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Abstract—In this paper, the achievable sum rate of multiuser
scheduling in reconfigurable intelligent surface (RIS)-based mas-
sive multiple-input multiple-output systems is investigated. Using
asymptotic analysis under the generic condition of large numbers
of base station antennas, RISs, and users, the RIS-based sum rate
is proven to follow a Gaussian distribution. In addition, based on
the characteristics of Gaussian distribution, the conditions for the
occurrence of the channel hardening phenomenon and achievable
scheduling gain are derived as a function of the number of RISs
and users. Numerical results show that the derived RIS-based
sum rate and the Monte Carlo simulation results are in close
agreement as well as that the proposed achievable sum rate
constitutes a meaningful bound to verify the performance of
various multiuser scheduling algorithms.

Index Terms—Reconfigurable intelligent surface (RIS), achiev-
able sum rate, user scheduling.

I. INTRODUCTION

The demand for massive connectivity and high data traffic in
wireless communication systems has been growing exponen-
tially in recent years, mainly driven by the increasing number
of wireless devices and the appearance of new applications
such as the Internet-of-things (IoT) [1]. For supporting the
increasing number of devices and very high data traffic,
many technologies have been proposed ranging from massive
multiple-input multiple-output (MIMO) and millimeter-wave
(mmWave) technologies to the use of various spectrum co-
existence techniques. These technologies provide significant
achievable rate gains but lead to additional power and hard-
ware costs thereby restricting their overall efficiency.

Recently, reconfigurable intelligent surfaces (RISs) [2] have
emerged as a promising solution for providing a high data
rate without additional overhead at the transmitter. An RIS
is made of low-cost and passive reflecting elements, each of
which can manipulate the incident electromagnetic (EM) wave
from the base station (BS) in terms of frequency, amplitude,
and phase. The manipulated EM wave at an RIS is reflected
towards destined user equipment (UE) so that a dedicated
link is created between the BS and the UE. It is envisaged
that future man-made structures (e.g., buildings, walls, roads,
etc.) to be electromagnetically active [3] thereby acting as
ubiquitous RISs providing extensive wireless connectivity.
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the U.S. National Science Foundation under Grant CNS-2030215.

In the past few years, there has been significant interest in
the design and deployment of RISs for enhanced wireless con-
nectivity [4]–[9]. In [4], the authors formulated an optimization
problem whose goal is to maximize the achievable rate of
an RIS-based MIMO systems. The work in [5] addressed a
joint optimization problem whose goal is to design the passive
beamforming and the power allocation with the goal of max-
imizing energy efficiency. In [6], RISs are exploited to max-
imize energy efficiency in device-to-device communication
network. The authors in [7] considered the massive access for
IoT devices in RIS-based wireless systems. In [8], the authors
developed a new approach to optimize RIS configuration in
mmWave-based IoT systems using the federated learning. In
[9], the authors analyzed the asymptotic achievable sum rate
of RIS-based systems, and designed modulation and resource
allocation schemes for enhancing the achievable sum rate.
However, these prior works mainly focused on the ergodic
sum rate, which results from the channel hardening effect [10]
without considering the impact of a large number of RISs
and UEs. For instance, the works in [4] and [5] formulated
their maximization problems for an RIS and a UE whereas the
works in [6]–[9] considered a given number of RISs and UEs
without considering multiuser diversity. Given a large number
of RISs and UEs, it is necessary to analyze the RIS-based
multiuser diversity and the achievable scheduling gain.

The main contribution of this paper is, thus, an analysis
of the achievable sum rate of multiuser scheduling in RIS-
based massive MIMO systems consisting of a number of
RISs and UEs. In this system, the achievable sum rate is
defined by the maximum performance obtained by the optimal
RIS-UE associations and multiuser scheduling under given
massive connectivity to a large number of UEs using RISs. For
this setting, we analyze the achievable improvement and the
performance upper bound of a RIS-based system. In addition,
we analyze the conditions for the occurrence of the channel
hardening effect. In summary, our key contributions include:

• Instead of using a computationally-prohibitive exhaus-
tive search approach as done in [11], we derive the
achievable sum rate of RIS-based MIMO systems through
asymptotic analysis. Specifically, we prove that the RIS-
based sum rate follows an independent and identically
distributed (i.i.d.) Gaussian distribution whose character-
istics allow us to obtain the achievable scheduling gain.
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Fig. 1. System model of the RIS-based massive MIMO network
consisting of RISs and users.

