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Plant-insect interactions are common and important in basic and
applied biology. Trait and genetic variation can affect the outcome
and evolution of these interactions, but the relative contributions of
plant and insect genetic variation and how these interact remain un-
clear and are rarely subject to assessment in the same experimental
context. Here we address this knowledge gap using a recent host
range expansion onto alfalfa by the Melissa blue butterfly. Common
garden rearing experiments and genomic data show that caterpillar
performance depends on plant and insect genetic variation, with in-
sect genetics contributing to performance earlier in development and
plant genetics later. Our models of performance based on caterpillar
genetics retained predictive power when applied to a second com-
mon garden. Much of the plant genetic effect could be explained
by heritable variation in plant phytochemicals, especially saponins,
peptides, and phosphatidyl cholines, providing a possible mechanis-
tic understanding of variation in the species interaction. We find
evidence of polygenic, mostly additive effects within and between
species, with consistent effects of plant genotype on growth and de-
velopment across multiple butterfly species. Our results inform the-
ories of plant-insect coevolution and the evolution of diet breadth in
herbivorous insects and other host-specific parasites.

Plant-insect interaction | Genomic prediction | Polygenic | Phytochemi-

cals | Coevolution

Acentral challenge for the biological sciences is to under-
stand the causes and consequences of trait variation
within and among species. Experimental manipulations aimed
at understanding the molecular basis of organismal variation
have most often been done in settings stripped of all or most
ecological context. This approach can be fruitful for simple
traits, including some aspects of morphology (e.g., (1-4)), but
is lacking when it comes to interspecific interactions that in-
clude the evolution of crop pests, emerging infectious diseases,
and other host-parasite associations (5, 6).

Plants and herbivorous insects have contributed much to
our understanding of the formation and persistence of inter-
actions between hosts and parasites, in part because they
are experimentally tractable but also because insects are the
most diverse macroscopic organisms on the planet and their
specialized feeding habits play a role in their diversification
(7-11). Yet classic studies of the molecular basis of plant-insect
interactions have relied on candidate genes or targeted classes
of phytochemical compounds (e.g., (12-14)). More recently,
evolutionary geneticists have taken advantage of new technolo-
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gies to explore the genetic basis of herbivory in a genomic
context. With very few exceptions, these studies have focused
on genetic variation in either herbivores or plants (15-19)(but
see (20)), but rarely both in the same study and never to our
knowledge paired with modern metabolomic approaches that
allow for untargeted discovery of influential compounds (21).
This leaves us with considerable uncertainty concerning the
relative importance of heritable traits in herbivores and in
plants for determining the outcome of plant-insect interactions.
For example, particular genetic variants in an herbivore might
be associated with increased feeding efficiency, but only when
challenged with particular plant variants such as specific de-
fensive metabolites or combinations of physical defenses (22).
However, without an understanding of the genetic architecture
of both the herbivore physiology and the plant traits, the
evolutionary trajectory of the system cannot be understood
in the context of available theoretical models or forecast with
respect to the evolution of defense in the plant or increased
performance in the herbivore. We address this need using a
recent host range expansion onto alfalfa by the Melissa blue
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Summary of hypotheses and effects

Hypothesis g:r:::itcs gz:\seet‘;:s Combination
(i) No Yes N/A
(i) Yes No N/A
(iii) Yes Yes Additive
(iv) Yes Yes Epistatic
Null No No N/A

Fig. 1. Main hypotheses tested about the contribution of plant and insect genetics to
caterpillar performance: (i) caterpillar performance is primarily affected by insect (L.
melissa) genetics, (i) caterpillar performance is primarily affected by plant (M. sativa)
genetics, (iii) the genetics of the interacting species have similar effects on caterpillar
performance and combine additively, (iv) the genetics of the interacting species have
similar effects on caterpillar performance and combine epistatically, and (v) the null
hypothesis that neither insect or plant genetic variation have an appreciable effect on
caterpillar performance. The illustration (by R. Ribas) shows a L. melissa caterpillar
feeding on alfalfa, while being tended by ants; additional biotic or abiotic factors, such
as the presence of mutualistic ants, also affect caterpillar performance in the wild (25)
but are not a component of this study.

butterfly, emphasizing the role of prediction when building
an understanding of the functional genetic basis of a novel
plant-insect interaction.

The Melissa blue butterfly (Lycaeides melissa) is
widespread in western North America (23). It exists in iso-
lated populations associated with larval host plants in the
legume family, including many species of Astragalus and Lupi-
nus (24, 25). The Melissa blue colonized alfalfa (Medicago
sativa) after the plant was introduced to the western USA as a
forage crop in the mid 1800s, and is now commonly found on
naturalized (i.e., feral) alfalfa along roadsides and trails (24).
Melissa blue butterflies show evidence of adaptation to alfalfa,
but this host plant remains inferior to known native hosts in
terms of caterpillar development with cascading life history
effects (26-28). As insect growth and survival is often reduced
on novel hosts, the lower quality of alfalfa for Melissa blue but-
terflies is likely typical of a general phenomenon (29). Alfalfa
is phenotypically variable (30), and thus is not a homogeneous
resource for Melissa blue butterflies. In particular, phenotypic
variation among naturalized alfalfa populations, including phy-
tochemical variation, affects Melissa blue caterpillar growth
and host patch occupancy (25, 31, 32). However, it is unclear
how much of this phenotypic variation has a genetic basis.
Moreover, as is true for other plant-insect interactions, the
relative contributions of plant (alfalfa) and insect (Melissa
blue) genetic variation to the outcome of the interaction is
unexplored, including whether growth and successful devel-
opment from caterpillar to adult is influenced by additive or
epistatic genetic variation in the interacting species.

Here, we use multiple common garden rearing experiments
combined with multilocus genetic mapping and genomic pre-
diction to build and test models that quantify the relative
effects and interactions of alfalfa and Melissa blue genetic vari-
ation on caterpillar performance (i.e., growth and survival).
We specifically test the following alternative hypotheses: (i)
caterpillar performance is primarily affected by Melissa blue
genetic variation and architecture, (ii) caterpillar performance
is primarily affected by genetic variation and architecture in
the host plant, (iii) the genetics of the interacting species have
similar effects on caterpillar performance and combine addi-
tively, (iv) the genetics of the interacting species have similar
effects on caterpillar performance and combine epistatically,
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Fig. 2. (a) Map of plant (M. sativa) and insect (L. melissa) common garden source
populations. Symbol shapes denote source type-Lm = L. melissa, Ms-abs = M.
sativa site without L. melissa butterflies, and Ms-pres = M. sativa site with L. melissa
butterflies, and are colored to indicate different populations within taxa. The inset
illustration shows an adult L. melissa perched on M. sativa (illustration by R. Ribas).
(b) Ordination of genetic variation via principal component analysis (PCA) for the
M. sativa common garden plants. (c) Ordination of genetic variation via PCA for
the L. melissa caterpillars from the rearing experiment. Points in (b) and (c) denote
individual plants or caterpillars and are colored to match the map (a).

and (v) the null hypothesis that neither Melissa blue nor al-
falfa genetic variation has an appreciable effect on caterpillar
performance (Fig. 1). Genetic mapping of 1760 plant traits,
including 1750 phytochemical metabolites, contributes to test-
ing these hypotheses and also allows us to probe the functional
basis of plant-genetic effects on caterpillar performance. Fi-
nally, we conduct complementary rearing experiments to test
the consistency of plant genetic effects (i.e., their lack of inter-
action with herbivore genetics) across butterfly populations
and species.

