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Host-associated microbiomes play important roles in host health and pathogen 

defense. In amphibians, the skin-associated microbiota can contribute to innate 

immunity with potential implications for disease management. Few studies have 

examined season-long temporal variation in the amphibian skin-associated 

microbiome, and the interactions between bacteria and fungi on amphibian skin 

remain poorly understood. We  characterize season-long temporal variation in 

the skin-associated microbiome of the western tiger salamander (Ambystoma 

mavortium) for both bacteria and fungi between sites and across salamander life 

stages. Two hundred seven skin-associated microbiome samples were collected 

from salamanders at two Rocky Mountain lakes throughout the summer and fall 

of 2018, and 127 additional microbiome samples were collected from lake water 

and lake substrate. We used 16S rRNA and ITS amplicon sequencing with Bayesian 

Dirichlet-multinomial regression to estimate the relative abundances of bacterial 

and fungal taxa, test for differential abundance, examine microbial selection, and 

derive alpha diversity. We predicted the ability of bacterial communities to inhibit 

the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), a cutaneous 

fungal pathogen, using stochastic character mapping and a database of Bd-

inhibitory bacterial isolates. For both bacteria and fungi, we observed variation in 

community composition through time, between sites, and with salamander age 

and life stage. We further found that temporal trends in community composition 

were specific to each combination of salamander age, life stage, and lake. We found 

salamander skin to be selective for microbes, with many taxa disproportionately 

represented relative to the environment. Salamander skin appeared to select for 

predicted Bd-inhibitory bacteria, and we found a negative relationship between 

the relative abundances of predicted Bd-inhibitory bacteria and Bd. We  hope 

these findings will assist in the conservation of amphibian species threatened by 

chytridiomycosis and other emerging diseases.
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Introduction

Host-associated microbiomes can interact with their hosts in 

many ways. Specialized metabolites produced by microbes can 

influence various aspects of host biology (Sharon et al., 2014), 

and host production of antimicrobial peptides can in turn 

influence microbial community structure (McFall-Ngai et al., 

2013). Microbial communities are increasingly recognized as 

providing beneficial and necessary services for their hosts 

(Dethlefsen et al., 2007; Grice and Segre, 2011), and maintaining 

and restoring healthy microbiomes can be important for host 

health (Tosh and McDonald, 2012). Host-associated 

microbiomes can inhibit pathogens or parasites through 

competition, the activation of host immune responses, and the 

production of inhibitory secondary metabolites (Lee and 

Mazmanian, 2010; Britton and Young, 2014; Grunseich et al., 

2019). An imbalance in the host-associated microbiome can 

permit transient opportunistic pathogens and resident microbes 

with pathogenic potential to harm the host (Lee and 

Mazmanian, 2010).

Much attention has been given to the amphibian skin-

associated microbiome’s role in innate immunity for its potential 

in disease management (Walke and Belden, 2016). 

Chytridiomycosis is a devastating amphibian skin disease caused 

by the fungal pathogen Batrachochytrium dendrobatidis (hereafter 

Bd; Longcore et al., 1999; Skerratt et al., 2007). Because numerous 

amphibian skin-associated bacteria have been found to inhibit the 

growth of Bd, probiotic bioaugmentation and habitat management 

have the potential to influence susceptibility to chytridiomycosis 

(Harris et al., 2009; Kueneman et al., 2016a; Grant et al., 2018). A 

sound understanding of host-associated microbiomes and their 

natural range of variation is necessary to select effective probiotics 

for safe and successful probiotic bioaugmentation strategies (Bletz 

et al., 2013).

While amphibian skin-associated microbiomes are species-

specific, vary with life history stage, and are distinct from 

environmental microbiomes (i.e., soil, lake substrate, and lake 

water microbiomes), some variation in the microbiomes is 

attributable to location and abiotic water quality (McKenzie et al., 

2011; Kueneman et  al., 2013; Walke et  al., 2014; Bletz et  al., 

2017a,b; Ellison et al., 2019). The composition of skin-associated 

microbial communities has been found to vary between larval and 

metamorphosed life stages in both frog and salamander species, 

with community diversity being higher in the adults of these 

species than their larvae (Kueneman et al., 2013, 2016b; Sabino-

Pinto et  al., 2017). Temperature has been found to influence 

operational taxonomic unit (OTU) richness and the production 

of antifungal metabolites in amphibian skin-associated 

microbiomes (Daskin et al., 2014; Muletz-Wolz et al., 2019).

Although many studies have worked to characterize species-

specific and spatial variation in the amphibian skin-associated 

microbiome, fine-scale season-long temporal variation in natural 

systems remains a major gap in our knowledge of the amphibian 

skin-associated microbiome with few applicable studies 

(Sabino-Pinto et  al., 2017; Bletz et  al., 2017a). Since both Bd 

infection prevalence and amphibian skin-associated microbiomes 

show seasonal and year-to-year variation (Savage et  al., 2011; 

Longo et al., 2015; Familiar López et al., 2017; Douglas et al., 2021; 

Basanta et  al., 2022), season-long temporal variation in the 

amphibian skin-associated microbiome warrants investigation for 

its implications in disease management.

