
Proving UNSAT in Zero Knowledge
Ning Luo

Yale University
New Haven, USA
ning.luo@yale.edu

Timos Antonopoulos
Yale University
New Haven, USA

timos.antonopoulos@yale.edu

William R. Harris⇤
Galois, Inc

Portland, USA
bll.hrris@gmail.com

Ruzica Piskac
Yale University
New Haven, USA

ruzica.piskac@yale.edu

Eran Tromer
Columbia University
New York City, USA
et2555@columbia.edu

Xiao Wang
Northwestern University

Evanston, USA
wangxiao@cs.northwestern.edu

ABSTRACT
Zero-knowledge (ZK) protocols enable one party to prove to others
that it knows a fact without revealing any information about the
evidence for such knowledge. There exist ZK protocols for all prob-
lems in NP, and recent works developed highly e�cient protocols
for proving knowledge of satisfying assignments to Boolean formu-
las, circuits and other NP formalisms. This work shows an e�cient
protocol for the the converse: proving formula unsatis�ability in ZK
(when the prover posses a non-ZK proof). An immediate practical
application is e�ciently proving safety of secret programs.

The key insight is to prove, in ZK, the validity of resolution
proofs of unsatis�ability. This is e�ciently realized using an alge-
braic representation that exploits resolution proofs’ structure to
represent formula clauses as low-degree polynomials, combined
with ZK random-access arguments. Only the proof’s dimensions
are revealed.

We implemented our protocol based on recent interactive ZK
protocols and used it to prove unsatis�ability of formulas that en-
code combinatoric problems and program correctness conditions
in standard veri�cation benchmarks, including Linux kernel dri-
vers and Intel cryptography modules. The results demonstrate both
that our protocol has practical utility, and that its aggressive opti-
mizations, based on non-trivial encodings, signi�cantly improve
practical performance.

CCS CONCEPTS
• Theory of computation ! Cryptographic protocols; Logic
and veri�cation.

KEYWORDS
Zero-knowledge proofs, Propositional unsatis�ability
ACM Reference Format:
Ning Luo, Timos Antonopoulos, William R. Harris⇤, Ruzica Piskac, Eran
Tromer, and Xiao Wang. 2022. Proving UNSAT in Zero Knowledge. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3548606.3559373

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3559373

1 INTRODUCTION
Zero-knowledge proofs enable one party, the prover, to convince
a second party, the veri�er, that they know the validity of a claim,
without revealing information about their evidence for the claim.
There exist zero-knowledge protocols for proving knowledge of
solutions to all problems in NP [39] and perhaps beyond [12]. In
recent years, numerous e�cient protocols and optimized imple-
mentations have been developed for ZK proofs of NP problems
such as circuit satis�ability, correct execution of programs (e.g.,
[4, 14, 16, 21, 22, 24, 36, 38, 43, 46, 47, 49, 56, 59, 66]). These found a
rapidly-expanding set of applications, including: blockchain privacy
[13, 25] and scalability [23, 65], legal systems [35] and anonymous
networks [6].

However, there are plenty of hard problems of practical interest
outside of NP, and in particular, instances of the UNSAT problem.
UNSAT is the decision problem of determining if a given Boolean
formula does not have any satisfying assignment. Beside its theoret-
ical interest as the quintessential coNP-complete problem, UNSAT
also naturally captures the task of proving that program is secure
(under various desirable de�nitions of security). Indeed, various
approaches to program and system veri�cation essentially reduce
program veri�cation (speci�cally, proving that a program does not
reach an undesired state, e.g. in which the program accesses mem-
ory incorrectly or performs an arithmetic operation that results in
over�ow) to proving that a given SAT formula is unsatis�able [55].

Thus, proving UNSAT in zero knowledge would enable appli-
cations where a code analyst wishes to prove to another party
that a public program is correct. A number of existing �rms, in-
cluding Coverity, ShiftLeft, and SonarQube [1–3], provide value to
their users via code-analysis-as-a-service. While not all of these
services attempt to provide formal guarantees about the states that
a program may reach, such guarantees are of immediate value to
developers, have been produced by various in-house analyses in the
recent past, and could realistically be produced by analysis services
in the near future [8, 50].

Even when the code of a bounded program is public, determining
the states that the program can reach is computationally hard, and
is achieved in practice only through the use of subtle heuristics
and carefully tuned implementations. Thus, even when a service
that determines reachable states are applied to public programs, the
service’s results may constitute sensitive IP. Clauses of a resolution
proof of program safety are intermediate deductions about the

⇤Author now employed at Google LLC

https://doi.org/10.1145/3548606.3559373
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3548606.3559373

program’s reachable states: thus, if the analyst’s IP is to be protected,
such clauses must be kept secret.

In principle, a party who knows that a formula is unsatis�able
and has a certi�cate for this fact, can prove knowledge of this certi�-
cate using generic ZK for NP [41] applied to the certi�cate-checker.
However, such approaches would be too ine�cient to be used in
practice because reducing UNSAT to these problems that are prov-
able in ZK directly incurs a high, albeit polynomial, overhead. An
approach that would compile programs (of bounded runtime) to
Boolean circuits [48] would also need to include a proof of the
circuit’s unsatis�ability. Similarly, an approach that would per-
form static analysis of general programs in zero knowledge based
on abstract interpretation [34] would critically rely on e�cient
implementations of operations over SAT formulas, including the
validation of proofs of their logical entailment or equivalence.

In this work, we designed and implemented a novel, e�cient
protocol for proving UNSAT in zero-knowledge. In general, our
protocol can be used directly to e�ciently prove knowledge of solu-
tions to any problem in coNP, once the problem has been reduced
to proving UNSAT. In particular, our protocol can be used as highly
e�cient backend for proving safety of potentially-secret programs
in zero knowledge, either by validating proofs of SAT formulas gen-
erated by model checkers, or by e�ciently implementing primitives
required by analyses based on abstract interpretation.

The key insight behind our approach is to e�ciently validate an
additional argument for UNSAT in the form of a resolution proof,
a sequence of clauses that can be derived from the given formula
and which concludes in a contradiction. Such proofs are both well-
understood in principle and e�ciently supported in practice. In
principle, they are a sound and complete proof system for proving
UNSAT. Although short resolution proofs may not always exist for
UNSAT formulas in general, they are often found e�ciently by state-
of-the-art SAT solvers applied to encodings of practical problems
in planning and program veri�cation. Thus, we can develop ZK
protocol for instances of UNSAT by requiring the resolution proof as
advice, revealing its length (the number of clauses in the derivation),
and validating the resolution proof by executing a RAM program
in ZK [14, 16, 21, 22, 24, 26, 36, 46, 47, 49, 56, 66].

A second insight, critical for e�ciency, is that in practice reso-
lution proofs usually have low width in addition to short length:
i.e., each clause in the derivation contains only a small number of
literals. By revealing the proof’s width along with its length, we
can implement a signi�cantly optimized protocol that represents
clauses in the derivation as low-degree polynomials and validates
the derivation itself by checking a small number of polynomial
equalities. The resulting protocol’s performance is essentially inde-
pendent of the number of literals, and depends only on the width
and length of the proof. It outperforms the previous one (which
hides the width) when clauses are sparse, e.g., when there are more
than 1000 variables but each clause contains at most 100 literals.

We evaluated our protocol empirically by implementing it via the
EMP framework [67] and using it to prove unsatis�ability of formu-
las that encode problems in combinatorial optimization, planning,
and the veri�cation of safety-critical programs drawn from the
SV-COMP [17] benchmark set. This includes veri�cation of Linux
device drivers, Windows NT device drivers, and C implementations
of �oating-point computation.

Our contribution

• We initiate the study of the practicality of proving the unsatis�a-
bility of Boolean formulas in zero knowledge, and its applications
to proving properties of programs in zero knowledge.

• Bringing together formal methods and cryptography, we pro-
pose ZK-friendly algebraic encodings of Boolean formulas and
of (relaxed) resolution proof of formula unsatis�ability.

• Using these, we design and optimize concrete ZK proof schemes
for UNSAT that are e�cient enough to support useful program-
veri�cation formula sizes.

• We present a prototype implementation, which can be found
at https://github.com/zkunsat/zkunsat, and benchmark this im-
plementation on large formulas, including ones representing the
safety of Linux kernel drivers and Intel cryptography modules.

Non-goals Our ZK protocol can also be directly applied to prove
unsatis�able of secret formulas, which can in turn be committed.
However, more e�orts on top of our protocol are needed to enable
ZK proof of program correctness for private (and possibly com-
mitted) programs. To build a complete tool that veri�es the safety
of a secret program in ZK, it is also necessary to verify that an
formula models the secret program’s semantics. This means that
any unsafe executions of the secret program corresponds an inter-
pretation of a secret formula. Proving that an formula models the
secret program’s semantics, and thus verifying secret programs in
ZK, is beyond the scope of the presented in this paper. We provide
more discussion at the end of the paper.

Organization The remainder of this paper is organized as follows:
Section 2 presents an overview of our protocol by example; Sec-
tion 3 reviews foundational de�nitions and results on which our
work is based; Section 4 presents our protocol in technical detail;
Section 5 describes our implementation and empirical evaluation of
the protocol; Section 6 compares our contribution to related work,
and Section 7 concludes.

2 ZK PROGRAM SAFETY BY EXAMPLE
This section describes how our protocol proves UNSAT e�ciently
and how it can be applied to prove safety of a public program.
To contextualize, we start with a brief tutorial to the standard
techniques of proving program properties using resolution proofs
We then give an overview of the zero-knowledge protocol and an
optimization that signi�cantly improves its performance.

Building a formula To illustrate how program veri�cation can
be encoded as the satis�ability problem of Boolean formulae, we
use the small C program sum3 given in Figure 1a. sum3 returns the
sum of three integers, while avoiding integer over�ows past the
maximum representable integer MAX. For simplicity we consider the
case of single-bit integers and MAX=1 (in which case sum3 is simply
the OR of 3 bits).

In this case the operators + and - over int1 both correspond
to XOR, and <= corresponds to implication. We can thus write a
Boolean formula i , in Figure 1b, that describes the program ex-
ecution. Within i , propositional variable acc8 denotes the value
of C variable acc after the 8-th update. Propositional variables 18
are used to denote the branching condition; A4C corresponds to the

https://github.com/zkunsat/zkunsat

1 int1 sum3(int1 a0 , int1 a1 , int1 a2) {
2 int1 acc = a0;
3 if (acc <= MAX - a1)
4 acc = acc + a1;
5 if (acc <= MAX - a2)
6 acc = acc + a2;
7 return acc;
8 }

(a) sum3: program that sums three 1-bit numbers without over�ow.

0220 $ 00 ^ 10 $ (0220 ! (True � 01)) ^
0221 $ 0220 � 01 ^ >1 $ 10 ^ 0220 ^ 01 ^
0222 $ 10 ? 0221 : 0220 ^ 11 $ (0222 ! (True � 02)) ^
0223 $ 0222 � 02 ^ >2 $ 11 ^ 0222 ^ 02 ^
0224 $ 11 ? 0223 : 0222 ^
A4C $ 0224

(b) A Boolean formula i that models the semantics of sum3.
Figure 1: An example program and Boolean formula that characterizes its executions.

value returned by the program; >1 and >2 are Boolean values de-
noting that over�ow occurs, and the other propositional variables
correspond to program parameters and local variables.

