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Abstract—The carbon fiber reinforced polymer (CFRP) has
been proven to be a cost-effective, efficient, and reliable method
for structural rehabilitation or reinforcement. Debonding de-
tection is an important measure to ensure the integrity and
performance of such repairs. In this paper, a method of using
percussion and unsupervised machine learning to detect the
debonding of CFRP plate repaired steel structure is proposed.
A steel beam with bonded CFRP and known bonding defects is
used as a test specimen. Then, different locations with different
bonding conditions on the beam are tapped to generate the
percussion sounds, which are recorded by an iPhone. The mel-
frequency cepstral coefficient (MFCC) algorithm is employed
to extract features from percussion sounds. The unsupervised
machine learning algorithm, Gaussian mixture model (GMM)
clustering, is implemented for debonding detection. The proposed
method achieves 95.8% accuracy in debonding detection on the
test specimen.

Index Terms—percussion, Gaussian mixture model, mel-
frequency cepstral coefficient, carbon fiber reinforced polymer,
unsupervised machine learning

I. INTRODUCTION

Civil infrastructures are prone to damages due to a variety
of adverse effects, such as vibration [1] [2], impact [3] [4],
corrosion [5] [6], and temperate cycling [7]. The collapse
of Pittsburgh’s Fern Hollow Bridge in Pennsylvania brings
attention to the structurally deficient bridges. The carbon fiber
reinforced polymer (CFRP) has been proven to be a cost-
effective, efficient, and reliable method for steel structural
rehabilitation [8] [9]. The debonding is one of the main failure
modes of the CFRP repaired steel structure [10] [11]. Bene-
fited from the recent rapid development in structural health
monitoring (SHM) [12]-[15], the current methods applied to
detecting the debonding include the piezoceramic transducer
based methods [16]-[18], ultrasonics [19] [20] and X-ray
based methods [21] [22]. However, these methods require
installation of sensors or using complex instruments. Therefore
they are not convenient in field applications.

A new trend in structural health monitoring has been devel-
oped is the percussion method. This method uses the tapping
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and listening to collect data, then uses machine learning to
interpret the data. Many factors will affect structural acoustic
response when the structure is subject to percussion or ex-
citation [23]-[25]. Recently, numerous successful percussion-
based applications have been reported for the bolt looseness
monitoring [26]-[29], concrete moisture level monitoring [30],
concrete-filled steel tubular voids detection [31] [32], pipeline
sand deposition detection [33], cup-lock scaffolds looseness
detection [34], and through bolts shear loading detection [35].
The percussion method is receiving increasing attention due
to the advantage that it does not require the installation of
sensors or using complex equipment. In addition, the recent
development in machine learning such as neural network
provides effective interpretation of relationship between the
percussion-induced sounds and the structural properties [23]—
[25].

In this paper, the percussion method is applied to the
debonding detection in CFRP plate repaired steel-beam, and
the Gaussian mixture model (GMM) clustering is implemented
to interpret the percussion-induced sounds. A specimen is
designed and fabricated to facilitate the investigation, and
percussion data are collected on the specimen. Experimental
results are analyzed for verification of effectiveness of the
proposed method.

II. THE PROPOSED METHOD

The percussion sound is processed to generate the mel-
frequency cepstral coefficient (MFCC). The mean and standard
deviation are calculated for each MFCC and served as source
of the feature data. The features are manually selected and
formed as sample data for GMM clustering.

A. MFCC

The MFCC is an audio signal process method. It uses Ham-
ming window to partition the sound data, and then the discrete
Fourier transformation (DFT) is applied to the windowed data.
After that, the data processed by DFT go through the Mel filter
bank. The discrete cosine transform (DCT) is employed at last
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to calculate the coefficient. Specific steps for the process are
as follows [36].

Let x(n) represent the audio data and s(n) designate the
data processed by respective Hamming window function w(n)
[37], and s(n) is

s(n) = z(n)wn),0 <n < L—1, (1)

where

n
L—-1
L is the window length. The s(n) of each window is then
processed by DFT,

w(n) = 0.54 — 0.46 cos(2m

) 2
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The data then pass through the Mel filter bank H,,(j) to
generate the Mel spectrum ¢(m),

L-1
tm) = Y [ISGF Ha()] 0<m <M =1, @&

=0

where M is number of Mel filters,
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Finally, the cepstral coefficients are calculated as

M-1
o) = 3 Togg(t(m)) cos 0 )
m=0

B. GMM

A GMM is a probability density function which is sum of
Gaussian component densities. Each Gaussian component is a
Gaussian distribution with its own weight for the GMM [38]
[39]. A GMM with M components is given by [38]

M
palh) = 3 wiglalw, T4, ™)
=1

where x is the sample data, w; are the mixture weights, and
g(x|pi, ¥;) are the component Gaussian densities.

eap(=3(z — i) 57 (@ — i)
(2m) % =2

where D is dimension of sample data, >J; is covariance matrix

and p; is mean vector.

