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Batten disease is unique among lysosomal storage disorders for the early and profound
manifestation in the central nervous system, but little is known regarding potential
neuron-specific roles for the disease-associated proteins. We demonstrate substantial
overlap in the protein interactomes of three transmembrane Batten proteins (CLN3,
CLN®6, and CLN8), and that their absence leads to synaptic depletion of key partners (i.e.,
SNAREs and tethers) and altered synaptic SNARE complexing in vivo, demonstrating a
novel shared etiology.

Keywords: lysosome, neurodegeneration, vesicle traffic, Batten disease, SNARE (soluble N-ethylmaleimide-
sensitive fusion protein attachment protein receptor)

INTRODUCTION

Batten disease (also known as Neuronal Ceroid Lipofuscinoses, NCL) is a family of
neurodegenerative lysosomal storage disorders caused by mutations in one of at least 13 Ceroid
Lipofuscinosis Neuronal (CLN) genes (Johnson et al., 2019). Batten disease is unique among
lysosomal storage disorders for the early and profound disease manifestation in the central nervous
system, which has frequently been attributed (with little evidence) to a selective vulnerability of
neurons to downstream consequences of lysosomal dysfunction. However, while some forms of
Batten disease are caused by mutations in genes encoding for lysosomal machinery including
catabolic enzymes, other forms are caused by deficiencies in extralysosomal proteins, suggesting
that lysosomal dysfunction could be just one consequence of upstream primary defects that are not
entirely understood.

To gain insights into upstream neuronal functions, we investigated the protein interactomes
of three transmembrane Batten disease proteins: CLN3, CLN6, and CLN8. Decades of research
have uncovered a range of secondary dysfunctions present in cell models of these three disorders,
and recent studies in non-neuronal cell models have shed light on their participation in pathways
important for lysosomal biogenesis. CLN3 influences the recycling of lysosomal cargo receptors by
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regulating retromer recruitment and post-Golgi trafficking
(Metcalf et al., 2008; Yasa et al., 2020, 2021), and CLN6 and CLN8
cooperatively facilitate the anterograde trafficking of lysosomal
cargoes (di Ronza et al, 2018; Bajaj et al., 2020). However,
reliance on non-neuronal cell models has created potential
knowledge gaps in our understanding of neuronal etiology.
Synaptic dysfunction precedes lysosomal defects and responds
differentially to therapies in some in vivo models of these
disorders (Ahrens-Nicklas et al., 2019, 2021; Gomez-Giro, 2019),
and little is known regarding how these synaptic deficits manifest.

CLNS3, CLN6, AND CLN8 HAVE
OVERLAPPING PROTEIN INTERACTOMES
ENRICHED FOR REGULATORS OF
VESICLE IDENTITY, FUSION, AND
COMPOSITION

Given the phenotypic, pathological, and cell biological
similarities between CLN3, CLN6, and CLN8 Batten disease,
and their overlapping expression patterns in cortical neurons
(Figure 1A), we hypothesized that the three proteins may
participate in shared pathways essential for neuronal function.
We performed proximity-dependent biotin identification
(BioID) screens for each of the three proteins in neuroblastoma
cells to elucidate their protein interactomes in a neuron-like cell
line (Supplementary Figure 1). This identified a large number
of enriched proteins in CLN3 (832), CLN6 (515), and CLN8
(1678) samples. Remarkably, there was a substantial degree
of overlap between the three groups, with a core set of 263
shared proteins (Figure 1B). Within this shared interactome,
pathway analysis demonstrated enrichment for proteins involved
in vesicle identity, fusion, and composition [i.e., soluble N-
ethylmaleimide-sensitive factor attachment protein receptor
(SNAREs), tethers, and adapter proteins; Figures 1C,D],
as well as proteins essential for synaptic vesicle function
(Figure 1E). We confirmed a number of these interactions with
co-immunoprecipitation using neuroblastoma cells and mouse
cortical lysates, validating the specificity of our BioID screen
(Figures 2A-C; Supplementary Table 1). While these shared
interactions may be due to interactions between CLN3, CLN6,
and CLNS, there was no enrichment between these proteins
based on our BioID screens.