Using a database of amphibian skin-associated Bd-inhibitory 

bacterial isolates and their 16S rRNA gene sequences (Woodhams 

et al., 2015), Bletz et al. (2017a) found that despite significant 

changes in bacterial community structure on the skin of 

salamandrid newts, the relative abundances of bacteria with 

Bd-inhibitory potential did not change significantly during a 

12-week sampling period nor across life history stages in two of 

the three species studied. Sabino-Pinto et  al. (2017) found 

bacterial communities on the skin of two salamandrid newt 

species to change significantly between months, and also using the 

database of Woodhams et al. (2015), the study found the relative 

abundance of putative Bd-inhibitory bacteria to be higher on the 

skin of larvae compared to adults for one of the species. The 

database by Woodhams et  al. (2015) contains nearly 2,000 

bacterial isolates tested for Bd-inhibitory function in vitro assays, 

with about half of the isolates being from Central-South America. 

However, the application of this database to predict amphibian 

skin-associated microbiome Bd-inhibitory function is limited by 

our knowledge of how these bacterial isolates function on 

amphibian skin. Observing fungal responses to changes in 

bacterial abundances could assist in detecting bacterial-

fungal relationships.

Despite the focus of many amphibian skin-associated 

microbiome studies on bacteria, few studies have examined 

how bacteria interact with non-Bd fungal taxa and other 

microeukaryotes on amphibian skin (Kueneman et al., 2016b, 

2017; Belasen et  al., 2021). For example, Kueneman et  al. 

(2016b) found many correlations between bacterial and fungal 

taxa on the skin of the western toad (Anaxyrus boreas), and the 

authors proposed that larval stages of amphibians may depend 

on high relative abundances of antifungal bacteria to confer 

innate immunity before metamorphosis and the maturation of 

the host adaptive immune system (Rollins-Smith, 1998). 

Hence, the interactions between bacteria and fungi on 

amphibian skin may have substantial implications for host 

health and disease management.

Broadly, our study aims to investigate temporal variation in 

the amphibian skin-associated microbiome using the western tiger 

salamander (Ambystoma mavortium; hereafter salamander) as a 

model amphibian. In the Rocky Mountains of North America, the 

western tiger salamander serves as an apex predator in many 

fishless high alpine lakes. When the snow melts at these lakes, 

adult salamanders travel from upland to the lakes to breed, and 

some of these salamanders remain in the lakes throughout the 

early summer. During the summer months, eggs hatch and larval 

salamanders may follow several life history strategies, including 

metamorphosing during the same year as hatching, overwintering 
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as larvae and metamorphosing the following year, and becoming 

sexually mature in the larval stage as neotenes (Sexton and Bizer, 

1978). Due to their local abundance and the presence of at least 

one life stage throughout the warm months (June to September, 

hereafter warm season) at fishless high alpine lakes, the western 

tiger salamander is an ideal amphibian for consistently obtaining 

skin-associated microbiome samples throughout the warm season.

In this study, we first examine season-long temporal variation 

of both bacteria and fungi in the salamander skin-associated 

microbiome between sites and across life history stages, and 

we consider whether temporal trends are similar between sites and 

life stages. Based on these data, we identify differentially abundant 

microbes between salamander skin and the environment and 

compare the predictive ability of spatiotemporal and water quality 

covariates on microbial community composition. We then ask (i) 

whether variation in the salamander skin-associated microbiome 

influences predicted Bd-inhibitory function, and (ii) whether 

predicted Bd-inhibitory function is correlated with the relative 

abundance of Bd.

Materials and methods

Study sites

Salamanders were sampled from the largest of the Gibson 

Lakes (Franklin County, ID; 447,845 easting, 4,654,056 northing, 

NAD 83 UTM Zone 12; elevation: 2,579 m) and Ponds Lake 

(Summit County, UT; 503,020 easting, 4,503,670 northing, NAD 

83 UTM Zone 12; elevation: 3,058 m). These lakes were chosen for 

sampling due to their differences in geology, substrate, and water 

conditions. We chose to sample lakes with different environmental 

conditions in order to investigate whether temporal trends in 

microbiome composition on salamander skin were similar 

between different lake environments. Both lakes are fishless, have 

no tributaries or outlets, and are located in different subranges of 

the Rocky Mountains. Gibson Lakes is a ~ 2.5-ha shallow lake in a 

limestone basin of the Bear River Mountains. Patches of 

submerged vegetation cover much of the lake bottom, and the lake 

substrate is primarily composed of soft sticky mud. Ponds Lake is 

a ~ 2.3-ha lake in a granitic basin of the Uinta Mountains. The lake 

substrate is a thick layer of loose vegetative material, and some 

parts of the shoreline have floating mats of vegetation. The water 

in Ponds Lake is stained red with dissolved organic carbon.

In 2018, access to Gibson Lakes was blocked due to snow at 

lower elevations until June 9th, when salamander eggs were 

observed attached to submerged vegetation. By the next week, 

when field sampling began, most of the previously observed eggs 

had hatched. Data from NRCS SNOTEL sites (see 

Supplementary material) suggest that snow melted at both lakes 

at about the same time in 2018, possibly within days of each other, 

and snow typically melts at these lakes about a week apart. Based 

on these data, it is likely that salamanders laid eggs in 2018 at 

about the same time at both lakes.

Sampling design

To ensure that the sampled salamanders were distributed 

throughout the lakes, the lakes were sampled by strata. Gibson 

Lakes was assigned 4 strata and Ponds Lake was assigned 5 strata 

(Figure 1). The strata divide the lakes into regions based on natural 

landmarks for easy recognition in the field. Within a lake, all strata 

had roughly the same area, and their areas remained roughly the 

same as each other as water levels dropped throughout the warm 

season. Three age classes of salamanders could be distinguished 

based on length and weight measurements, age-0, age-1, and 

age-2+. These age classes were of distinctly different sizes, with the 

length and weight of each age class increasing throughout the 

warm season (Supplementary Figure S1). During each visit to a 

lake (hereafter sampling event), we collected up to 20 salamanders 

from each age class with a maximum of five and four salamanders 

per stratum at Gibson Lakes and Ponds Lake, respectively. Each 

lake was sampled every other week during the 2018 warm season. 