Results

Overview of the primary common garden rearing experiment.
We planted a common garden comprising 1080 alfalfa (M.
sativa) plants at the Greenville Experimental Farm near Logan,
UT (41.765° N, 111.814° W) in 2018 (Fig. Sla). Seeds for this
garden were collected from 11 naturalized (i.e., feral) M. sativa
sites in the western USA, including five sites where L. melissa
butterflies are found (Table S1, Fig. 2a). Caterpillars for the
experiment were sourced from six sites by obtaining eggs from
gravid L. melissa females in 2019. We detected substantial
genetic variation and only subtle genetic differentiation among
the source locations for alfalfa (161,008 SNPs, mean expected
heterozygosity = 0.168, Fsr = 0.029) and for L. melissa
(63,194 SNPs, mean expected heterozygosity = 0.065, Fsr
= 0.045) (Figs. 2b, S2). Nearby SNPs (<100 bps) exhibited
appreciable linkage disequilibrium in M. sativa (median r? =
0.050, 95th percentile = 0.862) and L. melissa (median 7 =
0.002, 95th percentile = 0.052), but this decayed rapidly with
physical distance with especially low levels of LD beyond 100
bps in L. melissa (Fig. S3).

The main rearing experiment was conducted in summer
2019. For this experiment, caterpillars were reared individually
on each of the 1080 alfalfa plants. Rearing was done in a growth

Gompert etal.

83

84

85

86

87

88

89

90

91

92

93

%4
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

15



116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132

133

134

135

136

137

(a) Survival and development

@ caterpillar
S O pupa
® O adult
o O dead
5 51
£
2 ¥
o
8
o J
T T T T T
0 10 20 30 40
Time (days)
(b) Weight and survival correlations
-2 0 2 4 2 -1 0 1 2
8-day -
weight 0.52 0.21 0.12 "
1 cagoes 14-day
"1 *», 1| weigh 0.54 0.39
‘,' . . ._ . g ko
o e Cgadts Pupal [
.—5}‘" . #. weight 043 :;
M . [
T s - -
- T . K " Survival
N . ‘ time

T T T T
2 0 2 4 6 2 0123

Fig. 3. (a) Plot shows survival and development of L. melissa over the course of the
rearing experiment. Colored regions denote the number of individuals that were living
caterpillar, pupa, adults or dead at each day post hatching. (b) Plots show pairwise
correlations between L. melissa performance traits. Scatterplots are shown in the
lower-triangle panels—each point denotes one individual-and Pearson correlations
are reported in the corresponding upper triangle panels. Traits are given along the
diagonal panels: 8-day weight, 14-day weight, pupal weight, and truncated survival
time. Scatterplots and Pearson correlations are based on residuals after controlling
for confounding environmental effects (see Methods for details).

chamber, with caterpillars fed fresh leaf tissue as needed. In
this experiment, 26.1% of the caterpillars survived to pupation
and 14.1% survived to eclose as adults (mean survival time
= 21.8 days) (Fig. 3a). Mean L. melissa weights were 2.94
mg (SD = 2.13) at 8 days, 12.7 mg (SD = 7.71) at 14 days,
and 20.0 mg (SD = 7.21) at pupation. Weight and survival
were variable within and among groups of caterpillars from
different source populations and within and among groups
that consumed plants grown from different M. sativa source
populations (Figs. S4 and S5). Weight and survival metrics
of performance were positively correlated, including, 8-day
weight vs. 14-day survival (Pearson r = 0.0916, 95% confidence
interval [CI] = 0.0237-0.159), 14-day weight vs. survival to
pupation (r = 0.472, 95% CI = 0.416-0.525), and pupal weight
vs. survival to eclosion (r = 0.449, 95% CI = 0.342-0.545) (Fig.
3b). Past work has shown that weight and lifetime fecundity
are highly correlated in L. melissa (26).

Plant and caterpillar genetic variation affect performance. Us-
ing multilocus genome-wide association methods (see Figs.
S6, S7 and S8 for evidence of adequate Markov chain Monte
Carlo performance), we found evidence that both M. sativa
and L. melissa genetic variation contributed to caterpillar
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performance in the common garden rearing experiment (Fig.
4a), consistent with our hypotheses (iii) and (iv) (Fig. 1).
Specifically, M. sativa genetics (161,008 SNPs) explained be-
tween 2% (survival to 8 days) and 36% (14-day weight) of the
variation in performance (mean across traits = 17%), and L.
melissa genetics (63,194 SNPs) explained 5% (weight at pupa-
tion and survival to pupation) to 29% (8-day weight) of the
variation in the same nine caterpillar performance measures
(mean = 15%) (values denote point estimates of the percent
variance explained, PVE; see Table S2 for credible intervals;
cross-validation results are shown in the next section). Cater-
pillar genetics contributed more to performance metrics from
early development (e.g., 8-day weight and survival to 8 and
14 days), whereas plant genetics mattered more for later de-
velopment (e.g., 14-day weight, pupal weight, and survival to
pupation and adult), resulting in a trend towards a negative re-
lationship between caterpillar and plant genetic contributions
across traits (Pearson r = -0.52, 95% CI = -0.88 to 0.22, P =
0.15). We detected mostly positive genetic correlations among
performance traits (Fig. 4b), with similar but not identical
genetic correlations calculated from M. sativa and L. melissa
polygenic scores (Pearson correlation between M. sativa and L.
melissa genetic correlations, 7 = 0.80, 95% CI = 0.63 to 0.89,
P = 5.923679). Polygenic scores in this context quantify the
estimated effect of many plant or caterpillar genetic variants
on a performance trait.

Mapping results suggested mostly a polygenic basis for the
performance traits, with point estimates of > 10 loci affecting
most traits (Tables S2, S3 and S4; Fig. 4c¢,d), but with more
evidence of specific SNPs strongly associated with performance
in L. melissa. This included ten SNPs with posterior prob-
abilities of association (i.e., posterior inclusion probabilities)
> 0.5 with at least one performance trait (Fig. 4d, Table S5).
Some of these SNPs were in or near (<20 kbps) genes with
biologically plausible functions for affecting performance, such
as MSP-300, Lipase member H and Juvenile hormone acid
O-methyltransferase, all of which were associated with 8-day
weight. For example, MSP-300 affects muscle development
and muscle-ectoderm attachment in Drosophila (33). Insect
lipases metabolize fats, are expressed in gut tissue, and can
affect survival and reproductive capacity in insects; Lipase
member H in particular has further been associated with viral
resistance in the moth Bombyz mori (34, 35). Juvenile hor-
mone acid O-methyltransferase is involved in juvenile hormone
biosynthesis and thus in the regulation of insect growth and
development, especially metamorphosis (36, 37). A single M.
sativa SNP was strongly associated with survival to pupation
(posterior inclusion probability > 0.5; chromosome 1, position
= 12,930,966 bp). This SNP was found in a gene encoding
TOM1-like protein 9 and was within 30 kbps of six additional
genes, including two genes with known links to plant-insect
interactions: dentin sialophosphoprotein, which is associated
with soybean compensatory growth after cutworm herbivory
(38), and photosystem I reaction center subunit psaK, which
has been mechanistically linked to tolerance to aphids and
aphid feeding preference in Arabidopsis (39) (Table S6). We
obtained similar results with complementary genetic mapping
analyses that included 20 genetic PCs as additional controls
for population structure when estimating SNP-performance
associations; this was true both in terms of the percentage of
variation in performance explained (Pearson correlations >
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Fig. 4. Genetic mapping of caterpillar performance. (a) Dotchart shows Bayesian
estimates of the proportion of trait variation explained by M. sativa genetics (Ms), L.
melissa genetics (Lm), or both combined (Ms+Lm) for each caterpillar performance
trait; W8d = 8-day weight, W14d = 14-day weight, Wpup = pupal weight, S8d =
8-day survival, S14d = 14-day survival, SPup = survival to pupation, SAdu = survival
to adult, Stot = total survival time, and Stime = (truncated) survival time. Points
and horizontal lines denote point estimates (posterior medians) and 95% equal-tail
probability intervals, respectively. (b) Heatmap shows genetic correlations between
pairs of caterpillar performance traits based on M. sativa genetics (lower triangle) or
L. melissa genetics (upper triangle). Manhattan plots in (c) and (d) shown posterior
inclusion probabilities (PIPs) for genotype-performance associations based on M.
sativa and L. melissa SNPs, respectively. Points denote SNPs with different colors and
symbols for different performance traits. Only SNPs with PIPs > 0.01 are depicted.
Horizontal lines at PIPs of 0.1 and 0.5 are included for reference.