Every satisfying assignments of formula i correspond to a valid
execution of program sum3. A program over�ow happens if and
only if any of >8 are true, i.e., if the formula i> ⌘ >1 _ >2 is also
satis�ed. Thus, verifying that sum3 never over�ows MAX can be done
by proving unsatis�ability of the formula i ^ i> , which asserts
that in a correct execution (asserted by i) an over�ow occurred
(asserted by i>). In general, translating veri�cation tasks for C
programs into Boolean formulas can be done with existing tools
such as CBMC [28].

Having a relatively low number of variables, we could simply
enumerate all possible variable assignments, evaluate i ^ i> on
each assignment, and con�rm that no assignments satis�es the
formula. However, this obviously does not scale, since the number
of assignments grows exponentially in the number of variables.
Resolution refutation A better method of showing that a for-
mula is unsatis�able is a resolution refutation [60]. A formula is
unsatis�able if and only if we can derive ? (false) by applying
resolution steps, according to the fundamental theorem about refu-
tational completeness of �rst-order logic [7] (which applies also
to the propositional logic we employ here). Resolution proofs are
reviewed in formal detail in Section 3.2.1, but we give here the
details needed to follow the example:

Resolution is performed on formulas in the clausal normal form,
i.e., a conjunction of disjunctions. Each conjunct is called a clause.
For example, (G1_G2_¬G3)^ (G3_G1)^¬G4 is in the clausal normal
form and it consists of three clauses. Negations can be applied only
to variables. Every propositional formula can be converted into an
equivalent conjunctive normal form.

The resolution step is given by the following schema:

� _ ? ¬? _ ⌫

� _ ⌫

This reads as follows: the resolution step takes as input two clauses
� _ ? and ¬? _ ⌫, and derives a new clause, � _ ⌫, which is a
logical consequence of two input clauses. The derived clause is
called the resolvent, and variable ? is called the pivot. In the context
of refutational completeness theorem, on the given set of clauses,
the resolution rule can be applied as many time as needed until it
is either no longer possible to derive new clauses, or the ? formula
has been derived.

Although simple, the resolution rule is the basis of modern auto-
mated �rst-order reasoners [61], and their applications to program

veri�cation. Indeed, we proceed to show its use to prove that sum3
does not over�ow.

We show that i ^i> is unsatis�able through several steps. First,
we convert i ^ i> into the clausal normal form, denoting the re-
sulting formula with i⇠#� . This results in a large formula. For
readability, we list here only four of its clauses, which su�ce to de-
rive ¬>1. These clauses are: ¬10_¬0220_¬01, 10_¬>1, 0220_¬>1
and 01 _ ¬>1. From these we can derive ¬>1 by applying the reso-
lution rule 3 times, as follows:

¬10 _ ¬0220 _ ¬01 0220 _ ¬>1
¬10 _ ¬01 _ ¬>1 01 _ ¬>1

¬10 _ ¬>1 10 _ ¬>1
¬>1

Similarly, we can derive ¬>2. Finally, we can derive ? by using
the resolution rule twice more, applied to ¬>1 and ¬>2 (whose
derivations, above, are denoted by . . . below) and to the clause
>1 _ >2 that is also in i⇠#� :

>1 _ >2
. . .
¬>1

>2 ¬
. . .
>2

?
We managed to derive ?, establishing that the original formula i ^
i> was unsatis�able, hence sum3 does not have integer over�ows.1

Resolution proofs as non-ZK proofs of UNSAT The derivation
of? (called the resolution proof) is a certi�cate of unsatis�ability. In-
deed, given an alleged resolution proof, it can be e�ciently checked
by a resolution-proof checker that follows a claimed derivation tree
and veri�es that: in every invocation of the resolution rules, all
inputs have appeared in the original formula or prior derivations,
and the resolvent is correctly derived with respect to some pivot;
and the last resolvent is ?.

Thus, a trivial proof protocol for UNSAT is for the prover to hand
over a resolution proof to the veri�er. However, this is far from zero
knowledge. A resolution proof, constructed and derived as above,
reveals information about the program (which is encoded in the
formula) and the analysis technique (which created the derivations).

In general, resolution refutations can be hard artifacts to con-
struct from a program: there is no e�cient algorithm to generate
them and in fact no polynomial bound on the length that such
derivations may have. In the domain of Boolean formulas that
1Had the formula been satis�able, applying the resolution rules could never have
derived ?, and moreover (for propositional logic), the process would have eventually
terminated and let us read a satisfying assignment out of the derived clauses [7],
revealing inputs to sum3 that cause an over�ow.

correspond to program veri�cation conditions, the structure of a
resolution proof may re�ect the insights of a manual or automatic
program analyzer. In particular, a valid refutation of i ^ i> could
include derived properties of the variables 0223 and 0224 or relating
variables 01 and 03 (e.g., it could derive the clause

¬10 _ ¬0220 _ ¬01 . (1)

Indeed, one of the main technical challenges for �rst-order auto-
mated reasoners is to make sure that they are deriving (mainly)
goal-oriented clauses. Often it is the case that a reasoner will derive
more and more clauses that are indeed consequences of previous
clauses but are not used in the proof of deriving the ? clause.

In our example we produced a proof derivation that only derived
clauses needed to derive ?. Our clause selection was guided by
insights about the structure of sums3 and selecting only clauses
relevant to refuting the over�ow clause >1 _ >2.
ZK proofs of UNSAT Our �rst ZK protocol for UNSAT mitigates
the above information leakage, by proving that a public formula is
unsatis�able while only revealing the number of clauses in one of
its refutations.

Essentially, the prover uses a ZK proof system to prove that it
locally executed the computation "run the resolution-proof checker
on the given formula and a secret resolution proof", and the checker
accepted. The resulting ZK proof, presented to the ZK veri�er, is
as convincing as the original resolution proof (by the soundness
property of the ZK proof system), but e�ectively redacts all details
of the checker’s input and execution trace.

Technically, this works by representing the resolution-proof
checker as an algebraic constraint system, and applying a suitable
zero-knowledge proof scheme to this constraint system. E�ciency
hinges on suitable choice of ZK proof system, and careful encoding
of the resolution-proof checker as algebraic constraints. Details are
given in Section 4.
Optimization by revealing resolution width Implementing a
resolution-proof checker requires a representation of formulas and
clauses. The natural one is encoding clauses as vectors, whose
length is the number of propositional variables in the formula. For
example: one binary vector specifying which variables appear in
the clause, and another specifying their polarity. Validating the
proof then is reduced to Boolean operations over the binary vectors
that represent clauses.

Applying the aforementioned ZK transformation to this repre-
sentation yields a scheme that is already e�cient enough to prove
knowledge of resolution proofs for interesting formulas on a prac-
tical machine: it takes about 80 seconds to verify a proof of 215
literals and 3000 resolvents. However, its limitations are revealed in
plenty of cases that arise in practice: according to our evaluation, it
fails to prove that driver benchmarks are safe up to 2000 steps as
there are over 150K variables in the resulting formula.

A possible optimization is apparently already in the veri�cation
condition of sums3: i ^ i 0 are de�ned over eleven propositional
variables modeling all parameters, return values, local variables, and
over�ow conditions, but each individual clause contains literals over
at most three variables; i.e., the proof’s width is three. Intuitively,
this is because the two additions can be proved not to over�ow

by independently analyzing them and the conditions that guard
them. As discussed in Section 5, this is typical, and reputations of
veri�cation conditions collected from practical programs indeed
tend to width much lower than their total number of variables.

Resolution proofs of low width F can be validated more e�-
ciently than the general case by representing each clause of the
proof as a degree-F univariate polynomial, in a formal variable
- , over a large-enough �nite �eld. For each literal 0 in a clause ⇠ ,
the polynomial representation of ⇠ , denoted ?⇠ , contains a term
- �q (0), where q (0) denotes a distinct �eld element that identi�es
0; identi�ers of literals and their negations satisfy a simple arith-
metic relation that ensures that the laws of Boolean arithmetic are
embedded faithfully.

E.g., Clause (1) is represented as the degree-3 polynomial

(- � q (10)) (- � q (0220)) (- � q (01))

Under this representation, checking that some clause ⇠0 logically
implies some clause ⇠1 amounts to checking that the associated
polynomial ?⇠0 divides polynomial ?⇠1 or equivalently, that there is
some polynomial @ such that @ ·?⇠0 = ?⇠1 . This correspondence can
be applied to validate steps of resolution by checking polynomial
equalities: instead of checking polynomial division, we ask the
prover to provide @ and then proving the equality between a given
polynomial and the multiplication of polynomials. The equality
can be checked e�ciently via the Schwartz-Zippel lemma, while
polynomial multiplication can be done based on any compatible
ZK protocol. We describe this encoding in detail in Section 4.1.

.

3 TECHNICAL PRELIMINARIES
3.1 Fields and polynomials
A �eld F is a set equipped with two binary operations, referred to as
addition and multiplication, that forms a commutative group under
addition (with additive identity denoted 0F), has a multiplicative
identity (denoted 1F), contains a multiplicative inverse for each non-
zero element, and in which multiplication distributes over addition.
For �eld elements 0,1 2 F, the sum and product of 0 and 1 are
denoted 0 + 1 and 0 · 1, respectively.

We will de�ne protocols that use univariate polynomials over
a given �eld F, which will be referred to for the rest of the paper
simply as “polynomials” and denoted F[-]. A root of polynomial
? is a �eld element 0 2 F for which ? (0) = 0F. For polynomials ?
and @, the sum and product of ? and @ are denoted ? + @ and ? · @,
respectively. If there is some polynomial A such that A · ? = @, then
? divides @, denoted ? | @. A polynomial that can be expressed as
a product of 3 (3 � 0 linear polynomials is completely reducible.
Constant polynomials are always completely reducible polynomial.
For all polynomials ? and@with root0 2 F, the polynomial ? ·@ has0
as a repeated root. For each polynomial ? , we can construct a unique

completely reducible divisor ?⇤ as by having ?⇤ =
:Œ
8=0

(- � 0:) ,
where 00, . . . ,0: are all the roots of ? . Notice ?⇤ has no repeated
root, and can be divided by every completely reducible divisor of ?
that has no repeated root;

3.2 Boolean logic
In this work, we primarily consider Boolean formulas in a clausal
form. A literal over a set of variables Vars (whose elements are
denoted using lowercase letters) is an element in Vars paired with
a bit that denotes if the variable occurs positively or negatively
(the set of literals over Vars is denoted Lits = Vars ⇥ B, where B
denotes the Booleans); a positive occurrence of variable G 2 Vars is
denoted as simply G , while a negative occurrence of G is denoted
¬G . A clause is a set of literals and it denotes the logical disjunction
of the literals that is contains. The empty clause is denoted ?; the
union of clauses ⇠ and ⇠ 0 is denoted ⇠ _⇠ 0 and ⇠ extended with
a single literal ✓ is denoted ⇠ _ ✓ . Note that because clauses are
sets of literals (and not general multisets or sequences), a given
clause can contain at most one occurrence of a given literal. As one
consequence,

(⇠ _ ✓) _ ✓ = ⇠ _ ✓

for each clause ⇠ and literal ✓ .
A formula is a set of clauses, which denotes their conjunction;

the set of formulas is denoted F . An assignment 5 : Vars ! B,
satis�es a positive (negative) literal ; if it assigns ; ’s variable to
True (False); it satis�es a clause ⇠ if and only if it satis�es some
literal in ⇠ . As such, an empty clause ? cannot be satis�ed by any
assignment. 5 satis�es formula i 2 F if and only if it satis�es each
clause in i , and the formula i is unsatis�able if it is not satis�ed
by any assignment.

