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Abstract
The precise identification of mutualistic dinoflagellates is critical for understanding the physiology, ecology and evolution 
of their mutualisms with animals. Cotylorhiza tuberculata (Macri 1778) is a common scyphozoan endemic to the Mediter-
ranean Sea and relies in part on endosymbiotic dinoflagellates (zooxanthellae) for survival and growth. To further study the 
diversity of symbionts associated with these animals, we analyzed specimens of C. tuberculata collected across the western 
Mediterranean Sea and from public aquaria, using a combination of next generation sequencing (NGS) of ITS2 rDNA and 
direct Sanger sequencing of partial 28 S rRNA and mitochondrial cob genes. Two diagnostic ITS2 profiles were characterized 
during our analysis of NGS data. Combined with information from additional genetic markers, each profile corresponds to 
a single species of symbiont, not diverse community assemblages as are sometimes inferred. Breviolum psygmophilum was 
common in all specimens, while Philozoon medusarum occurred at lower abundances in many individuals. The ribosomal 
array of B. psygmophilum was highly heterogeneous and contained ~ 15 co-occurring sequence variants found in the same 
relative proportions across all samples obtained in this study, while the ribosomal array in the genomes of P. medusarum 
was relatively homogeneous represented mostly by one abundant sequence variant. This precise interpretation of rDNA 
data improves understanding of the ecology and evolution of these mutualisms. Cotylorhiza tuberculata’s association with 
dinoflagellate symbionts from different genera is consistent with previous findings and suggests that evolutionary divergent 
symbionts with dissimilar niches are better able to coexist in hospite.
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1  Introduction

Currently, a non-standardized system of complex and 
confusing nomenclature is predominantly used to report 
results in studies of dinoflagellate diversity in host ani-
mals. This provisional taxonomy first emerged when 
evolutionarily divergent genetic lineages, or clades, in 
the dinoflagellate family Symbiodiniaceae were initially 
assigned letter designations (i.e. A, B, C, etc…; Rowan 
and Powers 1991); and later numbers were ascribed to 
dominant ITS2 rDNA sequence variants that defined 
ecologically/functionally distinct entities within each 
clade (e.g. LaJeunesse 2002, Sampayo et al. 2009). Now 
the increasing use of NGS has added large quantities of 
sequence variants to the database, which have amplified 
confusion about symbiont identity and species diversity, 
and blurred assessments of ecological patterns and pro-
cesses fundamental to these mutualisms (LaJeunesse and 
Thornhill 2011; Hume et al. 2019).

The inconsistent ecological narratives found in the 
current literature stem primarily from an over interpre-
tation of extensive sequence diversity (As cautioned by: 
Thornhill et al. 2007, Sampayo et al. 2009, LaJeunesse and 
Thornhill 2011, Hume et al. 2019). The numerous ITS2 
sequence variants often characterized via NGS are too 
often interpreted in ways similar to how microbial diver-
sity is assessed using 16 S sequencing (e.g. Apprill and 
Gates 2007). The presentation of sequence diversity and 
abundances in bar graphs gives the impression that hosts 
contain multiple and complex combinations, or communi-
ties, of symbionts in their tissues (e.g. Ong et al. 2022). 
But this interpretation dismisses the fact that eukaryotic 
genomes have numerous rDNA copies (Prokopowich et al. 
2003), and that they possess numerous sequence variants 
(Thornhill et al. 2007). However, these conflicting inter-
pretations can be reconciled with additional genetic mark-
ers and careful examination of the sequence abundance 
profiles created by NGS.

