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Abstract—Deploying federated learning (FL) over wireless
networks with resource-constrained devices requires balancing
between accuracy, energy efficiency, and precision. Prior art on
FL often requires devices to train deep neural networks (DNNs)
using a 32-bit precision level for data representation to improve
accuracy. However, such algorithms are impractical for resource-
constrained devices since DNNs could require execution of
millions of operations. Thus, training DNNs with a high precision
level incurs a high energy cost for FL. In this paper, a quantized
FL framework, that represents data with a finite level of precision
in both local training and uplink transmission, is proposed.
Here, the finite level of precision is captured through the use
of quantized neural networks (QNNs) that quantize weights and
activations in fixed-precision format. In the considered FL model,
each device trains its QNN and transmits a quantized training
result to the base station. Energy models for the local training and
the transmission with the quantization are rigorously derived.
An energy minimization problem is formulated with respect to
the level of precision while ensuring convergence. To solve the
problem, we first analytically derive the FL convergence rate
and use a line search method. Simulation results show that our
FL framework can reduce energy consumption by up to 53%
compared to a standard FL model. The results also shed light
on the tradeoff between precision, energy, and accuracy in FL
over wireless networks.

I. INTRODUCTION

The emergence of federated learning (FL) ushered in a new
era of distributed inference that can alleviate data privacy
concerns [1]. In FL, massively distributed mobile devices and
a central server (e.g., a base station (BS)) collaboratively train
a shared model without requiring devices to share raw data.
Many FL algorithms employ complex deep neural networks
(DNNp5s) to achieve a high accuracy by allocating many bits for
the precision level in data representation [2]. DNN structures,
such as convolutional neural networks (CNNSs), can have tens
of millions of parameters and billions of multiply-accumulate
(MAC) operations [3]. In practice, the energy consumed for
computation and memory access is proportional to the level
of precision [4]. Hence, computationally intensive neural net-
works with a conventional 32 bits full precision level may not
be suitable for deployment on energy-constrained mobile and
Internet of Things (IoT) devices. In addition, a DNN may
increase the energy consumption of transmitting a training
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result due to the large model size. To design an energy-
efficient FL scheme, one could reduce the level of precision
to decrease the energy consumption for the computation
and transmission. However, the reduced precision level could
introduce quantization error that degrades the accuracy and
the convergence rate of FL. Therefore, deploying real-world
FL frameworks over wireless systems requires one to balance
precision, accuracy, and energy efficiency — a major challenge
facing future distributed learning frameworks.

Remarkably, despite the surge in research on the use of
FL, only a handful of works in [5]-[10] have studied the
energy efficiency of FL from a system-level perspective. A
novel analytical framework that derived energy efficiency of
FL algorithms in terms of the carbon footprint was proposed
in [5]. Meanwhile, in [6], the authors formulated an energy
minimization problem under heterogeneous power constraints
of mobile devices. The work in [7] investigated a resource
allocation problem to minimize the total energy consumption
considering the convergence rate. In [8], the energy consump-
tion of FL. was minimized by controlling workloads of each
device, which has heterogeneous computing resources. The
work in [9] proposed a quantization scheme for both uplink
and downlink transmission in FL and analyzed the impact of
the quantization on the convergence rate. The authors in [10]
considered a novel FL setting, in which each device trains a
binary neural network so as to improve the energy efficiency of
transmission by uploading the binary parameters to the server.

However, the works in [5]-[9] did not consider the energy
efficiency of their DNN structure during training. Since de-
vices have limited computing and memory resources, deploy-
ing an energy-efficient DNN will be a more appropriate way
to reduce the energy consumption of FL. Although the work
in [11] considered binarized neural networks during training,
this work did not optimize the quantization levels of the neural
network to balance the tradeoff between precision and energy.
To the best of our knowledge, there is no work that jointly
considers the tradeoff between precision, energy, and accuracy.

