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Plant-insect interactions are common and important in basic and

applied biology. Trait and genetic variation can affect the outcome

and evolution of these interactions, but the relative contributions of

plant and insect genetic variation and how these interact remain un-

clear and are rarely subject to assessment in the same experimental

context. Here we address this knowledge gap using a recent host

range expansion onto alfalfa by the Melissa blue butterfly. Common

garden rearing experiments and genomic data show that caterpillar

performance depends on plant and insect genetic variation, with in-

sect genetics contributing to performance earlier in development and

plant genetics later. Our models of performance based on caterpillar

genetics retained predictive power when applied to a second com-

mon garden. Much of the plant genetic effect could be explained

by heritable variation in plant phytochemicals, especially saponins,

peptides, and phosphatidyl cholines, providing a possible mechanis-

tic understanding of variation in the species interaction. We find

evidence of polygenic, mostly additive effects within and between

species, with consistent effects of plant genotype on growth and de-

velopment across multiple butterfly species. Our results inform the-

ories of plant-insect coevolution and the evolution of diet breadth in

herbivorous insects and other host-specific parasites.
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Acentral challenge for the biological sciences is to under-1

stand the causes and consequences of trait variation2

within and among species. Experimental manipulations aimed3

at understanding the molecular basis of organismal variation4

have most often been done in settings stripped of all or most5

ecological context. This approach can be fruitful for simple6

traits, including some aspects of morphology (e.g., (1–4)), but7

is lacking when it comes to interspecific interactions that in-8

clude the evolution of crop pests, emerging infectious diseases,9

and other host-parasite associations (5, 6).10

Plants and herbivorous insects have contributed much to11

our understanding of the formation and persistence of inter-12

actions between hosts and parasites, in part because they13

are experimentally tractable but also because insects are the14

most diverse macroscopic organisms on the planet and their15

specialized feeding habits play a role in their diversification16

(7–11). Yet classic studies of the molecular basis of plant-insect17

interactions have relied on candidate genes or targeted classes18

of phytochemical compounds (e.g., (12–14)). More recently,19

evolutionary geneticists have taken advantage of new technolo-20

gies to explore the genetic basis of herbivory in a genomic 21

context. With very few exceptions, these studies have focused 22

on genetic variation in either herbivores or plants (15–19)(but 23

see (20)), but rarely both in the same study and never to our 24

knowledge paired with modern metabolomic approaches that 25

allow for untargeted discovery of influential compounds (21). 26

This leaves us with considerable uncertainty concerning the 27

relative importance of heritable traits in herbivores and in 28

plants for determining the outcome of plant-insect interactions. 29

For example, particular genetic variants in an herbivore might 30

be associated with increased feeding efficiency, but only when 31

challenged with particular plant variants such as specific de- 32

fensive metabolites or combinations of physical defenses (22). 33

However, without an understanding of the genetic architecture 34

of both the herbivore physiology and the plant traits, the 35

evolutionary trajectory of the system cannot be understood 36

in the context of available theoretical models or forecast with 37

respect to the evolution of defense in the plant or increased 38

performance in the herbivore. We address this need using a 39

recent host range expansion onto alfalfa by the Melissa blue 40
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Fig. 1. Main hypotheses tested about the contribution of plant and insect genetics to

caterpillar performance: (i) caterpillar performance is primarily affected by insect (L.

melissa) genetics, (ii) caterpillar performance is primarily affected by plant (M. sativa)

genetics, (iii) the genetics of the interacting species have similar effects on caterpillar

performance and combine additively, (iv) the genetics of the interacting species have

similar effects on caterpillar performance and combine epistatically, and (v) the null

hypothesis that neither insect or plant genetic variation have an appreciable effect on

caterpillar performance. The illustration (by R. Ribas) shows a L. melissa caterpillar

feeding on alfalfa, while being tended by ants; additional biotic or abiotic factors, such

as the presence of mutualistic ants, also affect caterpillar performance in the wild (25)

but are not a component of this study.

butterfly, emphasizing the role of prediction when building41

an understanding of the functional genetic basis of a novel42

plant-insect interaction.43

The Melissa blue butterfly (Lycaeides melissa) is44

widespread in western North America (23). It exists in iso-45

lated populations associated with larval host plants in the46

legume family, including many species of Astragalus and Lupi-47

nus (24, 25). The Melissa blue colonized alfalfa (Medicago48

sativa) after the plant was introduced to the western USA as a49

forage crop in the mid 1800s, and is now commonly found on50

naturalized (i.e., feral) alfalfa along roadsides and trails (24).51

Melissa blue butterflies show evidence of adaptation to alfalfa,52

but this host plant remains inferior to known native hosts in53

terms of caterpillar development with cascading life history54

effects (26–28). As insect growth and survival is often reduced55

on novel hosts, the lower quality of alfalfa for Melissa blue but-56

terflies is likely typical of a general phenomenon (29). Alfalfa57

is phenotypically variable (30), and thus is not a homogeneous58

resource for Melissa blue butterflies. In particular, phenotypic59

variation among naturalized alfalfa populations, including phy-60

tochemical variation, affects Melissa blue caterpillar growth61

and host patch occupancy (25, 31, 32). However, it is unclear62

how much of this phenotypic variation has a genetic basis.63

Moreover, as is true for other plant-insect interactions, the64

relative contributions of plant (alfalfa) and insect (Melissa65

blue) genetic variation to the outcome of the interaction is66

unexplored, including whether growth and successful devel-67

opment from caterpillar to adult is influenced by additive or68

epistatic genetic variation in the interacting species.69

Here, we use multiple common garden rearing experiments70

combined with multilocus genetic mapping and genomic pre-71

diction to build and test models that quantify the relative72

effects and interactions of alfalfa and Melissa blue genetic vari-73

ation on caterpillar performance (i.e., growth and survival).74

We specifically test the following alternative hypotheses: (i)75

caterpillar performance is primarily affected by Melissa blue76

genetic variation and architecture, (ii) caterpillar performance77

is primarily affected by genetic variation and architecture in78

the host plant, (iii) the genetics of the interacting species have79

similar effects on caterpillar performance and combine addi-80

tively, (iv) the genetics of the interacting species have similar81

effects on caterpillar performance and combine epistatically,82
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Fig. 2. (a) Map of plant (M. sativa) and insect (L. melissa) common garden source

populations. Symbol shapes denote source type–Lm = L. melissa, Ms-abs = M.

sativa site without L. melissa butterflies, and Ms-pres = M. sativa site with L. melissa

butterflies, and are colored to indicate different populations within taxa. The inset

illustration shows an adult L. melissa perched on M. sativa (illustration by R. Ribas).

(b) Ordination of genetic variation via principal component analysis (PCA) for the

M. sativa common garden plants. (c) Ordination of genetic variation via PCA for

the L. melissa caterpillars from the rearing experiment. Points in (b) and (c) denote

individual plants or caterpillars and are colored to match the map (a).