Sampling began shortly after snowmelt and continued until the 

lakes became too cold to safely catch salamanders. Sampling 

began at Gibson Lakes on June 16th and Ponds Lake on June 23rd. 

Gibson Lakes was too cold to sample on September 29th, marking 

the end of the field season.

Salamanders were considered larvae if they retained any of 

their larval gill structures, and salamanders were considered 

metamorphosed individuals once all traces of their gill structures 

were absorbed. For each age class, larval and metamorphosed 

individuals were encountered, which we refer to as life stages, and 

we refer to the six possible combinations of age class and life stage 

as stage classes. We expect most age-2+ individuals to be sexually 

mature adults, at which point gilled individuals are 

considered neotenes.

Data collection

Upon arriving at a lake, environmental microbiome samples 

and water quality data were collected. During the first visit to 

each lake, a location was selected just offshore in each stratum 

to collect these samples and data. These locations were chosen 

to have relatively homogeneous depths across strata and to 

minimize the distance which the sampling location would need 

to move with receding water levels. Water quality data was 

collected prior to collecting environmental microbiome 

samples to minimize disturbance to the water. Water 

temperature, pH, electrical conductivity, and dissolved oxygen 

(ppm and percent) were measured just below the water surface 

using handheld meters (Hannah Instruments HI98129 and 

HI9146). For sampling the lake water microbiome, 500 ml of 

lake water was collected from the water surface in a laboratory 

Nalgene bottle. Following collection of a lake water microbiome 

sample, a lake substrate microbiome sample was collected from 

the top ~10 cm of pond substrate using a small PVC clam gun. 

The substrate column was deposited into a 15-ml conical tube, 
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and excess water was decanted. The substrate was thoroughly 

stirred with a teasing needle, and ~ 1.5 ml of substrate was 

deposited into a sterile 2-ml microcentrifuge tube. The 

microcentrifuge tubes containing substrate samples were placed 

on ice in a cooler while in the field. New latex gloves were worn 

for each environmental microbiome sample, and the clam gun 

and teasing needle were rinsed with 95% ethanol between 

substrate samples. The clam gun and teasing needle were rinsed 

with 6% bleach solution followed by a thorough rinse with 

distilled water between sampling events. Nalgene bottles were 

rinsed thoroughly with distilled water and autoclaved for 

20 min at 121°C between holding lake water samples. During 

each sampling event, the depth of a predefined rock was 

measured to determine relative lake elevation, the water level 

of the lake relative to its height at the beginning of the 

warm season.

After collecting environmental microbiomes and water quality 

data for all strata, salamanders were captured for each stratum. 

Salamanders were collected by hand and dip net, and salamanders 

were stored in 5-gallon buckets filled with lake water. For each 

stratum, different age classes were stored in separate 5-gallon 

buckets to reduce the risk of smaller salamanders being harmed 

from predation or aggression from larger individuals. While 

storing salamanders from the same age class and stratum together 

in 5-gallon buckets could have allowed for microbial 

contamination between individuals, we  suspect that potential 

contamination between individuals was minimal for the following 

reasons. First, only a few individuals were stored together at a time 

(an average of 3.04 and maximum of five individuals). Second, the 

period of time which individuals were stored together was short 

(typically about 25 min). Finally, individuals tended to disperse 

themselves relatively evenly within the buckets, and contact 

between individuals and the ventral surfaces (the body region of 

interest) of others was rare.

Each salamander was handled with new latex gloves, and 

snout-vent length (SVL) and weight measurements were taken to 

verify age classes (Supplementary Figure S1). Sex was determined 

for age-2+ salamanders. The ventral surface of each salamander 

was rinsed with 50 ml of distilled water (Bletz et al., 2017a) to 

remove environmental material and transient microbes (Culp 

et  al., 2007; Lauer et  al., 2007), and the salamander’s ventral 

surface was swabbed with a sterile rayon-tipped swab (MW113 

Medical Wire and Equipment, Corsham, United  Kingdom). 

Swabbing was performed by stroking the swab across the ventral 

surface ten times (one time = an up and back stroke along the full 

length of the belly; Bletz et  al., 2017a). Swabs used to sample 

salamander skin-associated microbiomes were stored in individual 

sterile 2-ml microcentrifuge tubes and placed on ice in a cooler 

while in the field. After processing salamanders for a stratum was 

complete, the salamanders were released back into the stratum, 

and salamander collection began at the next stratum. While it is 

possible that salamanders sampled in one stratum may have been 

sampled again in another stratum during the same sampling 

event, few salamanders were observed to have swum far from their 

point of release, which was away from stratum borders.

For each sampling event, the lake was surveyed for 

salamanders for a minimum of 5 person-hours divided evenly 

among the lake’s strata. Salamanders were processed after the 

stratum minimum sampling time was reached or the maximum 

number of individuals from all available age classes had been 

FIGURE 1

Strata for Gibson Lakes (left) and Ponds Lake (right). Images of (A) a young-of-year larval salamander and (B) a metamorphosed adult salamander.
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collected, and the search for salamanders then proceeded to the 

next stratum. After field sampling and while still at the lake, wet 

and dry negative control swabs were taken. Wet control swabs 

were sprayed with 50 ml of distilled water, and nothing was done 

to the dry control swabs. Wet and dry control swabs were placed 

in individual sterile 2-ml microcentrifuge tubes and stored on ice 

in a cooler while in the field.