The GMM model uses the expectation-maximization (EM)
algorithm to fit the model. In the expectation step, the posterior
probability P, (i|x¢, A) of a data point x; for each Gaussian
component is calculated [38]

o ®

g(x‘ui72i) =
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vl wig (e, D)
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Next, in the maximization step, the mean vector 7i;, covari-
ance matrices X; and mixture weights w; are updated for each
Gaussian component, increasing the model’s likelihood value
[38].

T
1 .
w; = T;Pr(zlxhx), (10)
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C X Polilze )
T . . . 7
5 = Do Prlilwe, M) (@ — 1) (@0 — 1) . (12)

it Prlilee, A)
The EM process iterates until the model converge and then
the model compares posterior probability of each data between
every Gaussian component. The data point is assigned to the
Gaussian component with the highest posterior probability, so
finally data are clustered on each Gaussian component.

C. Experiment

The test specimen is an I-shape steel beam with the CFRP
plate bonded on the top, as shown in Fig. 1. The voids are
created in adhesive to simulate the debonding defects. The
surface of the CFRP plate is marked as grids. There are three
classes, the healthy grid, which means no void below the CFRP
plate; the half-healthy grid, which means there is partial void
below the plate; and the unhealthy grid, which means complete
void below the plate. Fig. 2 depicts the mapping of grids. The
blank cells are healthy grids; the cell with red X are unhealthy
grids, and cells with orange color patterns are half-healthy
grids.

Fig. 1. Steel beam specimen (a) top view (b) front view (c) side view.
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Fig. 2. Mapping of grids shows location of different sample classes, empty
cell is healthy grid, cell with orange color pattern is half-healthy grid, cell
with red X is unhealthy grid.

During the experiment, a steel bar is used to tap the sample
grid. Each grid is hit 7 times as shown in Fig. 3. In total, there
are 1085 hits on healthy grids, 189 hits on unhealthy grids and
140 hits on half-healthy grids. Table I summarizes the number
of percussion sounds collected on the test specimen.

The percussion sound is recorded by an iPhone. Then the
audio files are exported to the computer, and split into many
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Fig. 3. Percussion sound recording by iPhone.

TABLE I
NUMBER OF SAMPLE HITS ON THE TEST SPECIMEN

Class Number of Grids | Hits per Grid | Total Sample Hits
Healthy 155 7 1085
Half-healthy 20 7 140
Unhealthy 27 7 189

single hit audios. The MFCC is extracted from the each
hit audio signal. In this test, 13 MFCCs are used, which is
identified as MFCC 2 to MFCC 14 hereafter, each one is a
column in MFCC matrix. The first column MFCC 1 is log
energy of the audio signal. To select the feature data for GMM,
the MFCC are transformed to a row vector. The mean and
standard deviation of each kind of coefficient are calculated.
The boxplot of the mean and standard deviation of the MFCC
is used for feature selection. Fig. 4 displays boxplot of the
mean of MFCC, Fig. 5 displays the box plot of standard
deviation of MFCC. From the boxplot, the mean of MFCC
4 provides good differentiation between healthy and other
classes samples; mean of MFCC 5 well differentiates healthy
and half-healthy samples; mean of MFCC 6 differentiates
half-healthy versus other classes samples. They constitutes
the feature data set 1. Additional feature sets are selected by
adding mean of MFCC 9 which differentiates healthy versus
other classes, standard deviation of MFCC 4, which differen-
tiates healthy and unhealthy classes and standard deviation of
MFCC 6 which differentiates half-healthy and other classes.
The selected feature sets are listed in Table II.

TABLE II
FEATURE SETS FOR GMM

Set Number
Feature Set 1
Feature Set 2
Feature Set 3
Feature Set 4
Feature Set 5

Features
Mean (MFCC 4, 5, 6)

Mean (MFCC 5, 6), STD (MFCC 4)
Mean (MFCC 4, 5), STD (MFCC 6)
Mean (MFCC 4, 5, 6), STD (MFCC 4, 6)
Mean (MFCC 4, 5, 6, 9)
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Fig. 4. Mean of MFCC, x axis is health classes, H (Healthy) UN (Unhealthy)
HH (Half-healthy).
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Fig. 5. Standard Deviation of MFCC, x axis is health classes, H (Healthy)
UN (Unhealthy) HH (Half-healthy).