0.99, P < 0.001 for caterpillar and plant genetics) (Tables S7
and S8, Fig. S9), and in terms of specific SNP-performance
associations (Pearson correlations for posterior inclusions prob-
abilities, M. sativa r = 0.76, P < 0.001, L. melissa r = 0.98,
P < 0.001) (Fig. S10).

We repeated the genetic mapping approach using a com-
bined data set of both M. sativa and L. melissa genetic loci
(i-e., the combined 224,202 SNPs) (genetic PCs were not in-
cluded here or in subsequent analyses). The combined data
set generally explained more of the variation in caterpillar per-
formance, 17% to 49% (mean = 24%), than either M. sativa
or L. melissa genetic loci alone. Moreover, the combined vari-
ation explained for each performance trait was well described
by a model where the variance explained separately by plant
and caterpillar genetics combined additively. Specifically, in a
linear regression model, the percent variance in performance
traits explained by plant and caterpillar genetics separately
explained 97% of the variation in the estimates of the variance
explained by the combined genetic data sets (linear regression,
Bptant = 1.17, P = 6.6e°, Beaterpitar = 0.80, P = 0.00037,
r? = 0.97) (Fig. S11), consistent with our hypothesis (iii) (Fig.
1).

Given the evidence of additivity of genetic effects between
species presented above, we next turned to more direct tests of
the hypothesis that epistatic interactions contribute to cater-
pillar performance, with a specific focus on caterpillar and
pupal weight (see Methods for details and justification). To
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Fig. 5. Genetic mapping of caterpillar performance with epistasis. The dotchart shows
Bayesian estimates of the proportion of trait variation explained by M. sativa genetics
(Ms), L. melissa genetics (Lm), or both combined (Ms+Lm) for 8-day weight (W8d),
14-day weight (W14d), and pupal weight (Wpup). Points and horizontal lines denote
point estimates (posterior medians) and 95% equal-tail probability intervals, respec-
tively, for the proportion of trait variation explained by additive effects and pairwise
epistatic effects. Vertical black lines denote point estimates (posterior medians) for
the proportion of variation explained by additive genetic effects alone (as presented in
Fig. 4a).

minimize the low power associated with testing all SNP-SNP
interactions, we tested for marginal epistasis, that is for evi-
dence of an epistatic interaction between each SNP and any
of the other SNPs. We failed to find significant evidence of
marginal epistasis among M. sativa SNPs, among L. melissa
SNPs, or between M. sativa and L. melissa SNPs (i.e., no
SNPs achieved genome-wide significance) (Figs. S12 and S13).
Our failure to find epistasis in this manner could be driven in
part by limited power to detect it. Thus, we next re-fit the mul-
tilocus genome-wide association models described above, but
with additional terms for epistatic interactions. This allowed
us to directly ask where including epistasis increases our ability
to explain caterpillar performance. To do this in a statistically
tractable way, we added pairwise interactions between the
150 SNPs with the most evidence of marginal epistasis (i.e.,
lowest P-values); this added an additional 11,175 terms to
each model. Models including these epistatic effects failed to
explain more of the variation in caterpillar performance than
our purely additive models (Fig. 5). Thus, these direct tests
of epistasis provide additional evidence against hypothesis (iv)
and thus in favor of hypothesis (iii) (i.e., additivity within
and between species) (Fig. 1). Consequently, we focus on
the additive models in tests of predictive power below, before
presenting additional tests of additivity versus epistasis in
subsequent sections of this paper.

Predicting caterpillar performance from plant and caterpillar
genotype. We next showed that our genotype-phenotype mod-
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els were moderately successful at predicting caterpillar per-
formance. This is relevant both for validating these models
and for demonstrating their potential utility and limitations in
making predictions about effects and evolutionary trajectories
in nature. Specifically, genomic predictions of performance
from 10-fold cross validation exhibited statistically significant
positive correlations with observed performance values for
three out of ten performance traits for M. sativa genetics, five
out of ten traits for L. melissa genetics, and six out of ten
traits for M. sativa and L. melissa genetics combined (Fig. 6a).
Especially pronounced positive correlations between observed
and predicted performance were detected for 14-day weight
based on M. sativa genetics and 8-day and 14-day survival
based on L. melissa genetics. More generally, our ability to
predict performance traits was well explained by our estimates
of heritability (i.e., PVE): we calculated Pearson correlations
of 0.89 (95% CI = 0.55 to 0.98, P = 0.0013) and 0.62 (95%
CI = -0.073 to 0.91, P = 0.074) between PVE estimates and
the correlation between observed and predicted traits for M.
sativa and L. melissa genetics, respectively (Fig. 6b). In other
words, we better predicted caterpillar performance for the
performance traits that were more heritable.

Having demonstrated moderate predictive power within
the main common garden, we next asked whether genotype-
phenotype models estimated from this garden could success-
fully predict L. melissa performance for additional caterpillars
fed M. sativa from a second, smaller common garden (the
Gene Miller Life Science Garden; N = 180 plants) (Fig. S1).
This second garden, planted in 2018 on the Utah State Univer-
sity campus ~2.5 km from the Greenville Experimental Farm
garden, included plants from six of the 11 M. sativa source
sites and caterpillars from each of the sites used in the main
experiment. Survival rates for caterpillars reared on plants
from this garden were similar to those reared on plants from
the main garden (Fig. S14). Predictive performance for the
second garden differed notably for M. sativa versus L. melissa
genotype-phenotype models, with statistically significant posi-
tive correlations between observed and predicted trait values
in the new garden for only one trait for M. sativa genetics
versus six of the ten performance traits for L. melissa genetics
(Fig. 6¢). Predictions for the combined data set were similar to
those based on L. melissa genetics alone. Consistent with these
patterns, estimates of PVE from the main garden explained
predictive power for L. melissa genetics (Pearson r = 0.93,
95% CI = 0.68 to 0.98), but not M. sativa genetics (r = 0.17,
95% CI = -0.56 to 0.75). Thus, unmeasured environmental
differences likely limit our ability to predict performance from
plant genetics across gardens to a much greater extent than
for caterpillar genetics (plant growth environments differed,
but caterpillar rearing environments did not) despite these
gardens being separated by only ~2.5 km. Differences in the
exact genetic composition of the two gardens could add to this
effect.