• We focus on the multiuser scheduling gain resulting
from simultaneously scheduled multiple users. From the
analysis of the achievable scheduling gain, we evaluate
and characterize the channel hardening effect in multiuser
RIS-assisted massive MIMO systems.

The rest of this paper is organized as follows. Section II
describes the system model. Section III presents the analysis
on the distribution of the RIS-based sum rate. Section IV
presents the analysis on the RIS-based sum rate including
achievable scheduling gain. Simulation results are provided
in Section V and Section VI concludes this paper.

Notation: Throughout this paper, boldface upper- and lower-
case symbols represent matrices and vectors respectively. The
Hermitian transpose and Moor-Penrose pseudo inverse opera-
tors are denoted by (·)H and (·)† respectively. The Frobenius
norm is denoted by ∥·∥F. E[·] and Var[·] denote expectation
and variance operators, respectively.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a single BS MIMO system
that consists of U UEs and R RISs each of which has N
reflecting elements. An RIS r is connected to Ur ≥ 1 UEs
so that

∑R
r=1 Ur = U ≥ R. The BS is equipped with M

antennas and serves K UEs (i.e., K ≤ U and K ≤ M ) at
each resource block based on an orthogonal frequency-division
multiple-access scheme. We consider a large M in the massive
MIMO scenario. In addition, considering a very larger number
of wireless devices and RISs, we assume that U and R are also
very large, i.e., U ≥ R = M c ≫ K, where c is considered to
be a constant, to simplify the analysis.

Then, the received signal at UE u connected to RIS r will
be given by:

yr,u = hH
r,uwr,usr,u + fH

r,uΦrGrwr,usr,u + nr,u, (1)

where hr,u ∈ CM×1, Gr ∈ CN×M , fr,u ∈ CN×1 are,
respectively, the fading channels between the BS and UE u,
between the BS and RIS r, and between the RIS and UE.

Φr ∈ CN×N is a matrix for passive beamforming including
reflected amplitudes and phases by N reflecting elements. In
a practical RIS-assisted network, RISs are installed at fixed
locations whereas UEs are randomly deployed. Therefore, Gr

is assumed to have a line of sight (LoS) channel whereas hH
r,u

and fH
r,u are assumed to have a Rayleigh fading channel. Each

element (Gr)m,n of Gr is given by exp (
−j2πdm,r,n

λ ) where
λ is the wavelength and dm,r,n is the distance between the
mth antenna of the BS and the n th element of RIS r. The
effective channel at UE r, u will be:

hH
eff,r,u = hH

r,u + fH
r,uΦrGr = hH

r,u +
√
Nzr,uR

1/2
r , (2)

where zr,u ∼ CN (0, IM ) and Rr is a correlation matrix
defined as 1

NGH
r Gr as proved in [12] and [13]. The aggregate

downlink channel for the selected K UEs is defined as
H =

[
hH
eff,1, · · · ,h

H
eff,K

]T
. We assume that the channel state

information at transmitter (CSIT) of the aggregate downlink
channel (i.e., H) is perfectly known at the BS so that we can
exploit zero-forcing beamforming (ZFBF). The assumption of
having perfect knowledge of CSIT is idealistic but it allows
us to derive the theoretical upper bound of the sum rate of an
RIS-based system.