3.2.1 Resolution proofs. Resolution proofs are formal arguments
that a given clause is implied by a given formula.

De�nition 3.1. For clauses ⇠ and ⇠ 0, the resolvent of premise
clauses G _⇠ and ¬G _⇠ 0 on pivot variable G is the clause ⇠ _⇠ 0.

Resolution derivations are sequences of clauses in which each
clause in the sequence is the resolvent of the two preceding two
clauses.

De�nition 3.2. A (resolution) derivation from formula i is a �nite
sequence of clauses h⇠8 i in which each⇠8 is either (1) a clause in i
or (2) the resolvent of two clauses 9,: < 8 . A (resolution) refutation
of i is a derivation from i in which the �nal clause is ?.

Resolution derivations are sound: i.e., if a clause ⇠ can be de-
rived from a formula i then each assignment that satis�es i also
satis�es ⇠ . As an immediate consequence, if there is a refutation
of i , then i is unsatis�able. Conversely, resolution is complete for
proving unsatis�ability: if a formula i is unsatis�able, then there
is a refutation of i [30]. However, unsatis�able formulas may not
have resolution refutations that are short: there is an in�nite set of
unsatis�able formulas with no resolution refutation of size bounded
by a polynomial over the size of the formula [44]. The length of a
derivation is the number of clauses that it contains. The width of a
derivation is the maximum number of literals that occur over all
of its clauses; the product of a refutation’s length with it’s width
is the refutation’s area. In general, there is a trade-o� between a
proof’s dimensions: there is an in�nite set of formulas in which
all refutations have length or width exponential in the size of the
formula [63].

Functionality FZK
Witness: On receiving (Witness,G) from the prover, where G 2 F,
store G and send [G] to each party.
Instance: On receiving (Instance,G) from both parties, where G 2 F,
store G and send [G] to each party. If the inputs sent by the two parties
do not match, the functionality aborts.
Circuit relation: On receiving (Relation,⇠, [G0], . . . , [G=�1]) from
both parties, whereG8 2 F and⇠ 2 F= ! F< , compute ~1, . . . , ~< :=
⇠ (G0, . . . ,G=�1) and send { [~1], . . . , [~<] } to both parties.
Productions-of-polynomial equality check: On receiving
(PoPEqCheck,=, { [%8 (-)] }82 [=] , { [&8 (-)] }82 [=]) from both
parties, where [%8 (G)] and [&8 (G)] are polynomials with their
coe�cient committed: if ⇧8%8 (G) < ⇧8&8 (G) , the functionality
aborts.

Figure 2: Functionality for zero-knowledge proofs of circuit
satis�ability and polynomials.

3.3 E�cient zero-knowledge protocols
The focus of this work is not to design a general-purpose zero-
knowledge proof protocol but to apply existing protocols to build
applications with signi�cant practical importance and to explore
its e�ciency. To this end, we present in Figure 2 a ZK functionality
(FZK) required for performing clause resolution in zero-knowledge.
The functionality is reactive and allows the prover to commit to
witnesses and later prove circuit satis�ability over the speci�ed
�eld. We use [G] to represent an idealized commitment of the value;
its real data depends on the underlying ZK protocol that instantiates
FZK. In VOLE-based ZK that we use in this paper [11, 32, 68, 70],
the underlying commitment is information-theoretic MAC. The last
two instructions in FZK prove relationships about polynomials. It
is well known that the equality of two committed polynomials over
a large �eld can be e�ciently checked in zero-knowledge using
Schwartz–Zippel lemma with the cost of evaluating a random point
on two committed polynomials. We include an extended instruction
PoPDegCheck to prove that the products of two sets of polynomials
are equal. All ZK protocols in the commit-and-prove paradigm can
be used to instantiate this functionality, with [G] representing a
commitment of G . As a result, our clause resolution protocol has
the potential to be connected to many di�erent ZK backends. By
designing our protocol in the FZK hybrid world, future ZKUNSAT
works based on other ZKPs will bene�t from this modular design
because the security follows immediately from the composition
theorem [27].

Zero-knowledge proofs of random accesses. There has been
a long line of works [14, 16, 21, 22, 24, 26, 36, 46, 47, 49, 56, 66]
in supporting ZK proofs over RAM programs. Here, we are only
interested in themechanisms that enable RAM accesses in ZK rather
than the overall RAM architecture, which involves many other
aspects like designing an instruction set. Existing works enable
RAM accesses in roughly two ways. Some prior works [46, 47, 49,
56] combine ZK protocols with oblivious RAMs [42]: the prover
proves in ZK the computation of an oblivious RAM client that
translates each private access to a set of public accesses. The second
approach [14, 16, 24, 26, 36, 66] is to prove all RAM accesses in a
batch: by gathering all accesses and their results, the correctness
validation can be expressed in a circuit of quasi-linear size.

4 ENCODING SCHEME AND PROTOCOL
This section describes our protocol in technical detail. The pro-
tocol’s key correctness and security properties, along with key
lemmas that support them, are stated as lemmas and theorems;
their proofs are included in the full version of the paper [53].

A proof of refutation of a formula q can be viewed as a list
of tuples, each of which speci�es two clauses. The process of a
resolution derivation can be viewed as an iterative procedure. We
start with a list of clauses C that only contains all clauses in q .
In each iteration, we fetch two clauses from C as premise clauses,
compute their resolvent, and append the resulting clause to C. If
the resolution completes, the last clause added to C should be ?.

To perform the derivation in zero-knowledge, we need to pay
attention to two core tasks: 1) e�ciently perform clause resolu-
tion given two clauses; and 2) e�ciently fetch clauses from C in
ZK while keeping indices private. Below, we will introduce the
technical details in how our solutions work and why they improve
e�ciency. Section 4.1 discusses our encoding methods for both
literals and clauses. It provides huge improvement compared to a
bit-vector-based representation. In Section 4.2, we further improve
the e�ciency of clause resolution by introducing a weakened ver-
sion of resolution. It provides more �exibility with prover when
providing premise clauses and thus there fewer conditions to check
in zero-knowledge proof. Finally, in Section 4.3, we discuss our
solution for the second task.

4.1 Clause representation
To improve the e�ciency of the aforementioned procedures, the
central task is �nding a suitable way to represent clauses. Ideally
the representation should be compact so that the overhead when
storing in a random-access array in ZK would not be too high; other
the other hand, it should preserve the structure of a clause so that
clause resolution could be done e�ciently.

4.1.1 Naive encoding methods. As discussed in Section 3.2, a clause
is essentially a set (of literals). Therefore, clause encoding resembles
a lot in set encoding, which has been studied in numerous scenarios.
Our �rst attempt was to use bit vectors inspired by the bit-vector
representation of sets. Assuming that |Lits| is public, then a clause
can be represented as a bit vector of length |Lits|, such that the 8-th
bit indicates if the 8-th literal appears in the clause. This representa-
tion is very intuitive as Boolean operations on bit vectors are closely
related to Boolean logic on clauses: element-wise AND (resp., OR)
on two vectors is the conjunction (resp., disjunction) of the underly-
ing clauses. However, the downside of this approach is also obvious.
Every operation on a clause has a complexity of $ (|Lits|), even if
the number of literals in the clause is signi�cantly less. Therefore
this encoding does not really scale for large formulas.

The bit vector representation is not good for sparse clauses
(where the number of literals is much less than |Lits|), but it can be
improved using a better encoding. A natural next step is to instead
use an enumeration-based representation for a set (and thus clause).
For example, if we map every literal ✓ 2 Lits to an integer in [Lits],
any clause with 3 literals can be represented in log |Lits| bits. The
downside of this approach is that operations on this representation
are more complicated to instantiate. For example, to compute the

conjunction of two clauses represented in this way, we would need
to compute the intersection of two sets.

4.1.2 Encoding clauses as polynomials. To enable compact repre-
sentation and e�cient operations at the same time, our protocol
encodes clauses as polynomials over some �nite �eld. Such rep-
resentation has a small encoding size while operations, including
clause resolution can still be done e�ciently by representing them
as operations on polynomials.

As the �rst step, we need to encode literals to �eld elements. In
addition to completeness (i.e., di�erent literals should be encoded
to di�erent �eld elements), we also want the encoding to support
e�cient negation of a literal, which is useful when doing clause
resolution. For a �eld F where |F| > |Lits| = 2|Vars|, we want to
�nd an injective function q : Lits ! F such that for each variable
G 2 Vars,

q (G) + q (¬G) = 1F (2)
The de�nition can be adjusted to use �eld elements 0 2 F other
than 1F, so long as 0 ensures that q is injective. Each q satisfying
Equation (2) is a literal encoding into F.

For the rest of this paper, let F denote an arbitrary �eld that
satis�es such conditions for Vars and let q refer to an arbitrary
literal encoding of F.

Given a concrete encoding of literals as �eld elements, we can
encode a clause (which is a set of literals) as a �eld polynomial. From
literal encoding q , we de�ne an encoding Wq : Clauses ! F[-]
of clauses as (univariate) polynomials over F such that the image
under q of the literals in each clause ⇠ are the roots of the image
of ⇠ under Wq :

Wq (✓0 _ · · · _ ✓3) = (- � q (✓0)) . . . (- � q (✓3))
for literals ✓0, . . . , ✓3 2 Lits. As an important special case, the encod-
ing of the clause ? is Wq (?) = 1F, where 1F denotes a polynomial
with only a constant term, which is distinct from the �eld element
in Equation 2.

For the rest of this paper, we will only be using only one �eld
and one literal encodings; thus we will omit the subscript and write
simply W (⇠) to denote the encoding of a clause ⇠ , whenever the
�eld and literal are unambiguous from the context.

The key property of q and Wq introduced above is stated formally
as follows. It only requires the fact that q is injective, not that q
additionally satis�es Equation (2).

L���� 4.1. For each literal ✓ and clause ⇠ , ✓ 2 ⇠ if and only if
q (✓) is a root of the polynomial W (⇠).

As a corollary, logical implication over clauses corresponds to
divisibility of clauses, under literal and clause encodings.

C�������� 4.2. For clauses ⇠ and ⇠ 0, if ⇠ ! ⇠ 0, then

W (⇠) | W (⇠ 0)
4.1.3 ZK operations on polynomial-encoded clauses. We are now
ready to put clause operations inside a ZK protocol. The �rst oper-
ations is to allow the prover to commit to a clause. A clause with
3 literals can be encoded as a degree-3 polynomial; however, in
some cases even the degree could reveal information about the
prover’s witness (i.e., the refutation proof). To commit a clause ⇠
without revealing its real degree, the prover, after obtaining the

Functionality FClause
Input: On receiving (Input, ✓0, · · · , ✓:�1,F) from prover and
(Input,F) from veri�er where ✓8 2 Lits, the functionality check that
:  F and abort if it does not hold. Otherwise store⇠ = ✓0_ · · ·_✓:�1,
and send [⇠] to each party.
Equal: On receiving (Equal, [⇠0], [⇠1]) from both parties, check if
⇠0 = ⇠1; if not, the functionality aborts.
X�R��: On receiving (Xres, [⇠0], [⇠1], [⇠A]) from both parties,
check if {⇠0,⇠1 } `X�R�� ⇠A ; if not the functionality aborts.
IsFalse:On receiving (IsFalse, [⇠]) from both parties, check if⇠ = ?;
if not, the functionality aborts.