CLN3, CLN6, AND CLN8 INTERACTORS
ARE DEPLETED IN CORTICAL
SYNAPTOSOMES, LEADING TO DEFECTS
IN THE SYNAPTIC SNARE ASSOCIATION
STATE

To investigate the functional relevance of the shared interactions
captured in our screen, we examined the subcellular localization
of a subset of proteins with roles in vesicle fusion and
presynaptic function. Fresh brain cortices were micro-dissected
from postnatal day 30 wild type, Cln32¢7/8, Cln6"Y, and
CIn8™“ mice [loss of function models for Batten disease

(Bronson et al., 1993; Cotman et al., 2002; Morgan et al., 2013)],
followed by synaptic and cytosolic isolation by density separation
(Supplementary Figure 2F). This revealed striking defects in
synaptic composition across all three genotypes (Figures 2D-F;
Supplementary Figures 2A-E; Supplementary Table 2). Some
targets displayed decreased synaptic abundance in all three
genotypes, including ATPase H+ Transporting V1 Subunit H
[ATP6VIH, a component of the vacuolar ATPase complex
that acidifies lysosomes and synaptic vesicles, facilitating
neurotransmitter loading and SNARE-mediated exoctytosis
(Hiesinger et al., 2005; Poéa-Guyon et al., 2013; Bodzeta
et al., 2017); Figure 2E], and Synaptobrevin homolog YKT6
[YKT6, a neuron-enriched SNARE protein localized to a novel
vesicular compartment (Hasegawa et al., 2003), Figure 2F], while
other targets displayed genotype-specific patterns of depletion,
including Syntaxin 7 [STX7, an endosomal Q-SNARE that
defines a specialized synaptic vesicle pool in hippocampal
neurons (Mori et al., 2021), Supplementary Figures 2A,E] and
ATPase H+ Transporting VO subunit D1 (ATP6V0D1, another
component of the vacuolar ATPase that acidifies lysosomes and
synaptic vesicles Supplementary Figures 2C,E) in CIn32¢7/8,
and mammalian uncoordinated-18 [MUNCI8, an essential
component of the synaptic vesicle SNARE complex (Verhage
et al, 2000), Supplementary Figures 2D,E] in Cln6"/. In
many cases, synaptic depletion was accompanied by cytosolic
enrichment, suggesting defects in soma to synaptic terminal
sorting or trafficking.

Synaptic terminal composition is tightly regulated and
altered stoichiometry of key partners could lead to impaired
function. To investigate this possibility, we examined the
synaptic vesicle SNARE association state in our disease models.
When functioning properly, synaptic vesicles dock and fuse
via engagement between vesicular SNAREs on synaptic vesicles
(e.g., Synaptobrevin 2, VAMP2) and target snares on the
plasma membrane (e.g., Syntaxins 1A and/or 1B, STX1A/STX1B;
Synaptosome associated protein 25, SNAP-25). Following
neurotransmitter exocytosis, the vesicle fusing ATPase (NSF)
dissociates the SNARE complex allowing for vesicle recycling and
further rounds of loading and release. Thus, physical associations
between these SNARE components can be used to monitor
the extent of docking and fusion of synaptic vesicles (Sharma
et al., 2011). We performed SNAP25 coimmunoprecipitations
on mouse cortices and quantified levels of bound STX1 and
VAMP2, finding prominent aberrations in all three disease
models (Figures 3A-C). Levels of bound STX1 were significantly
increased by at least 2-fold in CIn32¢7/8, Cln6"Y, and Cln8™".
VAMP2 trended toward greater levels in Cln32¢7/8 and Clng™"
but was bound at significantly lower levels in Cln6"Y cortices.
These results suggest synaptic SNARE complex formation or
dissociation may be altered in all three of these Batten disease
models as a consequence of disrupted abundance in various
cellular compartments.