In a ZFBF-based multiuser MIMO system, maximum per-
formance can be achieved by selecting user channels that
are orthogonal [11]. Meanwhile, the RIS-based sum rate
might experience a loss due to channel correlation since the
UEs connected to the same RIS are highly correlated [12].
Therefore, to achieve the maximum RIS-based sum rate of
K-user scheduling, the BS should select K RISs each of
which is associated with one UE. Consequently, we consider
selecting independent K RIS-UE pairs from {1, · · · , R} with
the assumption of U ≥ R and Ur ≥ 1. We thus use index
k for indicating both RIS k and its associated UE so that k
replaces r, u in (1) and (2).

Let S ⊂ {1, · · · , R} , |S| = K be the scheduler output,
which consists of the selected RIS-UE pairs. Considering the
ZFBF matrix F = [f1,f2, · · · ,fK ] which is obtained by
F = (H)

†, the RIS-based sum rate of the selected RIS-UE
set S is then obtained as in [14], [15] by

R(S) =
K∑

k=1

Rk = K log2

(
1 +

ρk
∥F ∥2F

)
, (3)

where Rk is the individual rate for UE k, ρk indicates the
received signal-to-noise ratio (SNR) at UE k. For theoretical
analysis, we assume that the simple and practical case of
uniform power allocation over all downlink streams where
ρk = ρ,∀k ∈ {1, · · · ,K}. Given this general RIS model, our
goal is to derive the asymptotic distribution of the RIS-based
sum rate and achievable scheduling gain.

III. GAUSSIAN APPROXIMATION OF THE RIS-BASED SUM
RATE

In this section, we analyze the asymptotic distribution of
the RIS-based sum rate. In (3), the RIS-based sum rate
depends only on ∥F ∥2F. Therefore, we can gain insight into



the distribution of the RIS-based sum rate by analyzing the
distribution of ∥F ∥2F.

A. Analysis of the distribution of ∥F ∥2F
From (2), hH

eff,k = hH
k + h̄

H
k where h̄k =

√
NR

1/2
k zH

k

which is the indirect link between the BS and UE k through
RIS k. Then, the aggregate downlink channel H can be
obtained by

H =
[
hH
eff,1, · · · ,h

H
eff,K

]T
=
[
hH
1 + h̄

H
1 , · · · ,h

H
K + h̄

H
K

]T
= H̃ + H̄, (4)

where H̃ =
[
hH
1 , · · · ,h

H
K

]
and H̄ =

[
h̄
H
1 , · · · , h̄

H
K

]
are

aggregate direct and indirect channel matrices respectively.
According to [15], ∥F ∥2F = tr

(
A−1

)
, where A = HHH.

Therefore, ∥F ∥2F can be approximated as

∥F ∥2F = tr
(
A−1

)
= tr

{(
Ã+ R̄

)−1
}

(a)
≈ tr

{(
Ã+ Ā

)−1
}

(b)
= tr

{
Ã

−1 − 1

1 + tr
(
ĀÃ

−1)Ã−1
ĀÃ

−1

}
(c)
≈ tr

(
Ã

−1)− tr
(
Ã

−2)
tr
(
Ã

−1) , (5)

where Ã = H̃H̃
H

, Ā = H̄H̄
H, and R̄ = H̄H̄

H
+H̃H̄

H
+

H̄H̃
H

. (a) results from the fact that the elements in Ā are
are dominant values in R̄ for large M , (b) is obtained by
[16] since rank

(
Ā
)
= 1, and (c) results from the assump-

tion of large M . From [17] and [18], Var
[
tr
(
Ã

−1)]
and

Var
[
tr
(
Ã

−2)]
will converge to 0 as M goes to infinity, and

from [19], E
[
tr
(
Ã

−1)]
= β and E

[
tr
(
Ã

−2)]
= Mβ

(M−K)2−1

where β = K
M−K . Then, the expectation and variance of ∥F ∥2F

can be obtained as follows:

E
[
∥F ∥2F

]
= E

[
tr
(
Ã

−1)]− E
[
tr
(
Ã

−2)]
E
[
tr
(
Ã

−1)]
= β − Mβ2

K2 − β2
, (6)

Var
[
∥F ∥2F

]
= Var

[
tr
(
Ã

−1)− tr
(
Ã

−2)
tr
(
Ã

−1)
]

(d)
≈ Var

[
tr
(
Ã

−1
)]

(e)
= β3

(
β + 1

K2 − β2

)
, (7)

where (d) results from [17] and [18] for large M , and (e)
results from [15] since Ã has only direct components between
the BS and the UEs. Finally, from (6) and (7), the distribution
of ∥F ∥2F is obtained from the following lemma.