Figure 3: Functionality for ZK operations on clauses.

coe�cients of⇠ (G), can simply use zeros as high-order coe�cients.
Another caveat is that a cheating prover could potentially commit
an irreducible polynomials, which cannot be factorized; this would
make witness-extraction fail. To ensure extractability of clause com-
mitments, we need the prover to commit all root of the polynomial
again and two parties can use FZK to ensure the validity of the
polynomial.

Another important operation is clause resolution. To check that
clause ⇠A is a resolvent of clauses ⇠0 and ⇠1, we must check that
there is a variable G such that ⇠0 = G _ ⇠ , ⇠1 = ¬G _ ⇠ 0, and
⇠A = ⇠0 _⇠1. When translated to our polynomial-based encoding,
we need to check the above relationship on roots of the polynomial.
While polynomial division can be easily checked by the prover pro-
viding an extended witness and proving the equality of polynomial
product, checking intersection of the roots from two polynomi-
als would require extra e�ort, e.g., incorporating techniques from
Papamanthou et al. [58].

4.2 Improved resolution via weakening
This section proposes a more e�cient way of ZK resolution deriva-
tion without hurting security at all. Our key idea is a new way to
weaken the properties checked by resolution while maintaining
the soundness of such a check.

4.2.1 Resolution with weakening. To de�ne our encoding scheme,
we �rst de�ne a set of derivations of SAT formulas that slightly
generalizes resolution derivations (Section 3.2.1). The only di�er-
ences are that in a weak resolution, (1) a pivot variable need not
necessarily occur in the premises and (2) the resolvent need only
be implied by resolvent of the premises (potentially weakened with
literals built from the pivot variable).

De�nition 4.3. A weak resolvent of clauses ⇠ and ⇠ 0 on pivot
variable G is a clause ⇠ 00 such that

⇠ ! ⇠ 00 _ G and ⇠ 0 ! ⇠ 00 _ ¬G
As a special case, one weak resolvent of clauses⇠_G and ¬G_⇠ 0

on pivot variable G is their resolvent, ⇠ _⇠ 0 (Defn. 3.1).
A weakened resolution derivation is a sequence of weak resol-

vents, analogous to how a resolution derivation (Defn. 3.2) is a
sequence of resolvents:

De�nition 4.4. A weak (resolution) derivation from formula i is a
�nite sequence of clauses h⇠8 i in which each ⇠8 is either (1) in i
or (2) a weak resolvent of two clauses 9,: < 8 .

Weak refutations are similarly de�ned as instances of weak
derivations. It is straightforward to show that weak resolution
derivations are both a sound and complete system for refuting
Boolean formulas: i.e., a Boolean formula is unsatis�able if and
only if it has a weak refutation. Soundness follows from the fact
that resolution refutations are sound and every refutation is a weak
refutation. Completeness can be proved by interleaving each step
of resolution in a given weak refutation with a (potentially empty)
sequence of resolutions that derives the weakening of a resolvent
from the resolvent itself.

Compared to derivations, weak derivations do not have any
apparent interesting proof-theoretic properties. However, in Sec-
tion 4.2.2 we will introduce a scheme speci�cally for encoding and
validating weak resolvents; the validation cannot apparently be
adjusted to validate exactly resolvents without more than doubling
the size of the encoding of each validation. Moreover, a practical
consequence of the fact that each refutation is a weak refutation is
that any refutation generated by existing SAT theorem provers can
be directly encoded by our scheme. In principle, such refutations
could potentially be minimized by replacing multiple steps of res-
olution that derive a weakening of a resolvent with a single step
of weak resolution; however, our current implementation does not
perform such an optimization.

4.2.2 Proving weakened resolution in ZK. Aweak resolution deriva-
tion can be e�ciently checked using �eld arithmetic: clauses in the
derivation are represented as polynomials and the fact that a clause
is a weak resolvent of two clauses can be checked e�ciently by
testing equality of polynomials. We present our protocol in Figure 4.

A clause can be checked to be a weak resolvent to two other
clauses by checking equalities of the clauses encodings as polyno-
mials. The key idea behind the protocol is to check the implications
over clauses that de�ne a weak resolution (De�nition 4.4) by check-
ing divisibility of polynomials, which itself is checked by checking
equality of polynomials using a secret witness divisor. The prover
can e�ciently construct such witnesses, using the pivot variable of
the step of resolution.

In detail, for the prover to prove that committed clause ⇠A is a
weak resolvent of clauses⇠0 and⇠1 on pivot variable - , the prover
�nds clauses,0 and,1 such that

,0 _⇠0 = ⇠A _ G and ,1 _⇠1 = ⇠A _ ¬G

,0 and,1 can always be de�ned to be:

,0 = (⇠A [{G}) \⇠0 and ,1 = (⇠A [{¬G}) \⇠1

The prover then commits polynomials ?0,F0, ?1,F1, and ?A , that
encode ⇠0,,0, ⇠1,,1, and ⇠A , respectively, along with the follow-
ing polynomial encodings of the literals with variable G :

d (-) = - � q (✓?) and d̄ (-) = - � q (¬✓?)

The veri�er validates the prover has committed encodings of
clauses⇠0 and⇠1 with weak resolvent⇠A by attesting the following
polynomial equalities over the committed polynomials:

Protocol ⇧Clause

Parameters: A set Lits of all possible literals and a �nite �eld F. An
integer F and a set of clauses CF that contains all clauses no more
than F literals of Lits. q : Lits ! F is injective.
Inputs:
(1) P holds a clauses⇠ = ✓0 _ · · · _ ✓:�1 2 CF , de�nes W (⇠) (-) =

(- � q (✓0)) · · · (- � q (✓:�1)) and locally computes 20, . . . , 2F
such that W (⇠) (-) = Õ

82 [0,F] 28-
8 .

(2) For each 8 2 [0,F], two parties use FZK to get [28]. Two parties
output [W (⇠)] = { [28] }82 [0,F]

Equal: Both parties send (PoPEqCheck, 1, [W (⇠0) (-)],
[W (⇠1) (-)]) to FZK.
X�R��:
(1) P locally computes,0 (-),,1 (-) and ✓? , such that,0 (-) ·

W (⇠0) (-) = W (⇠A) (-) · (- + q (✓?)) and,1 (-) · W (⇠1) (-) =
W (⇠A) (-) · (- + q (¬✓?)) . Note that the degree of,0 (-) and
,1 (-) are bounded by F.

(2) P locally computes d (-) = - � q (✓?) , of which the degree is
bounded by 1.

(3) Two parties use FZK to authenticate all F + 1 polynomial coef-
�cients in,0 (-) and,1 (-) , and two polynomial coe�cients
in d (-) . As a result, two parties get [,0 (-)], [,1 (-)] and
[d (-)].

(4) Using FZK, two parties check that the highest coe�cient in
[d (-)] is non-zero, this make sense that [d (-)] has degree
exactly 1.

(5) The prover locally computes polynomial d̄ (-) = d (1F �-) and
commits its 2 coe�cients to obtain [d̄ (-)]. Then two parties
check that the committed coe�cients satisfy d̄ (-) = d (1F �-) .

(6) Both parties send (PoPEqCheck, 2, ([,0 (-)], [W (⇠0) (-)]),
([W (⇠A) (-)], [d (-)])) to FZK.

(7) Both parties send (PoPEqCheck, 2, ([,1 (-)], [W (⇠1) (-)]),
([W (⇠A) (-)], [d̄ (-)])) to FZK.

IsFalse: Both parties send (PoPEqCheck, 1F, [W (⇠) (-)], [1]) .

Figure 4: Our protocol to instantiate FClause.

F0 · @0 = @A · d (3)
F1 · @1 = @A · d̄ (4)

d (-) + d̄ (1F � -) = 0F (5)

The veri�er also attests that d and d̄ have degrees of at most one.
Equations (3) to (5) combined with the attestation of degrees are
referred to as the weak resolution test.

The following lemma establishes that encodings of clauses in
a step of weakened resolution, combined with additional witness
polynomials, are solutions to the weak resolution test. It is a key
lemma used to prove that the overall protocol (Figure 6) is complete.

L���� 4.5. If clause ⇠A is a weak resolvent of clauses ⇠0 and ⇠1
on variable G , then there are polynomials d and d̄ of degree at most
one, and polynomialsF0 andF1 that combined with

@0 = W (⇠0) @1 = W (⇠1) @A = W (⇠A)
satisfy the weak resolution test.

The following lemma establishes that each solution to the weak
resolution test corresponds to some step of weakened resolution. It

is a key lemma used to show that the overall protocol is sound in
Section 4.4, and uses maximal completely reducible divisors, intro-
duced in Section 3.1.

L���� 4.6. For polynomials@0 @1,@A ,F0,F1, d , and d̄ that satisfy
the weak resolution test, clause W�1 (@⇤A) is a weak resolvent of clause
W�1 (@⇤0) and clause W�1 (@⇤1).

The full version of the paper [53] contains a complete proof of
Lemma 4.6 but to see that the lemma is well-de�ned, note that for
each polynomial ? , the clause W�1 (?⇤) is well-de�ned, because the
polynomial ?⇤ is completely reducible (Sec. 3.1) and W is a bijection
into the completely reducible polynomials.

4.3 Weakened random array access
Our protocol to check resolution proof requires an array to store
all literals in all intermediate clauses and the ability to access array
elements where the index is private to the prover. This could be
instantiated using prior works discussed in Section 3.3. However,
the overhead would be too high since the bit representation of
clause is fairly large: every clause contains up to F literals, each
of which requires at least log |Lits| bits to encode. As a result each
clause needs at leastF log |Lits| bits to represent. All existing RAM
constructions need some sort of bit decomposition on the payload
of the array and thus this quickly becomes an huge overhead.

We improved upon a recent prior work [36] for e�cient RAM
access in ZK in multiple ways. First, as described at the beginning
of this section, we only need two operations to the array: append a
value to the array and read. In the context of ZK, the prover could
precompute all values and thus prepare the whole array ahead of
time. During the execution of the protocol, if we need to append E ,
we read from the location to be written and check that the value
equals to E . This way, we only need to support read.

Second, we relax the functionality so that the prover can freely
choose the read indices as long it does not read values not appended
to the array yet; thus the functionality is signi�cantly weakened.
E.g., we can no longer ensure if the prover read the same element
twice or not. However, in the context of ZK refutation proof, this
weak functionality is su�cient: as long as the protocol arrives to
?, we can always extract a valid UNSAT proof of the formula.

Third, each memory cell contains a complete clause, which con-
sists ofF �eld elements. In [36], the number of AND gates is pro-
portional to the bit-length of the payload; so larger elements lead
to a high cost. We improve the access time by applying a universal
hash function before the accesses are checked so that the e�ective
bit-length is much shorter. To ensure the soundness, the universal
hash function is picked only right before the batch checking.

4.4 Putting everything together
In Figure 6, we put together our main protocol in the (FZK, FClause,
FFlexZKArray)-hybrid model. Our protocol assumes that the number
of steps in the refutation proof and the width of the proof are public.
It proves to the veri�er in ZK that the prover has a valid refutation
proof.