and (v) the null hypothesis that neither Melissa blue nor al- 83

falfa genetic variation has an appreciable effect on caterpillar 84

performance (Fig. 1). Genetic mapping of 1760 plant traits, 85

including 1750 phytochemical metabolites, contributes to test- 86

ing these hypotheses and also allows us to probe the functional 87

basis of plant-genetic effects on caterpillar performance. Fi- 88

nally, we conduct complementary rearing experiments to test 89

the consistency of plant genetic effects (i.e., their lack of inter- 90

action with herbivore genetics) across butterfly populations 91

and species. 92

Results 93

Overview of the primary common garden rearing experiment. 94

We planted a common garden comprising 1080 alfalfa (M. 95

sativa) plants at the Greenville Experimental Farm near Logan, 96

UT (41.765◦ N, 111.814◦ W) in 2018 (Fig. S1a). Seeds for this 97

garden were collected from 11 naturalized (i.e., feral) M. sativa 98

sites in the western USA, including five sites where L. melissa 99

butterflies are found (Table S1, Fig. 2a). Caterpillars for the 100

experiment were sourced from six sites by obtaining eggs from 101

gravid L. melissa females in 2019. We detected substantial 102

genetic variation and only subtle genetic differentiation among 103

the source locations for alfalfa (161,008 SNPs, mean expected 104

heterozygosity = 0.168, FST = 0.029) and for L. melissa 105

(63,194 SNPs, mean expected heterozygosity = 0.065, FST 106

= 0.045) (Figs. 2b, S2). Nearby SNPs (<100 bps) exhibited 107

appreciable linkage disequilibrium in M. sativa (median r2 = 108

0.050, 95th percentile = 0.862) and L. melissa (median r2 = 109

0.002, 95th percentile = 0.052), but this decayed rapidly with 110

physical distance with especially low levels of LD beyond 100 111

bps in L. melissa (Fig. S3). 112

The main rearing experiment was conducted in summer 113

2019. For this experiment, caterpillars were reared individually 114

on each of the 1080 alfalfa plants. Rearing was done in a growth 115
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Fig. 3. (a) Plot shows survival and development of L. melissa over the course of the

rearing experiment. Colored regions denote the number of individuals that were living

caterpillar, pupa, adults or dead at each day post hatching. (b) Plots show pairwise

correlations between L. melissa performance traits. Scatterplots are shown in the

lower-triangle panels–each point denotes one individual–and Pearson correlations

are reported in the corresponding upper triangle panels. Traits are given along the

diagonal panels: 8-day weight, 14-day weight, pupal weight, and truncated survival

time. Scatterplots and Pearson correlations are based on residuals after controlling

for confounding environmental effects (see Methods for details).

chamber, with caterpillars fed fresh leaf tissue as needed. In116

this experiment, 26.1% of the caterpillars survived to pupation117

and 14.1% survived to eclose as adults (mean survival time118

= 21.8 days) (Fig. 3a). Mean L. melissa weights were 2.94119

mg (SD = 2.13) at 8 days, 12.7 mg (SD = 7.71) at 14 days,120

and 20.0 mg (SD = 7.21) at pupation. Weight and survival121

were variable within and among groups of caterpillars from122

different source populations and within and among groups123

that consumed plants grown from different M. sativa source124

populations (Figs. S4 and S5). Weight and survival metrics125

of performance were positively correlated, including, 8-day126

weight vs. 14-day survival (Pearson r = 0.0916, 95% confidence127

interval [CI] = 0.0237–0.159), 14-day weight vs. survival to128

pupation (r = 0.472, 95% CI = 0.416–0.525), and pupal weight129

vs. survival to eclosion (r = 0.449, 95% CI = 0.342–0.545) (Fig.130

3b). Past work has shown that weight and lifetime fecundity131

are highly correlated in L. melissa (26).132

Plant and caterpillar genetic variation affect performance. Us-133

ing multilocus genome-wide association methods (see Figs.134

S6, S7 and S8 for evidence of adequate Markov chain Monte135

Carlo performance), we found evidence that both M. sativa136

and L. melissa genetic variation contributed to caterpillar137

performance in the common garden rearing experiment (Fig. 138

4a), consistent with our hypotheses (iii) and (iv) (Fig. 1). 139

Specifically, M. sativa genetics (161,008 SNPs) explained be- 140

tween 2% (survival to 8 days) and 36% (14-day weight) of the 141

variation in performance (mean across traits = 17%), and L. 142

melissa genetics (63,194 SNPs) explained 5% (weight at pupa- 143

tion and survival to pupation) to 29% (8-day weight) of the 144

variation in the same nine caterpillar performance measures 145

(mean = 15%) (values denote point estimates of the percent 146

variance explained, PVE; see Table S2 for credible intervals; 147

cross-validation results are shown in the next section). Cater- 148

pillar genetics contributed more to performance metrics from 149

early development (e.g., 8-day weight and survival to 8 and 150

14 days), whereas plant genetics mattered more for later de- 151

velopment (e.g., 14-day weight, pupal weight, and survival to 152

pupation and adult), resulting in a trend towards a negative re- 153

lationship between caterpillar and plant genetic contributions 154

across traits (Pearson r = -0.52, 95% CI = -0.88 to 0.22, P = 155

0.15). We detected mostly positive genetic correlations among 156

performance traits (Fig. 4b), with similar but not identical 157

genetic correlations calculated from M. sativa and L. melissa 158

polygenic scores (Pearson correlation between M. sativa and L. 159

melissa genetic correlations, r = 0.80, 95% CI = 0.63 to 0.89, 160

P = 5.923e−9). Polygenic scores in this context quantify the 161

estimated effect of many plant or caterpillar genetic variants 162

on a performance trait. 163

Mapping results suggested mostly a polygenic basis for the 164

performance traits, with point estimates of > 10 loci affecting 165

most traits (Tables S2, S3 and S4; Fig. 4c,d), but with more 166

evidence of specific SNPs strongly associated with performance 167

in L. melissa. This included ten SNPs with posterior prob- 168

abilities of association (i.e., posterior inclusion probabilities) 169

> 0.5 with at least one performance trait (Fig. 4d, Table S5). 170

Some of these SNPs were in or near (<20 kbps) genes with 171

biologically plausible functions for affecting performance, such 172

as MSP-300, Lipase member H and Juvenile hormone acid 173

O-methyltransferase, all of which were associated with 8-day 174

weight. For example, MSP-300 affects muscle development 175

and muscle-ectoderm attachment in Drosophila (33). Insect 176

lipases metabolize fats, are expressed in gut tissue, and can 177

affect survival and reproductive capacity in insects; Lipase 178

member H in particular has further been associated with viral 179

resistance in the moth Bombyx mori (34, 35). Juvenile hor- 180

mone acid O-methyltransferase is involved in juvenile hormone 181

biosynthesis and thus in the regulation of insect growth and 182

development, especially metamorphosis (36, 37). A single M. 183

sativa SNP was strongly associated with survival to pupation 184

(posterior inclusion probability > 0.5; chromosome 1, position 185

= 12,930,966 bp). This SNP was found in a gene encoding 186

TOM1-like protein 9 and was within 30 kbps of six additional 187

genes, including two genes with known links to plant-insect 188

interactions: dentin sialophosphoprotein, which is associated 189

with soybean compensatory growth after cutworm herbivory 190

(38), and photosystem I reaction center subunit psaK, which 191

has been mechanistically linked to tolerance to aphids and 192

aphid feeding preference in Arabidopsis (39) (Table S6). We 193

obtained similar results with complementary genetic mapping 194

analyses that included 20 genetic PCs as additional controls 195

for population structure when estimating SNP-performance 196

associations; this was true both in terms of the percentage of 197

variation in performance explained (Pearson correlations > 198

Gompert et al. PNAS | December 19, 2022 | vol. XXX | no. XX | 3
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Fig. 4. Genetic mapping of caterpillar performance. (a) Dotchart shows Bayesian

estimates of the proportion of trait variation explained by M. sativa genetics (Ms), L.

melissa genetics (Lm), or both combined (Ms+Lm) for each caterpillar performance

trait; W8d = 8-day weight, W14d = 14-day weight, Wpup = pupal weight, S8d =

8-day survival, S14d = 14-day survival, SPup = survival to pupation, SAdu = survival

to adult, Stot = total survival time, and Stime = (truncated) survival time. Points

and horizontal lines denote point estimates (posterior medians) and 95% equal-tail

probability intervals, respectively. (b) Heatmap shows genetic correlations between

pairs of caterpillar performance traits based on M. sativa genetics (lower triangle) or

L. melissa genetics (upper triangle). Manhattan plots in (c) and (d) shown posterior

inclusion probabilities (PIPs) for genotype-performance associations based on M.

sativa and L. melissa SNPs, respectively. Points denote SNPs with different colors and

symbols for different performance traits. Only SNPs with PIPs ≥ 0.01 are depicted.