Following field sampling and on the same day, lake water 

samples were prefiltered through a 5.0-μm prefilter membrane to 

remove debris followed by filtration with a 0.22-μm filter 

membrane to catch microbes (Millipore Sigma SVLP02500 and 

GSWP04700, respectively). Multiple 5.0-μm prefilter membranes 

were used for each water sample as necessary, whereas samples 

which experienced clogging on the 0.22-μm filter membrane 

(three samples) were discarded. Following filtration, 0.22-μm filter 

membranes were folded and stored in 2-ml microcentrifuge tubes. 

For autoclavable filtration equipment, the equipment was rinsed 

thoroughly with distilled water between water samples followed 

by autoclaving for 20 min at 121°C. Non-autoclavable filtration 

equipment was rinsed with 6% bleach solution followed by a 

thorough rinse with distilled water between water samples. Every 

four or five sampling events, five 500-ml distilled water samples 

were filtered as negative controls.

All samples were transferred to a −80°C freezer for storage, 

and the typical time from field collection to freezer storage was 

about five-and-a-half hours. Salamanders were collected, stored, 

handled, and released according to an approved Utah State 

University Institutional Animal Care and Use Committee protocol 

(#2798), a Utah Division of Wildlife Resources Certificate of 

Registration (#2COLL10232), and an Idaho Department of Fish 

and Game Wildlife Collection/Banding/Possession Permit 

(#180110).

DNA extraction and library preparation

DNA was extracted with the DNeasy PowerSoil Pro Kit 

(Qiagen, Inc.) following the manufacturer’s protocol, and 12 

empty extractions were performed as blank negative controls. 

Substrate samples were centrifuged for 30 s at 10,000 × g, excess 

liquid was removed with a pipette, and a scoopula was used to 

collect 250 mg of substrate from each sample for DNA extraction. 

Water sample filter membranes were finely diced using scissors 

and forceps into reagent reservoirs before being transferred to 

DNA extraction tubes. Swab samples were transferred to DNA 

extraction tubes using a different pair of forceps than that used for 

water samples. Pre-DNA extraction sample preparation work was 

performed under a fume hood, and the scoopula, scissors, and 

forceps were rinsed with 95% ethanol, flamed, and rinsed 

thoroughly with distilled water between samples. Reagent troughs 

were rinsed thoroughly with distilled water and autoclaved for 

20 min at 121°C between water samples.

Following DNA extraction, two samples of ZymoBIOMICS 

Microbial Community DNA Standard (Zymo Research D6305) 

were added as mock community positive sequencing controls. 6 μl 

of a control oligo pool was added to 30 μl of full concentration DNA 

extract. The control oligo pool contained 0.01 pg/μl each of 16S and 

ITS well-specific cross contamination oligos (hereafter coligos; 

Hawkins et al., 2018) and 0.03 pg/μl each of 16S and ITS synthetic 

genes (hereafter synthgenes; Tourlousse et al., 2017). The addition 

of fixed amounts of 16S and ITS synthgenes to a constant volume 

of each sample’s DNA extract will be used later in estimating the 

amount of microbial DNA in each sample. Sample DNA 

concentrations were measured via absorption and normalized to 

10 ng/μl with an automated liquid handler. Combinatorial dual 

indexing was performed on the samples with two-stage polymerase 

chain reaction (PCR). First stage PCR amplified the 16S rRNA and 

ITS genetic barcoding regions, added unique dual index 

combinations to each sample, and added a portion of the Illumina 

Nextera adapter. For each sample, two first-stage PCR replicates 

were performed and subsequently pooled. Second stage PCR 

completed Illumina adapter addition. The 16S rRNA V4 region was 

amplified using the primers 515F (forward; Parada et al., 2016) and 

806R (reverse; Caporaso et al., 2011). The ITS1 region was amplified 

using the primers ITS1-F (forward; Gardes and Bruns, 1993) and 

ITS2 (reverse; White et al., 1990). A modified AxyPrep MagBead 

PCR Clean-up protocol was used to purify the amplified DNA after 

each PCR reaction. Library preparation occurred at the University 

of Wyoming Genome Technologies Laboratory (Laramie, WY). See 

Supplementary material for library preparation details.

DNA sequencing and processing

Paired-end DNA sequencing of pooled amplicon product was 

performed on both Illumina MiSeq (v3 600-cycle kit, 2 × 300 base 

pair [bp] reads) and Illumina NextSeq (v2 300-cycle kit, 2 × 150 bp 

reads) platforms at the Utah State University Center for Integrated 

Biosystems (Logan, UT). Both sequencing platforms offer their 

own advantages for 16S and ITS amplicon sequencing, where 

Illumina MiSeq produces longer but fewer reads than Illumina 

NextSeq. The longer MiSeq sequences provide greater taxonomic 

resolution, and the greater number of NextSeq sequences reduces 

uncertainty in relative abundance estimates. We  leverage the 

benefits of both sequencing platforms by using the longer-length 

MiSeq sequences as study-specific 16S and ITS reference libraries 

to enhance the taxonomic resolution of our shorter but more 

numerous NextSeq sequences. Illumina MiSeq produced 19 

million paired-end reads, and Illumina NextSeq produced 187 

million paired-end reads.

MiSeq reads were partitioned into 16S and ITS datasets based 

on their primer regions using a custom Perl script (version 5.18.1; 

see Data Availability for script), and index tags were removed. 