Lemma 1. ∥F ∥2F follows an i.i.d. Gaussian distribution as
follows:

∥F ∥2F
d→ N

(
γ, β3

(
β + 1

K2 − β2

))
(8)

where γ = β − Mβ2

K2−β2 and d→ denotes a convergence in
distribution

Proof. Let uk be a user connected to RIS rk. Since correlation
matrix Rrk is defined as 1

NGH
rk
Grk , the entries of heff,uk

are independent random variables for different rk. Since the
aggregate downlink channel H is composed of row vectors of
heff,uk

, ∥F ∥2F follows an i.i.d. Gaussian distribution as proved
in [20]. Using (6) and (7), ∥F ∥2F follows an i.i.d. Gaussian
distribution with mean γ and variance β3

(
β+1

K2−β2

)
. ■

B. Analysis of the distribution of RIS-based sum rate

From (3), the individual rate for user k will be:

Rk = log2

(
1 +

ρ

∥F ∥2F

)
= log2

(
ρ+ ∥F ∥2F

)︸ ︷︷ ︸
RA

− log2
(
∥F ∥2F

)︸ ︷︷ ︸
RB

. (9)

From (6) and (7), ∥F ∥2F converges to a deterministic value as
K and M increase to infinity with M > K + 1:

∥F ∥2F → γ, as K,M → ∞. (10)

RA in (9) can then be expressed as

RA = log2

(
ρ+ ∥F ∥2F
ρ+ γ

)
+ log2 (ρ+ γ)

= log2

(
1 +

∥F ∥2F − γ

ρ+ γ

)
+ log2 (ρ+ γ)

=
(
∥F ∥2F − γ

)
log2

(
1 +

∥F ∥2F − γ

ρ+ γ

) 1

∥F∥2
F
−γ

+ log2 (ρ+ γ) . (11)

From (10), ∥F ∥2F−γ converges to zero as K and M increase.
Therefore, for large K and M , (11) can be approximated as

RA

(f)
≈
(
∥F ∥2F − γ

)
log2 e

1
ρ+γ + log2(ρ+ γ)

=
1

ln 2

(
∥F ∥2F − γ

ρ+ γ

)
+ log2 (ρ+ γ) , (12)

where (f) results from the exponential function definition ex =
limn→∞(1 + x/n)n. RB in (9) can also be expressed as:

RB = log2

(
∥F ∥2F
γ

)
+ log2 γ

(g)
≈
(
∥F ∥2F − γ

)
log2 e

1
γ + log2 γ

=
1

ln 2

(
∥F ∥2F − γ

γ

)
+ log2 γ, (13)

where (g) also results from the exponential function definition
for large K and M . From (12) and (13), the RIS-based
individual rate for the UE k will be:

Rk = RA −RB =
ρ

ln 2

(
γ − ∥F ∥2F
γ(ρ+ γ)

)
+ log2

(
1 +

ρ

γ

)
.

(14)



The RIS-based sum rate, RRIS, can then be obtained as

RRIS =
K∑

k=1

Rk =
Kρ

ln 2

(
γ − ∥F ∥2F
γ(ρ+ γ)

)
+K log2

(
1 +

ρ

γ

)
.

(15)

From (14) and (15), it is observed that the distributions of
both the individual and sum rates follow the distribution of
∥F ∥2F. According to Lemma 1, the RIS-based rates Rk and
RRIS follow i.i.d. Gaussian distributions.