Horizontal lines at PIPs of 0.1 and 0.5 are included for reference.

0.99, P < 0.001 for caterpillar and plant genetics) (Tables S7199

and S8, Fig. S9), and in terms of specific SNP-performance200

associations (Pearson correlations for posterior inclusions prob-201

abilities, M. sativa r = 0.76, P < 0.001, L. melissa r = 0.98,202

P < 0.001) (Fig. S10).203

We repeated the genetic mapping approach using a com-204

bined data set of both M. sativa and L. melissa genetic loci205

(i.e., the combined 224,202 SNPs) (genetic PCs were not in-206

cluded here or in subsequent analyses). The combined data207

set generally explained more of the variation in caterpillar per-208

formance, 17% to 49% (mean = 24%), than either M. sativa209

or L. melissa genetic loci alone. Moreover, the combined vari-210

ation explained for each performance trait was well described211

by a model where the variance explained separately by plant212

and caterpillar genetics combined additively. Specifically, in a213

linear regression model, the percent variance in performance214

traits explained by plant and caterpillar genetics separately215

explained 97% of the variation in the estimates of the variance216

explained by the combined genetic data sets (linear regression,217

βplant = 1.17, P = 6.6e−6, βcaterpillar = 0.80, P = 0.00037,218

r2 = 0.97) (Fig. S11), consistent with our hypothesis (iii) (Fig.219

1).220

Given the evidence of additivity of genetic effects between221

species presented above, we next turned to more direct tests of222

the hypothesis that epistatic interactions contribute to cater-223

pillar performance, with a specific focus on caterpillar and224

pupal weight (see Methods for details and justification). To225
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Fig. 5. Genetic mapping of caterpillar performance with epistasis. The dotchart shows

Bayesian estimates of the proportion of trait variation explained by M. sativa genetics

(Ms), L. melissa genetics (Lm), or both combined (Ms+Lm) for 8-day weight (W8d),

14-day weight (W14d), and pupal weight (Wpup). Points and horizontal lines denote

point estimates (posterior medians) and 95% equal-tail probability intervals, respec-

tively, for the proportion of trait variation explained by additive effects and pairwise

epistatic effects. Vertical black lines denote point estimates (posterior medians) for

the proportion of variation explained by additive genetic effects alone (as presented in

Fig. 4a).

minimize the low power associated with testing all SNP-SNP 226

interactions, we tested for marginal epistasis, that is for evi- 227

dence of an epistatic interaction between each SNP and any 228

of the other SNPs. We failed to find significant evidence of 229

marginal epistasis among M. sativa SNPs, among L. melissa 230

SNPs, or between M. sativa and L. melissa SNPs (i.e., no 231

SNPs achieved genome-wide significance) (Figs. S12 and S13). 232

Our failure to find epistasis in this manner could be driven in 233

part by limited power to detect it. Thus, we next re-fit the mul- 234

tilocus genome-wide association models described above, but 235

with additional terms for epistatic interactions. This allowed 236

us to directly ask where including epistasis increases our ability 237

to explain caterpillar performance. To do this in a statistically 238

tractable way, we added pairwise interactions between the 239

150 SNPs with the most evidence of marginal epistasis (i.e., 240

lowest P -values); this added an additional 11,175 terms to 241

each model. Models including these epistatic effects failed to 242

explain more of the variation in caterpillar performance than 243

our purely additive models (Fig. 5). Thus, these direct tests 244

of epistasis provide additional evidence against hypothesis (iv) 245

and thus in favor of hypothesis (iii) (i.e., additivity within 246

and between species) (Fig. 1). Consequently, we focus on 247

the additive models in tests of predictive power below, before 248

presenting additional tests of additivity versus epistasis in 249

subsequent sections of this paper. 250

Predicting caterpillar performance from plant and caterpillar 251

genotype. We next showed that our genotype-phenotype mod- 252

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Gompert et al.
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els were moderately successful at predicting caterpillar per-253