Mediterranean collections of the “fried egg jellyfish”, 
Cotylorhiza tuberculata (Macri 1778), were used here to 
demonstrate how combined genetic analysis resolves the 
identity of symbiotic dinoflagellates (Fig. 1A). Among 

scyphozoans, approximately 20% (most belonging to the 
order Rhizostomeae) have mutualistic symbionts that pro-
vide them with metabolites derived from photosynthesis 
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AFig. 1   Symbiosis ecology of Cotylorhiza tuberculata.  A  Medusa 
stage of Cotylorhiza tuberculata in the water column. B  Collection 
locations in 3 different years of four Cotylorhiza tuberculata speci-
mens from coastal waters in southwestern Italy. C Deep sequencing 
(> 20,000 reads per sample) and sorting of rDNA sequence variants 
found in each sample by relative abundances using the SymPortal 
analysis program. The red box signifies rare sequence variants and 
pseudogenes, as well as the large numbers of technical artifacts cre-
ated by the sequencing platform present in raw datasets. D  Deter-
mination of symbiont composition based on ‘defining intragenomic 
variants’ estimated by SymPortal. (Photo credits: M. Cannavacciuolo)
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(Djeghri et al. 2019; Davy et al. 2012). Cotylorhiza tuber-
culata is the only pelagic scyphomedusa native to the Med-
iterranean Sea reliant on dinoflagellate symbionts (Fig. 1; 
Kramp 1961). Past studies on the biology and ecology of 
C. tuberculata focused mainly on its population dynamics 
and life cycle (Kikinger 1992, Ruíz et al. 2012; Astorga 
et al. 2012), while efforts to characterize the identity and 
distribution of its symbionts remain limited (Visram et al. 
2006; Dall’Olio 2016; LaJeunesse et al. 2021). The medusa 
‘jellyfish’ stage is seasonally present in oligotrophic and 
eutrophic waters of the Mediterranean Sea (Boero 2013). 
Populations of this animal commonly reach high abun-
dances during the summer season in shallow semi-enclosed 
marine areas, such as Vlyho Bay in Greece (Kikinger 1992) 
and the Mar Menor coastal lagoon in Spain (Pérez-Ruzafa 
et al. 2002; Ruiz et al. 2012). The jellyfish, which grows to 
40 cm in diameter (Palomares and Pauly 2022), is known to 
provide nursery habitats to juvenile fish including the eco-
nomically important Atlantic horse mackerel (Trachurus 
trachurus), as well as harboring many marine invertebrates 
(D’Ambra and Malej 2015).

Dall’Olio et al. (2022) provided the first comprehen-
sive analysis of symbiont diversity in Cotylorhiza tubercu-
lata from different localities around the Mediterranean Sea, 
including the Algerian Basin, southern Tyrrhenian, northern 
Adriatic, and Ionian Seas; and identified one of two dino-
flagellate species, either Philozoon medusarum or Brevolium 
spp in each of their specimens. Moreover, from samples col-
lected along different years in the northern Adriatic, they 
inferred the relative prevalence of P. medusarum and Brevo-
lium spp may shift from year to year. However, LaJeunesse 
et al. 2021 found that individual C. tuberculata medusae 
from the southern Tyrrhenian Sea hosted simultaneously two 
species of symbiont, Breviolum psygmophilum LaJeunesse, 
Parkinson & Coffroth and Philozoon medusarum Geddes 
(LaJeunesse et al. 2021). Further biogeographic sampling of 
C. tuberculata would provide additional insight concerning 
the distribution and prevalence of these and possibly other 
symbionts.

For the resolution of symbiont diversity, we used a com-
bination of genetic approaches to characterize the dinoflag-
ellates in specimens of C. tuberculata collected across the 
western Mediterranean and from captive animals maintained 
for years in aquaria. Next generation Illumina sequencing 
was also used to profile the resident symbiont population 
in each animal, as well as to characterize the intragenomic 
diversity of ITS2 rDNA diagnostic of each symbiont (Arif 
et al. 2014; Hume et al. 2019), a process formerly performed 
by denaturing gradient gel electrophoresis (Thornhill et al. 
2007; LaJeunesse and Pinzon 2007; Sampayo et al. 2009). 
Data from high throughput sequencing was augmented with 
direct sequencing of the 28 S (D1-D3 domain) rRNA as 
well as the mitochondrial cob genes to confirm whether 

interpretations of ITS2 sequence variation are accurate and 
verify the identities of resident symbiont species.