The protocol consists of three parts: 1) the prover run the veri�-
cation locally and prepare⇠1, . . . ,⇠'+|i |�1; the �rst |i | clauses are
the original formula and the rest are intermediate clauses; In the

Functionality FFlexZKArray
Array initialization: On receiving (Init,# , [<0], . . . , [<#�1])
from P and V , where<8 2 F, store the {<8 } and set 5 := honest
and ignore subsequent initialization calls.
Array read: On receiving (Read, ✓,3, C) from P, and (Read, C) from
V , where 3 2 F and ✓, C 2 N, send [3] to each party. If 3 <<✓ or C
from both parties do not match or ✓ � C then set 5 := cheating.
Array check: Upon receiving (check) from V do: If P sends (cheat)
then send cheating to V . If P sends (continue) then send 5 to V .

Figure 5: Functionality forweak randomaccess arrays in ZK.

Protocol CheckProof

Inputs: Both parties have formulaq = ⇠0^ · · ·^⇠ |q |�1. P has a proof
of refutation ((:0, ;0), . . . (:'�1, ;'�1)) ; Both parties know the length
of the refutation proof ' and the width of the proof F = max8 { |⇠8 | }.
Protocol:
(1) The two parties obtain [⇠8]82 [0,|q |�1] using FClause; since q is

known to both parties, it uses instance to authenticate the coe�-
cients.

(2) P locally runs the refutation proof veri�cation process and
gets ⇠ |q |�1+8 from the 8-th iteration. The two parties obtain
[⇠8]82 [|q |�1,|q |�1+'] using FClause using witness authenticating
the coe�cients.

(3) The two parties send (Init, |q | + ' � 1, [⇠0], . . . , [⇠ |q |+'�1]) to
FFlexZKArray.

(4) For the 8-th iteration, the two parties advance the proof check by
doing the following.
(a) The prover looks up the tuple (:8 , ;8) from the refutation

proof such that {⇠:8 ,⇠;8 } `X�R�� ⇠8 .
(b) Fetching the premise: the prover sends (Read, ;8 ,⇠;8 , 8) to

FFlexZKArray; V sends (Read, 8) to FFlexZKArray, from which
the two parties obtain [⇠;8]. Similarly, the two parties obtain
[⇠:8] and [⇠8].

(c) Checking the inference: the two parties send
(Xres, [⇠;8], [⇠:8], [⇠8]) to FClause.

(5) After ' iterations, two parties use FClause to check that [⇠']
equals ?; if the functionality aborts, V aborts.

(6) Two parties send (check) to FFlexZKArray, if the functionality aborts,
V aborts.

Figure 6: Protocol for checking resolution proof.

8-th iteration, the prover veri�es one step of the refutation in ZK
by: 2) fetching relevant existing clauses and 3) proving that they
derive to ⇠8 . The proof is accepted if the last clause if False.

T������ 4.7. The protocol in Figure 6 is a zero-knowledge proof
of knowledge of refutation proof.

We provide a proof of sketch of this theorem in the full ver-
sion [53] . Because we model the zero-knowledge proof as a func-
tionality, the simulator plays the role of knowledge extractor in the
case of a corrupted prover and plays the role of ZK simulator in
the case of a corrupted veri�er. Such a formulation was adopted
in prior works [11, 32, 51, 68, 70] and was formally discussed by
Hazay and Lindell [45].

5 IMPLEMENTATION AND EVALUATION
This section contains details of our implementation and the re-
sults of its empirical evaluation. We will openly release our im-
plementation to accompany the �nal publication of our results.
All of our benchmarks were performed on AWS instances of type
r5b.2xlarge with 64GB of memory, 16 vCPUs and a 10Gbps net-
work connection between the prover and the veri�er. We used
an instance with a large amount of memory because our largest
benchmark (described below) uses more than 32GB of memory.

5.1 Implementation and optimization
We implemented and evaluated our protocol as a tool, named Z�U��
���, using the EMP-toolkit interactive zero-knowledge proof li-
brary for Boolean/arithmetic circuits and polynomials [67] and the
high-performance library NTL [62] for arithmetic on polynomials
over �nite �elds. Because the underlying ZK protocol in EMP is a
constant-round interactive ZK, our whole protocol is also constant-
round. In Z�U����, we instantiated the protocol on the binary �eld
F2128 , under which �eld operations can be e�ciently implemented
using the CLMUL instruction; we represented the indices of clauses
using 20-bit integers, which support refutation proofs of length up
to one million.

To verify refutations of practical formulas, we aggressively opti-
mized our implementation’s memory usage. When verifying practi-
cal resolution proofs in the clear, memory usage is typically moder-
ate; however, when verifying them in ZK, it is signi�cantly higher
due to the use of information-theoreticMACs [36].We implemented
protocol components to to store only data that is essential to com-
plete the rest of validation. Recall that for each resolvent, the prover
must prepare and commit a set of polynomials (see Section 4). Stor-
ing witnesses for all resolvents simultaneously would consume a
prohibitive amount of memory. However, the witness of a resol-
vent is only used when that resolvent is being validated. Thus, in
our implementation, the prover generates and commits the wit-
ness only before checking the corresponding resolvents. Moreover,
the witness is stored in memory only during the validation of its
corresponding resolvent.

5.2 Performance per phase
Verifying a refutation of a formula i consists of three phases: (1)
loading all clauses deduced in the refutation; (2) fetching clauses
as premises; and (3) validating steps of deduction (see Figure 6).
We empirically evaluated the relationship between the cost of per-
forming each of the phases and the size of practical refutations,
speci�cally the size of the formulas |i |, the refutation’s length ; ,
and the refutation’s widthF , in addition to their e�ect on overall
performance.
Instance generation In order to benchmark the distinct phases
of our protocol, we generated refutations of particular sizes by
repeating clauses in a small proof. In more detail, starting from a
refutation of formula i of length ; , we generated a refutation of
formula i 0 with |i 0 | � |i |, of length ; 0 � ; . To do so, we added
|i 0 |� |i | copies of an arbitrary clause in i and added ; 0 �; copies of
an arbitrary resolvent in the proof. Because the width of a proof is
a public parameter provided by the prover, we generated one proof
for each combination of formula size |i | 2 {2000, 2200, · · · , 3000},

2000 2200 2400 2600 2800 3000
Size of Input Formula

0

5

10

15

20

25

30

Ti
m

e
fo

rR
es

ol
ut

io
n

(s
)

w = 150, l = 5000
w = 300, l = 5000

w = 150, l = 500
w = 300, l = 500

Figure 7: Clause veri�cation time vs. size of input formula. The total
time for verifying a resolution proof changes negligibly with an increase in
the size of the input formula, under various �xed refutation lengths ; and
widths F.

small length ; = 50 or large length ; 2 {2000, 3000, · · · , 8000},
and width F 2 {100, 150, 300, 450}. They cover a large range of
parameters that can be accurately evaluated and can also tell us the
performance trend of our protocol.

Input formulas sizeWe measured the growth of the total veri�-
cation time when the size of input formulas increase under �xed
lengths ; and widthsF ; Figure 7 contains the evaluation’s results.
For each length and width, veri�cation time changes negligibly as
the size of the input formula increases. Furthermore, to demon-
strate that showing unsatis�ability of a large formula in plaintext
can be harder than verifying an existing refutation proof in ZK, we
constructed formulas where the former process takes more than 180
seconds using PicoSAT, whereas the latter takes roughly 5 seconds
with Z�U���� (see the full version [53]).

Refutation width A refutation’s width determines the degree of
the polynomials that encode clauses maintained by the protocol. To
evaluate the e�ect of width on protocol performance, we measured
the protocol’s veri�cation time under varying widths, with �xed
input formula size |i | = 3000.

Figure 8 contains the evaluation’s results. In practice, veri�cation
time is linear in the refutation’s width. Furthermore, the times of
each of the protocol’s three phases are linear in the width, as well.
We can also see that the majority of the time is spent on validating
deduction and fetching premises, two main parts that our work
optimized. In addition, compared to the protocol’s other phases,
the time taken to input the proof rises less signi�cantly with width.

Refutation length A refutation contains a series of resolvents,
where the deduction of each by resolution must be veri�ed. In
principle, the refutation’s length ; determines the number of groups
of either bit-vectors or polynomials that are veri�ed as encodings of
steps of resolution is linear in the refutation length ; . We evaluated
our implementation’s actual performance versus refutation length,
under di�erent �xed refutation widths. Figure 9 contains the results
of our evaluation, which demonstrate that in practice, veri�cation
time is indeed linear in refutation length. Moreover, the cost for
inputting the proof only shows a limited increase when the length
; grows, while the increase of time cost for checking inference and
fetching premises are adequately visible.

Len. Width Comm. Len. Width Comm.
(MB) (MB)

2,000 150 75.68 3,000 100 72.91
2,000 300 142.40 3,000 200 136.20
2,000 450 200.87 3,000 300 209.95

Table 1: Communication cost vs. length and width. The amount of
data communicated is nearly proportional to the refutation’s area.

Communication cost We evaluated the communication costs for
verifying refutations of di�erent length and width; Table 1 contains
the evaluation’s results. Similar to veri�cation time, the amount of
communicated data grows proportionally to the refutation’s length
and width; refutations with similar areas were veri�ed with similar
communication costs.
Clause representations To evaluate the e�ect of representing
refutation clauses as polynomials, we compared protocols that use
polynomials to a generic protocol that represents clauses as bit-
vectors (see Section 4.1.1). To do so, we increased the number of
literals Lits from 28 to 215 and measured the time required by the
generic protocol with length ; = 3, 000 and input formula of size
|i | = 1000.

Figure 10 contains the evaluation’s results. As expected from a
complexity analysis of the generic protocol, the time used by its
implementation in practice increases linearly with |Lits|, while the
polynomial-based protocol’s veri�cation time is una�ected. The
polynomial-based protocols perform better when the set of literals
is suitably large: the polynomial-based protocol with F = 100
outperforms the generic methods when |Lits| = 211. A proof with
number of literals |Lits| = 215 and large widthF = 400 is veri�ed
by the generic protocol in over 80 seconds, but veri�ed by the
polynomial-based protocol in only 20 seconds.

5.3 Verifying safety-critical proofs in ZK
We evaluated Z�U���� on refutations generated from benchmarks
in corpus of theCompetition on Software Veri�cation (SV-COMP) [17],
and major competition for evaluating program veri�ers on practical
and challenging programs. From the complete SV-COMP corpus,
we selected benchmarks of two types: (1) system drivers, selected
to evaluate Z�U����’s practicality and (2) programs that induce
large refutations, to evaluate Z�U����’s scalability. The system
drivers benchmarks are real-world implementations of drivers, in-
strumented with code annotations that de�ne the correct behavior.
As an illustration, consider the following example: if at some point
in a program two system variables need to be equal, the program
is instrumented with the if statement that checks this equality. If
they are not equal, then this should raise an alert. These alerts are
typically implemented as a call to a special “error-code” procedure.
In this example, to verify that two variables are equal at the given
program point means to formally prove that the error procedure
is never invoked in the instrumented code. In the jargon of the
veri�cation community, we need to prove that the error code is
never reached.