The results of this section give us two insights. First,
as shown in (15), the RIS-based sum rate is determined
irrespective of the number of RIS elements N . This result
is intuitive under our assumption of a system that has a very
larger number of RISs and UEs, and where each RIS has a
finite number of reflecting elements. Second, in comparison
with the results from non-RIS systems [15], the ergodic sum
rate of an RIS-based system is K log2 (1 + ρ/γ) whereas
the one of non-RIS system is K log2 (1 + ρ/β). Under the
condition of M > K + 1 as in (10), γ is always smaller than
β. This implies that adding RISs in a traditional MIMO system
can improve the sum rate under certain conditions. Using the
RIS-based sum rate, we next analyze the achievable sum rate
and multiuser scheduling gain.

IV. ANALYSIS OF THE ACHIEVABLE SCHEDULING GAIN

The achievable sum rate is calculated by comparing every
possible choice of the RIS-UE set S by [11]

Rmax = max
S⊂{1,··· ,R},|S|≤M

R(S) = max
1≤K≤M

RK(S), (16)

where RK(S) is achievable sum rate for K RIS-UE pairs
given by

RK(S) = max
S⊂{1,··· ,R}:|S|=K

R(S) = max
S⊂{1,··· ,R}

RK(S),
(17)

where RK(S) is essentially R(S) with |S| = K. To obtain
RK(S), an exhaustive search over the entire space of RIS-UE
pair sets for that value of K is required. Such an exhaustive
search based scheduler compares

(
R
K

)
UE sets and determines

the RIS-UE pair set maximizing the sum rate;
(
R
K

)
denotes

the K-combinations of a set with R elements. Assuming a
very large R, it is impossible to obtain RK(S) by exhaustive
search, because of the associated computational complexity. In
the following subsections, we asymptotically obtain RK(S) as
well as the achievable scheduling gain.

A. Asymptotic distribution of RK(S)
Let us consider the possible RIS-UE pair sets Sk ⊂

{1, 2, · · · , R} : |Sk| = K for 1 ≤ k ≤
(
R
K

)
, and a

discrete random variable RK(S) distributed over entire RIS-
UE pair sets Sk. In this case, even if heff,1, · · · ,heff,U are
independent random vectors, the aggregate downlink channel
matrices of arbitrarily chosen RIS-UE pair sets, H(Sk), may
include partially overlapping elements in several Sk. However,
the following lemma proves that the proportion of partially

overlapping matrices H(Sk) becomes zero when R goes to
infinity with R ≫ K2.

Lemma 2. Let Si be one of the possible RIS-UE pair sets
Sk ⊂ {1, 2, · · · , R} : |Sk| = K for 1 ≤ k ≤

(
R
K

)
, and Sj be

a RIS-UE pair set arbitrarily selected from the sets Sk. As R
goes to infinity with R ≫ K2, the probability of intersection
between Si and Sj almost surely converges to zero, i.e.,

lim
R→∞,R≫K2

Pr (|Si ∩ Sj | ̸= 0) = 0.

Proof. See Appendix A. ■

Lemma 2 states that, under the assumed conditions (R
increasing to infinity with R ≫ K2), the matrices H(Sk)
will not asymptotically include overlapping elements and,
therefore, that they can be replaced by

(
R
K

)
independent

channel realizations. From (8) and [15], the distribution of
achievable sum rates for independent channel realizations is
obtained next.

Corollary 1. The achievable sum rates for independent chan-
nel realizations follow Gaussian distribution as K,M → ∞
with M > K + 1, given by

RRIS
d→ N

(
K log2

(
1 +

ρ

γ

)
,
β(β + 1)

K2 − β2

(
Kρ

(ρ+ β) ln 2

)2
)
.

(18)

We next prove the following theorem.

Theorem 1. The RIS-based sum rate of K-user scheduling
among R RIS-UE pairs, RK(S), approaches a continuous
Gaussian distribution RRIS when R,M,K → ∞ with R ≫
K2 and M > K + 1 : RK(S) d−→ RRIS.