2 � Materials and methods

2.1 � Collections of Cotylorhiza tuberculata

From the southern Tyrrhenian Sea, three specimens of C. 
tuberculata scyphomedusae were collected in Palinuro 
(Campania, Italy) during August 2017 (Coty1) and August 
2018 (Coty3 and Coty4; Fig. 1B). Another specimen (Coty2) 
was then collected in the waters off the town of Pozzuoli 
(Campania, Italy) in October 2019 (Supplemental Table S1). 
Animals collected in Palinuro (Coty1, Coty3 and Coty4) 
were immediately frozen at -20 °C until further processing 
at the Stazione Zoologica Anton Dohrn (SZN, Naples, Italy), 
while the scyphomedusa collected in Pozzuoli (Coty2) was 
brought alive to the laboratory. Whole animals of Coty-
lorhiza tuberculata were collected in 2020 near the coastline 
at locations across the western Mediterranean Sea (Supple-
mental Table S1). Portions of the swimming bell and oral 
arms were chemically preserved using DMSO preservation 
buffer (20% DMSO, 0.25 M EDTA, in super-saturated NaCl) 
or 96% ethanol (Supplemental Table S1).

Three specimens of C. tuberculata were also obtained 
from public aquaria: two from the Honriman Museum Lon-
don England, and one from the Oceanogràfic (Valencia, 
Spain). Specimens from both aquaria are presumed to have 
originated from the Bay of Vlyho (Greece, Ionian Sea, East-
ern Mediterranean).

2.1.1 � Symbiont isolation, DNA extraction

Tissue samples from the oral arms were placed in a 1.5 µl 
microtube and homogenized using 0.5 mm glass bead in a 
bead beater for 2 min. DNA extractions followed the proto-
col described by LaJeunesse et al. (2003). Freshly collected 
cells from a live animal collected at site 6 were pelleted in a 
1.5 µl microtube and then re-suspended in lysis buffer (Tis-
sue and Cell lysis Solution by MasterPure DNA and RNA 
purification Kit, Epicenter, Madison, WI, USA) and stored 
at -20 °C. DNA extraction was then performed following the 
protocol specified in the MasterPure DNA and RNA purifi-
cation Kit (Epicenter).

2.2 � PCR amplifications and DNA sequencing

The ITS2 of the symbionts in samples from Italy was 
amplified using Symbiodiniaceae-specific primers SYM_
VAR_5.8 S and SYM_VAR_REV (see Hume et al. 2013, 
Hume et al. 2015). All PCR mixtures (25 µL final volume) 
were composed of: 0.5 ng (2.5 µL) of extracted DNA, 0.5 
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µM of each primer, 3% of DMSO (dimethyl sulfoxide), 200 
µM of dNTPs, 5x of High-Fidelity Phusion Reaction Buffer 
and 0.02 u/µL of Phusion DNA polymerase (Finnzymes, 
Thermo Fisher Scientific, Waltham, MA, USA). Amplifi-
cation was achieved using with an initial denaturation step 
at 98 °C for 30s, followed by 38 cycles including 10 s at 
98 °C, 30 s of annealing at 57 °C, 30 s of elongation at 
72 °C, and a final elongation step of 10 min at 72 °C. PCR 
products of amplified ITS2 rDNA were Illumina sequenced 
(BMR Genomics™, Padova, Italy). Paired-end ITS2 reads 
(2 × 300 bp) were then assembled using mothur (v.1.33.0) 
(v.1.33.0; Schloss et al. 2009) according to developers’ 
instructions (http://​www.​mothur.​org/​wiki/​MiSeq_​SOP). 
Contigs pairs were assembled and differences in base calls 
in the overlapping region were solved using ∆Q parameter 
(Kozich et al. 2013). Primers were trimmed (pdiffs = 3), and 
ambiguities removed. Reads shorter than 200 bp, longer 
than 400 bp and with homopolymers longer than 10 bp were 
filtered. Remaining reads were de-replicated and inspected 
for chimaerae with UCHIME using de novo mode (Edgar 
et al. 2011). Two different ITS2 alignments were needed 
due to the large sequence divergences that existed between 
them.