One prominent approach to program veri�cation [9, 10], given
program % , compiles it to a Boolean formula i such that each execu-
tion of % corresponds to an satisfying assignment of i . Additionally,
the program property is compiled to a second Boolean predicate
k that is satis�ed by all program runs in which the property is

100 200 300 400
Width (w)

0

10

20

Va
lid

at
e

D
ed

uc
tio

n
(s

)

100 200 300 400
Width (w)

10

20

Fe
tc

h
Pr

em
is

es
(s

)

100 200 300 400
Width (w)

4

6

8

In
pu

tP
ro

of
(s

)

100 200 300 400
Width (w)

20

40

To
ta

lT
im

e
(s

)

l = 2000 l = 4000 l = 6000 l = 8000

Figure 8: Veri�cation time vs. refutation width. Plots of phase time and total performance vs. width F, for various refutation lengths ; 2 [2, 000, 8, 000],
with a �xed formula size of |i | = 3, 000. The times spent inputting the proof, fetching premises, and checking resolution steps are all linear in the width.

l = 2000 l = 4000 l = 6000 l = 8000
0

10

20

30

40

50

Ti
m

e
(s

)

w1
w1

w1
w1

w2

w2

w2

w2

w3

w3

w3

w3

w4

w4

w4

w4w1 : w = 100
w2 : w = 200
w3 : w = 300
w4 : w = 400

Input Proof Fetch Premises Validate Deduction

Figure 9: Veri�cation time vs. refutation length. For di�erent �xed
refutation widths F, veri�cation time is linear in the refutation’s length
; . As the length grows, the increase in time of inputting proof is less than
the increase for fetching premises and checking resolution. Furthermore,
as length increases, the time for fetching premises and checking resolution
dominates veri�cation time.

8 9 10 11 12 13 14 15
log2 |Lits|

20

40

60

80

Ti
m

e
(s

)

Our protocol with w = 100
Our protocol with w = 200
Our protocol with w = 300
Our protocol with w = 400
Generic solution based on Boolean vectors

Figure 10: Time vs. number of literals, per clause representation.
A plot of veri�cation time of di�erent protocols vs. the number of variables
used by the input formula, on refutations with �xed length 3, 000, which
was chosen as su�ciently large to observe an e�ect. The purple line depicts
the performance of a protocol that represents clauses as bit-vectors and
reveals nothing about the proof; the other lines depict the performance
of protocols that represent clauses as polynomials and additionally reveal
various upper bounds on the refutation’s width.

preserved. Thus, the program is safe if the formula i ! k is valid
or, equivalently, the formula i ^ ¬k is unsatis�able. A refutation
of � ^ ¬% is this a formal argument that the program % is correct.

The SV-COMP veri�cation benchmarks are compiled to Boolean
formulas using the C Bounded Model Checker (CBMC) [52]. Com-
pilation from C code to a Boolean formula is relatively straight-
forward, with the exception of unbounded looping or iteration. To
cope with such control structures, a Bounded Model Checker (BMC)
(BMC) [19] takes an additional non-negative integer unwind and
unwinds all loops at most unwind times, generating the program
that safely halting if it to attempts to execute unwind + 1 iterations.
The resulting program does not model all of the given program’s
executions, but in practice there is considerable practical value in
verifying even bounded programs up to even just a few unwindings.

We evaluatedZ�U����’s performance on refutations correspond-
ing to veri�cation problems for proving unreachability of error
locations, with unwindings of unwind in {6, 7, · · · , 26}. In practice,
the small unwinding is usually su�cient to test properties of the
program [5, 57]. All of the veri�cation problems that we evaluated
were obtained from the public SV-COMP repository:
• ldv-crypto-qat2: veri�cation of safety for Intel(R) QuickAssist
(QAT) crypto poll mode driver for analysis of pointer aliases and
function pointers.

• ldv-net-usb-cdc-subset3: safety veri�cation for the Linux
Simple USB Network Links (CDC Ethernet subset) driver by
analysis of pointer aliases and function pointers.

• ntdriver-floppy4: The code is instrumented with control labels
that describe the correctness behavior of a Window NT �oppy
disk driver. The veri�cation task boils down to reachability anal-
ysis and proving that the error code is never reached..

• ntdriver-cdaudio5: The speci�cation and veri�cation problems
are de�ned similarly to the case of ntdriver-floppy.

Refutations of the generated formulas were generated using the
PicoSAT SAT solver [18]. Figure 11 reports the features of refuta-
tions and the performance of Z�U���� vs. the chosen unwinding
bounds. Refutation length and width either increased sharply with
unwinding bounds or remained constant. We expect that the latter
occurs due to optimizations within both CBMC and PicoSAT. Veri-
�cation time is determined by refutation area, as in the evaluations
described above.

The results demonstrate that Z�U���� can be used to verify
arguments of safety of practical programs in ZK; Z�U���� can

2github.com/sosy-lab/sv-benchmarks/blob/master/c/ldv-linux-4.2-rc1/linux-4.2-rc1.
tar.xz-08_1a-drivers--crypto--qat--qat_common--intel_qat.ko-entry_point.cil.out.c
3github.com/sosy-lab/sv-benchmarks/blob/master/c/ldv-linux-4.2-rc1/linux-4.2-
rc1.tar.xz-32_7a-drivers--net--usb--cdc_subset.ko-entry_point.cil.out.c
4github.com/sosy-lab/sv-benchmarks/blob/master/c/ntdrivers/�oppy.i.cil-1.c
5github.com/sosy-lab/sv-benchmarks/blob/master/c/ntdrivers/cdaudio.i.cil-1.c

github.com/sosy-lab/sv-benchmarks/blob/master/c/ldv-linux-4.2-rc1/linux-4.2-rc1.tar.xz-08_1a-drivers--crypto--qat--qat_common--intel_qat.ko-entry_point.cil.out.c
github.com/sosy-lab/sv-benchmarks/blob/master/c/ldv-linux-4.2-rc1/linux-4.2-rc1.tar.xz-08_1a-drivers--crypto--qat--qat_common--intel_qat.ko-entry_point.cil.out.c
github.com/sosy-lab/sv-benchmarks/blob/master/c/ldv-linux-4.2-rc1/linux-4.2-rc1.tar.xz-32_7a-drivers--net--usb--cdc_subset.ko-entry_point.cil.out.c
github.com/sosy-lab/sv-benchmarks/blob/master/c/ldv-linux-4.2-rc1/linux-4.2-rc1.tar.xz-32_7a-drivers--net--usb--cdc_subset.ko-entry_point.cil.out.c
github.com/sosy-lab/sv-benchmarks/blob/master/c/ntdrivers/floppy.i.cil-1.c
github.com/sosy-lab/sv-benchmarks/blob/master/c/ntdrivers/cdaudio.i.cil-1.c

5 10 15 20 25
Unwind

212

214

Le
ng

th
(l

)

5 10 15 20 25
Unwind

25

26

27

28

W
id

th
(w

)

5 10 15 20 25
Unwind

23

25

27

Ti
m

e
(s

)

ldv-crypto-qat ldv-net-usb-cdc-subset ntdrivers-floppy ntdrivers-cdaudio

Figure 11: Veri�cation features vs. bound on loop unwindings for drivers. Plots of refutation length, width, and veri�cation time vs. bound on loop
unwindings for a set of Windows NT and Linux drivers.

Program Len. (K) Width Time (s)
inv-square-int 194 414 172.5
rlim-invariant 481 198 1943.3
sin-interpolated-smallrange 375 308 2571.8
interpolation 135 790 3771.6
inv-sqrt-quake 182 749 5764.1
zonotope-loose 35 2887 9996.9
zonotope-tight 64 2887 11143.3
interpolation2 600 1047 OOM

Table 2: Length, width, and veri�cation time in the large. The per-
formance of Z�U���� on large proofs for proving properties of benchmark
programs with �oating point computation. Column “Time (s)" contains the
performance of Z�U���� in seconds; column “Len. (K)" contains the refuta-
tion’s length, in multiples of 1, 000; column “Width" contains the refutation’s
width. The value “OOM" denotes that Z�U���� ran out of memory.

verify the safety and correctness of all the presented drivers in
under �ve minutes. The largest refutation corresponds to the ver-
i�cation of ldv-net-usb-cdc-subset with loops unwound 256
times; Z�U���� veri�es this refutation in under 256 seconds.

To evaluate Z�U����’s scalability, we evaluated its performance
on large refutations of formulas corresponding to the veri�cation
of programs that use �oating-point operations.6. Out of a total of
58 benchmarks, we selected benchmarks whose formulas could be
extracted from the program and solved in under 30 minutes, and
whose proofs have length at least ; � 10, 000 and a width of at least
F � 100. We omitted benchmarks whose generated refutations
were too large to be parsed within allocated memory.

The results, given in Table 2, demonstrate that Z�U���� can
verify proofs of moderate length and of width as large as 2.8K in
an amount of time that would be useful in multiple cases: under
three hours. The results also give insight into Z�U����’s current
limitations: when attempting to verify a refutation containing 600K
resolvents and with width 1, 047, our implementation exhausted
the allocated memory.

The veri�cation time and memory requirements depend on the
clausal length and width of the proof. To see if Z�U���� is practical,
it is also important to learn the distribution of proof length/width
for real programs. We uniformly sampled a set of SV-COMP veri�-
cation tasks that generate unsatis�able SAT formulas, setting the
parameter unwind to the standard value 2. The distribution of proof

6github.com/sosy-lab/sv-benchmarks/tree/master/c/�oat-benchs

101 102 103

Width

102

104

106

Le
ng

th

SV-COMP Our benchmarks

Figure 12: Distribution of the clausal length andwidth of formulae
for real programs in SV-COMP.

length/width is depicted in Figure 12, alongside the paper’s exam-
ples. The result shows that the scale of formulae in our benchmarks
can cover 804 of 814 (98.7%) veri�cation tasks from SV-COMP.

6 RELATEDWORK
The previous work closest to our goal addresses approaches to
static program analysis in zero knowledge [34]. When the proven
invariants of programs are used to establish that the secret pro-
gram satis�es a speci�cation of correctness, such static analyses
e�ectively prove that safety of a program in zero knowledge. The
contribution of this work is complementary to such approaches:
de�nitions of static analyses in ZK describe how to generate a ZK
proof statement about a potentially unbounded program, given a
de�nition of an abstract domain of the facts, equipped with opera-
tions that describe how to merge multiple facts soundly. Current
implementations of such schemes have used encouraging but rel-
atively lightweight abstract domains, which typically are used to
prove simple program properties. In contrast, our approach for
verifying resolution proofs in ZK can be used to instantiate such
schemes with a comparatively powerful abstract symbolic domain
of facts as Boolean formulas. Within such a scheme, the symbolic
domain could be used to deep safety and correctness properties of
unbounded programs.

In [54], the authors present ppSAT, a privacy-preserving satis-
�ability solver, where two parties can contribute two private, re-
spectively to each party, formula and the tool employs Multi-Party
Computation (MPC) techniques to determine if the conjunction of

github.com/sosy-lab/sv-benchmarks/tree/master/c/float-benchs

these two formulas is satis�able. The approach taken in that work
is �nely tuned for proving the satis�ability of formulas. As such,
although the tool could be used for showing unsatis�ability of the
conjunction of the input formulas, it would have to check all the
possible variable assignments that are exponential in number.