formance. This is relevant both for validating these models254

and for demonstrating their potential utility and limitations in255

making predictions about effects and evolutionary trajectories256

in nature. Specifically, genomic predictions of performance257

from 10-fold cross validation exhibited statistically significant258

positive correlations with observed performance values for259

three out of ten performance traits for M. sativa genetics, five260

out of ten traits for L. melissa genetics, and six out of ten261

traits for M. sativa and L. melissa genetics combined (Fig. 6a).262

Especially pronounced positive correlations between observed263

and predicted performance were detected for 14-day weight264

based on M. sativa genetics and 8-day and 14-day survival265

based on L. melissa genetics. More generally, our ability to266

predict performance traits was well explained by our estimates267

of heritability (i.e., PVE): we calculated Pearson correlations268

of 0.89 (95% CI = 0.55 to 0.98, P = 0.0013) and 0.62 (95%269

CI = -0.073 to 0.91, P = 0.074) between PVE estimates and270

the correlation between observed and predicted traits for M.271

sativa and L. melissa genetics, respectively (Fig. 6b). In other272

words, we better predicted caterpillar performance for the273

performance traits that were more heritable.274

Having demonstrated moderate predictive power within275

the main common garden, we next asked whether genotype-276

phenotype models estimated from this garden could success-277

fully predict L. melissa performance for additional caterpillars278

fed M. sativa from a second, smaller common garden (the279

Gene Miller Life Science Garden; N = 180 plants) (Fig. S1).280

This second garden, planted in 2018 on the Utah State Univer-281

sity campus ∼2.5 km from the Greenville Experimental Farm282

garden, included plants from six of the 11 M. sativa source283

sites and caterpillars from each of the sites used in the main284

experiment. Survival rates for caterpillars reared on plants285

from this garden were similar to those reared on plants from286

the main garden (Fig. S14). Predictive performance for the287

second garden differed notably for M. sativa versus L. melissa288

genotype-phenotype models, with statistically significant posi-289

tive correlations between observed and predicted trait values290

in the new garden for only one trait for M. sativa genetics291

versus six of the ten performance traits for L. melissa genetics292

(Fig. 6c). Predictions for the combined data set were similar to293

those based on L. melissa genetics alone. Consistent with these294

patterns, estimates of PVE from the main garden explained295

predictive power for L. melissa genetics (Pearson r = 0.93,296

95% CI = 0.68 to 0.98), but not M. sativa genetics (r = 0.17,297

95% CI = -0.56 to 0.75). Thus, unmeasured environmental298

differences likely limit our ability to predict performance from299

plant genetics across gardens to a much greater extent than300

for caterpillar genetics (plant growth environments differed,301

but caterpillar rearing environments did not) despite these302

gardens being separated by only ∼2.5 km. Differences in the303

exact genetic composition of the two gardens could add to this304

effect.305

Genetic associations with plant traits explain the plant ge-306

netic contribution to caterpillar performance. Having shown307

that plant genetic variation affects caterpillar performance,308

we now focus on the Greenville Experimental Farm (see Fig.309

S1a) to identify possible components of the functional basis310

of the documented plant-genetic effects. This also allowed311

us to further test for additive versus epistatic interactions312

between plant and caterpillar genotypes on caterpillar per-313

formance (see our hypotheses (iii) versus (iv) in Fig. 1). We 314

first determined the extent to which genetic loci associated 315

with caterpillar performance were also associated with other 316

plant traits, including potential plant vigor or defense traits 317

(17). Such genetic correlations could arise from pleiotropy, but 318

also from linkage disequilibrium between distinct loci affect- 319

ing the plant traits and caterpillar performance (i.e., genetic 320

correlations do not demonstrate a causal genetic link between 321

traits). Still, such an association would be consistent with the 322

hypothesis that these traits, or other genetically correlated 323

traits, constitute possible mechanisms by which plant geno- 324

type affects caterpillar performance. To do this, we measured 325

and mapped 1760 plant traits in the Greenville Experimental 326

Farm garden using the same multilocus mapping approach 327

and M. sativa SNP data set described above. The traits in- 328

cluded plant height, leaf length, leaf width, leaf area, leaf 329

shape, leaf weight, specific leaf area, leaf toughness, trichome 330

density, levels of herbivory on the plants in the field, and 1750 331

plant chemistry metabolites, which were quantified and char- 332

acterized using liquid-chromatography combined with mass 333

spectrometry (LC-MS; similar to (25, 32)). 334

We documented genetic variation affecting most of the 335

plant traits, with mean PVEs of 20.5% for the non-chemical 336

traits (minimum = 5.6%, maximum = 38.7%) and 10.9% (310 337

traits > 20% and 20 > 50%) for the 1750 chemical traits 338

(Table S9). Additionally, in the main Greenville Experimental 339

Farm common garden, the distribution of PVE for the 1750 340

chemical traits differed markedly from that for 1750 matched, 341

randomized traits, consistent with a clear genetic contribution 342

to this variation in leaf metabolites (Fig. S15). 343

Multiple plant traits, including chemical and non-chemical 344

traits, exhibited genetic correlations with each caterpillar per- 345

formance trait; in other words, plant trait polygenic scores 346

were correlated with caterpillar performance polygenic scores 347

when inferred from plant genetics (Figs. 7a,b, S16). However, 348

because of the large number of measured traits and genetic 349

correlations among the plant traits (Fig. S17), many of the 350

genetic correlations between plant traits and caterpillar perfor- 351

mance were likely redundant. Thus, to identify the combined 352

subset of traits most strongly predictive of caterpillar perfor- 353

mance (and thus the best candidates for a mechanistic link 354

to performance), we next fit a LASSO penalized regression 355

model for the polygenic scores of each caterpillar performance 356

trait (based on plant genetics) as a function of the polygenic 357

scores for the 1760 plant traits. These models explained 41 358

to 80% of the variation in the caterpillar performance scores 359

(mean = 69.2%, cross-validation predictive r2 ranged from 360

0.39 to 0.76) (Table S10, Fig. 7c). On average 260 of the 361

1760 traits were retained in these models (i.e., given non-zero 362

regression coefficients), with a range of 117 (survival time) 363

to 347 (8-day survival) traits (Figs. 7d,e and S18). Both 364

chemical and non-chemical traits were retained in the mod- 365

els. Non-chemical traits with the biggest effects included a 366

positive effect of plant height on 14-day weight (β = 0.037), 367

positive effects of trichome density (β = 0.036) and specific 368

leaf area (β = 0.031) on survival to adulthood, and a nega- 369

tive effect of leaf toughness on survival to adulthood (β = 370

-0.34). Consistent with a previous phenotypic assay of cater- 371

pillar performance and plant metabolomic variation in this 372

system (32), top chemical traits included several saponins, 373

including saponins (two distinct Medicagenic acids) associ- 374
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Fig. 6. Genomic prediction of caterpillar performance. (a) Dotchart shows Pear-

son correlations between cross-validation genomic predictions of phenotypes

and the observed values based on M. sativa genetics (Ms), L. melissa genetics

(Lm), or both combined (Ms+Lm) for each caterpillar performance trait; W8d

= 8-day weight, W14d = 14-day weight, Wpup = pupal weight, S8d = 8-day

survival, S14d = 14-day survival, SPup = survival to pupation, SAdu = survival to

adult, Stot = total survival time, and Stime = (truncated) survival time. Points and

horizontal lines denote point estimates (posterior medians) and 95% equal-tail

probability intervals, respectively. For example, a large value on the x axis indi-

cates a high correlation between observed performance values and predictions

from genotype based on cross validation. (b) Scatterplot of the proportion of

variation explained by genetics (PVE) versus the Pearson correlation of genomic

predictions from (a). Each point denotes a trait and is colored to indicate values

from M. sativa or L. melissa genetics. Colored lines are best fits from ordinary

linear regression, and a dashed line denotes the 0 value on the y-axis. (c)

Dotchart similar to (a), but for genomic predictions of phenotypes in a second

common garden (the Gene Miller Life Science Garden) based on the models fit

from the main garden. (d) Scatterplot of correlations between observed cater-

pillar performance trait values and genomic predictions of these values using

cross-validation within the main garden versus prediction for samples in the

Gene Miller Life Science Garden based on the models fit for the main garden.

ated with effects on caterpillar weight and survival (Tables375

S12 and S13). The flavonoid glycoside Tricin 7-glucoside was376

associated with reduced survival, whereas several peptides377

(e.g., MESA.583 = C13H18O, a fragment of a N-acyl amine;378

MESA.615 = C23H43N7O7; MESA.849 = C14H19NO3, a N-379

acyl amine) were associated with reduced weight or survival380

(Tables S12 and S13). Lastly, we fit LASSO regression models381

on the 1064 principal components (PCs) from an ordination of382

the plant trait and chemistry polygenic scores, which represent383

1064 independent (orthogonal) variables. Our goal here was384

to provide additional evidence that multiple, distinct genetic385

factors contributed to explaining caterpillar performance poly-386

genic scores. Models based on these predictors explained 27387

to 76% of the variation in the caterpillar performance scores388

(mean = 56.6%, cross-validation predictive r2 ranged from389

0.25 to 0.72), with an average 180 of the 1064 PCs retained in390

the LASSO models (range = 52 to 337) (Fig. S19).391

Compared to predicting polygenic scores for caterpillar per-392

formance, our ability to predict caterpillar performance at the393

phenotypic level from plant-trait polygenic scores was notably394

reduced (Table S10, Figs. S20 and S21). This was expected as395

plant genetics only explained a modest proportion of the varia-396

tion in performance and thus the ability to explain variation in397

these traits (not just polygenic scores) was necessarily capped398

by performance-trait heritabilities. Still, when considering399

all performance traits together, plant trait polygenic scores400

explained more of the trait variation than expected by chance401

(Fisher combined test, χ2 = 34.42, df = 18, P = 0.011). This402

signal was driven primarily by association of plant traits with403

8 and 14 day weight and survival to pupation and eclosion.404

Lastly, we determined the extent to which the association of405

plant trait polygenic scores with caterpillar performance poly-406

genic scores (both inferred from plant genetics) was affected407

by L. melissa genotype. Such an interaction would suggest408

caterpillar performance is affected by epistatic interactions 409

between M. sativa and L. melissa genotypes, as predicted by 410

our hypothesis (iv) (Fig. 1). We used principal component 411

(PC) scores from the first four principal components of the 412

L. melissa genotype matrix, which together accounted for 413

∼15% of the L. melissa genetic variation, as summaries of 414

L. melissa genotype. We then fit LASSO penalized regres- 415

sion models for caterpillar performance polygenic scores as a 416

function of these PC scores, plant trait polygenic scores, and 417

interactions between each plant trait polygenic score and each 418

of the four PCs. This allowed us to test for epistasis at the 419

level of plant morphology and phytochemistry polygenic scores 420

from M. sativa and four axes of L. melissa genetic background 421

and thereby avoid the lack of power that would be associated 422

with exhaustively testing SNP-SNP interactions (nonetheless, 423

these models still included 4×1760 = 7040 possible interaction 424

terms). We found no evidence of epistasis between M. sativa 425

and L. melissa affecting caterpillar performance. Specifically, 426

including these interaction terms in the models actually re- 427

duced the variance explained by the LASSO models (Table 428

S11) and the interaction terms were retained less frequently in 429

the models than the non-interaction terms (Figs. S22 and S23). 430

We obtained similar results when fitting models for caterpillar 431

performance trait values rather than polygenic scores, with a 432

smaller proportion of interaction terms retained in the model 433

for most traits (Figs. S24 and S25) and no overall increase in 434

variance explained by models with versus without interactions 435

(i.e., the variance explained in 14-day weight doubled, but the 436

variance explained in 8-day weight was halved, and there was 437

no detectable general increase in variance explained across 438

traits) (Fig. S26). Thus, these results support our hypothe- 439

sis (iii) with additive contributions of plant and caterpillar 440

genetics (Fig. 1). 441
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Plant and caterpillar genetics have consistent effects on per-442