ITS2 rDNA (280–320 bp) from samples obtained from 
across the western Mediterranean were amplified using 
ITS2intfor2 and ITS2rev as described by LaJeunesse and 
Trench (2000). Successful amplifications were verified via 
gel electrophoresis and duplicate reactions were pooled 
together for a volume of 40 µl per sample to be used for 
library preparation. Pooled samples were purified using 
calibrated Ampure XP beads and then used to construct the 
Illumina DNA library. Sequencing was performed at MR 
DNA (Shallowwater, TX, USA) on a MiSeq following the 
manufacturer’s guidelines. Sequence data was joined with 
sequences < 150 bp or with ambiguous base calls removed. 
Sequences were quality filtered using a maximum expected 
error threshold of 1.0 and de-replicated.

Additional gene markers including the D1/D2 domain of 
the large ribosomal subunit (LSU rDNA) and mitochondrial 
cob genes were amplified and directly sequenced from a sub-
set of samples according to Zardoya et al. (1995) and Zhang 
et al. (2008), respectively.

2.2.1 � SymPortal analyses of ITS2 sequence variants

ITS2 sequences from each round of MiSeq were submit-
ted to the SymPortal analytical framework (SymPortal.
org) for quality control and analyses. SymPortal algorithm 
assesses the presense of ITS2 sequence variants that consist-
ently occur in specific combinations and abundances. Those 
variants whose co-occurrence is non-random are deemed 
intragenomic sequence variants and used to delineate differ-
ent ITS2-type profiles. These sequences were also compared 

against a growing database, generated by earlier studies, 
to match sequence variants with previously characterized 
sequences and to assign alpha-numeric designators to new 
variants. thus allowing continual expansion and comparison 
of genotype representative ITS2 profiles between analyses. 
For more details on the SymPortal framework, refer to Hume 
et al. (2019).

2.3 � Phylogenetic analyses

All phylogenetic analyses were conducted using PAUP Ver-
sion 4.4a147 (Swofford 2014) to construct Maximum Parsi-
mony phylogenies (with any insertion-deletions assigned to 
a 5th character state) with a total of 1000 bootstrap replicates 
to assess statistical significance of internal branching. The 
numerically common sequence variants (> 3–4% of total) 
obtained from the SymPortal analysies output were aligned 
and their similarity measured as described above.

2.4 � Observations of animal larvae

The specimen collected in Pozzuoli (Coty2) was dissected at 
the SZN upon arrival. Larvae obtained from this animal were 
used to observe the presence or absence of endosymbionts.

3 � Results

3.1 � High through‑put sequence analyses of ITS2 
rDNA

The results from an initial round of Illumina MiSeq sequenc-
ing on four samples from Italy collected in three different 
years, Coty1, Coty2, Coty3, and Coty4, produced 56,698 
reads (4453 distinct variants); 39,407 reads (2429 distinct 
variants); 64,172 reads (4698 distinct variants) and 67,824 
reads (4437 distinct variants), respectively (Fig. 1B). After 
quality control and removal of shorter sequences (> 200 bp), 
SymPortal analysis of variants in each sample, which fil-
ters out most of the numerous PCR and sequence artifacts 
generated by NGS, identified ITS2 sequences correspond-
ing to the genus Breviolum and Philozoon (Fig. 1C). Each 
genus was found in different proportions in different samples 
(Fig. 1D). Calculation of symbiont proportions in each sam-
ple assumed that each symbiont has a similar rRNA gene 
copy numbers. Samples Coty3 and Coty4 contained more 
Philozoon (58.2% and 75.3% of total reads, respectively), 
while Coty1 and Coty2 contained mostly Breviolum (53.0% 
and 98.1% of reads, respectively).