Proof. From Lemma 2, RK(S) becomes a discrete random
variable generated by the sum rates of independent

(
R
K

)
channel realizations. Moreover, RK(S) becomes a continuous
random variable RK , given that

(
R
K

)
becomes infinite value as

R goes to infinity. The asymptotic distribution of the sum rates
for independent channel realizations of H has already been
derived in Corollary 1. Therefore, RRIS from Corollary 1 and
RK are identically distributed for very large R ≫ K2. ■

Theorem 1 states that the achievable RIS-based sum rate
follows an i.i.d. Gaussian distribution. Using the character-
istics of Gaussian distribution, we can obtain the achievable
scheduling gain.

B. Asymptotic RK and achievable scheduling gain

The asymptotical achievable scheduling gain of RK can be
obtained by using the characteristics of the Gaussian distribu-
tion presented in Theorem 1. Based on the characteristics of
the Gaussian distribution of RK , we will use the following
lemma on the maximum value of a sequence of independent
Gaussian random variables [21].

Lemma 3. Let X1, . . . , Xp be a sequence of independent
Gaussian random variables with mean µ and variance σ2.
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Define Xmax = max(X1, . . . , Xp). Then Xmax−µ√
2σ2 ln p

→ 1 as

p → ∞ in probability.

This lemma states that the maximum value in a sequence
of independent Gaussian random variables converges to µ +√

2σ2 ln p as p, the number of elements in the sequence,
increases to infinity. We now note that RK is the maximum
value among the

(
R
K

)
independent Gaussian random variables

RK , and that
(
R
K

)
increases to infinity with R. Therefore, we

can obtain the asymptotic RK by using both Theorem 1 and
Lemma 3, as follows:

RK ≈ K log2

(
1 +

ρ

γ

)
+

√
2

(
β(β + 1)

K2 − β2

)(
Kρ

(ρ+ β) ln 2

)2

ln

(
R

K

)
. (19)

We finally derive the achievable scheduling gain αK from
the last term in (19). For a more intuitive analysis of the
achievable scheduling gain, we simplify αK as follows:

αK

(h)
≈ Kρ(

ρ+ K
M−K

)
ln 2

√
2M

(M −K)2 − 1

{
1 + ln

R

K

}
,

(20)
where (h) results from using the following approximation for(
R
K

)
as R goes to infinity with R ≫ K2:

ln

(
R

K

)
(i)
≈ R lnR−K lnK − (R−K) ln(R−K) (21)

(j)
≈ K +K ln

(
R

K

)
, (22)

where (i) results form the Stirling’s approximation lnn! ≈
n lnn − n [22] and (j) is obtained by the definition of the
exponential function ex = limn→∞(1 + x/n)n.

The channel hardening effect can be observed in terms of
multiuser scheduling by considering the achievable scheduling
gain αK in (20). When R, M and K increase to infinity under
the condition R ≫ K2, αK follows an O

(√
M logR

)
law,

and RK increase as O
(
M +

√
M logR

)
. In these conditions,

we observe:
1) For R = M c: RK follows an O (M) law, and the

achievable scheduling gain vanishes. In this case, channel
hardening effect occurs.

2) For R = exp (M): Both αK and RK follow an O (M)
law. However, the achievable scheduling gain does not vanish.
Therefore, the reduced channel hardening effect occurs.

3) For R = exp
(
M2
)
: RK follows an O

(
M

√
M
)

law,
and only achievable scheduling gain is preserved. In this case,
there is no channel hardening effect.

In conclusion, the occurrence of the channel hardening
effect strongly depends on the relationship between R and
M and its impact on O

(
M +

√
M logR

)
.