formance. We conducted two additional experiments to deter-443

mine the extent to which genetic differences among M. sativa444

plants or populations had consistent affects on caterpillar per-445

formance for different butterfly populations and species. This446

constitutes another test of additivity versus epistasis for plant447

and insect genotypes (our hypotheses (iii) versus (iv) in Fig.448

1) and of the potential for our findings to provide general449

predictions beyond our main study populations. In the first of450

these experiments, L. melissa (Lycaenidae) caterpillars from451

four populations were reared on greenhouse-grown M. sativa452

sourced from six sites (Table S14). Two additional butter-453

fly species, Colias eurytheme (a legume specialist) (Pieridae)454

and Vanessa cardui (a generalist that rarely feeds on alfalfa)455

(Nymphalidae), were reared on these same plants. Whereas456

only modest genetic differences exist among the L. melissa457

populations (Fig. 2) (23, 24), these three butterfly species are458

deeply divergent (∼ 100 million years) creating substantial459

opportunities for the effect of M. sativa genotype and pheno-460

type to interact with genetic differences among the butterfly461

taxa (40). Caterpillars were fed leaf tissue from multiple in-462

dividual plants, but each caterpillar was given plants from463

a single source population and leaves from each plant were464

fed to all three butterfly species. Survival rates were highest465

for C. eurytheme, followed by L. melissa and lastly V. cardui466

(Fig. S27). Plant population (here used as a proxy for plant467

genotype) explained ∼3-10% of the variation in 8-day weight468

for each butterfly species, and 9-14% of the variation in 14-day469

weight, with larger effects in the butterfly species less-well470

adapted to M. sativa (Table S15). Caterpillar population471

explained a small but non-zero proportion of the variation in472

8-day weight in L. melissa (this could not be assessed in the473

other species), but not a significant amount of variation in474

14-day weight. Thus, consistent with our main results above,475

genetic differences among plant and caterpillar populations476

(caterpillar populations for L. melissa only) explained variation477

in caterpillar performance, with plant genetics mattering more478

for 14-day weight than 8-day weight and caterpillar genetics479

mattering more for 8-day weight than 14-day weight. Plant480

population and plant maternal family also explained variation481

in plant growth and development traits, consistent with our482

common garden results above (Table S9). Importantly, the483

effect of each plant population on caterpillar performance was484

remarkably consistent across L. melissa populations and even485

across different species, with moderate to large positive cor-486

relations (though not always significantly so) in the effect of487

each plant population on 8 and 14-day weight across all pairs488

of population and species (Fig. S28).489

The final complementary experiment used the same three490

butterfly species: L. melissa, C. eurytheme, and V. cardui,491

but instead involved feeding each caterpillar leaf tissue from492

a single M. sativa plant from a third common garden near493

the University of Nevada (UNR Main Station in Reno, NV;494

Fig. S1). We used these data to ask whether the effect of495

plant genotype (here, individual plant) on caterpillar weight496

was consistent across species. We detected modest, positive497

pairwise correlations between the three species of caterpillars,498

suggesting a degree of similarity of plant genotypes that affect499

performance of these different herbivorous species (Fig. S29).500

Specifically, the correlations were as follows: V. cardui vs. L.501

melissa r = 0.33 (P = 0.015, t = 2.52, df = 52); C. eurytheme502
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Fig. 7. Associations between plant trait polygenic scores and caterpillar performance

polygenic scores. Scatterplots show genetic correlations between plant chemistry

and other plant traits and 14-day caterpillar weight (a) and survival to pupation (b)

inferred from plant genetics as a function of the proportion of plant trait variation

explained by genetics (PVE). A dashed horizontal line denotes a genetic correlation of

zero. Panel (c) shows the variance explained by lasso regression models of caterpillar

performance polygenic scores estimated from plant genetics as a function of polygenic

scores for 1750 plant chemistry traits and 10 non-chemistry traits. Black dots denote

inferred values of r
2 and gray dots show similar estimates using randomized plant trait

polygenic scores (10 random data sets each). Panels (d) and (e) show standardized

regression coefficients from the lasso models for 14-day weight (d) and survival to

pupation (e).

vs. L. melissa r = 0.43 (P = 0.0010, t = 3.48, df = 52); C. 503

eurytheme vs. V. cardui r = 0.15 (P = 0.28, t = 1.08, df = 52). 504

Thus, these two experiments combined with our main results 505

show that genetic variation within M. sativa affects caterpillar 506

performance across populations and species of butterflies in a 507

remarkably consistent manner, consistent with the additivity 508

hypothesis (hypothesis (iii) in Fig. 1). 509

Discussion. From an ecological perspective, the greatest di- 510

versity of life is not counted in the number of species or other 511

taxonomic units, but in the diversity of inter-specific inter- 512

actions (41). The ubiquity of plant-feeding insects has made 513

them a focal point for understanding the evolution, persis- 514

tence, and variability of interactions (9, 42, 43). The outcomes 515

of plant-insect interactions (e.g., caterpillar survival) might 516

depend on genetic variation within each species and these 517

genetic effects could compound additively or non-additively. 518

Taken all together, our results support the hypothesis that 519

both plant (alfalfa) and insect (Melissa blue butterfly) geno- 520

type matter for caterpillar growth and survival, and that these 521
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contributions are mostly additive (our hypothesis (iii) in Fig.522