Illumina MiSeq sequencing applied to samples from 
across the western Mediterranean produced an average of 
29,307 reads (10,923 distinct variants) were obtained per 
sample, ranging from 14,321 to 48,441 reads (6881–17,013 

http://www.mothur.org/wiki/MiSeq_SOP
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distinct variants) across the six locations (Fig. 2A). Sym-
Portal analysis reduced this variation to 3 ITS2 rDNA 
profiles. One profile corresponded to Philozoon was recov-
ered from a subset of samples where they comprised 0.5 
to 20% of the total sequence composition; and were most 
abundant in samples from sites 5 and 6 (Fig. 2A) (Fig. 2B). 
All samples from these collections comprised mostly Bre-
violum sequences. These profiles, comprising ~ 15 ITS2 
variants corresponded to Breviolum contained most of the 
same variants in similar non-random relative abundances 
(Fig. 2C), however some differed by the presence or absence 

of specific variants (e.g. B289, B075, and B2w; Fig. 2D and 
E). The two profiles with and without these minor variants 
occurred randomly across the study region (Fig. 2C). By 
contrast, all Philozoon sequence profiles were dominated 
(50–90%) by one sequence variant (P1bo; Fig. 2D inset). 
These profiles also contained a second divergent variant 
always present at considerably lower abundances (P1fb). 
The variants corresponding to Breviolum were similar in 
sequence and produced a star phylogeny radiating from the 
variants B2 and B19K, the most common variants found in 
each sample (Fig. 2E).

Fig. 2   The genetic analysis 
of dinoflagellate symbionts in 
C. tuberculata across a 1500 
Km expanse of the western 
Mediterranean. A Sampling 
locations including the putative 
source of aquarium specimens 
(red circle; see Supplemental 
Table S1). B Proportion of each 
sample dominated by Philozoon 
based on relative sequence 
abundances, which assumes 
similar rDNA copy numbers in 
the genomes of each symbi-
ont taxon. C The complex yet 
consistent ITS2 profiles involv-
ing up to 15 sequence variants 
arranged by mean abundances 
diagnostic of Breviolum. D 
Graphical representation 
showing the proportions of 
individual sequence variants 
corresponding to Breviolum 
found in a sample. Sequence 
variant ‘B2’ is the most com-
mon across the dataset followed 
by ‘B19K’ and so on. Each 
variant is color coded. Asterisks 
correspond to sequence variants 
not always detected in a sample. 
Inset shows relative abundances 
of four commonest sequence 
variants and their phylogenetic 
relationships corresponding 
to Philozoon. E An unrooted 
phylogeny of the 15 most com-
mon variants showing their 
similar sequence relatedness. 
F Mitochondrial cytochrome 
b (cob) gene and LSU gene 
phylogenies relating the B. 
psygmophilum found in Coty-
lorhiza to other members in the 
genus Breviolum and this spe-
cies’ evolutionary divergence 
from Philozoon medusarum. 
Bootstrap values, based on 1000 
replicates, are shown
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All numerically common diagnostic sequences as gener-
ated by Illumina sequencing and after processing through the 
SymPortal QC pipeline, are deposited on Dryad submission 
doi.​org/​10.​5061/​dryad.​stqjq​2c6p.

3.1.1 � LSU and mitochondrial gene sequence phylogenies

Direct sequencing of the LSU often produced chromato-
grams which contained consistent secondary peaks indica-
tive of PCR product with multiple sequence variants pro-
duced by intragenomic variation and similar to the variation 
observed for ITS2. The consensus of these sequences cor-
responded closest to Breviolum psygmophilum LaJeunesse, 
Parkinson and Coffroth (Fig. 2F). LSU sequences corre-
sponding to Philozoon medusarum matched with sequences 
obtained previously from C. tuberculata collected from the 
Gulf of Trieste (Slovenia), Mjiet Lake (Croatia) and Ustica 
(Sicily, Italy) in the central and eastern Mediterranean 
(unpublished Genbank data). Sequences of mitochondrial 
cob also matched with B. psygmophilum and P. medusarum, 
respectively (Fig. 2F).

3.1.2 � Light microscopy observations

The planulae obtained in specimen ‘Coty2’ from Pozzuoli, 
did not contain symbionts (Suppl. Figure 1).