Since variable length index tags were used, MiSeq reads were 

trimmed to 290 bp using cutadapt (version 2.10; Martin, 2011) to 

ensure that non-overlapping sequences did not appear different 

simply due to read length. Using cutadapt, read pairs that 

contained Ns were removed, and forward primers and reverse 
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complements of reverse primers were trimmed (with a maximum 

error rate of 0.15, a minimum trimmed length of 1 bp, and 

discarding untrimmed read pairs), with trimming the reverse 

primer’s reverse complement being required for 16S read pairs. 

Variable length index tags reduce amplicon sequencing error on 

Illumina platforms by increasing heterogeneity in the composition 

of bases called in each cycle (Fadrosh et al., 2014).

The DADA2 bioinformatics pipeline (version 3.10; Callahan 

et al., 2016) was used in the R statistical software program (version 

4.0.2; R Core Team, 2020) for quality filtering, phiX removal, 

denoising, merging pairs, chimera removal, and taxonomic 

assignment of MiSeq reads (see Supplementary material for 

details). While 16S reads were of appropriate lengths for merging 

pairs, the variable length of the ITS region resulted in both 

overlapping and non-overlapping read pairs. DADA2 has the 

ability to work with both overlapping and non-overlapping read 

pairs, allowing for the retention of fungal taxa with long ITS genes. 

Overlapping ITS read pairs were merged, while non-overlapping 

ITS read pairs were retained in the pipeline as concatenated 

sequences with 10-N spacers, which DADA2’s implementation of 

the naïve Bayesian classifier is designed to work with. DADA2’s 

naïve Bayesian classifier (Wang et al., 2007) was used to classify 

unique sequences in the MiSeq 16S and ITS datasets using Silva 

(version 138; Quast et al., 2012) and UNITE (general dynamic 

FASTA release for fungi; version 8.2; Nilsson et al., 2019) reference 

libraries, respectively. To create study-specific 16S and ITS 

reference libraries, NextSeq-length forward and reverse reads were 

created from the classified MiSeq 16S and ITS sequences, and 

consensus taxonomies and MiSeq-length sequences (for 

predicting Bd-inhibitory function) were generated for duplicate 

reference read pairs (see Supplementary material for details). 

Integers were appended to reference taxa names to differentiate 

each amplicon sequence variant (ASV) associated with a taxon.

NextSeq reads were assigned to PCR replicate, barcode region, 

and sample (i.e., reads were demultiplexed) using Perl while 

allowing 1 bp mismatches in the index tags (index tags were 

designed to differ by at least 2 bp). Allowing 1 bp mismatches in 

the index tags allows reads which experience sequencing error in 

the index tag regions to be  retained if the index tags can still 

be uniquely identified. We note that allowing sequencing errors in 

index tag regions is not uncommon during demultiplexing. For 

example, demultiplexing in cutadapt and QIIME 2 (qiime 

cutadapt demux-paired command; version 2022.8; Bolyen et al., 

2019) allow for 10% mismatches in index tags by default. 

Following demultiplexing, phiX reads were discarded and index 

tags were removed using Perl. The following steps were performed 

sequentially on the NextSeq reads using cutadapt: reads were 

trimmed to 140 bp to make all reads the same length, read pairs 

with Ns were removed, forward primers and reverse complements 

of reverse primers were trimmed (with the same settings as the 

MiSeq data but without requiring trimming of the reverse primers’ 

reverse complements).

Using exact matching in R, 21.4 million of 54.3 million 

NextSeq 16S reads were identified to 15,792 reference sequences, 

and 60.4 million of 113.9 million NextSeq ITS reads were 

identified to 3,488 reference sequences. Of the identified NextSeq 

sequences, 17.0% of 16S sequences were coligos or the synthgene, 

and 79.5% of ITS sequences were coligos or the synthgene. All 

samples were checked for between-well cross contamination 

through use of the coligos. Three salamander samples and one 

blank control sample were removed from the 16S dataset due to 

high amounts of between-well contamination (having a ratio of 

any contaminant coligo to non-contaminant coligo greater than 

0.1 after summing coligo read counts across PCR replicates). Two 

salamander samples were removed from the ITS dataset due to 

lack of detection of any non-synthgene and non-coligo sequences 

in both PCR replicates. Coligos were removed from the datasets 

for all subsequent analyses. In the mock community samples, 

we  observed strong amplification bias in the ITS data 

(Supplementary Figure S2), and one fungal taxon was split into 

three substantial ASVs. In an effort to mitigate the potential 

impact of fungal taxa being split into multiple ASVs, we merged 

fungal ASVs which were assigned the same taxonomy into the 

same taxa. We chose to forego rarefaction of our samples as it 

increases uncertainty in relative abundances (McMurdie and 

Holmes, 2014).

We performed principal component analyses (PCAs) on 

the proportional abundances of taxa across PCR replicate and 

sample type (Supplementary Figures S3–S5). Taxa proportional 

abundances within samples were similar across PCR replicates, 

so read counts were summed across PCR replicates for each 

sample. There were ten salamander samples which grouped 

closely with wet swab and dry swab negative controls in the 

16S PCAs on sample type, so these samples were removed 

from the 16S data for all subsequent analyses. Following 

Harrison et  al. (2021), we  used synthgene read counts to 

calculate the amount of microbial DNA in each sample relative 

to the synthgene (i.e., microbial read count divided by 

synthgene read count), and we  compared the amount of 

microbial DNA in field samples to their associated negative 

controls (Supplementary Figure S6). Synthgenes were 

subsequently removed from the datasets. The final datasets for 

our field samples contained 15,690 bacterial taxa (6,529 for 

salamander, 8,873 for water, and 14,591 for substrate) and 469 

fungal taxa (289 for salamander, 224 for water, and 413 

for substrate).