1). These results are qualitatively similar to those reported523

in another study (20), which identified individual plant (Ara-524

bidopsis thaliana) and caterpillar (Pieris rapae) genes affecting525

caterpillar performance. The advance over previous work that526

we offer here is in quantitative, genomic prediction of cater-527

pillar performance, which, in contrast to the identification of528

specific genes, provides a formal connection from trait genet-529

ics to models of evolution for quantitative traits (44). We530

specifically demonstrated that the combined effects of plant531

and insect genotype explain a substantial proportion of vari-532

ation in caterpillar growth and survival (17-49%), and that533

these mostly-additive effects can predict performance from534

genotypes in cross-validation analyses. Moreover, models that535

included pairwise epistatic effects failed to explain caterpillar536

performance better than the additive-only models. We were537

able to identify specific traits and phytochemicals associated538

with the plant contribution to performance, most notably plant539

size, and several saponins, peptides, and phosphatidyl cholines.540

Whereas some of these classes of chemicals (e.g., saponins)541

are best known as insect toxins or feeding-deterrents (e.g.,542

(45–47)), our results suggest these classes include molecules543

with positive and negative effects on performance, consistent544

with other recent metabolomic work (25, 32). We also found545

evidence that plant genotype had consistent effects on perfor-546

mance in multiple butterfly populations and distantly related547

species, including a second legume specialist (C. eurytheme)548

and a generalist (V. cardui). This too is consistent with results549

from the only other similar study (20), which documented con-550

served changes in gene expression in response to herbivores551

across multiple plant and butterfly species. This consistency552

is relevant to the predictability and nature of the evolution of553

plant-insect interactions, as we discuss more below.554

Our results have clear implications for the study of coevolu-555

tion, which takes many forms and pertains to the formation of556

new species and new interactions (43). Quantitative theories of557

coevolution have historically been dominated by gene-for-gene558

models, in which the fitness of a particular genetic variant559

in (for example) a parasite is conditioned on the presence560

of a specific gene in the host (22). Evidence in support of561

gene-for-gene models has come mostly from plant-pathogen562

systems (22) (but see (48)). In contrast, diffuse models of563

coevolution relax some of the expectations for gene-by-gene564

interactions, and have been favored by researchers working565

with more macroscopic parasites, including herbivorous insects566

(49). However, relevant investigations in plants and insects567

have mostly relied on experiments that contrast categories of568

individuals (strains or biotypes) rather than more comprehen-569

sive or continuous variation in genetically variable populations570

(reviewed in (12)), which has left the field with uncertainty571

regarding the most relevant theoretical context for the diver-572

sity of evolving plant-insect interactions. The results that573

we report are not consistent with the gene-for-gene model of574

coevolution, as the performance of our focal herbivore was575

both highly polygenic and successfully predicted without in-576

teractions between caterpillar and plant genotypes. Instead,577

our results suggest that genetic differences in plant quality578

and defense have similar effects regardless of insect genotype579

or even species.580

Our results also shed light on the evolution of diet breadth581

and host use in herbivorous insects. Specifically, the finding582

of substantial heritable variation in the Melissa blue butterfly 583

for growth and survival suggests that ongoing adaptation to 584

alfalfa, which at present is a marginal host (26), is not con- 585

strained by a lack of genetic variation. This is consistent with 586

earlier work on this system (28). Likewise, alfalfa appears 587

to harbor genetic variation to evolve traits that reduce the 588

success of the Melissa blue even further, and this inference 589

likely extends to other herbivores given the consistent effects 590

of plant variation on other butterfly species reported here and 591

on other herbivores in an observational study (25). While the 592

persistence of plant genetic variation affecting herbivores might 593

be attributable to the age of these interactions (since most 594

herbivores of alfalfa in North America are recent colonists), 595

we suspect other factors are more important. First, the asym- 596

metry in our predictions, with consistent caterpillar-genetic 597

effects but not plant-genetic effects on performance between 598

common gardens, suggests a major role for plasticity in the 599

effect of plant genotype on caterpillar performance. This is not 600

surprising given considerable evidence that biotic and abiotic 601

environmental factors affect plant quality and plant defenses 602

in alfalfa (31) and other plants (50), but does mean genetic 603

variation in performance measured in the lab and common 604

garden might not strongly predict effects in specific natural 605

populations (51). Moreover, other biotic and abiotic factors 606

could contribute more to caterpillar growth and survival in 607

the wild, and some of these could interact with plant genotype. 608

For example, recent work has shown that the abundance of 609

ants, which tend Melissa blue caterpillars and thereby reduce 610

the threat from enemies (see image in Fig. 1), greatly increases 611

caterpillar survival and population persistence on alfalfa, with 612

ant abundance indirectly affected by alfalfa phytochemistry 613

(25, 52). In contrast to the complexity of plant effects, the 614

more consistent effects of caterpillar genetic variants raises the 615

possibility that the ability of herbivores to successfully utilize 616

plants might more readily evolve, while the ability of plants to 617

evolve defenses will be more contingent (on local environments, 618

etc.). This again supports a diffuse model of coevolution (49) 619

and could eventually help us understand the accumulation of 620

host-specific herbivores on plants through evolutionary time. 621

Beyond issues specific to herbivorous insects and their host 622

plants, genetic variation within species is important for host- 623

parasite interactions (53), including for example susceptibility 624

to parasitic diseases in humans and other animals being a 625

function of both genetic variation in the hosts and among 626

pathogen strains (54). However, as is the case for plant-insect 627

interactions, genomic investigations of other pairwise inter- 628

actions have rarely considered both species simultaneously, 629

but have focused on either the host or parasite. If epistatic, 630

among-species interactions were common (as assumed by the 631

gene-for-gene model of coevolution), the piecewise approach 632

(focusing on one interacting species rather than the pair) might 633

be a major roadblock to progress in understanding the evolu- 634

tion of these systems. However, if additivity and consistency 635

of polygenic effects hold generally, as documented in the plant 636

and herbivores studied here, a focus on one species in an inter- 637

action might not be misleading, and might inform predictive 638

models, but this hypothesis remains to be tested with other 639

interacting species. 640

Materials and Methods 641
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Establishing the primary common garden. We planted a common642