4 � Discussion

Late 19th century studies from the Mediterranean Sea were 
the first to discover single-celled algae in the tissues of some 
common invertebrates (Krueger 2017). Indeed, analyses of 
Cotylorhiza tuberculata contributed to the earliest paper that 
proposed strange yellow cells inside animals were algal sym-
bionts important to the animal’s health and ecological suc-
cess (Geddes 1882). While they were eventually recognized 
as dinoflagellates (Hovasse 1922), learning of the exact iden-
tities and the evolutionary relationships of these symbionts 
in animals and protozoa would have to wait for the appli-
cation of molecular genetic analyses starting in the 1990s 
(Rowan and Powers 1991; Gast and Caron 1996; Siano et al. 
2010; Probert et al. 2014; LaJeunesse et al. 2021). The use of 
genetic data for description of these symbiotic microbes is 
critical for investigations into their physiology and ecology, 
yet issues remain regarding data interpretation, especially 
regarding the widely used ITS2 sequences when character-
izing symbiont diversity (Davies et al. 2022). Despite recent 
systematic revisions erecting numerous genera from the 
original genus Symbiodinium sensu lato (LaJeunesse et al. 
2018; Nitschke et al. 2020; Pochon and LaJeunesse 2021), 
species taxonomy, and how to consistently identify species 
once they are formally established, continues to languish.

Based on the combined genetic evidence from samples 
analyzed in this study, Cotylorhiza tuberculata appears to 
exhibit fidelity for two evolutionarily divergent species of 
symbiodiniacean dinoflagellate, Brevolium psygmophilum 
and Philozoon medusarum, across a broad geographic range, 
including the locality where Geddes had obtained specimens 
during his original research (site 6, Tyrrhenian Sea); and 
supports recent findings by Dall’Olio et al. (2022). The 
known geographic distribution of Breviolum psygmophi-
lum reaches from sub-tropical and temperate waters of the 
Mediterranean Sea to the western Atlantic, where it is also 
mutualistic with the temperate corals in the genera Astran-
gia and Oculina (Grupstra et al. 2017; Visram et al. 2006; 
Casado-Amezúa et al. 2016). Until the systematic revision 
of the genus Philozoon, these symbionts were referred by 
many names, including “Mediterranean A” by Hunter et al. 
(2007), “Phylotype A” by Barbrook et al. (2006), “AI” by 
Hansen and Daugbjerg (2009) or A1_Med & NAt1 by Gra-
jales et al. (2016). Philozoon currently has eight species dis-
playing high host specificity (LaJeunesse et al. 2021), many 
of which occur in the Mediterranean. Only one of these, 
P. medusarum, is known to associate with C. tuberculata. 
Therefore, this animal’s symbiont flexibility appears limited 
to just two species.

These conclusions are mostly consistent with the recent 
findings of Dall’Olio et al. (2022), which found that indi-
vidual specimens of C. tuberculata collected at sampling 
sites in the Algerian Basin (westernmost western Mediter-
ranean), southern Tyrrhenian, northern Adriatic, and Ionian 
Seas hosted one of two possible symbionts, corresponding 
to P. medusarum and Breviolum spp. (Type B2 and related 
sequence variants; see the phylogeny presented in their 
Fig. 2). Their findings differed from the present study in 
that they did not observe mixtures in the specimens they 
analysed, as well as finding many more specimens with only 
Philozoon detected. Moreover, their recovery of numerous 
Breviolum LSU and ITS2 sequences could be interpreted as 
representative of distinct entities within the genus (Dall’Olio 
et al. 2022). However, differences between Dall’Olio et al. 
(2022) and the present study are reconcilable when the tech-
niques used for symbiont identification are compared.