Genetic associations with plant traits explain the plant ge-
netic contribution to caterpillar performance. Having shown
that plant genetic variation affects caterpillar performance,
we now focus on the Greenville Experimental Farm (see Fig.
Sla) to identify possible components of the functional basis
of the documented plant-genetic effects. This also allowed
us to further test for additive versus epistatic interactions
between plant and caterpillar genotypes on caterpillar per-
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formance (see our hypotheses (iii) versus (iv) in Fig. 1). We
first determined the extent to which genetic loci associated
with caterpillar performance were also associated with other
plant traits, including potential plant vigor or defense traits
(17). Such genetic correlations could arise from pleiotropy, but
also from linkage disequilibrium between distinct loci affect-
ing the plant traits and caterpillar performance (i.e., genetic
correlations do not demonstrate a causal genetic link between
traits). Still, such an association would be consistent with the
hypothesis that these traits, or other genetically correlated
traits, constitute possible mechanisms by which plant geno-
type affects caterpillar performance. To do this, we measured
and mapped 1760 plant traits in the Greenville Experimental
Farm garden using the same multilocus mapping approach
and M. sativa SNP data set described above. The traits in-
cluded plant height, leaf length, leaf width, leaf area, leaf
shape, leaf weight, specific leaf area, leaf toughness, trichome
density, levels of herbivory on the plants in the field, and 1750
plant chemistry metabolites, which were quantified and char-
acterized using liquid-chromatography combined with mass
spectrometry (LC-MS; similar to (25, 32)).

We documented genetic variation affecting most of the
plant traits, with mean PVEs of 20.5% for the non-chemical
traits (minimum = 5.6%, maximum = 38.7%) and 10.9% (310
traits > 20% and 20 > 50%) for the 1750 chemical traits
(Table S9). Additionally, in the main Greenville Experimental
Farm common garden, the distribution of PVE for the 1750
chemical traits differed markedly from that for 1750 matched,
randomized traits, consistent with a clear genetic contribution
to this variation in leaf metabolites (Fig. S15).

Multiple plant traits, including chemical and non-chemical
traits, exhibited genetic correlations with each caterpillar per-
formance trait; in other words, plant trait polygenic scores
were correlated with caterpillar performance polygenic scores
when inferred from plant genetics (Figs. 7a,b, S16). However,
because of the large number of measured traits and genetic
correlations among the plant traits (Fig. S17), many of the
genetic correlations between plant traits and caterpillar perfor-
mance were likely redundant. Thus, to identify the combined
subset of traits most strongly predictive of caterpillar perfor-
mance (and thus the best candidates for a mechanistic link
to performance), we next fit a LASSO penalized regression
model for the polygenic scores of each caterpillar performance
trait (based on plant genetics) as a function of the polygenic
scores for the 1760 plant traits. These models explained 41
to 80% of the variation in the caterpillar performance scores
(mean = 69.2%, cross-validation predictive r* ranged from
0.39 to 0.76) (Table S10, Fig. 7c). On average 260 of the
1760 traits were retained in these models (i.e., given non-zero
regression coefficients), with a range of 117 (survival time)
to 347 (8-day survival) traits (Figs. 7d,e and S18). Both
chemical and non-chemical traits were retained in the mod-
els. Non-chemical traits with the biggest effects included a
positive effect of plant height on 14-day weight (8 = 0.037),
positive effects of trichome density (8 = 0.036) and specific
leaf area (8 = 0.031) on survival to adulthood, and a nega-
tive effect of leaf toughness on survival to adulthood (8 =
-0.34). Consistent with a previous phenotypic assay of cater-
pillar performance and plant metabolomic variation in this
system (32), top chemical traits included several saponins,
including saponins (two distinct Medicagenic acids) associ-
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ated with effects on caterpillar weight and survival (Tables
S12 and S13). The flavonoid glycoside Tricin 7-glucoside was
associated with reduced survival, whereas several peptides
(e.g., MESA.583 = Cy13H;150, a fragment of a N-acyl amine;
MESA615 = CQ3H43N707; MESA849 = Cl4H19NO3, a N—
acyl amine) were associated with reduced weight or survival
(Tables S12 and S13). Lastly, we fit LASSO regression models
on the 1064 principal components (PCs) from an ordination of
the plant trait and chemistry polygenic scores, which represent
1064 independent (orthogonal) variables. Our goal here was
to provide additional evidence that multiple, distinct genetic
factors contributed to explaining caterpillar performance poly-
genic scores. Models based on these predictors explained 27
to 76% of the variation in the caterpillar performance scores
(mean = 56.6%, cross-validation predictive 2 ranged from
0.25 to 0.72), with an average 180 of the 1064 PCs retained in
the LASSO models (range = 52 to 337) (Fig. S19).

Compared to predicting polygenic scores for caterpillar per-
formance, our ability to predict caterpillar performance at the
phenotypic level from plant-trait polygenic scores was notably
reduced (Table S10, Figs. S20 and S21). This was expected as
plant genetics only explained a modest proportion of the varia-
tion in performance and thus the ability to explain variation in
these traits (not just polygenic scores) was necessarily capped
by performance-trait heritabilities. Still, when considering
all performance traits together, plant trait polygenic scores
explained more of the trait variation than expected by chance
(Fisher combined test, x* = 34.42, df = 18, P = 0.011). This
signal was driven primarily by association of plant traits with
8 and 14 day weight and survival to pupation and eclosion.

Lastly, we determined the extent to which the association of
plant trait polygenic scores with caterpillar performance poly-
genic scores (both inferred from plant genetics) was affected
by L. melissa genotype. Such an interaction would suggest
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Fig. 6. Genomic prediction of caterpillar performance. (a) Dotchart shows Pear-
son correlations between cross-validation genomic predictions of phenotypes
and the observed values based on M. sativa genetics (Ms), L. melissa genetics
(Lm), or both combined (Ms+Lm) for each caterpillar performance trait; W8d
= 8-day weight, W14d = 14-day weight, Wpup = pupal weight, S8d = 8-day
survival, S14d = 14-day survival, SPup = survival to pupation, SAdu = survival to
adult, Stot = total survival time, and Stime = (truncated) survival time. Points and
horizontal lines denote point estimates (posterior medians) and 95% equal-tail
probability intervals, respectively. For example, a large value on the x axis indi-
cates a high correlation between observed performance values and predictions
from genotype based on cross validation. (b) Scatterplot of the proportion of
variation explained by genetics (PVE) versus the Pearson correlation of genomic
predictions from (a). Each point denotes a trait and is colored to indicate values
from M. sativa or L. melissa genetics. Colored lines are best fits from ordinary
linear regression, and a dashed line denotes the 0 value on the y-axis. (c)
Dotchart similar to (a), but for genomic predictions of phenotypes in a second
common garden (the Gene Miller Life Science Garden) based on the models fit
from the main garden. (d) Scatterplot of correlations between observed cater-
pillar performance trait values and genomic predictions of these values using
cross-validation within the main garden versus prediction for samples in the
Gene Miller Life Science Garden based on the models fit for the main garden.