garden comprising 1080 alfalfa plants at the Greenville Experimental643

Farm near Logan, Utah (41.765◦ N, 111.814◦ W) in 2018 (Fig. S1a).644

Seeds for this garden were collected from 11 naturalized alfalfa sites645

in the western USA, including five sites where L. melissa are found,646

and six sites lacking L. melissa butterflies (Table S1). An average647

of 4.9 seeds were planted from each of 220 maternal plants (with648

an average of 97.6 seeds planted from each site, SD = 8.6, range649

= 77 to 105) (Table S1). See “Establishing the primary common650

garden" in the SI for additional details.651

Caterpillar husbandry and performance assays. We obtained L.652

melissa eggs from gravid females collected from six sites between653

June 16th and July 4th 2019 (Table S1). As in past work, gravid654

females were caged with a few sprigs of host plant (M. sativa) and655

allowed to lay eggs (17, 26, 28). Eggs were kept in a Percival in-656

cubator (model no. 136VL) at 27◦C with 14 hours light:10 hours657

dark. Upon hatching, caterpillars were assigned randomly to feed658

on a specific M. sativa plant. Each neonate caterpillar was carefully659

transferred to a Petri dish with a sprig of fresh plant material (a660

few leaflets) with the stem of the plant tissue wrapped in a damp661

Kimwipe. We verified each caterpillar was alive and uninjured after662

transfer. The Petri dish containing the caterpillar was then returned663

to the incubator. Caterpillars were given fresh leaf tissue ad libitum664

and were checked daily for survival, pupation and eclosion as adults.665

As metrics of performance, we measured 8-day and 14-day cater-666

pillar weight, and weight at pupation using a Mettler Toledo XPE105667

analytical microbalance (Mettler Toledo). Weights were recorded668

to the nearest 0.01 mg, and we took the mean of two indepen-669

dent weight measurements. Lycaeides melissa caterpillars generally670

spend 20 to 30 days as larvae (17), and weight and lifetime fecundity671

are highly correlated in L. melissa (26). We then considered the672

following nine performances metrics: 8-day caterpillar weight (mg),673

14-day caterpillar weight (mg), weight at pupation (mg), survival to674

8 days (binary), survival to 14 days (binary), survival to pupation675

(binary), survival to adult (binary), total survival time (integer val-676

ued), and truncated survival time (integer valued). For truncated677

survival time, we truncated survival at the maximum number of678

days required for any of the caterpillars to reach eclosion; this avoids679

caterpillars that developed slowly but never pupated or eclosed from680

having the longer survival times than caterpillar that successfully681

eclosed as adults.682

Generating the genetic data. We extracted DNA from 1236 M. sativa683

plants and 1079 L. melissa caterpillars, pupae or adults reared on684

these plants. We then generated partial genome sequences for each685

organism using our genotyping-by-sequencing approach (23, 55);686

this produced ∼2.5 billion reads for M. sativa and ∼2.5 billion687

reads for L. melissa (see “DNA extraction and sequencing" in the688

SI). We then aligned the DNA sequences to the M. sativa or L.689

melissa genome and identified SNPs using samtools (versions 1.10),690

bcftools (version 1.9) and GATK (version 4.1) (56, 57) (see “DNA691

sequence alignment and variant calling" in the SI). After filtering, we692

retained 161,008 SNPs for M. sativa and 63,194 SNPs for L. melissa.693

We then estimated genotypes using the Bayesian (ad)mixture model694

implemented in entropy (version 2.0) (23, 58) (see “Inference of695

genotypes and genetic variation" in the SI). Patterns of genetic696

variation were then summarized with principal component analysis697

(PCA), and by calculating measures of linkage disequilibrium (LD)698

and genetic differentiation among samples from different source699

populations (i.e., FST) (see “Inference of genotypes and genetic700

variation" in the SI).701

Preparing the caterpillar performance data for genetic mapping. We702

removed potential confounding variation from the caterpillar perfor-703

mance data prior to analyzing genotype-performance associations.704

First, we regressed each of the nine caterpillar performance met-705

rics on caterpillar hatch date (to control for temporal effects) and706

source population (to control for potential non-genetic, e.g., mater-707

nal environment, effects). This was done with the lm function in R.708

Next, we used distance-based Moran’s eigenvector maps to remove709

possible effects of space (location) within the common garden. This710

procedure involves creating spatial variables based on a PCA of711

a truncated (nearest neighbors) Euclidean distance matrix (i.e., a712

principal coordinates analysis), where distance was defined from the713

spatial layout of the common garden (59). We then used forward 714

selection of variables following (60) to select spatial variables (eigen- 715

vectors) that explained the variation in each trait. Specifically, we 716

first tested for a significant (at P < 0.05) fit of a model with all of 717

the spatial variables. If and only if this full model was significant, 718

we began adding spatial variables to a null model one at a time 719

based on the extent to which they increased the total model r2. 720

This procedure continued until either: (i) the P -value for the most 721

recently added variable was > 0.05, (ii) the total r2 exceeded the 722

original r2 from the full model with all variables, (iii) adding the 723

new variable did not increase the model r2, or (iv) 200 spatial 724

covariates had been added. The final models explained 18 to 51% of 725

the variation in plant traits (mean = 35%) with 22 to 77 covariates 726

retained; however, a model with no spatial covariates was selected 727

for most caterpillar performance traits with 14-day weight being the 728

sole exception (20 covariates explaining 14% of the trait variation). 729

Scaled residuals from the final model for each trait were then used 730

for genetic mapping. 731

Multilocus genetic mapping of caterpillar performance. We tested for 732

associations between (i) M. sativa SNPs (161,008 SNPs), (ii) L. 733

melissa SNPs (63,194 SNPs), and (iii) SNPs from both species 734

combined (224,202 SNPs), and each of the nine caterpillar perfor- 735

mance metrics (i.e., the residuals from the models described in the 736

previous paragraph). We performed these analyses using Bayesian 737

sparse linear mixed models (BSLMMs), which we fit with gemma 738

(version 0.95alpha) (61). A key advantage of this approach for 739

gentoype-phenotype association analyses is that, unlike traditional 740

genome-wide association (GWA) mapping methods that test each 741

genetic marker separately, the BSLMM approach fits all SNPs in a 742

single model and thus mostly avoids issues related to testing large 743

numbers of null hypotheses. The BSLMM method assumes that 744

trait values are determined by a polygenic term and a vector of 745

the (possible) measurable effects of each SNP on the trait (β) (61). 746

Bayesian Markov chain Monte Carlo (MCMC) with variable selec- 747

tion is used to infer the posterior inclusion probability (PIP) for each 748

SNP, that is, the probability that each SNP has a non-zero effect or 749

association, and the effect size conditional on it being non-zero (62). 750

The polygenic term denotes each individual’s expected deviation 751

from the mean phenotype based on all of the SNPs. This term ac- 752

counts for phenotypic covariances among individuals caused by their 753

relatedness or overall genetic similarity (61). The kinship matrix 754

also serves to control for population structure and relatedness when 755

estimating effects of individual SNPs (β) along with their PIPs. 756

Similarly, SNPs in linkage disequilibrium (LD) with the same causal 757

variant effectively account for each other, such that only one or the 758

other is needed in the model, and this redundancy is captured by 759

the posterior inclusion probabilities. Moreover, in the context of our 760

study, mapping with plants grown from seed in a common garden 761

and caterpillars reared from eggs in growth chambers substantially 762

reduces some issues related to the confounding effects of population 763

structure, such as genotype-environment correlations, that com- 764

monly cause problems in human association-mapping studies (63) 765

and more generally in observational studies of human genetics (64). 766

The hierarchical structure of the model makes it possible to 767

estimate additional parameters that describe aspects of a trait’s 768

genetic architecture (17, 61, 62, 65). These include the percentage of 769

the phenotypic variance explained (PVE) by additive genetic effects 770

(which includes β and the polygenic term, and should approach the 771

narrow-sense heritability), the percentage of the PVE due to SNPs 772

with measurable effects or associations (PGE, the percentage of the 773

phenotypic variance explained by genic effects, which is based only 774

on β), and the number of SNPs with measurable associations (n-γ). 775

All of these metrics use MCMC to integrate over uncertainty in the 776

effects of individual SNPs, including whether these are non-zero. 777

Lastly, using this BSLMM approach, it is also possible to obtain 778

genomic-estimated breeding values (GEBVs) or polygenic scores, 779

that is, the expected trait value for an individual from the additive 780

effects of their genes, as captured by both β and the polygenic term 781

(17, 65). 782

For each of the nine caterpillar performance metrics and three 783

genetic data sets, we conducted 10 MCMC runs with gemma, each 784

comprising 1 million iterations and a 200,000 iteration burn-in. 785

Every 10th MCMC sample was retained to form the posterior 786

distribution. Polygenic scores (i.e., genomic-estimated breeding 787
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values) were then calculated from the genetic data sets and model-788

