.

Canonical Ltd. 2018. Ubuntu Linux. (2018). Retrieved from https://releases.ubuntu.com/18.04.4/.

Netcraft Ltd. 2020. April 2020 Web Server Survey. Retrieved from https://news.netcraft.com/archives/2020/04/08/april-2020-web-
server-survey.html.

ShaoHua Lv, Jian Wang, YinQi Yang, and Jiqiang Liu. 2018. Intrusion prediction with system-call sequence-to-sequence model. IEEE
Access 6 (2018), 71413-71421.

Tao Ma, Fen Wang, Jianjun Cheng, Yang Yu, and Xiaoyun Chen. 2016. A hybrid spectral clustering and deep neural network ensemble
algorithm for intrusion detection in sensor networks. Sensors 16, 10 (2016), 1701.

Steven McElwee, Jeffrey Heaton, James Fraley, and James Cannady. 2017. Deep learning for prioritizing and responding to intrusion
detection alerts. In Proceedings of the MILCOM IEEE Military Communications Conference (MILCOM’17). IEEE, 1-5.

John McHugh. 2000. Testing intrusion detection systems: A critique of the 1998 and 1999 Darpa intrusion detection system evaluations
as performed by Lincoln Laboratory. ACM Trans. Inf. Syst. Secur. 3, 4 (2000), 262-294.

Weizhi Meng, Wenjuan Li, and Lam-For Kwok. 2015. Design of intelligent KNN-based alarm filter using knowledge-based alert verifi-
cation in intrusion detection. Secur. Commun. Netw. 8, 18 (2015), 3883-3895.

Metasploit. 2019. Redis Attack. Retrieved from https://www.exploit-db.com/exploits/47195.

Erxue Min, Jun Long, Qiang Liu, Jianjing Cui, and Wei Chen. 2018. TR-IDS: Anomaly-based intrusion detection through text-
convolutional neural network and random forest. Secur. Commun. Netw. 2018 (2018).

University of New Mexico Computer Science Department. 1998. UNM System Call Dataset. Retrieved from https://www.cs.unm.edu/
~immsec/systemcalls.htm.

ACM Special Interest Group on Knowledge Discovery and Data Mining. 1999. KDD Cup 1999: Computer Network Intrusion Detection.
Retrieved from https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior,
and Koray Kavukcuoglu. 2016. WaveNet: A generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016).

Oracle. 2019. Virtual Box. Retrieved from https://www.virtualbox.org/.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neural networks. In Proceedings of
the International Conference on Machine Learning. 1310-1318.

Sasanka Potluri, Shamim Ahmed, and Christian Diedrich. 2018. Convolutional neural networks for multi-class intrusion detection
system. In Proceedings of the International Conference on Mining Intelligence and Knowledge Exploration. Springer, 225-238.

Benjamin J. Radford, Leonardo M. Apolonio, Antonio J. Trias, and Jim A. Simpson. 2018. Network traffic anomaly detection using
recurrent neural networks. arXiv preprint arXiv:1803.10769 (2018).

Will Reese. 2008. Nginx: The high-performance web server and reverse proxy. Linux 7. 2008, 173 (2008), 2.

Maria Rigaki and Sebastian Garcia. 2018. Bringing a GAN to a knife-fight: Adapting malware communication to avoid detection. In
Proceedings of the IEEE Security and Privacy Workshops (SPW’18). IEEE, 70-75.

John H. Ring IV. 2020. UVM IDS GitLab Repository. Retrieved from https://gitlab.com/jhring/uvm_ids.

Cynthia Rudin. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.
Nat. Mach. Intell. 1 (05 2019), 206—215. DOI : https://doi.org/10.1038/s42256-019-0048-x

Salvatore Sanfilippo. 2009. Redis. Retrieved from https://redis.io/.

LLC. SolarWinds Worldwide. 2020. Solarwinds Security Event Manager. Retrieved from https://www.solarwinds.com/security-event-
manager.

Splunk. 2020. Splunk Intrusion Detection System. Retrieved from https://www.splunk.com/.

Blake E. Strom, Andy Applebaum, Doug P. Miller, Kathryn C. Nickels, Adam G. Pennington, and Cody B. Thomas. 2018. Mitre Att&ck:
Design and Philosophy. Technical Report. MITRE.

Keras Team. 2020. Keras Tuner. Retrieved from https://keras-team.github.io/keras-tuner/.

OSSEC Project Team. 2020. OSSEC: Host Intrusion Detection for Everyone. Retrieved from https://www.ossec.net/.