Water quality between sites and through 
time

To examine how water quality changed throughout the warm 

season, we fit a linear mixed-effects model for each water quality 

parameter (i.e., temperature, pH, conductivity, and dissolved 

oxygen [ppm and %]) using the lmerTest R package (version 3.1.3; 

Kuznetsova et al., 2017). In these linear mixed-effects models, 

stratum was treated as a random effect, and site, week, and their 

interaction were included as fixed effects. Stratum was coded with 
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nine values representing the four strata in Gibson Lakes and the 

five strata in Ponds Lake. Site was treated as a categorical predictor, 

and week was treated as a continuous predictor. Week represented 

the number of weeks since June 9th, 2018. Water quality 

measurements are displayed in Supplementary Figure S7.

Predicting Bd-inhibitory function

A database of amphibian skin-associated microbiome 

Bd-inhibitory bacterial isolates (Woodhams et al., 2015) was used 

to predict which bacteria observed in our datasets exhibit 

Bd-inhibitory properties (see Supplementary material for details). 

We trimmed sequences in the database of Woodhams et al. (2015) 

to the 16S rRNA V4 region using our 16S amplification primers 

with R, and we aligned the MiSeq 16S sequences of taxa detected 

in our NextSeq 16S field samples with the Woodhams et al. (2015) 

sequences using Clustal Omega (version 1.2.4; Sievers et al., 2011). 

We used FastTree 2 (version 2.1.11; Price et al., 2010) to create a 

phylogenetic tree, and we used stochastic character mapping with 

the make.simmap function in the phytools package (version 

0.7.70; Revell, 2012) to predict the Bd-inhibition statuses of our 

observed taxa. Stochastic character mapping extends ancestral 

state reconstruction to probabilistically predict unobserved traits 

at the tips of a phylogenetic tree (Bollback, 2006). While existing 

applications of the Woodhams et  al. (2015) database tend to 

employ local alignment or clustering methods to classify bacterial 

taxa as “potentially” Bd-inhibitory (e.g., Kueneman et al., 2016b; 

Bletz et al., 2017a; Kruger, 2020), stochastic character mapping 

provides the benefit of yielding probabilistic predictions that 

bacterial taxa are actually Bd-inhibitory. We  further note that 

extended ancestral trait reconstruction is commonly applied in 

predicting the metabolic function of gut microbiomes (Langille 

et al., 2013). We visualized our phylogenetic tree with the posterior 

probabilities of our taxa being Bd-inhibitory using the Interactive 

Tree of Life (Supplementary Figure S8; version 6.5.4; Letunic and 

Bork, 2021).

The vast majority of our taxa had low confidence in their 

Bd-inhibition statuses (99.5% of posterior probabilities were 

between 47.9 and 52.5%), whereas most posterior probabilities 

which were < 40% or > 60% were also ≤10% or ≥ 90% (33 of 39). 

Therefore, we considered our bacterial taxa to be Bd-inhibitory if 

their posterior probabilities of Bd-inhibition were ≥ 90%, and 

we considered our bacterial taxa to be non-Bd-inhibitory if their 

posterior probabilities of Bd-inhibition were ≤ 10%. Otherwise, 

we  considered our bacterial taxa to have an uncertain 

Bd-inhibition status.

Microbial composition modeling

For both bacterial and fungal communities, we fit Bayesian 

Dirichlet-multinomial regression models to the salamander, 

water, and substrate microbiome data to identify differentially 

abundant microbes and to evaluate differences in overall 

community composition. Bayesian Dirichlet-multinomial 

regression estimates the effect of covariates on a set of proportions 

which sum to one (i.e., a simplex) and uses a set of counts as a 

multivariate response. In the context of microbiome data, the 

model uses read counts to estimate the expected proportional 

abundances of microbial taxa in the community, and the model 

considers the underlying uncertainty in each sample’s 

composition, which is dictated by the sample’s total read count 

(i.e., its sampling effort). Bayesian Dirichlet-multinomial models 

outperform other analyses of compositional data in detecting 

differences in community composition, and the model further 

allows for the identification of the taxa responsible for those 

differences (i.e., the model allows for differential abundance 

testing; Harrison et al., 2020).

Our Bayesian Dirichlet-multinomial regression model was 

adapted from the Bayesian Dirichlet regression model of 

Sennhenn-Reulen (2018), and we  used backwards variable 

selection by widely applicable information criterion (WAIC) to 

optimize predictive accuracy. WAIC is a Bayesian analog to AIC 

and approximates the predictive accuracy of leave-one-out cross-

validation (Gelman et al., 2014). In our model, sample read counts 

are distributed according to the Dirichlet-multinomial 

distribution. Each taxon receives a linear predictor combination, 

and the softmax function (a multivariate inverse logit) normalizes 

linear predictor combinations for all taxa into expected 

proportions. The last taxon serves as a reference category, and its 

intercept and regression coefficients are set to zero to allow for 

model identifiability. A precision parameter controls the degree of 

overdispersion relative to the multinomial distribution. See 

Supplementary material for model details.