The main contribution of this paper is a novel energy-
efficient quantized FL framework that can represent data with
a finite level of precision in both local training and uplink
transmission. In our FL model, each device trains a quantized
neural network (QNN), whose weights and activations are
quantized with a finite level of precision, so as to decrease en-
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Fig. 1: An illustration of the quantized FL model over wireless
network.
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ergy consumption for computation and memory access. After
training, each device quantizes the result with the same level
of precision used in the local training and transmits it to the
BS. The BS aggregates the received information to generate
a new global model and broadcasts it back to the devices. To
quantify the energy consumption, we propose rigorous energy
model for the local training based on the physical structure
of a processing chip. We also derive the energy model for the
uplink transmission considering the quantization. To achieve a
high accuracy, FL requires a high level of precision at the cost
of increased total energy consumption. Meanwhile, although,
a low level of precision can decrease the energy consumption
per iteration, it will decrease the convergence rate to achieve
a target accuracy. Thus, there is a need for a new approach to
analyze and optimize the tradeoff between precision, energy,
and accuracy. To this end, we formulate an optimization
problem by controlling the level of precision to minimize the
total energy consumption while ensuring convergence with a
target accuracy. To solve the problem, we first analytically
derive the convergence rate of our FL framework and use a line
search method to numerically find the local optimal solution.
Simulation results show that our FL model can reduce the
energy consumption up to 53% compared to a standard FL
model, which uses 32-bit full-precision for data representation.
The results also shed light on the tradeoff between precision,
energy efficiency, and accuracy in FL over wireless networks.

The rest of this paper is organized as follows. Section
IT presents the system model. In Section III, we describe
the studied problem. Section IV provides simulation results.
Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider an FL system, in which N devices (e.g. edge
or mobile devices) are connected to one BS. As shown in Fig.
1, the BS and devices collaboratively perform an FL algorithm
for executing a certain data analysis task. Each device k
has local dataset Dy = {@g;, yri}, where | = 1,..., Dy.
In particular, {xg;,yr} is an input-output pair for image
classification, where xy; is an input vector and yy; is the
corresponding output. We define a loss function f(w, k;, yri)
to quantify the performance of a machine learning (ML) model

with parameters w € R? over {xy;,yr}. Since device k has
Dy, data samples, its local loss function is given by

Dy,
1
Fi(w) = Fk;f(wawklvykl)- (D
We define the global loss function over N devices as follows:
N D N Dy
Zj Zwa Tk, Yk);  (2)
k=1 k 11=1

where D = Zk:l Dy, is the total size of the entire dataset.
The FL process aims to find the optimal model parameters w
that can minimize the global loss function as follows

min F(w). 3)

Solving problem (3) typically requires an iterative process
between the BS and devices. However, in practical systems,
such as an IoT, the devices are energy-constrained. They are
unable to run a power consuming FL process. Hence, we
propose to manage the level of precision of our FL to reduce
the energy consumption for computation, memory access, and
transmission. As such, we adopt a QNN structure whose
weights and activations are quantized in fixed-point format
rather than conventional 32-bit floating-point format [11].

A. Quantized Neural Networks

In our model, each device trains a QNN of identical
structure using n bits of precision for quantization. We can
express data more precisely if we increase n at the cost of
more energy usage. We can represent any given number in
fixed-point format such as [Q.w], where € is the integer part
and w is the fractional part of the given number [12]. Here,
we use one bit to represent the integer part and (n — 1) bits
for the fractional part. Then, the smallest positive number we
can present would be x = 27"*!, and the possible range of
numbers with n bits will be [-1,1 — 27"*1]. Note that a
QNN restricts the value of weights to [-1, 1]. We consider a
stochastic quantization scheme [12], where any given w € w
is quantized as follows:

w), with probability 12*r=v
Q(w) = L J . P . .y wfffv] 4)
|lw] + &, with probability ———,

where |w] is the largest integer multiple of x less than or
equal to w.

We denote the quantized weights of layer [ as wg)k =
Q(w’&)) for device k. Then, the outputs of layer [ will be:

_ Qk Q
o = g(l)(w(z) 70(171))7 (5)

where ¢(-) is the operation of layer [ on the input, such as
activation and batch normalization, and 08_1) is the quantized
output from the previous layer [ — 1. Note that the output o(;
will be quantized and fed into the next layer as an input. For
training, we use stochastic gradient descent (SGD) algorithm
as follows

wh — wh — nVE, (w?F, ¢F), (6)



Algorithm 1: Quantized FL. Algorithm

Input: K, I, initial model wo, t = 0, target accuracy €

1 repeat

2 The BS randomly select a subset of devices N; and
broadcasts the w; to the selected devices;

3 Each device k € N; trains wf by running I steps of
SGD as (6);

4 Each device k € N; tansmits dthl’ to the BS;

5 The BS generates a new global model

_ 1 Q.k.

Wiyl = Wt + Zke/\/} a3y

6 t+—t+1;

7 until rarget accuracy € is satisfied,

where 77 is the learning rate and £ is a mini-batch for the
current update. Then, we restrict the values of w” to [—1,1]
as wk « clip(w®, —1,1), where clip(-, —1,1) projects each
input to 1 (-1) for any input larger (smaller) than 1 (-1), or
returns the same value as the input. Otherwise, w* can become
very large without a meaningful impact on quantization [11].
After each training, w” are quantized as w®"*.