Nam Nhat Tran, Ruhul Sarker, and Jiankun Hu. 2017. An approach for host-based intrusion detection system design using convolutional
neural network. In Proceedings of the International Conference on Mobile Networks and Management. Springer, 116-126.

Aaron Tuor, Samuel Kaplan, Brian Hutchinson, Nicole Nichols, and Sean Robinson. 2017. Deep learning for unsupervised insider threat
detection in structured cybersecurity data streams. In Proceedings of the Workshops at the 31st AAAI Conference on Artificial Intelligence.
Solomon Ogbomon Uwagbole, William J. Buchanan, and Lu Fan. 2017. Applied machine learning predictive analytics to SQL injection
attack detection and prevention. In Proceedings of the IFIP/IEEE Symposium on Integrated Network and Service Management (IM’17). IEEE,
1087-1090.

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.


https://www.kali.org/
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://releases.ubuntu.com/18.04.4/
https://news.netcraft.com/archives/2020/04/08/april-2020-web-server-survey.html
https://www.exploit-db.com/exploits/47195
https://www.cs.unm.edu/~immsec/systemcalls.htm
https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.virtualbox.org/
https://gitlab.com/jhring/uvm_ids
https://doi.org/10.1038/s42256-019-0048-x
https://redis.io/
https://www.solarwinds.com/security-event-manager
https://www.splunk.com/
https://keras-team.github.io/keras-tuner/
https://www.ossec.net/

Methods for Host-based Intrusion Detection with Deep Learning « 26:29

[61] Ali Moradi Vartouni, Saeed Sedighian Kashi, and Mohammad Teshnehlab. 2018. An anomaly detection method to detect web attacks
using stacked auto-encoder. In Proceedings of the 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS’18). IEEE, 131-134.

[62] Sitalakshmi Venkatraman and Mamoun Alazab. 2018. Use of data visualisation for zero-day malware detection. Secur. Commun. Netw.
2018 (2018).

[63] Sitalakshmi Venkatraman, Mamoun Alazab, and R. Vinayakumar. 2019. A hybrid deep learning image-based analysis for effective
malware detection. J. Inf. Secur. Applic. 47 (2019), 377-389.

[64] Robin Verton. 2016. cowroot.c. Retrieved from https://gist.github.com/rverton/e9d4ff65d703a9084e85fa9df083c679.

[65] Robin Verton. 2019. Privilege Escalation Attack. Retrieved from https://gist.github.com/rverton/e9d4ff65d703a9084e85fa9df083c679.

[66] Wei Wang, Yigiang Sheng, Jinlin Wang, Xuewen Zeng, Xiaozhou Ye, Yongzhong Huang, and Ming Zhu. 2017. HAST-IDS: Learning
hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE Access 6 (2017), 1792-1806.

[67] Yanxin Wang, Johnny Wong, and Andrew Miner. 2004. Anomaly intrusion detection using one class SVM. In Proceedings of the 5th IEEE
SMC Information Assurance Workshop. IEEE, 358—-364.

[68] Kehe Wu, Zuge Chen, and Wei Li. 2018. A novel intrusion detection model for a massive network using convolutional neural networks.
IEEE Access 6 (2018), 50850-50859.

[69] Tatu Ylonen. 1996. SSH-secure login connections over the Internet. In Proceedings of the 6th USENIX Security Symposium, Vol. 37.

[70] Xiaoyong Yuan, Chuanhuang Li, and Xiaolin Li. 2017. DeepDefense: Identifying DDoS attack via deep learning. In Proceedings of the
IEEE International Conference on Smart Computing (SMARTCOMP’17). IEEE, 1-8.

[71] YiZeng, Huaxi Gu, Wenting Wei, and Yantao Guo. 2019. Deep-Full-Range: A deep learning based network encrypted traffic classification
and intrusion detection framework. IEEE Access 7 (2019), 45182-45190.

[72] Baoan Zhang, Yanhua Yu, and Jie Li. 2018. Network intrusion detection based on stacked sparse autoencoder and binary tree ensemble
method. In Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops’18). IEEE, 1-6.

[73] He Zhang, Xingrui Yu, Peng Ren, Chunbo Luo, and Geyong Min. 2019. Deep adversarial learning in intrusion detection: A data aug-
mentation enhanced framework. arXiv preprint arXiv:1901.07949 (2019).

Received July 2020; revised February 2021; accepted April 2021

Digital Threats: Research and Practice, Vol. 2, No. 4, Article 26. Publication date: October 2021.


https://gist.github.com/rverton/e9d4ff65d703a9084e85fa9df083c679
https://gist.github.com/rverton/e9d4ff65d703a9084e85fa9df083c679