averaged effect estimates for each SNP locus; these incorporate the789

polygenic term as is standard in genomic prediction methods (e.g.,790

(66, 67)). Genetic covariance matrixes were computed from the791

estimated polygenic scores.792

As noted above, the kinship matrix and multilocus approach793

of the BSLMM in gemma control for confounding effects of popu-794

lation structure and relatedness when testing for individual SNP-795

phenotype association, but nonetheless, this methods could fail to796

fully capture complex patterns of structure (see, e.g., (63)). Thus,797

to verify the robustness of our results, we fit additional models798

using the BSLMM approach in gemma where we included the first799

20 genetic PCs as potential covariates to further account for pop-800

ulation structure. This was done as described above, except that801

the analysis was only conducted for M. sativa and L. melissa SNPs802

separately. We compared this to our main results both in terms of803

the percentage of variation in performance explained by genetics804

(PVE) and specific SNP-performance trait associations.805

Direct tests of epistasic genetic effects on caterpillar performance.806

We tested for epistatic interactions affecting caterpillar performance807

among (i) the 161,008 M. sativa SNPs, (ii) the 63,194 L. melissa808

SNPs, and (iii) the 224,202 SNPs from both species (this includes809

within and between species epistatic interactions). We conducted810

these tests with MAPIT (https://github.com/lorinanthony/MAPIT) (68).811

Exhaustive testing of all pairwise SNP-SNP interactions suffers from812

low statistical power because of the large number of tests involved.813

The statistical method in MAPIT overcomes the problem of low power814

by instead testing for marginal epistatic effects, that is testing the815

null hypothesis that a given SNP does not interact with any of the816

other SNPs (i.e., that the variance component for epistatic effects817

is 0) (68). This is done without trying to identify the specific SNPs818

a focal SNP interacts with. We computed P -values for tests of819

marginal epistasis using the recommended hybrid method that first820

implements a z-test to compute a P -value and then re-computes821

the P -value with the Davies method if the initial values is less than822

0.05 (as in (18)).823

For many of the survival traits, we observed an unexpected824

excess of very low P -values, especially for L. melissa SNPs and825

for 8 and 14-day survival (Fig. S30). We strongly suspect this is a826

statistical artefact, especially as these measures constitute residuals827

from integer or binary traits and the control kinship matrix consists828

of relatedness based on plant and insect genetics, a combination of829

complications that could be problematic for this method and inflate830

type-I errors (note that this differs from the BSLMM in gemma831

where the multilocus approach allows SNPs to serve as controls832

for each other). Given our concern that these results are not833

biologically meaningful, we conservatively focus only on the weight834

measurements when presenting these tests of epistasis, as these do835

not appear to suffer from the same issue (see Figs. S12 and S13).836

Even with the MAPIT method, a potential exists for tests of epis-837

tasis to be underpowered, especially in terms of achieving strict,838

genome-wide significance. Thus, we conducted additional analyses839

using the BSLMM approach from gemma to test for associations be-840

tween M. sativa and L. melissa genetics and caterpillar performance841

but where we included pairwise epistatic effects among SNPs with842

the most evidence of marginal epistasis from the MAPIT analyses843

(similar to (18)). Our goal was to ask whether including these844

additional epistatic terms improved the explantory power of the845

model. In these analyses, we considered only the caterpillar weight846

traits (for the reasons noted above). We included either (i) the top847

150 SNPs with the lowest P -values for marginal epistasis within848

species (for analyses with only M. sativa or L. melissa SNPs) or849

(ii) the top 75 SNPs from each species with the lowest P -values850

for marginal epistasis in the combined species analysis. We then851

created new genetic covariates for all pairwise interactions between852

pairs of the 150 SNPs ( 150×149

2
= 11, 175 potential epistatic effects).853

We did this by taking the product of the centered and standardized854

genotypes for each pair of loci. These were then included in the855

BSLMM model for gemma (though not in the construction of the856

kinship matrix, which was solely based on additive effects). We fit857

these models as described above, except we increased the number of858

MCMC iterations and burnin to 2 million and 400,000, respectively.859

We then determined the total PVE in weight explained by the860

models with additive and epistatic effects for M. sativa genetics,861

L. melissa genetics, and both M. sativa and L. melissa genetics 862

combined. 863

Within-garden cross-validation and genomic prediction. We used 10- 864

fold cross-validation to assess our ability to predict performance 865

traits from M. sativa genetic data, L. melissa genetic data, and 866

the combined genetic data from M. sativa and L. melissa. To do 867

this, we first randomly assigned each observation to one of ten test 868

data sets. Then, for each test data set, we estimated genotype- 869

phenotype associations using gemma as described above, but based 870

only on the 90% of individuals not in that test data set. For this, we 871

used a single MCMC run comprising 1 million iterations, a 200,000 872

iteration burn-in, and a thinning interval of 10. We then used gemma 873

to predict the phenotypes of the 10% of individuals held back for 874

the test set (these individuals were not used to fit the model); this 875

was done with the predict option in gemma. We then quantified 876

predictive performance using the Pearson correlation between the 877

genomic predictions of each performance metric and the observed 878

values. 879

Gene Miller Life Science Garden set up and genomic prediction. We 880

further tested our ability to predict caterpillar performance trait 881

values from genotypes by generating genomic predictions of perfor- 882

mance for caterpillars reared on M. sativa from a second, smaller 883

common garden comprising 180 M. sativa–The Gene Miller Life 884

Science Garden (see “Establishing the Gene Miller Life Science 885

Garden" in the SI for details). We used leaf tissue from these 886

plants for rearing L. melissa caterpillars in the summer of 2019 887

exactly as described for the main common garden at the Greenville 888

Experimental Farm (see ‘Caterpillar husbandry and performance 889

assays’ above for details). This parallel experiment was conducted 890

at the same time as the main experiment. Plant and caterpillar 891

samples from this parallel experiment were sequenced along with 892

the samples from the Greenville Experimental Farm experiment. 893

We successfully obtained genetic data from 172 M. sativa and 156 894

caterpillars of the 180 involved in this experiment. These genetic 895

data were processed along with those from the main garden (see 896

‘DNA sequence alignment and variant calling’ above for details). 897

We then used the estimated, model-averaged effects from the 898

BSLMM fits in gemma from the main garden to predict performance 899

traits based on plant, caterpillar, or plant and caterpillar genotypes 900

for these individuals. We compared these genomic predictions 901

(i.e., polygenic scores computed from the main-garden models) to 902

the observed performance trait values for these caterpillars. This 903

was done using residuals after removing effects of hatch date and 904

block (i.e., plot) within the USU garden. As with the within- 905

garden cross-validation analyses described in the previous section, 906

predictive power was measured by the Pearson correlation between 907

the predicted and observed performance trait values. 908

Plant trait measurements and phytochemical analysis. We measured 909

a series of morphological traits potentially associated with plant 910

vigor or resistance to insects (e.g., putative structural plant 911

defenses)(17, 69, 70) for each of the 1080 M. sativa plants in the 912

Greenville Experimental Farm common garden: plant height, leaf 913

length, leaf width, leaf area, leaf shape, leaf weight, specific leaf 914

area, leaf toughness, trichome density, levels of herbivory on the 915

plants in the field, and 1750 plant chemistry metabolites, which were 916

quantified and characterized using liquid-chromatography combined 917

with mass spectrometry (LC-MS). See “Plant trait measurements" 918

and “Sample extraction and phytochemical analysis" in the SI for 919

details. We further annotated the 20 phytochemicals that were most 920

stronlgy associated with caterpillar performance (see “Structural 921

annotations of phytochemicals" in the SI). 922

Multilocus genetic mapping of plant traits. We tested for associations 923

between the M. sativa SNPs (161,008 SNPs) and 1760 plant traits: 924

leaf length, leaf width, leaf area, leaf shape, leaf weight, SLA, 925

trichome density, leaf toughness, plant height, field herbivory and 926

1750 metabolomic chemical features (see the previous two sections 927

for details). This was done using the 1080 M. sativa plants from the 928

main common garden at the Greenvile Experimental Farm in Logan, 929

UT. We first removed possible effects of spatial location within the 930

garden as captured by distance-based Moran’s eigenvector maps 931

using forward selection of variables (60), exactly as described for the 932
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caterpillar performance traits above (see ‘Preparing the caterpillar933

performance data for genetic mapping’). As with the caterpillar934

performance traits, genotype-plant trait associations were estimated935

by fitting BSLMMs with gemma (version 0.95alpha) (61). For each936

of the 1760 plant traits, we conducted 10 MCMC runs with gemma,937

each comprising 1 million iterations and a 200,000 iteration burn-938

in. Every 10th MCMC sample was retained to form the posterior939

distribution. Polygenic scores were then calculated from the genetic940

data sets and model-averaged effect estimates for each SNP locus.941

Genetic covariance matrixes were computed from the estimated942

polygenic scores. The model-fitting procedure was repeated with943

1760 randomized plant trait data sets (i.e., values of each of the944

original traits were permuted among plants) to verify that the945

distribution genotype-phenotype associations from the real data set946

differed from null expectations.947

LASSO regression models. We used least absolute shrinkage and948

selection operator (LASSO) regression to (i) identify the subset of949

plant traits with polygenic scores that best predicted caterpillar-950

performance polygenic scores and (ii) estimate the direction and951

magnitude of these associations (see “LASSO regression models"952

in the SI). We fit additional LASSO models (i) using PCs of the953

1760 plant trait polygenic scores as covariates and (ii) to deter-954

mine whether plant-trait polygenic scores could explain and predict955

caterpillar performance at the phenotypic level. Lastly, we fit an956

additional models to evaluate the extent to which plant-genetic957

effects interacted with caterpillar genetics to affect performance (see958

“LASSO regression models" in the SI).959

Complementary USU greenhouse and Nevada common garden rear-960

ing experiments. An additional rearing experiment was conducted961

using M. sativa grown in a USU greenhouse to (i) replicate the gen-962

eral effect of M. sativa genotype on caterpillar performance and (ii)963

determine whether different plant genotypes had consistent effects964

of caterpillar performance across different butterfly populations965

and species (i.e., Colias eurytheme and Vanessa cardui). We per-966

formed yet another rearing experiment with the same three species967

of caterpillars using an experimental M. sativa garden experimental968

garden at the University of Nevada, Reno (Fig. S1). Together, these969

experiments provide additional tests of additivity versus epistasis970

with respect to genetic differences among butterfly populations and971

among deeply divergent species. See “Complementary USU green-972

house experiment" and “Complementary Nevada common garden973

rearing experiment" in the SI for details.974
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