Collectively, our results demonstrate a new etiology shared
across three neurodegenerative lysosomal storage disorders and
demonstrate novel neuron-specific roles for CLN3, CLN6, and
CLN8 in the regulation of synaptic composition. The fact that
key regulators of vesicle targeting (i.e., SNAREs and tethers)
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FIGURE 1 | CLN3, CLN6, and CLN8-BiolD share a core set of protein interactors with roles in vesicular sorting and presynaptic function. (A) RNAscope transcript
localization indicates cellular co-occurrence of CLN3, CLNG, and CLN8 in the P21 mouse cortex. (B) Venn diagram depicting the number of significantly enriched
proteins for each bait protein. (C) ClueGO network of significantly enriched Gene Ontology Consortium (GO) cellular compartment terms of common BiolD interactors,
with a box indicating categories involved in vesicle trafficking and sorting. (D) Shared protein interactors are associated with key cellular compartment terms. (E)

KEGG Functional terms with corresponding proteins from common BiolD interactors.

disparate dysfunctions in synapses and lysosomes. Further work

are dysregulated similarly to lysosomal proteins (e.g., vacuolar
will be required to define the molecular-level causes of these

ATPase subunits), provides an intriguing link between seemingly
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FIGURE 2 | Shared interactors are depleted in cortical synapses. (A) Western blot analyses confirm stable CLNS interaction with TBC1D15, TBC1D5, ATP6VOD1,
STX7, VTI1B, YKT6, MUNC18, and STX1B, (B) stable hCLN® interaction with STX7, VTI1B, YKT6, STX1B, ATP6V1H, ATP6VOA1, MUNC18, and ATP6VOD1, (C) and
stable CLNS interaction with STX1B, STX7, and ATP6V1H. Input ~ 3% total protein loaded on IPs. Due to the lack of commercially available antibodies, tagged CLN3
and CLNB8 expression plasmids were used for immunoprecipitation experiments. (D) Analysis of synaptic and cytosolic brain fractions show synaptic depletion of
STX1B in CIn327/8 samples (E), and synaptic depletion of ATP6V1H in CIn327/8, Cin6™", and CIn8™ samples. (F) YKT6 was significantly depleted in synaptic
fractions of CIn327/8, Cin6"" and CIn8™ mutant lines. Also noted was cytosolic accumulation in Cin8™? samples. AAV9-hCLNG representatives showed varied
transgene expression through interactions maintained. Multiple targets were probed on the same membrane following antibody stripping. Outliers identified by ROUT
analyses, Q = 5%. One-tailed t-test (synaptic), two-tailed t-test (cytosolic), *o < 0.05, *p < 0.01, **p < 0.001, n = 7 mice, mean + SEM.
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FIGURE 3 | SNAP25 coimmunoprecipitations demonstrate synaptic SNARE dysfunction in Cin327/8, CIn6™", and CIn8™ mice. To analyze core SNARE complex
formation, P30 mutant brain lysate was immunoprecipitated with anti-SNAP25 antibody and probed for antibodies directed against STX1B, STX1 (recognizes A and B
isoforms), and VAMP. (A) Analyses reveal a significant increase in SNAP25-bound STX1B in CLN3, (B) a significant increase in SNAP25-bound STX1B and STX1, and
a significant decrease in VAMP2 in CIn6 mutants, (C) an increased binding of SNAP25 and STX1B in CLN8 mutants. Input ~ 3% total protein loaded on IPs.
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defects and the relative contributions of the various synaptically
depleted interacting proteins. This work suggests that these
transmembrane Batten proteins interact with a diverse repertoire
of proteins important for cellular trafficking and vesicular sorting
and supports a multi-faceted disease etiology wherein lysosomal
dysfunction is only one salient consequence.
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