caterpillar performance is affected by epistatic interactions
between M. sativa and L. melissa genotypes, as predicted by
our hypothesis (iv) (Fig. 1). We used principal component
(PC) scores from the first four principal components of the
L. melissa genotype matrix, which together accounted for
~15% of the L. melissa genetic variation, as summaries of
L. melissa genotype. We then fit LASSO penalized regres-
sion models for caterpillar performance polygenic scores as a
function of these PC scores, plant trait polygenic scores, and
interactions between each plant trait polygenic score and each
of the four PCs. This allowed us to test for epistasis at the
level of plant morphology and phytochemistry polygenic scores
from M. sativa and four axes of L. melissa genetic background
and thereby avoid the lack of power that would be associated
with exhaustively testing SNP-SNP interactions (nonetheless,
these models still included 4x1760 = 7040 possible interaction
terms). We found no evidence of epistasis between M. sativa
and L. melissa affecting caterpillar performance. Specifically,
including these interaction terms in the models actually re-
duced the variance explained by the LASSO models (Table
S11) and the interaction terms were retained less frequently in
the models than the non-interaction terms (Figs. S22 and S23).
We obtained similar results when fitting models for caterpillar
performance trait values rather than polygenic scores, with a
smaller proportion of interaction terms retained in the model
for most traits (Figs. S24 and S25) and no overall increase in
variance explained by models with versus without interactions
(i.e., the variance explained in 14-day weight doubled, but the
variance explained in 8-day weight was halved, and there was
no detectable general increase in variance explained across
traits) (Fig. S26). Thus, these results support our hypothe-
sis (iii) with additive contributions of plant and caterpillar
genetics (Fig. 1).
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Plant and caterpillar genetics have consistent effects on per-
formance. We conducted two additional experiments to deter-
mine the extent to which genetic differences among M. sativa
plants or populations had consistent affects on caterpillar per-
formance for different butterfly populations and species. This
constitutes another test of additivity versus epistasis for plant
and insect genotypes (our hypotheses (iii) versus (iv) in Fig.
1) and of the potential for our findings to provide general
predictions beyond our main study populations. In the first of
these experiments, L. melissa (Lycaenidae) caterpillars from
four populations were reared on greenhouse-grown M. sativa
sourced from six sites (Table S14). Two additional butter-
fly species, Colias eurytheme (a legume specialist) (Pieridae)
and Vanessa cardui (a generalist that rarely feeds on alfalfa)
(Nymphalidae), were reared on these same plants. Whereas
only modest genetic differences exist among the L. melissa
populations (Fig. 2) (23, 24), these three butterfly species are
deeply divergent (~ 100 million years) creating substantial
opportunities for the effect of M. sativa genotype and pheno-
type to interact with genetic differences among the butterfly
taxa (40). Caterpillars were fed leaf tissue from multiple in-
dividual plants, but each caterpillar was given plants from
a single source population and leaves from each plant were
fed to all three butterfly species. Survival rates were highest
for C. eurytheme, followed by L. melissa and lastly V. cardui
(Fig. S27). Plant population (here used as a proxy for plant
genotype) explained ~3-10% of the variation in 8-day weight
for each butterfly species, and 9-14% of the variation in 14-day
weight, with larger effects in the butterfly species less-well
adapted to M. sativa (Table S15). Caterpillar population
explained a small but non-zero proportion of the variation in
8-day weight in L. melissa (this could not be assessed in the
other species), but not a significant amount of variation in
14-day weight. Thus, consistent with our main results above,
genetic differences among plant and caterpillar populations
(caterpillar populations for L. melissa only) explained variation
in caterpillar performance, with plant genetics mattering more
for 14-day weight than 8-day weight and caterpillar genetics
mattering more for 8-day weight than 14-day weight. Plant
population and plant maternal family also explained variation
in plant growth and development traits, consistent with our
common garden results above (Table S9). Importantly, the
effect of each plant population on caterpillar performance was
remarkably consistent across L. melissa populations and even
across different species, with moderate to large positive cor-
relations (though not always significantly so) in the effect of
each plant population on 8 and 14-day weight across all pairs
of population and species (Fig. S28).

The final complementary experiment used the same three
butterfly species: L. melissa, C. eurytheme, and V. cardui,
but instead involved feeding each caterpillar leaf tissue from
a single M. sativa plant from a third common garden near
the University of Nevada (UNR Main Station in Reno, NV;
Fig. S1). We used these data to ask whether the effect of
plant genotype (here, individual plant) on caterpillar weight
was consistent across species. We detected modest, positive
pairwise correlations between the three species of caterpillars,
suggesting a degree of similarity of plant genotypes that affect
performance of these different herbivorous species (Fig. S29).
Specifically, the correlations were as follows: V. cardui vs. L.
melissa r = 0.33 (P = 0.015, t = 2.52, df = 52); C. eurytheme
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(a) 14-day weight (PVE = 0.36) (b) Surv. to pupa. (PVE = 0.21)

Genetic correlation

Genetic correlation
0.0
-03 -02 -01 00 01 02 03

chemistry
® other

T T T T T T T
00 02 04 06 08 00 02 04 06 08

Plant trait PVE Plant trait PVE
(c) Variation explained by plant trait polygenic scores
— o
IR . . . . . .
g2
d <
o 7 .
2 o]
8 o
2 g5 : ; ‘ i ; ; ;
wad Widd  WPup s8d St4d SPup SAdu Stot Stime
(d) Effect of plant trait polygenic scores on 14-day weight

= s
® S
3
S g i
s <
@
@
g 4
>
3 o
o 34

?

Plant trait
(e) Effect of plant trait polygenic scores on survival to pupation

T 8
g S
S8
@ oS
2
o
3
o« O chemistry

= other

-0.10

Plant trait

Fig. 7. Associations between plant trait polygenic scores and caterpillar performance
polygenic scores. Scatterplots show genetic correlations between plant chemistry
and other plant traits and 14-day caterpillar weight (a) and survival to pupation (b)
inferred from plant genetics as a function of the proportion of plant trait variation
explained by genetics (PVE). A dashed horizontal line denotes a genetic correlation of
zero. Panel (c) shows the variance explained by lasso regression models of caterpillar
performance polygenic scores estimated from plant genetics as a function of polygenic
scores for 1750 plant chemistry traits and 10 non-chemistry traits. Black dots denote
inferred values of 2 and gray dots show similar estimates using randomized plant trait
polygenic scores (10 random data sets each). Panels (d) and (e) show standardized
regression coefficients from the lasso models for 14-day weight (d) and survival to
pupation (e).

vs. L. melissa r = 0.43 (P = 0.0010, t = 3.48, df = 52); C.
eurytheme vs. V. cardui r = 0.15 (P = 0.28, t = 1.08, df = 52).
Thus, these two experiments combined with our main results
show that genetic variation within M. sativa affects caterpillar
performance across populations and species of butterflies in a
remarkably consistent manner, consistent with the additivity
hypothesis (hypothesis (iii) in Fig. 1).

Discussion. From an ecological perspective, the greatest di-
versity of life is not counted in the number of species or other
taxonomic units, but in the diversity of inter-specific inter-
actions (41). The ubiquity of plant-feeding insects has made
them a focal point for understanding the evolution, persis-
tence, and variability of interactions (9, 42, 43). The outcomes
of plant-insect interactions (e.g., caterpillar survival) might
depend on genetic variation within each species and these
genetic effects could compound additively or non-additively.
Taken all together, our results support the hypothesis that
both plant (alfalfa) and insect (Melissa blue butterfly) geno-
type matter for caterpillar growth and survival, and that these
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contributions are mostly additive (our hypothesis (iii) in Fig.
1). These results are qualitatively similar to those reported
in another study (20), which identified individual plant (Ara-
bidopsis thaliana) and caterpillar (Pieris rapae) genes affecting
caterpillar performance. The advance over previous work that
we offer here is in quantitative, genomic prediction of cater-
pillar performance, which, in contrast to the identification of
specific genes, provides a formal connection from trait genet-
ics to models of evolution for quantitative traits (44). We
specifically demonstrated that the combined effects of plant
and insect genotype explain a substantial proportion of vari-
ation in caterpillar growth and survival (17-49%), and that
these mostly-additive effects can predict performance from
genotypes in cross-validation analyses. Moreover, models that
included pairwise epistatic effects failed to explain caterpillar
performance better than the additive-only models. We were
able to identify specific traits and phytochemicals associated
with the plant contribution to performance, most notably plant
size, and several saponins, peptides, and phosphatidyl cholines.
Whereas some of these classes of chemicals (e.g., saponins)
are best known as insect toxins or feeding-deterrents (e.g.,
(45-47)), our results suggest these classes include molecules
with positive and negative effects on performance, consistent
with other recent metabolomic work (25, 32). We also found
evidence that plant genotype had consistent effects on perfor-
mance in multiple butterfly populations and distantly related
species, including a second legume specialist (C. eurytheme)
and a generalist (V. cardui). This too is consistent with results
from the only other similar study (20), which documented con-
served changes in gene expression in response to herbivores
across multiple plant and butterfly species. This consistency
is relevant to the predictability and nature of the evolution of
plant-insect interactions, as we discuss more below.