Resolution proofs are well-studied systems for formally proving
the validity of, or refuting, statements in formal logics. Classical
results have established that they are a sound and complete system
for refuting propositional formulas [60], that there are families
of unsatis�able formulas without short refutations in resolution-
based systems [44], and that in general there may be a fundamental
tradeo� between a refutations dimensions, namely its length and
its width [63]. Practical implementations of many modern SAT
solvers can be con�gured so that, upon determining that a formula
i is unsatis�able, they generate a refutation of i as a resolution
proof [18, 31, 33, 37]. In this work, we have introduced a slight
variation of a standard resolution proof system for Boolean logic;
the proposed system retains the soundness and completeness of
standard systems, but its refutations can be veri�ed more e�ciently
than proofs in systems that are equivalent in expressive power but
that imposes stricter requirements on the structure of its proofs.
Our approach does not rely on novel, tight bounds on the resolution
proofs’ dimensions: instead, we have de�ned a optimized ZK veri�er
that reveals only the refutation’s dimensions. Proofs in standard
systems directly correspond to proofs in our relaxed system: thus,
our approach can be used to verify proofs generated by all existing
SAT solvers without modi�cation to the underlying solver.

An extensive line of work has investigated reducing problems
in veri�cation to solving or refuting SAT formulas [10, 19, 52, 69].
Such approaches, given a program % and property & , generate a
propositional formula i such that % (or a bounded approximation
of %) satis�es & if and only if i is unsatis�able. Our approach for
validating a proof of unsatis�ability can be combined with any such
model checker and any process that generates resolution proofs
as refutations to prove that a program satis�es a desired property
without revealing information about proof itself.

Zero-knowledge proofs in the RAM model has been studied
extensively in recent years [14, 16, 21, 22, 24, 26, 36, 46, 47, 49, 56, 66].
Most of these works focus on designing a general-purpose RAM
machine or random access structure to be used for any computation.
To support e�cient fetching of premise clauses, we optimize a
prior RAM construction [36] in our setting. Our construction is no
longer general-purpose, but it provides improved e�ciency in our
application.

While this paper studies cryptographic proofs composed with
resolution proofs, a di�erent notion of "proofs about proofs" is
recursively composing cryptographic proofs with cryptographic
proofs, as in Incrementally Veri�able Computation [64] and Proof-
Carrying Data [15, 20].

7 CONCLUSION
We have presented a novel protocol for proving knowledge that a
given propositional formula is unsatis�able while revealing mini-
mal information about the known supporting argument, structured
as a resolution refutation. The protocol’s key features are the use
of (1) a sub-protocol for e�ciently executing RAM programs in

zero knowledge, used to hide which facts derived from the formula
are used at which steps of the argument and (2) an encoding of
propositional clauses as arithmetic polynomials, which allows us
to aggressively minimize costs by revealing only the refutation’s
length and width. Our empirical evaluation of a prototype imple-
mentation indicates that the protocol can be used to prove the safety
and correctness of safety-critical software (speci�cally, system de-
vice drivers) while keeping secret the details of why the software
is correct.

Future work and challenges. A compelling direction for fu-
ture work is to develop a protocol that proves the safety of a pro-
gram that is itself kept secret: this could be achieved by extending
the presented protocol to veri�ably translate a secret program to
a formula satis�ed by the hypothetical unsafe executions, and use
the existing protocol to prove that no such assignment in fact exists.
We believe that such a formula could be generated either by relating
a secret formula to the syntactic structure of a secret program that
at each control point steps by executing some instruction secretly
chosen from a public set of faithful instruction models, or by vali-
dating additional resolution proofs that prove that each instruction
formula models program instruction semantics faithfully. By in-
cluding public instruction models or symbolically proving that each
instruction formula faithfully models error-triggering conditions,
secret programs could be proved to satisfy properties that require
that no instruction in the program performs an error, e.g. accessing
memory out of bounds, over�owing arithmetic, or dividing by zero.
Both such strategies would draw on the wealth of existing work
in automated theorem proving and symbolic reasoning driven by
the software veri�cation community. In general, verifying stateful
program properties may require verifying a program in which as-
sertions have e�ectively been inlined. A veri�er could potentially
inline assertions correctly but blindly by following a protocol based
on Multi-Party Computation(MPC) [40, 71], where the prover and
veri�er input assertions and programs, respectively.

Resolution is one of the proof systems for the unsatis�ability
problem that is well-studied and implemented. Other alternatives
remain unexplored, among which Groebner proof system [29] is
of particular interest. In a Groebner proof system, the witnesses
are in the form of polynomials over a �nite �eld and thus could
have natural encodings in ZK. On the other hand, the translation
from clauses to polynomials will introduce additional overhead that
could a�ect the overall performance.

ACKNOWLEDGEMENTS
Work by William Harris and Eran Tromer is supported in part by
DARPA under Contract No. HR001120C0085. Work by Xiao Wang
is supported in part by DARPA under Contract No. HR001120C0087,
NSF award CNS-2016240, and research awards from Meta and
Google. Work by Timos Antonopoulos has been supported in part
by ONR under Grant N00014-17-1-2787 and by NSF awards CCF-
2106845, CCF-2131476. Work by Ruzica Piskac and Ning Luo is
supported in part by NSF award CNS-1562888 and CCF-2131476.
The views, opinions, and/or �ndings expressed are those of the
author(s) and should not be interpreted as representing the o�cial
views or policies of the Department of Defense or the U.S. Gov-
ernment. Distribution Statement “A” (Approved for Public Release,
Distribution Unlimited).

REFERENCES
[1] 2002. Coverity. https://coverity.com
[2] 2008. SonarQube. https://www.sonarqube.org
[3] 2016. ShiftLeft. https://www.shiftleft.io
[4] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-

ramaniam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted
Setup. In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu (Eds.). ACM Press, Dallas, TX, USA, 2087–2104. https:
//doi.org/10.1145/3133956.3134104

[5] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. 2003.
Evaluating the “small scope hypothesis”. In In Popl, Vol. 2. Citeseer.

[6] Elli Androulaki, Seung Geol Choi, Steven M Bellovin, and Tal Malkin. 2008.
Reputation systems for anonymous networks. In International Symposium on
Privacy Enhancing Technologies Symposium. Springer, 202–218.

[7] Leo Bachmair and Harald Ganzinger. 2001. Resolution Theorem Proving. In
Handbook of Automated Reasoning (in 2 volumes), John Alan Robinson and Andrei
Voronkov (Eds.). Elsevier and MIT Press, 19–99. https://doi.org/10.1016/b978-
044450813-3/50004-7

[8] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K Rajamani. 2004. SLAM
and Static Driver Veri�er: Technology transfer of formalmethods insideMicrosoft.
In International Conference on Integrated Formal Methods. Springer, 1–20.

[9] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani.
2001. Automatic Predicate Abstraction of C Programs. In Proceedings of the
2001 ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), Snowbird, Utah, USA, June 20-22, 2001, Michael Burke and Mary Lou
So�a (Eds.). ACM, 203–213. https://doi.org/10.1145/378795.378846

[10] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. 2001. Boolean and
Cartesian Abstraction for Model Checking C Programs. In Tools and Algorithms
for the Construction and Analysis of Systems, 7th International Conference, TACAS
2001 Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings (Lecture Notes
in Computer Science, Vol. 2031), Tiziana Margaria and Wang Yi (Eds.). Springer,
268–283. https://doi.org/10.1007/3-540-45319-9_19

[11] Carsten Baum, Alex J. Malozemo�, Marc B. Rosen, and Peter Scholl. 2021.
Mac’n’Cheese: Zero-Knowledge Proofs for Boolean and Arithmetic Circuits
with Nested Disjunctions. In CRYPTO 2021, Part IV (LNCS, Vol. 12828), Tal Malkin
and Chris Peikert (Eds.). Springer, Heidelberg, Germany, Virtual Event, 92–122.
https://doi.org/10.1007/978-3-030-84259-8_4

[12] Michael Ben-Or, Oded Goldreich, Sha� Goldwasser, Johan Håstad, Joe Kilian,
Silvio Micali, and Phillip Rogaway. 1990. Everything Provable is Provable in
Zero-Knowledge. In CRYPTO’88 (LNCS, Vol. 403), Sha�Goldwasser (Ed.). Springer,
Heidelberg, Germany, Santa Barbara, CA, USA, 37–56. https://doi.org/10.1007/0-
387-34799-2_4

[13] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous
Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, Berkeley, CA, USA, 459–474. https://doi.org/10.1109/
SP.2014.36

[14] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in Zero
Knowledge. In CRYPTO 2013, Part II (LNCS, Vol. 8043), Ran Canetti and Juan A.
Garay (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 90–108.
https://doi.org/10.1007/978-3-642-40084-1_6

[15] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Scal-
able Zero Knowledge via Cycles of Elliptic Curves. In CRYPTO 2014, Part II (LNCS,
Vol. 8617), Juan A. Garay and Rosario Gennaro (Eds.). Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA, 276–294. https://doi.org/10.1007/978-3-662-
44381-1_16

[16] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, andMadars Virza. 2014. Succinct
Non-Interactive Zero Knowledge for a von Neumann Architecture. In USENIX
Security 2014, Kevin Fu and Jaeyeon Jung (Eds.). USENIX Association, San Diego,
CA, USA, 781–796.

[17] Dirk Beyer. 2017. Software veri�cation with validation of results. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 331–349.

[18] Armin Biere. 2008. PicoSAT essentials. Journal on Satis�ability, Boolean Modeling
and Computation 4, 2-4 (2008), 75–97.

[19] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yun-
shan Zhu. 2003. Bounded model checking. (2003).

[20] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013. Recursive
composition and bootstrapping for SNARKS and proof-carrying data. In 45th
ACM STOC, Dan Boneh, Tim Roughgarden, and Joan Feigenbaum (Eds.). ACM
Press, Palo Alto, CA, USA, 111–120. https://doi.org/10.1145/2488608.2488623

[21] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik
Soni. 2020. Public-Coin Zero-Knowledge Arguments with (almost) Minimal Time
and Space Overheads. In TCC 2020, Part II (LNCS, Vol. 12551), Rafael Pass and
Krzysztof Pietrzak (Eds.). Springer, Heidelberg, Germany, Durham, NC, USA,

168–197. https://doi.org/10.1007/978-3-030-64378-2_7
[22] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik

Soni. 2021. Time- and Space-E�cient Arguments from Groups of Unknown
Order. In CRYPTO 2021, Part IV (LNCS, Vol. 12828), Tal Malkin and Chris Peikert
(Eds.). Springer, Heidelberg, Germany, Virtual Event, 123–152. https://doi.org/
10.1007/978-3-030-84259-8_5

[23] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. 2020. Coda: De-
centralized Cryptocurrency at Scale. Cryptology ePrint Archive, Report 2020/352.
https://eprint.iacr.org/2020/352.

[24] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller.
2018. Arya: Nearly Linear-Time Zero-Knowledge Proofs for Correct Program
Execution. In ASIACRYPT 2018, Part I (LNCS, Vol. 11272), Thomas Peyrin and
Steven Galbraith (Eds.). Springer, Heidelberg, Germany, Brisbane, Queensland,
Australia, 595–626. https://doi.org/10.1007/978-3-030-03326-2_20

[25] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra,
and Howard Wu. 2020. ZEXE: Enabling Decentralized Private Computation. In
2020 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San
Francisco, CA, USA, 947–964. https://doi.org/10.1109/SP40000.2020.00050

[26] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blum-
berg, and Michael Wal�sh. 2013. Verifying Computations with State. In SOSP ’17.
341–357.

[27] Ran Canetti. 2000. Security and Composition of Multiparty Cryptographic Proto-
cols. Journal of Cryptology 13, 1 (Jan. 2000), 143–202. https://doi.org/10.1007/
s001459910006

[28] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A tool for checking
ANSI-C programs. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 168–176.