The symbiont analyses by Dall’Olio et al. (2022) relied 
on the sequencing of PCR amplified rDNA using bacterial 
cloning and therefore may have missed the detection of the 
other symbiont present at low abundance background levels. 
Cloning from a diverse pool of PCR amplicons can be highly 
selective, where, for example, smaller fragments are prefer-
entially ligated into plasmids (Thornhill et al. 2007). The 
application of high throughput NGS avoids this artefact by 
sequencing most or all the constituents represented in a PCR 
reaction while also producing data on their relative numeri-
cal proportions in each sample (e.g. Figure 2D). Given the 
limited coverage provide by cloning and sequencing, this 
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approach was unable to recognize that the numerous rDNA 
sequences arbitrarily recovered from the cloning process 
corresponding to Breviolum, are likely intragenomic vari-
ants (Thornhill et al. 2007; LaJeunesse and Thornhill 2011; 
Sampayo et al. 2009). An alternate interpretation, based on 
the data presented here, is that the high similarity in ITS2 
sequence compositions from sample to sample obtained 
across the western Mediterranean Sea (Fig. 2D) represents 
co-occurring intragenomic variants stemming from a single 
species; and not, as is sometimes assumed, assemblages of 
multiple closely related symbionts co-occurring in the same 
relative proportions in each animal (e.g. Quigley et al. 2018, 
Howe-Kerr et al. 2020, Ong et al. 2022, Huang et al. 2020). 
Unless reconciled, these conflicting interpretations create 
confusion about the ecology and evolution of animal-dino-
flagellate mutualisms (Thornhill et al. 2007).

The large difference in sequence homogeneity and intra-
genomic rDNA sequence variation evident in Philozoon 
medusarum (1–2 common variants) and Breviolum psyg-
mophilum (~ 15) appears to be a property of each species’ 
genome (e.g. Miranda et al. 2012). High rDNA homogeneity 
or heterogeneity is ultimately dependent on the rate of con-
certed evolution in a population. Concerted evolution acts to 
homogenize the gene copies of the ribosomal array, however, 
its effectiveness differs among species and is influenced by 
the number of gene copies present in the genome as well as 
the frequency of sexual recombination (Dover 1982; Nei 
and Rooney 2005). Members of the genus Breviolum, simi-
lar to Cladocopium, haver greater numbers of ITS2 copies 
in their genomes relative to other Symbiodiniaceae (Saad 
et al. 2020; unpulished data). With many more gene cop-
ies, there is a greater probability for the existence of multi-
ple intragenomic sequence variants. Thus rDNA data from 
symbionts in Cotylorhiza tuberculata presents a case study 
how to appropriately interpret the composition of sequence 
variants recovered from each sample via NGS.

The highly repeatable sequence ‘profiles’ recovered by 
NGS corresponding to Breviolum and presented in Fig. 2C, 
appear diagnostic of a single entity. Some variation in the 
relative abundances among these sequence variants is likely 
a feature of genome differences among individual strains that 
dominate each host, as well as artifacts generated from inde-
pendent PCR reactions. The additional evidence provided by 
direct sequencing of the LSU and sequences of the low copy 
mitochondrial cob gene supports this one species interpre-
tation (Fig. 2F; see also LaJeunesse and Thornhill 2011). 
Moreover, the conclusion of this host associating with only 
two symbiont species, is consistent with theoretical expecta-
tions about the conditions necessary for maintaining stability 
in a mutualism (Douglas 1998), as well as general princi-
ples of ecology (Harper et al. 1961). The expectations being 
that the number of co-occurring symbionts are minimized 
to avoid competition and cheating. The predominance of 

evidence in the form of low-, or single-copy genetic mark-
ers applied to spatial and temporal samplings independently 
support the concept that most zooxanthellate cnidarians host 
monotypic symbiont populations, or mixtures involving spe-
cies from separate genera (Thornhill et al. 2009; LaJeunesse 
and Thornhill 2011; Pettay et al. 2011; Baums et al. 2014; 
Lee et al. 2016; Wham et al. 2017). Presently, there is no 
plausible ecological mechanism proposed that could explain 
the maintenance of highly diverse communities of endosym-
biont in a host, nor is there independent genetic evidence to 
support this alternate interpretation.