B. FL model

For learning, without loss of generality, we adopt FedAvg
[2] to solve problem (3). At each global iteration ¢, the BS
randomly selects a set of devices N; with |[A;| = K and
broadcasts the current global model w; to the scheduled
devices. Each device in AN; trains its local model based on
the received global model by running I steps of SGD on its
local loss function as below

wfyT:wf’Tfl—ntVFk(wQ’k k),VT:].,...7I7 @)

t,r—105T1

where 7); is the learning rate at global iteration ¢. Note that
unscheduled devices do not perform local training. Then, K
devices calculates the model update df = wf_H — wk,
where wf , = wf; and wf = wf, [9]. Typically, dy,,
has a millions of elements. It is not practical to send df 1
with full precision for energy-constrained devices. Hence, we
apply the same quantization scheme used in QNNs to df 1
and denote its quantization result as dg”f. Then, K devices
transmit their model update to the BS. The received model
updates are averaged by the BS, and the next global model

will be generated as below

1
Wi = Wy + ? Z d?_illi (8)
keN;
The FL system repeats this process until the global loss
function converges to a target accuracy constraint ¢. We
summarize the aforementioned algorithm in Algorithm 1.
Next, we propose the energy model for the computation and
the transmission for our FL system.

C. Computing and Transmission model

1) Computing model: We consider a typical two dimen-
sional processing chip for CNNs as shown in Fig. 2 [4].
This chip has a parallel neuron array, p MAC units, and two
levels of memory: a main and a local buffer. A main buffer
stores the current layers’ weights and activations, while a local
buffer caches currently used weights and activations. From
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Fig. 2: An illustration of the two dimensional processing chip.

[13], we use the energy model of a MAC operation for n
levels of precision Eyac(n) = A (n/nma)”, where A > 0,
1 < a < 2, and nyax 1s the maximum precision level. Here,
a MAC operation includes the operation of a layer such as
output calculation, batch normalization, activation, and weight
update. Then, the energy consumption for accessing a local
buffer F| can be modeled as FEyac(n), and the energy for
accessing a main buffer is E,, = 2Evac(n) [4] .

The energy consumption of device k for one iteration of
local training is given by E<¥(n) when n bits are used for the
precision level in the quantization. Then, E¢*(n) is the sum
of the computing energy Ec(n), the access energy for fetching
weights from the buffers Ew(n), and the access energy for
fetching activations from the buffers Ex(n), as follows [13]:

E“*(n) = Ec(n) + Ew(n) + Ea(n),

Ec(n) = Eyiac(n)Ne + 405 Evac(Timax),
Ew(n) = EnNs + EINcv/1/Phimax,

Ex(n) = 2E005 + ExNey/1/phima, ©)

where N, is the number of MAC operations, N, is the
number of weights, and Oy is the number of intermediate
outputs throughout the network. For Ec, in a QNN, batch
normalization, activation function, gradient calculation, and
weight update are done in full-precision ny.x to each output
O; [11]. Once we fetch weights from a main to a local buffer,
they can be reused in the local buffer afterward as shown in
Ew(n). In Fig. 2, a MAC unit fetches weights from a local
buffer for computation. Since we are using a two dimensional
MAC array of p MAC units, they can share fetched weights
with the same row and column, which has ,/p MAC units
respectively. In addition, a MAC unit can fetch more weights
due to the quantization with n bits compared with when
weights are represented in np,x bits. Thus, we can reduce the
access to a local buffer by the amount of \/n/pnmax. A similar
process applies to /5 since activations are fetched (stored)
from (to) the main buffer.

2) Transmission Model: We use orthogonal frequency do-
main multiple access (OFDMA) to transmit a model update
to the BS. The achievable rate of device k is given by

Ph
Tk :BlOg2 <1+]Vog> 5

where B is the allocated bandwidth, hj is the channel gain
between device k£ and the BS, P is the transmit power of each
device, and Ny is the power spectral density of white noise.

(10)



After local training, device k£ will transmit d? * to the BS at
given global iteration ¢. Then, the transmission time 7} for
uploading d? s given by

k
¢

k
IR

Tk Tk Mmax

Ti(n) =

(1)

Note that d?’k is quantized with n bits of precision while df
is represented with ny,x bits. Then, the energy consumption
for the uplink transmission is given by

Pl|dy|n

EUL,k(n) m
Blog, (1 + ﬁ) Nmax

:Tk(n) x P =

12)

In the following section, we formulate an energy minimizing
problem based on the derived energy models.