[29] Matthew Clegg, Je� Edmonds, and Russell Impagliazzo. 1996. Using the Groebner
Basis Algorithm to Find Proofs of Unsatis�ability. In 28th ACM STOC. ACM Press,
Philadephia, PA, USA, 174–183. https://doi.org/10.1145/237814.237860

[30] Martin Davis and Hilary Putnam. 1960. A computing procedure for quanti�cation
theory. Journal of the ACM (JACM) 7, 3 (1960), 201–215.

[31] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Proofs and Refutations,
and Z3.. In LPAR Workshops, Vol. 418. Citeseer, 123–132.

[32] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. 2021. Line-Point Zero Knowl-
edge and Its Applications. In 2nd Conference on Information-Theoretic Cryptogra-
phy.

[33] Niklas Eén and Niklas Sörensson. 2003. An extensible SAT-solver. In International
conference on theory and applications of satis�ability testing. Springer, 502–518.

[34] Zhiyong Fang, David Darais, Joseph P. Near, and Yupeng Zhang. 2021. Zero
Knowledge Static Program Analysis. In ACM CCS 2021, Giovanni Vigna and
Elaine Shi (Eds.). ACM Press, Virtual Event, USA, 2951–2967. https://doi.org/10.
1145/3460120.3484795

[35] Jonathan Frankle, Sunoo Park, Daniel Shaar, Sha� Goldwasser, and Daniel J.
Weitzner. 2018. Practical Accountability of Secret Processes. In USENIX Secu-
rity 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX Association,
Baltimore, MD, USA, 657–674.

[36] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and
Chenkai Weng. 2021. Constant-Overhead Zero-Knowledge for RAM Programs.
In ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, Virtual
Event, USA, 178–191. https://doi.org/10.1145/3460120.3484800

[37] Zhaohui Fu, YogeshMarhajan, and SharadMalik. 2004. Zcha� sat solver. Princeton
University. Princeton, NJ 8544 (2004).

[38] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013. Qua-
dratic Span Programs and Succinct NIZKs without PCPs. In EUROCRYPT 2013
(LNCS, Vol. 7881), Thomas Johansson and Phong Q. Nguyen (Eds.). Springer,
Heidelberg, Germany, Athens, Greece, 626–645. https://doi.org/10.1007/978-3-
642-38348-9_37

[39] Oded Goldreich, SilvioMicali, and AviWigderson. 1986. Proofs that Yield Nothing
But their Validity and aMethodology of Cryptographic Protocol Design (Extended
Abstract). In 27th FOCS. IEEE Computer Society Press, Toronto, Ontario, Canada,
174–187. https://doi.org/10.1109/SFCS.1986.47

[40] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM STOC, Alfred Aho (Ed.). ACM Press, New York City, NY, USA, 218–229.
https://doi.org/10.1145/28395.28420

[41] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1991. Proofs That Yield
Nothing But Their Validity Or All Languages in NP Have Zero-Knowledge Proof
Systems. Journal of the ACM 38, 3 (1991), 691–729.

[42] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. J. ACM 43, 3 (may 1996), 431–473. https://doi.org/10.1145/
233551.233553

[43] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In
EUROCRYPT 2016, Part II (LNCS, Vol. 9666), Marc Fischlin and Jean-Sébastien
Coron (Eds.). Springer, Heidelberg, Germany, Vienna, Austria, 305–326. https:
//doi.org/10.1007/978-3-662-49896-5_11

[44] Armin Haken. 1985. The intractability of resolution. Theoretical computer science
39 (1985), 297–308.

https://coverity.com
https://www.sonarqube.org
https://www.shiftleft.io
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1145/378795.378846
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-030-64378-2_7
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-030-84259-8_5
https://eprint.iacr.org/2020/352
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1145/237814.237860
https://doi.org/10.1145/3460120.3484795
https://doi.org/10.1145/3460120.3484795
https://doi.org/10.1145/3460120.3484800
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11

[45] Carmit Hazay and Yehuda Lindell. 2010. A Note on Zero-Knowledge Proofs
of Knowledge and the ZKPOK Ideal Functionality. Cryptology ePrint Archive,
Report 2010/552. https://eprint.iacr.org/2010/552.

[46] David Heath and Vladimir Kolesnikov. 2020. A 2.1 KHz Zero-Knowledge Pro-
cessor with BubbleRAM. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna (Eds.). ACM Press, Virtual Event, USA, 2055–2074.
https://doi.org/10.1145/3372297.3417283

[47] David Heath, Yibin Yang, David Devecsery, and Vladimir Kolesnikov. 2021. Zero
Knowledge for Everything and Everyone: Fast ZK Processor with Cached ORAM
for ANSI C Programs. In 2021 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, San Francisco, CA, USA, 1538–1556. https://doi.org/10.
1109/SP40001.2021.00089

[48] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith. 2012.
Secure two-party computations in ANSI C. In ACM CCS 2012, Ting Yu, George
Danezis, and Virgil D. Gligor (Eds.). ACM Press, Raleigh, NC, USA, 772–783.
https://doi.org/10.1145/2382196.2382278

[49] Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. 2015. E�cient Zero-
Knowledge Proofs of Non-algebraic Statements with Sublinear Amortized Cost.
In CRYPTO 2015, Part II (LNCS, Vol. 9216), Rosario Gennaro and Matthew J. B.
Robshaw (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 150–169.
https://doi.org/10.1007/978-3-662-48000-7_8

[50] Franjo Ivančić, Zijiang Yang, Malay K Ganai, Aarti Gupta, Ilya Shlyakhter, and
Pranav Ashar. 2005. F-Soft: Software veri�cation platform. In International
Conference on Computer Aided Veri�cation. Springer, 301–306.

[51] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. 2013. Zero-knowledge
using garbled circuits: how to prove non-algebraic statements e�ciently. In ACM
CCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM
Press, Berlin, Germany, 955–966. https://doi.org/10.1145/2508859.2516662

[52] Daniel Kroening andMichael Tautschnig. 2014. CBMC–C boundedmodel checker.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 389–391.

[53] Ning Luo, Timos Antonopoulos, William Harris, Ruzica Piskac, Eran Tromer,
and Xiao Wang. 2022. Proving UNSAT in Zero Knowledge. Cryptology ePrint
Archive, Paper 2022/206. https://eprint.iacr.org/2022/206.

[54] Ning Luo, Samuel Judson, Timos Antonopoulos, Ruzica Piskac, and Xiao Wang.
2022. ppSAT: Towards Two-Party Private SAT Solving. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association.

[55] Kenneth L McMillan. 2003. Interpolation and SAT-based model checking. In
International Conference on Computer Aided Veri�cation. Springer, 1–13.

[56] Payman Mohassel, Mike Rosulek, and Alessandra Scafuro. 2017. Sublinear Zero-
Knowledge Arguments for RAM Programs. In EUROCRYPT 2017, Part I (LNCS,
Vol. 10210), Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.). Springer, Hei-
delberg, Germany, Paris, France, 501–531. https://doi.org/10.1007/978-3-319-
56620-7_18

[57] Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative context bounding for
systematic testing of multithreaded programs. ACM Sigplan Notices 42, 6 (2007),

446–455.
[58] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. 2011.

Optimal Veri�cation of Operations on Dynamic Sets. In CRYPTO 2011 (LNCS,
Vol. 6841), Phillip Rogaway (Ed.). Springer, Heidelberg, Germany, Santa Barbara,
CA, USA, 91–110. https://doi.org/10.1007/978-3-642-22792-9_6

[59] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:
Nearly Practical Veri�able Computation. In 2013 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, Berkeley, CA, USA, 238–252. https:
//doi.org/10.1109/SP.2013.47

[60] J. A. Robinson. 1965. AMachine-Oriented Logic Based on the Resolution Principle.
J. ACM 12, 1 (jan 1965), 23–41. https://doi.org/10.1145/321250.321253

[61] John Alan Robinson and Andrei Voronkov (Eds.). 2001. Handbook of Automated
Reasoning (in 2 volumes). Elsevier and MIT Press. https://www.sciencedirect.
com/book/9780444508133/handbook-of-automated-reasoning

[62] Victor Shoup et al. 2001. NTL: A library for doing number theory.
[63] Neil Thapen. 2016. A tradeo� between length and width in resolution. Theory of

Computing 12, 1 (2016), 1–14.
[64] Paul Valiant. 2008. Incrementally Veri�able Computation or Proofs of Knowledge

Imply Time/Space E�ciency. In TCC 2008 (LNCS, Vol. 4948), Ran Canetti (Ed.).
Springer, Heidelberg, Germany, San Francisco, CA, USA, 1–18. https://doi.org/
10.1007/978-3-540-78524-8_1

[65] Psi Vesely, Kobi Gurkan, Michael Straka, Ariel Gabizon, Philipp Jovanovic, Geor-
gios Konstantopoulos, Asa Oines, Marek Olszewski, and Eran Tromer. 2022.
Plumo: An Ultralight Blockchain Client. In FC 2022 (LNCS). Springer, Heidelberg,
Germany.

[66] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and
Michael Wal�sh. 2015. E�cient RAM and control �ow in veri�able outsourced
computation. In NDSS 2015. The Internet Society, San Diego, CA, USA.

[67] Xiao Wang, Alex J. Malozemo�, and Jonathan Katz. 2016. EMP-toolkit: E�cient
MultiParty computation toolkit. https://github.com/emp-toolkit.

[68] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2021. Wolverine:
Fast, Scalable, and Communication-E�cient Zero-Knowledge Proofs for Boolean
and Arithmetic Circuits. In 2021 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, San Francisco, CA, USA, 1074–1091. https://doi.org/10.
1109/SP40001.2021.00056

[69] Yichen Xie andAlex Aiken. 2007. Saturn: A scalable framework for error detection
using boolean satis�ability. ACM Transactions on Programming Languages and
Systems (TOPLAS) 29, 3 (2007), 16–es.

[70] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. QuickSilver:
E�cient and A�ordable Zero-Knowledge Proofs for Circuits and Polynomials
over Any Field. In ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM
Press, Virtual Event, USA, 2986–3001. https://doi.org/10.1145/3460120.3484556

[71] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended
Abstract). In 27th FOCS. IEEE Computer Society Press, Toronto, Ontario, Canada,
162–167. https://doi.org/10.1109/SFCS.1986.25

https://eprint.iacr.org/2010/552
https://doi.org/10.1145/3372297.3417283
https://doi.org/10.1109/SP40001.2021.00089
https://doi.org/10.1109/SP40001.2021.00089
https://doi.org/10.1145/2382196.2382278
https://doi.org/10.1007/978-3-662-48000-7_8
https://doi.org/10.1145/2508859.2516662
https://eprint.iacr.org/2022/206
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-642-22792-9_6
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1145/321250.321253
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://github.com/emp-toolkit
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1109/SFCS.1986.25

	Abstract
	1 Introduction
	2 ZK program safety by example
	3 Technical Preliminaries
	3.1 Fields and polynomials
	3.2 Boolean logic
	3.3 Efficient zero-knowledge protocols

	4 Encoding Scheme and Protocol
	4.1 Clause representation
	4.2 Improved resolution via weakening
	4.3 Weakened random array access
	4.4 Putting everything together

	5 Implementation and Evaluation
	5.1 Implementation and optimization
	5.2 Performance per phase
	5.3 Verifying safety-critical proofs in ZK

	6 Related Work
	7 Conclusion
	References