4.1 � Ecology of a mutualism involving two 
symbionts

The results from this study and that of Dall’Olio et al. 
(2022) raise several questions regarding factors influenc-
ing the ecological dominance of each symbiont in Coty-
lorhiza tuberculata populations over space and time. And 
whether these differences are important to the ecology of 
the animal and its population growth. Persistent differences 
in light and temperature related to water depth and latitude 
influence host-symbiont pairings over local and regional 
spatial areas (Rowan and Knowlton 1995; Sampayo et al. 
2007; Bongaerts et al. 2010; Finney et al. 2010; LaJeunesse 
et al. 2010, 2014; Silverstein et al. 2012; Baker et al. 2013; 
D’Angelo et al. 2015; Hoadley et al. 2019). Prevailing 
water temperatures in a given year, or region, may explain 
why different C. terbuculata populations were dominated 
by one symbiont or the other (Dall’Olio et al. 2022). The 
Mediterranean Sea experiences strong seasonal changes in 
temperature and light among its different basins (Casado-
Amezúa et al. 2016; Coll et al. 2010). Shift in ecological 
dominance would most likely occur during the start of a 
new generation. Planula larva collected from the wild, and 
aposymbiotic polyps developed from them, lacked sym-
bionts (Suppl. Fig. 1; D’Ambra et al. 2021), supporting 
previous conclusions that C. tuberculata rely on horizon-
tal symbiont transmission to achieve symbiosis (Kikinger 
1992; Astorga et al. 2012). While both P. medusarum and 
B. psygmophilum are adapted to endure environmental con-
ditions characteristic of shallow temperate waters (Thorn-
hill et al. 2008; LaJeunesse et al. 2021), subtle differences 
in their ability to utilize light under a range of temperatures 
could shift their competitive advantage over the other prior 
to summer blooms of these jellyfish.

Possibly, differential sampling from the bell or the proxi-
mal or distal regions of the oral arms could produce an arti-
fact of variability in symbiont dominance. One symbiont 
may dominate different anatomical regions of the medusa. 
For some samples, the abundance of P. medusarum differed 
between sub-samples obtained from different parts of the 
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same animal (Fig. 1D vs. Fig. 2B). Thus, the complex medu-
soid morphology may partially explain the frequent coexist-
ence of two symbionts in specimens (Fig. 2B).

The continued study of these and other temperate ani-
mal-dinoflagellate mutualisms is likely to provide valuable 
information about the ecological dynamics of animal-dino-
flagellate mutualisms in response to large seasonal oscilla-
tions and environmental gradients. Further comprehensive 
spatial and temporal sampling of C. tuberculata, includ-
ing the polyp stage, throughout the Mediterranean would 
provide additional biogeographic and ecological insight. 
Moreover, the quantification of mixed symbiont populations 
would benefit from using low or single-copy genetic mark-
ers. As mentioned above, species differences in rDNA copy 
number will effect calculations of the relative abundances of 
co-occurring symbionts. Without use of a correction factor, 
our analysis likely over estimated, albeit consistently, the 
dominance of Breviolum relative to Philozoon.

5 � Use of rDNA sequence variants 
for symbiont characterization 
and identification

Characteristic of eukaryote genomes, numerically dominant 
ribosome gene sequence variants can provide useful proxies 
for species diagnoses (Sampayo et al. 2009). These, abun-
dant sequence variants are surprisingly stable in the genomes 
of species distributed over large geographic scales (Fig. 3C; 
e.g. LaJeunesse et al. 2014, Turnham et al. 2021). Once 
linked to formal taxonomic descriptions, specific combina-
tions of ITS2 sequence variants are potentially valuable for 
the rapid diagnosis of distinct species (e.g. Saad et al. 2021). 
The presence or absence of rarer variants may differentiate 
different genotypes within a species (Fig. 2C). In summary, 
next generation sequencing of ITS2 rDNA provides a relia-
ble high-resolution assessment of intragenomic rDNA varia-
tion that improves upon previous characterizations of rDNA 
using DGGE (Sampayo et al. 2009; LaJeunesse 2002). When 
paired with independent genetic, and available ecological, 
biogeographic and morphological evidence, these data are 
highly useful in characterizing and assessing ‘zooxanthel-
lae’ species diversity (Smith et al. 2017; Wham et al. 2017).

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s13199-​022-​00880-x.
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