Our Bayesian Dirichlet-multinomial regression models were 

computationally intensive to fit, with the number of model 

parameters and model run time increasing with the number of 

taxa included. To keep model run-times practical, we opted to 

select the 100 most proportionally abundant taxa from the 

salamander samples, plus an “other” category, for inclusion in the 

composition models. To select these taxa, we  calculated the 

proportion of reads of each taxon in each salamander sample. For 

each barcode region (i.e., 16S or ITS), we  then averaged each 

taxon’s proportion of reads by combinations of site and life stage. 

We then averaged across these averages, and we took the 100 taxa 

with the highest averaged proportion of reads for each barcode 

region for use in modeling. Other taxa which were not included 

in the top  100 for each barcode region had their read counts 

merged into an “other” category. By weighting each combination 

of site and life stage equally (i.e., by taking averages of averages) in 

selecting the top 100 taxa, we ensured that the top 100 taxa were 

not dominated by taxa from one site or life stage simply due to 

differences in sample size. Including the “other” category in the 

models ensures that the proportional abundances of the top 100 

taxa remain unbiased. We chose to select the top 100 taxa because 

these comprise the vast majority of reads in salamander samples 

(93.1% of bacterial and 98.6% of fungal reads). As such, we expect 
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variation in the composition of these taxa to represent most of the 

variation in community composition. Additionally, following 

initial testing, we  deemed including 101 categories in the 

composition models (the top 100 taxa plus the “other” category) 

to be near the upper reasonable limit of our computing capacity 

on a high-performance computing cluster. Ultimately, our 

Bayesian Dirichlet-multinomial regression models, coupled with 

our backwards variable selection approach, took 785 CPU days to 

run. Datasets used in the modeling of water and substrate 

microbial communities included the same taxa as used for the 

salamander modeling, plus their own “other” categories. 

Proportional abundance estimates from Bayesian Dirichlet-

multinomial regression models for water and substrate are later 

used to identify microbes which are disproportionately abundant 

on salamander skin relative to the environment. Since not all top 

microbial taxa in the salamander samples were detected in the 

water and substrate samples, the water and substrate datasets used 

in modeling had fewer than 101 taxa.

As water quality was highly correlated with space and time 

(Supplementary Figure S7), we fit models with two different sets 

of predictors. One predictor set included spatiotemporal 

covariates, while the other predictor set substituted spatiotemporal 

covariates with water quality. The spatiotemporal predictor set 

included four-way interactions between age, life stage, site, and a 

second-degree polynomial for week, all lower-level interactions, 

and the individual predictors. Stratum was also included as a 

predictor and treated as a hierarchical effect. The water quality 

predictor set included a five-way interaction between age, life 

stage, temperature (°C), pH, and dissolved oxygen (ppm), all 

lower-level interactions, and the individual predictors. Models for 

water and substrate lacked age and life stage predictors. Site and 

life stage were treated as categorical predictors, and age and week 

were treated as continuous predictors. Age took whole integers 

from zero (age-0) to two (age-2+), and week represented the 

number of weeks since June 9th, 2018.

Bayesian Dirichlet-multinomial regression models were fit in 

Stan (version 2.21.0; Carpenter et al., 2017) using the rstan R 

interface (version 2.21.2; Stan Development Team, 2020) with 

four Hamiltonian Monte Carlo (HMC) chains, 500 warmup 

iterations, 500 sampling iterations, and no thinning. Stan was 

chosen for its efficient HMC algorithm, and HMC chains were 

run in parallel on a University of Utah high-performance 

computing cluster. Gelman-Rubin convergence diagnostics (
∧
R ) 

and trace plots of the posteriors were used to assess model 

convergence. Since interpreting the effect of Dirichlet-

multinomial regression coefficients on proportional abundances 

is not straightforward (see Supplementary material for a 

discussion), we opted for a graphical interpretation of the best-fit 

models (i.e., the models selected by backwards variable selection). 

We generated posterior predictions of proportional abundances 

for each combination of non-stratum predictors observed in the 

datasets, where predictions were for the average stratum (see 

Supplementary material for prediction details). The posterior 

predictions of taxa proportional abundances were summarized 

with 95% credible intervals, 50% credible intervals, and their 

median values.

For salamander microbiomes, Hill’s diversity index with α = 2 

(Haegeman et al., 2013) was derived from the posterior predictions 

of taxa proportional abundances. By treating Hill’s diversity as a 

derived parameter from the Bayesian Dirichlet-multinomial 

regression models, we propagated the uncertainty associated with 

taxa proportional abundances to our diversity index. We chose 

Hill’s diversity (α = 2) as our alpha diversity index because it is 

insensitive to the many rare taxa expected in microbial 

communities, and can therefore be  robustly estimated from 

microbiome data (Haegeman et  al., 2013). Because of its 

insensitivity to rare taxa, we expected our grouping of rare taxa 

into an “other” category in the Bayesian Dirichlet-multinomial 

regression models to have a negligible impact on Hill’s diversity. 