III. EXPERIMENTAL RESULTS AND DISCUSSION

The GMM clustering is conducted 10 times for each feature
set listed in Table II. Fig. 6 shows the clustering accuracy of
every test number for each feature set.
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Fig. 6. GMM Clustering Accuracy of Different Feature Set

The feature set 1 which consists of mean of MFCC 4,
MFCC 5, and MFCC 6 has the highest average clustering
accuracy. It also has the highest clustering accuracy of 95.8%.
The results of different feature sets show that the feature which
can well differentiate the classes will achieve higher clustering
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accuracy. The feature set 1 has the highest clustering accuracy,
because the mean of MFCC 4 well differentiates healthy
and unhealthy classes, mean of MFCC 5 well differentiates
healthy and half-healthy classes, and mean of MFCC 6 well
differentiates half-healthy and other classes, as shown in
Fig. 4. For feature set 2, the mean of MFCC 4 is replaced by
the standard deviation of MFCC 4, which also differentiates
healthy and unhealthy classes as shown in Fig. 5, though
difference margin is less compare with the mean of MFCC
4. Hence the clustering accuracy of the feature set 2 is lower,
which is between 87.6% to 91.9%. Similarly, in feature set
3, the mean of MFCC 6 is replaced by standard deviation of
MEFCC 6, which differentiates healthy and half-healthy classes,
but the difference margin is less compared with the mean of
MFCC 6. So the clustering accuracy of feature set 3 is also
lower. The accuracy is between 82.7% to 91.7%.

The results indicate that adding more features does not
necessary increase the clustering accuracy. The feature set
4 contains 5 features, which adds the standard deviation of
MFCC 4 and MFCC 6 into feature set 1. The clustering
accuracy is between 86.9% to 89.7%. The feature set 5 adds
mean of MFCC 9 into the feature set 1. The clustering
accuracy is between 79.8% to 94.6%. Overall, the manual
inspection of the boxplot of the mean and standard deviation
of MFCC is a feasible method of feature selection for GMM
clustering. Though the manual feature selection requires lot
of effort and the result is subjective. Future study can be
investigated to develop the algorithm to evaluate and select
feature data automatically.

Fig. 7 depicts the confusion matrix of the GMM clustering
of feature set 1 for the test with 95.8% clustering accuracy.
The target class indicates the actual class of the sample data.
The output class is the clustering results, which may deviate
from the actual class. The green diagonal cells summarize the
sample data which are clustered correctly. So output class is
same as the target class. The red off diagonal cells are sample
data clustered incorrectly. The confusion matrix shows that the
half-healthy class is the most challenge one to be clustered
correctly. The accuracy is 77.3% only. This is partly because
of the variance of hitting point on the half-healthy grid. The
hitting point is not always on the boundary between healthy
and unhealthy area. When the hitting point is close to healthy
area, the percussion sound is more similar to the sound from
the healthy area. On the other hand, when the hitting point
is close to the unhealthy area, then sound is more similar to
unhealthy class.

In this experiment, the sample data are highly unbalanced,
77% of the percussion-induced data are in healthy class, 13%
of data are in unhealthy class, and only 10% of data are in half-
healthy class. The result demonstrates that GMM clustering
works well with unbalanced data.

IV. CONCLUSIONS

The strengthening of steel beam by CFRP plate is a
convenient and reliable solution for structural rehabilitation.
The performance of the CFRP repaired steel beam is highly

GMM Clustering Confusion Matrix
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Fig. 7. GMM Clustering Confusion Matrix for Feature Set 1.

dependent on the bonding quality. In this paper, the method
of debonding detection in CFRP plate repaired steel beam
using percussion and GMM clustering was implemented and
validated on the test specimen. The proposed method achieved
95.8% clustering accuracy. The sample data of three classes
were clustered successfully. Compared with the conventional
method which requires installation of sensors, the proposed
method using the percussion and machine learning is more
flexible. It does not require installation of sensors or test
instruments. The MFCCs are extracted from the audio data, the
mean and standard deviation of the MFCCs are used as feature
data. The result proves this is an effective feature extraction
and transformation method for the percussion sound. The
sample data are unbalanced, and the majority of data belong to
healthy class. The GMM clustering can handle the unbalanced
data well and achieve high accuracy. The proposed method
opens a door for future automated debonding detection of
CFRP plate repaired structures by using robotics enabled
percussion method. In this paper the feature set was manually
selected. Future works include developing an automatic feature
selection algorithm to address the manual selection of feature
sets, and applying the proposed method on actual structure to
evaluate its performance in field application.
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