Our results have clear implications for the study of coevolu-
tion, which takes many forms and pertains to the formation of
new species and new interactions (43). Quantitative theories of
coevolution have historically been dominated by gene-for-gene
models, in which the fitness of a particular genetic variant
in (for example) a parasite is conditioned on the presence
of a specific gene in the host (22). Evidence in support of
gene-for-gene models has come mostly from plant-pathogen
systems (22) (but see (48)). In contrast, diffuse models of
coevolution relax some of the expectations for gene-by-gene
interactions, and have been favored by researchers working
with more macroscopic parasites, including herbivorous insects
(49). However, relevant investigations in plants and insects
have mostly relied on experiments that contrast categories of
individuals (strains or biotypes) rather than more comprehen-
sive or continuous variation in genetically variable populations
(reviewed in (12)), which has left the field with uncertainty
regarding the most relevant theoretical context for the diver-
sity of evolving plant-insect interactions. The results that
we report are not consistent with the gene-for-gene model of
coevolution, as the performance of our focal herbivore was
both highly polygenic and successfully predicted without in-
teractions between caterpillar and plant genotypes. Instead,
our results suggest that genetic differences in plant quality
and defense have similar effects regardless of insect genotype
or even species.

Our results also shed light on the evolution of diet breadth
and host use in herbivorous insects. Specifically, the finding
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of substantial heritable variation in the Melissa blue butterfly
for growth and survival suggests that ongoing adaptation to
alfalfa, which at present is a marginal host (26), is not con-
strained by a lack of genetic variation. This is consistent with
earlier work on this system (28). Likewise, alfalfa appears
to harbor genetic variation to evolve traits that reduce the
success of the Melissa blue even further, and this inference
likely extends to other herbivores given the consistent effects
of plant variation on other butterfly species reported here and
on other herbivores in an observational study (25). While the
persistence of plant genetic variation affecting herbivores might
be attributable to the age of these interactions (since most
herbivores of alfalfa in North America are recent colonists),
we suspect other factors are more important. First, the asym-
metry in our predictions, with consistent caterpillar-genetic
effects but not plant-genetic effects on performance between
common gardens, suggests a major role for plasticity in the
effect of plant genotype on caterpillar performance. This is not
surprising given considerable evidence that biotic and abiotic
environmental factors affect plant quality and plant defenses
in alfalfa (31) and other plants (50), but does mean genetic
variation in performance measured in the lab and common
garden might not strongly predict effects in specific natural
populations (51). Moreover, other biotic and abiotic factors
could contribute more to caterpillar growth and survival in
the wild, and some of these could interact with plant genotype.
For example, recent work has shown that the abundance of
ants, which tend Melissa blue caterpillars and thereby reduce
the threat from enemies (see image in Fig. 1), greatly increases
caterpillar survival and population persistence on alfalfa, with
ant abundance indirectly affected by alfalfa phytochemistry
(25, 52). In contrast to the complexity of plant effects, the
more consistent effects of caterpillar genetic variants raises the
possibility that the ability of herbivores to successfully utilize
plants might more readily evolve, while the ability of plants to
evolve defenses will be more contingent (on local environments,
etc.). This again supports a diffuse model of coevolution (49)
and could eventually help us understand the accumulation of
host-specific herbivores on plants through evolutionary time.

Beyond issues specific to herbivorous insects and their host
plants, genetic variation within species is important for host-
parasite interactions (53), including for example susceptibility
to parasitic diseases in humans and other animals being a
function of both genetic variation in the hosts and among
pathogen strains (54). However, as is the case for plant-insect
interactions, genomic investigations of other pairwise inter-
actions have rarely considered both species simultaneously,
but have focused on either the host or parasite. If epistatic,
among-species interactions were common (as assumed by the
gene-for-gene model of coevolution), the piecewise approach
(focusing on one interacting species rather than the pair) might
be a major roadblock to progress in understanding the evolu-
tion of these systems. However, if additivity and consistency
of polygenic effects hold generally, as documented in the plant
and herbivores studied here, a focus on one species in an inter-
action might not be misleading, and might inform predictive
models, but this hypothesis remains to be tested with other
interacting species.

Materials and Methods
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Establishing the primary common garden. We planted a common
garden comprising 1080 alfalfa plants at the Greenville Experimental
Farm near Logan, Utah (41.765° N, 111.814° W) in 2018 (Fig. Sla).
Seeds for this garden were collected from 11 naturalized alfalfa sites
in the western USA, including five sites where L. melissa are found,
and six sites lacking L. melissa butterflies (Table S1). An average
of 4.9 seeds were planted from each of 220 maternal plants (with
an average of 97.6 seeds planted from each site, SD = 8.6, range
= 77 to 105) (Table S1). See “Establishing the primary common
garden" in the SI for additional details.

Caterpillar husbandry and performance assays. We obtained L.
melissa eggs from gravid females collected from six sites between
June 16th and July 4th 2019 (Table S1). As in past work, gravid
females were caged with a few sprigs of host plant (M. sativa) and
allowed to lay eggs (17, 26, 28). Eggs were kept in a Percival in-
cubator (model no. 136VL) at 27°C with 14 hours light:10 hours
dark. Upon hatching, caterpillars were assigned randomly to feed
on a specific M. sativa plant. Each neonate caterpillar was carefully
transferred to a Petri dish with a sprig of fresh plant material (a
few leaflets) with the stem of the plant tissue wrapped in a damp
Kimwipe. We verified each caterpillar was alive and uninjured after
transfer. The Petri dish containing the caterpillar was then returned
to the incubator. Caterpillars were given fresh leaf tissue ad libitum
and were checked daily for survival, pupation and eclosion as adults.

As metrics of performance, we measured 8-day and 14-day cater-
pillar weight, and weight at pupation using a Mettler Toledo XPE105
analytical microbalance (Mettler Toledo). Weights were recorded
to the nearest 0.01 mg, and we took the mean of two indepen-
dent weight measurements. Lycaeides melissa caterpillars generally
spend 20 to 30 days as larvae (17), and weight and lifetime fecundity
are highly correlated in L. melissa (26). We then considered the
following nine performances metrics: 8-day caterpillar weight (mg),
14-day caterpillar weight (mg), weight at pupation (mg), survival to
8 days (binary), survival to 14 days (binary), survival to pupation
(binary), survival to adult (binary), total survival time (integer val-
ued), and truncated survival time (integer valued). For truncated
survival time, we truncated survival at the maximum number of
days required for any of the caterpillars to reach eclosion; this avoids
caterpillars that developed slowly but never pupated or eclosed from
having the longer survival times than caterpillar that successfully
eclosed as adults.

Generating the genetic data. We extracted DNA from 1236 M. sativa
plants and 1079 L. melissa caterpillars, pupae or adults reared on
these plants. We then generated partial genome sequences for each
organism using our genotyping-by-sequencing approach (23, 55);
this produced ~2.5 billion reads for M. sativa and ~2.5 billion
reads for L. melissa (see “DNA extraction and sequencing" in the
SI). We then aligned the DNA sequences to the M. sativa or L.
melissa genome and identified SNPs using samtools (versions 1.10),
beftools (version 1.9) and GATK (version 4.1) (56, 57) (see “DNA
sequence alignment and variant calling" in the SI). After filtering, we
retained 161,008 SNPs for M. sativa and 63,194 SNPs for L. melissa.
We then estimated genotypes using the Bayesian (ad)mixture model
implemented in entropy (version 2.0) (23, 58) (see “Inference of
genotypes and genetic variation" in the SI). Patterns of genetic
variation were then summarized with principal component analysis
(PCA), and by calculating measures of linkage disequilibrium (LD)
and genetic differentiation among samples from different source
populations (i.e., Fgr) (see “Inference of genotypes and genetic
variation" in the SI).