V. SIMULATION RESULTS

We assess our results using extensive simulations. We eval-
uate the accuracy of Theorem 1 by comparing the asymptotic
results with the simulated results in terms of the ergodic rate
and variance of RRIS. In the subsequent figures, the label
“Estimation” refers to the results obtained from Theorem 1
whereas the label “Simulation” refers to the results obtained
from the Monte Carlo simulation. We also compare our re-
sults with two representative multiuser scheduling algorithms;
semiorthogonal user selection (SUS) [11], and round robin
(RR). In SUS, the node having maximum orthogonality with
previously selected nodes is successively selected whereas the
UEs are fairly selected without the scheduling gain in RR. In
the simulations, the transmit SNR is assumed to be 6 dB.

Figs. 2 and 3 show the ergodic rates and the variance of
the simulation and the estimation from Theorem 1 as M
increases and K varies from 10 to 30. Clearly, the results
from the estimation closely match the simulation results over
the entire range of M and K. From Fig. 2, we observe that
the ergodic rate increases with increasing M since γ decreases
as M increases. We also observe that the ergodic rate almost
proportionally increases as K increases. In Fig. 3, the variance
of sum rate decreases as M increases due to the increasing
impact of the channel hardening effect. On the other hand, we
can observe the variance increases with K which means that
we can get a higher scheduling gain with larger K.

Fig. 4 compares the achievable sum rate and the sum rates
obtained from the exhaustive search, SUS, and RR schemes
as a function of the number of RIS-UE pairs R with M = 64
and K = 5. The results of achievable sum rate include
the estimation from the achievable scheduling gain (20). The
achievable sum rate and the sum rate of SUS increase as R
increases because of the increasing scheduling gain whereas



the sum rate of RR is unaffected by R. The exhaustive search
scheme is shown only up to R = 500 due to the computational
complexity but we can observe that the achievable sum rate
converges to the results from the exhaustive search as R
increases. This complies the result we proved in Theorem 1
and Lemma 3. As R increases, the gap between the exhaustive
search and the achievable sum rate will gradually decrease, and
finally, they are expected to converge at the same performance
for extremely large R. From Fig. 4 we can also observe that
the achievable sum rate can be used as a sum rate upper bound
to verify the scheduling algorithm performance.

VI. CONCLUSION

In this paper, we have investigated the achievable sum
rate of multiuser scheduling in RIS-based massive MIMO
systems. We have asymptotically analyzed the achievable gain
of the RIS-based ergodic sum rate compared to the non-RIS
system. In addition, we have derived that the RIS-based sum
rate follows a Gaussian distribution with a certain mean and
variance. Using the characteristics of the Gaussian distribution,
we have shown that the achievable sum rate increases as
O(M +

√
M logR) whereas the achievable scheduling gain

follows an O(
√
M logR) law. As a result, we have shown that

the occurrence of the channel hardening effect depends on the
relationship between M and R. Numerical results obtained
from the derived achievable sum rate are shown to closely
match Monte Carlo simulations. Simulation results also show
that the achievable sum rate constitutes a good performance
bound to verify the various multiuser scheduling algorithms,
as well as converges the exhaustive search bound in RIS-based
massive MIMO systems.

APPENDIX A
PROOF OF LEMMA 2

Proof. Let Si be one of the possible RIS-UE pair sets Sk ⊂
{1, 2, · · · , R} : |Sk| = K for 1 ≤ k ≤

(
R
K

)
, and Sj be a

RIS-UE pair set arbitrarily selected from among the sets Sk.
The probability that Si and Sj do not intersect is given by

Pr (|Si ∩ Sj | = 0) =

(
R−K
K

)(
R
K

) . (23)

Equation (23) can be approximated as follows:(
R−K
K

)(
R
K

) = exp

[
ln

((
R−K
K

)(
R
K

) )]
(k)
≈ exp

(
−K2

R

)
,

where (k) results from (21) and the exponential function
definition ex = limn→∞ (1 + x/n)

n, under the assumption
of a very large R ≫ K2. Therefore, as R increases to infinity
with R ≫ K2, the probability that Sj intersects any one of
Si almost surely converges to zero, as follows:

lim
R→∞

Pr(|Si ∩ Sj | ̸= 0) = 1− lim
R→∞

exp

(
−K2

R

)
= 0.

■
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