III. PROPOSED APPROACH FOR ENERGY-EFFICIENT
FEDERATED QNN

We formulate an energy minimization problem while en-
suring convergence under a target accuracy. A tradeoff exists
between the energy consumption and the convergence rate
with respect to n. Hence, finding the optimal n is important
to balance the tradeoff and achieve the target accuracy. We
propose a numerical method to solve this problem.

We aim to minimize the expected total energy consumption
until convergence under the target accuracy as follows:

min  E Z Z EVLE(p) + TEC*(n) (13a)
t=1 keN;
st. nell,..., nmxl, (13b)
E[F(wr)] — F(w*) <, (13¢)
where I is the number of local iterations, E[F(w7)] is the

expectation of global loss function after 71" global iteration,
F(w*) is the minimum value of F, and e is the target accuracy.

Since K devices are randomly selected at each global iter-
ation, we can derive the expectation of the objective function
of (13a) as follows

fe(n Z > EYEF(n) + IE*(n)
t= 1kENt
Z{EU“ )+ IEC )} . (14)

To represent T' with respect to €, we assume that the loss
function is L-smooth, p-strongly convex and that the variance
and the squared norm of the stochastic gradient are bounded
by o7 and G for device k, Vk € N, respectively. Before
we present the expression of 7', in the following lemma,
we will first analyze the quantization error of the stochastic
quantization in Sec. II.

Lemma 1. For the stochastic quantization Q(-), a scalar value
w, and a vector w € R%, we have

ElQM) = w, E[(Qw)-wf]< g5, (9

BlQ(w)] = w, E[IQGw) ~wl’ < 5o (6)
Proof. We first derive E[Q(w)] as
BQ(w)] = w4 (w4 2w )
Similarly, E[(Q(w) — w)?] can be obtained as
Q) )= ()~ I (2 2
= (0~ ) (L] + 5 —w)
K2 1
ST = (18)

where (18) follows from the arithmetic mean and geometric
mean inequality. Since expectation is a linear operator, we have
E[Q(w)] = w from (17). From the definition of the square
norm, E[||Q(w) — w]||?] can obtained as

E[[|Q() ZE d

- wl|?] —w;)*] < o (19)

O
From Lemma 1, we can see that our quantization scheme is

unbiased as its expectation is zero. However, the quantization
error can still increase for a large model. We next leverage
the results of Lemma 1, [9], and [14] so as to derive 1" with
respect to € in the following proposition.

Proposition 1. For learning rate n, =

2n:
L< 217?+1’6 >

t+7’
i, and v > 0, we have
E[F(wr) - F(w")] < 2" (20)
wr wls9ry
wherevis
21G? 4(N-K)
_ O @ 1 A-1)2¢2 4 2 T8 22
v= Z +22n<+ K)+(1 )G+K(N71)IG
2n

Proof. The complete proof is omitted due to space limitations.
Essentially, proposition 1 can be proven by using Lemma 1,
the convergence result with a quantized model update [9], and
replacing the SGD weight update in [14] with (7). O

From Proposition 1, We let (20) be upper bounded by € in
(13c) as follows

E[F(wr) — F(w*)] < gT :’L S <e (22)
We then take equality in (22) to obtain 7' = Lv/(2¢) — « and
approximate the problem as
N
i v (50 7) B e ) = et
(23a)
st. nel..., Nl (23b)

Note that any optimal solution n* from problem (23a) can
satisfy problem (13a) [15]. For any feasible T from (22), we
can always choose Ty > T' such that Ty satisfies (13c).
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Fig. 3: Total energy consumption for varying level of precision.

Now, we relax n as a continuous variable, which will be
rounded back to an integer value. From (9), (12), and (21),
we can observe that, as n increases, EV1*(n) and E“*(n)
becomes larger while 7" decreases. Hence, we can know that a
local optimal n* may exist for minimizing fz(n). Since fg(n)
is differentiable with respect to n in the given range, we can
find n* by solving dfg(n)/0On = 0 from Fermat’s Theorem
[16]. Although it is difficult to derive n* analytically, we can
obtain it numerically using a line search method. Hence, we
can find a local optimal solution, which minimizes the total
energy consumption under the given target accuracy.