Preparing the caterpillar performance data for genetic mapping. We
removed potential confounding variation from the caterpillar perfor-
mance data prior to analyzing genotype-performance associations.
First, we regressed each of the nine caterpillar performance met-
rics on caterpillar hatch date (to control for temporal effects) and
source population (to control for potential non-genetic, e.g., mater-
nal environment, effects). This was done with the 1m function in R.
Next, we used distance-based Moran’s eigenvector maps to remove
possible effects of space (location) within the common garden. This
procedure involves creating spatial variables based on a PCA of
a truncated (nearest neighbors) Euclidean distance matrix (i.e., a
principal coordinates analysis), where distance was defined from the

Gompert etal.

spatial layout of the common garden (59). We then used forward
selection of variables following (60) to select spatial variables (eigen-
vectors) that explained the variation in each trait. Specifically, we
first tested for a significant (at P < 0.05) fit of a model with all of
the spatial variables. If and only if this full model was significant,
we began adding spatial variables to a null model one at a time
based on the extent to which they increased the total model 72.
This procedure continued until either: (i) the P-value for the most
recently added variable was > 0.05, (ii) the total 72 exceeded the
original 72 from the full model with all variables, (iii) adding the
new variable did not increase the model 2, or (iv) 200 spatial
covariates had been added. The final models explained 18 to 51% of
the variation in plant traits (mean = 35%) with 22 to 77 covariates
retained; however, a model with no spatial covariates was selected
for most caterpillar performance traits with 14-day weight being the
sole exception (20 covariates explaining 14% of the trait variation).
Scaled residuals from the final model for each trait were then used
for genetic mapping.

Multilocus genetic mapping of caterpillar performance. We tested for
associations between (i) M. sativa SNPs (161,008 SNPs), (ii) L.
melissa SNPs (63,194 SNPs), and (iii) SNPs from both species
combined (224,202 SNPs), and each of the nine caterpillar perfor-
mance metrics (i.e., the residuals from the models described in the
previous paragraph). We performed these analyses using Bayesian
sparse linear mixed models (BSLMMs), which we fit with gemma
(version 0.95alpha) (61). A key advantage of this approach for
gentoype-phenotype association analyses is that, unlike traditional
genome-wide association (GWA) mapping methods that test each
genetic marker separately, the BSLMM approach fits all SNPs in a
single model and thus mostly avoids issues related to testing large
numbers of null hypotheses. The BSLMM method assumes that
trait values are determined by a polygenic term and a vector of
the (possible) measurable effects of each SNP on the trait (8) (61).
Bayesian Markov chain Monte Carlo (MCMC) with variable selec-
tion is used to infer the posterior inclusion probability (PIP) for each
SNP, that is, the probability that each SNP has a non-zero effect or
association, and the effect size conditional on it being non-zero (62).
The polygenic term denotes each individual’s expected deviation
from the mean phenotype based on all of the SNPs. This term ac-
counts for phenotypic covariances among individuals caused by their
relatedness or overall genetic similarity (61). The kinship matrix
also serves to control for population structure and relatedness when
estimating effects of individual SNPs (3) along with their PIPs.
Similarly, SNPs in linkage disequilibrium (LD) with the same causal
variant effectively account for each other, such that only one or the
other is needed in the model, and this redundancy is captured by
the posterior inclusion probabilities. Moreover, in the context of our
study, mapping with plants grown from seed in a common garden
and caterpillars reared from eggs in growth chambers substantially
reduces some issues related to the confounding effects of population
structure, such as genotype-environment correlations, that com-
monly cause problems in human association-mapping studies (63)
and more generally in observational studies of human genetics (64).

The hierarchical structure of the model makes it possible to
estimate additional parameters that describe aspects of a trait’s
genetic architecture (17, 61, 62, 65). These include the percentage of
the phenotypic variance explained (PVE) by additive genetic effects
(which includes B and the polygenic term, and should approach the
narrow-sense heritability), the percentage of the PVE due to SNPs
with measurable effects or associations (PGE, the percentage of the
phenotypic variance explained by genic effects, which is based only
on ), and the number of SNPs with measurable associations (n-v).
All of these metrics use MCMC to integrate over uncertainty in the
effects of individual SNPs, including whether these are non-zero.
Lastly, using this BSLMM approach, it is also possible to obtain
genomic-estimated breeding values (GEBVs) or polygenic scores,
that is, the expected trait value for an individual from the additive
effects of their genes, as captured by both 8 and the polygenic term
(17, 65).

For each of the nine caterpillar performance metrics and three
genetic data sets, we conducted 10 MCMC runs with gemma, each
comprising 1 million iterations and a 200,000 iteration burn-in.
Every 10th MCMC sample was retained to form the posterior
distribution. Polygenic scores (i.e., genomic-estimated breeding
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values) were then calculated from the genetic data sets and model-
averaged effect estimates for each SNP locus; these incorporate the
polygenic term as is standard in genomic prediction methods (e.g.,
(66, 67)). Genetic covariance matrixes were computed from the
estimated polygenic scores.

As noted above, the kinship matrix and multilocus approach
of the BSLMM in gemma control for confounding effects of popu-
lation structure and relatedness when testing for individual SNP-
phenotype association, but nonetheless, this methods could fail to
fully capture complex patterns of structure (see, e.g., (63)). Thus,
to verify the robustness of our results, we fit additional models
using the BSLMM approach in gemma where we included the first
20 genetic PCs as potential covariates to further account for pop-
ulation structure. This was done as described above, except that
the analysis was only conducted for M. sativa and L. melissa SNPs
separately. We compared this to our main results both in terms of
the percentage of variation in performance explained by genetics
(PVE) and specific SNP-performance trait associations.

Direct tests of epistasic genetic effects on caterpillar performance.
We tested for epistatic interactions affecting caterpillar performance
among (i) the 161,008 M. sativa SNPs, (ii) the 63,194 L. melissa
SNPs, and (iii) the 224,202 SNPs from both species (this includes
within and between species epistatic interactions). We conducted
these tests with MAPIT (https:/github.com/lorinanthony/MAPIT) (68).
Exhaustive testing of all pairwise SNP-SNP interactions suffers from
low statistical power because of the large number of tests involved.
The statistical method in MAPIT overcomes the problem of low power
by instead testing for marginal epistatic effects, that is testing the
null hypothesis that a given SNP does not interact with any of the
other SNPs (i.e., that the variance component for epistatic effects
is 0) (68). This is done without trying to identify the specific SNPs
a focal SNP interacts with. We computed P-values for tests of
marginal epistasis using the recommended hybrid method that first
implements a z-test to compute a P-value and then re-computes
the P-value with the Davies method if the initial values is less than
0.05 (as in (18)).

For many of the survival traits, we observed an unexpected
excess of very low P-values, especially for L. melissa SNPs and
for 8 and 14-day survival (Fig. S30). We strongly suspect this is a
statistical artefact, especially as these measures constitute residuals
from integer or binary traits and the control kinship matrix consists
of relatedness based on plant and insect genetics, a combination of
complications that could be problematic for this method and inflate
type-1 errors (note that this differs from the BSLMM in gemma
where the multilocus approach allows SNPs to serve as controls
for each other). Given our concern that these results are not
biologically meaningful, we conservatively focus only on the weight
measurements when presenting these tests of epistasis, as these do
not appear to suffer from the same issue (see Figs. S12 and S13).