IV. SIMULATION RESULTS

For our simulations, we uniformly deploy N = 50 devices
over a square area of size 100 m x 100 m serviced by one
BS at the center, and we assume a Rayleigh fading channel
with a path loss exponent of 2. Unless stated otherwise, we
use P =100 mW, B = 10 MHz, Ny = —100 dBm, K = 30,
I =5, nmax = 32 bits, e =001, 5 =5, L =1, p =1,
vy=1 0, =1, and G = 0.02, Vk = 1,..., N [17]. For
the computing model, we set A = 3.7 pJ and o = 1.25 as
done in [13], and we assume that each device has the same
architecture of the processing chip. All statistical results are
averaged over 10000 independent runs

Figure 3 shows the total energy consumption of the FL
system until convergence for varying levels of precision n.
In Fig. 3, we assume a QNN structure with two convolutional
layers: 32 kernels of size 3 x 3 with one padding and three of
strides and 32 kernels of size 3 x 3 with one padding and two
of strides, each followed by 2 x 2 max pooling. Then, we have
one dense layer of 220 neurons and one fully-connected layer.
In this setting, we have N, = 20.64 x 105, N, = 0.18 x 10,
and O = 1354. From this figure, we can see that the total
energy consumption decreases and then increases with n. This
is because when n is small, quantization error becomes large as
shown in Lemma 1, which slows down the convergence rate in
(20). However, as n increases, the energy consumption for the
local training and transmission also increases. Hence, a very
small or very high n may induce undesired large quantization
error or unnecessary energy consumption due to a high level

Optimal level of precision n

0 5 10 15 20 25 30
The number of local iterations, /

Fig. 4: Optimal level of precision for varying the number of
local iterations.
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Fig. 5: Optimal level of precision for varying model size.

of precision. From this figure, we can see that n = 10 can be
optimal for minimizing energy consumption for our system.

Figure 4 shows the optimal level of precision n* when
varying the number of local iterations I. We use the same CNN
architecture in Fig. 3. We can observe that n* increases with
I. This is because, as [ increases, the local models converge
to the local optimal faster as SGD averages out the effect
of quantization error [11]. Hence, a lower n can be chosen
by leveraging the increased I to minimize the total energy
consumption. We can observe that only n = 7 is required at
I = 20 while we need n = 10 at I = 3.

Figure 5 presents the optimal level of precision n* for
varying model size d. Note that d equals to the number of
model parameters V. To scale the number of MAC operations
for increasing d accordingly, we set N, = 0.5 x 10> N,. From
Fig. 5, we can see that n* increases with d. From Lemma 1,
the quantization error accumulates as d increases. This directly
affects the convergence rate in (20) resulting in both increased
global iterations and the total energy consumption. Therefore,
to mitigate the increasing quantization error from increasing
d, a larger level of precision may be chosen.

Figure 6 shows the total energy consumption and n* when
varying a target accuracy e. For these results, we use the
same CNN architecture as Fig. 3. We can see that a higher
accuracy level requires larger total energy consumption and
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more bits for data representation to mitigate the quantization
error. In addition, the FL system needs a more number of
global iterations to achieve e from (22). As e becomes looser,
a lower n can be chosen. From Fig. 6, we can see that an
additional 127 J energy is required to increase € from 0.01 to
0.001 while one additional bit of precision is needed.

Figure 7 compares the total energy consumption until con-
vergence for varying the size of CNN models with the baseline
that uses standard 32 bits for data representation. Case 1 is
assumed to be CNN of two layers and have d = 25.6 x 106
and N, = 1.8 x 10°. Case 2 and 3 are assumed to be CNN of
five layers. They have 61.6 x 10° and 83.5 x 10° number
of parameters and 0.35 x 10° and 83.5 x 10° number of
MAC operations, respectively. Case 4 is 7 layers of CNN with
d = 115.1x10% and N, = 10.4 x 10°. Lastly, we assume Case
5 is 9 layers of CNN with d = 138.6 x 10° and 15.5 x 10°.
The corresponding n* are 13, 14, 14 15, 15, respectively. We
can see that our FL scheme is more effective for CNN models
with a large model size. Note that Case 5 has 138.8 M weights
while Case 1 has 25.6 M weights. In particular, for Case 5, we
can reduce the total energy consumption up to 53% compared
to the baseline.

V. CONCLUSION

In this paper, we have studied the problem of energy-
efficient quantized FL over wireless networks. We have pre-

sented the energy model for the quantized FL based on the
physical structure of a processing chip and the convergence
rate. Then, we have formulated an energy minimization prob-
lem that considers a level of precision in the quantized FL.
To solve this problem, we have used a line search method.
Simulation results have shown that our model requires much
less energy than a standard FL. model for convergence. The
results particularly show significant improvements when the
local models rely on large neural networks. In essence, this
work provides the first holistic study of the tradeoff between
energy, precision, and accuracy for FL over wireless networks.
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