Even with the MAPIT method, a potential exists for tests of epis-
tasis to be underpowered, especially in terms of achieving strict,
genome-wide significance. Thus, we conducted additional analyses
using the BSLMM approach from gemma to test for associations be-
tween M. sativa and L. melissa genetics and caterpillar performance
but where we included pairwise epistatic effects among SNPs with
the most evidence of marginal epistasis from the MAPIT analyses
(similar to (18)). Our goal was to ask whether including these
additional epistatic terms improved the explantory power of the
model. In these analyses, we considered only the caterpillar weight
traits (for the reasons noted above). We included either (i) the top
150 SNPs with the lowest P-values for marginal epistasis within
species (for analyses with only M. sativa or L. melissa SNPs) or
(ii) the top 75 SNPs from each species with the lowest P-values
for marginal epistasis in the combined species analysis. We then
created new genetic covariates for all pairwise interactions between
pairs of the 150 SNPs (w = 11,175 potential epistatic effects).
We did this by taking the product of the centered and standardized
genotypes for each pair of loci. These were then included in the
BSLMM model for gemma (though not in the construction of the
kinship matrix, which was solely based on additive effects). We fit
these models as described above, except we increased the number of
MCMC iterations and burnin to 2 million and 400,000, respectively.
We then determined the total PVE in weight explained by the
models with additive and epistatic effects for M. sativa genetics,

10 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

L. melissa genetics, and both M. sativa and L. melissa genetics
combined.

Within-garden cross-validation and genomic prediction. We used 10-
fold cross-validation to assess our ability to predict performance
traits from M. sativa genetic data, L. melissa genetic data, and
the combined genetic data from M. sativa and L. melissa. To do
this, we first randomly assigned each observation to one of ten test
data sets. Then, for each test data set, we estimated genotype-
phenotype associations using gemma as described above, but based
only on the 90% of individuals not in that test data set. For this, we
used a single MCMC run comprising 1 million iterations, a 200,000
iteration burn-in, and a thinning interval of 10. We then used gemma
to predict the phenotypes of the 10% of individuals held back for
the test set (these individuals were not used to fit the model); this
was done with the predict option in gemma. We then quantified
predictive performance using the Pearson correlation between the
genomic predictions of each performance metric and the observed
values.

Gene Miller Life Science Garden set up and genomic prediction. We
further tested our ability to predict caterpillar performance trait
values from genotypes by generating genomic predictions of perfor-
mance for caterpillars reared on M. sativa from a second, smaller
common garden comprising 180 M. sativa—The Gene Miller Life
Science Garden (see “Establishing the Gene Miller Life Science
Garden" in the SI for details). We used leaf tissue from these
plants for rearing L. melissa caterpillars in the summer of 2019
exactly as described for the main common garden at the Greenville
Experimental Farm (see ‘Caterpillar husbandry and performance
assays’ above for details). This parallel experiment was conducted
at the same time as the main experiment. Plant and caterpillar
samples from this parallel experiment were sequenced along with
the samples from the Greenville Experimental Farm experiment.
We successfully obtained genetic data from 172 M. sativa and 156
caterpillars of the 180 involved in this experiment. These genetic
data were processed along with those from the main garden (see
‘DNA sequence alignment and variant calling’ above for details).

We then used the estimated, model-averaged effects from the
BSLMM fits in gemma from the main garden to predict performance
traits based on plant, caterpillar, or plant and caterpillar genotypes
for these individuals. We compared these genomic predictions
(i-e., polygenic scores computed from the main-garden models) to
the observed performance trait values for these caterpillars. This
was done using residuals after removing effects of hatch date and
block (i.e., plot) within the USU garden. As with the within-
garden cross-validation analyses described in the previous section,
predictive power was measured by the Pearson correlation between
the predicted and observed performance trait values.

Plant trait measurements and phytochemical analysis. We measured
a series of morphological traits potentially associated with plant
vigor or resistance to insects (e.g., putative structural plant
defenses) (17, 69, 70) for each of the 1080 M. sativa plants in the
Greenville Experimental Farm common garden: plant height, leaf
length, leaf width, leaf area, leaf shape, leaf weight, specific leaf
area, leaf toughness, trichome density, levels of herbivory on the
plants in the field, and 1750 plant chemistry metabolites, which were
quantified and characterized using liquid-chromatography combined
with mass spectrometry (LC-MS). See “Plant trait measurements"
and “Sample extraction and phytochemical analysis" in the SI for
details. We further annotated the 20 phytochemicals that were most
stronlgy associated with caterpillar performance (see “Structural
annotations of phytochemicals" in the SI).

Multilocus genetic mapping of plant traits. We tested for associations
between the M. sativa SNPs (161,008 SNPs) and 1760 plant traits:
leaf length, leaf width, leaf area, leaf shape, leaf weight, SLA,
trichome density, leaf toughness, plant height, field herbivory and
1750 metabolomic chemical features (see the previous two sections
for details). This was done using the 1080 M. sativa plants from the
main common garden at the Greenvile Experimental Farm in Logan,
UT. We first removed possible effects of spatial location within the
garden as captured by distance-based Moran’s eigenvector maps
using forward selection of variables (60), exactly as described for the
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caterpillar performance traits above (see ‘Preparing the caterpillar
performance data for genetic mapping’). As with the caterpillar
performance traits, genotype-plant trait associations were estimated
by fitting BSLMMs with gemma (version 0.95alpha) (61). For each
of the 1760 plant traits, we conducted 10 MCMC runs with gemma,
each comprising 1 million iterations and a 200,000 iteration burn-
in. Every 10th MCMC sample was retained to form the posterior
distribution. Polygenic scores were then calculated from the genetic
data sets and model-averaged effect estimates for each SNP locus.
Genetic covariance matrixes were computed from the estimated
polygenic scores. The model-fitting procedure was repeated with
1760 randomized plant trait data sets (i.e., values of each of the
original traits were permuted among plants) to verify that the
distribution genotype-phenotype associations from the real data set
differed from null expectations.

LASSO regression models. We used least absolute shrinkage and
selection operator (LASSO) regression to (i) identify the subset of
plant traits with polygenic scores that best predicted caterpillar-
performance polygenic scores and (ii) estimate the direction and
magnitude of these associations (see “LASSO regression models"
in the SI). We fit additional LASSO models (i) using PCs of the
1760 plant trait polygenic scores as covariates and (ii) to deter-
mine whether plant-trait polygenic scores could explain and predict
caterpillar performance at the phenotypic level. Lastly, we fit an
additional models to evaluate the extent to which plant-genetic
effects interacted with caterpillar genetics to affect performance (see
“LASSO regression models" in the SI).

Complementary USU greenhouse and Nevada common garden rear-
ing experiments. An additional rearing experiment was conducted
using M. sativa grown in a USU greenhouse to (i) replicate the gen-
eral effect of M. sativa genotype on caterpillar performance and (ii)
determine whether different plant genotypes had consistent effects
of caterpillar performance across different butterfly populations
and species (i.e., Colias eurytheme and Vanessa cardui). We per-
formed yet another rearing experiment with the same three species
of caterpillars using an experimental M. sativa garden experimental
garden at the University of Nevada, Reno (Fig. S1). Together, these
experiments provide additional tests of additivity versus epistasis
with respect to genetic differences among butterfly populations and
among deeply divergent species. See “Complementary USU green-
house experiment" and “Complementary Nevada common garden
rearing experiment" in the SI for details.
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