We tested this expectation in the context of our data as follows. By 

grouping rare taxa into an “other” category, we created a situation 

of maximum unevenness within the group (i.e., the entire 

abundance of the “other” category was composed of a single 

taxon). We evaluated the sensitivity of Hill’s diversity to rare taxa 

by considering how evenly distributing the abundance of the 

“other” category across all of its member taxa influenced the 

index. For each HMC sample, we split the proportional abundance 

predictions of the “other” category into its individual members 

with uniform proportional abundances. We then re-derived Hill’s 

diversity and compared the posterior medians with the original 

values. After excluding a single combination of stage class and 

sampling event for bacterial communities, we observed a very 

strong correlation in Hill’s diversity estimates between the two 

methods (Pearson correlation coefficient of >0.999 for both 

bacteria and fungi). The excluded combination of stage class and 

sampling event was age-0 metamorphosed salamanders at Gibson 

Lakes on September 15th, which had a high proportional 

abundance of “other” bacterial taxa (posterior median of 0.196) 

and whose diversity estimate was found to be  sensitive to the 

grouping of rare taxa into an “other” category (Hill’s diversity 

increased by 226.6% in the described test). We  removed this 

combination of stage class and sampling event from our Hill’s 

diversity estimates for bacteria so that all remaining diversity 

estimates were reliable. The posterior distributions of Hill’s 

diversity were summarized with 95% credible intervals, 50% 

credible intervals, and their median values.

To estimate the Bd-inhibitory function of bacterial 

communities, we summed the read counts of bacteria belonging 

to each Bd-inhibition category within each sample, and we fit 

additional Bayesian Dirichlet-multinomial regression models for 

salamander, water, and substrate samples with three response 

categories representing the Bd-inhibition statuses (i.e., 

Bd-inhibitory, non-Bd-inhibitory, and uncertain Bd-inhibition 

status). These models used the spatiotemporal predictor set, and 

backwards variable selection by WAIC was again used to optimize 

predictive accuracy. We again generated posterior predictions of 

proportional abundances for each combination of non-stratum 

predictors observed in the datasets, where predictions were for the 



Goodwin et al. 10.3389/fmicb.2022.1020329

Frontiers in Microbiology 09 frontiersin.org

average stratum. We summarized the proportional abundances of 

each Bd-inhibition category with 95% credible intervals, 50% 

credible intervals, and their median values.

To examine which taxa and Bd-inhibition categories were 

disproportionately abundant on salamander skin relative to the 

environment, we  considered the proportional abundance of 

microbes that salamanders experience in their environments to 

be  a mixture between water and substrate proportional 

abundances, with the mixing ratio being a product of salamander 

behavior. Although we do not know this ratio, we expect that the 

result of this mixture is between the lower of the 0.025 quantiles 

(the lower ends of the 95% credible intervals) and the upper of the 

0.975 quantiles (the upper ends of the 95% credible intervals) of 

the proportional abundance posterior predictions from water and 

substrate Bayesian Dirichlet-multinomial regression models, and 

we consider this range to represent the proportional abundance of 

a taxon or Bd-inhibition category in the environment. In 

determining this range, if a taxon was not detected in the water or 

substrate samples, and therefore was not included in the Bayesian 

Dirichlet-multinomial regression modeling for that sample type, 

it was considered to have 0.025 and 0.975 quantiles of proportional 

abundance predictions for that sample type of zero. The end result 

is that, if the proportional abundance of a taxon on salamander 

skin is higher than this range, then the taxon is disproportionately 

more abundant on salamander skin compared to both water and 

substrate. Conversely, if the proportional abundance of a taxon on 

salamander skin is lower than this range, then the taxon is 

disproportionately more abundant in both water and substrate 

than on salamander skin.

Relationship between Bd-inhibitory 
bacteria and Bd

We detected Bd from ITS amplicon sequencing (i.e., there 

were fungal microbiome reads which were classified as Bd) on 

salamander skin at both lakes, and since Bd was absent in all 

negative control samples, we are confident that this was not the 

result of contamination. To verify that fungal microbiome reads 

which the naïve Bayesian classifier assigned to Bd were likely 

classified correctly, we performed an online nucleotide BLAST 

search (Zhang et al., 2000) with default settings for each of the 

25 Bd ASVs which were previously merged into the Bd taxon. For 

each Bd ASV, the best-matching BLAST hit (the match with the 

lowest E-value) was a reference sequence belonging to Bd. 92% 

of Bd ASVs had 96.7% similarity or greater compared to their 

best-matching Bd reference sequence, and all ASVs had at least 

94.5% similarity compared to their best-matching Bd 

reference sequence.

We tested for a relationship between the relative abundances 

of Bd-inhibitory bacteria and Bd on the skin of metamorphosed 

salamanders by fitting a Bayesian beta-binomial regression model 

with a logit link. We restricted this analysis to metamorphosed 

individuals because cutaneous Bd infections do not typically 

produce disease in larval amphibians (Marantelli et al., 2004). In 

our samples, Bd was detected on the skin of only 2.2% of larval or 

neotenic individuals (3 of 139) compared to 57.6% of 

metamorphosed individuals (38 of 66). The Bayesian beta-

binomial regression model can be viewed as a univariate version 

of our earlier Bayesian Dirichlet-multinomial regression model. 

The Bayesian beta-binomial regression accounts for uncertainty 

in response values (i.e., the proportional abundance of Bd in 

fungal communities) by considering Bd read counts to be beta-

binomially distributed, and a precision parameter controls the 

degree of overdispersion relative to the binomial distribution. Our 

model additionally accounts for uncertainty in the predictor 

values (i.e., the proportional abundance of Bd-inhibitory bacteria 

in bacterial communities) by estimating predictor values within 

the model from Bd-inhibitory read counts. Within the model, 

Bd-inhibitory read counts are beta-binomially distributed, and the 

logit linearizes Bd-inhibitory proportional abundance estimates 

for use as predictor values. See Supplementary material for model 

details. The model was fit in JAGS (version 4.3.0; Plummer, 2003) 

using the rjags R interface (version 4.10; Plummer, 2019) with 

three Markov chain Monte Carlo (MCMC) chains, 20,000 

adaptation iterations, 20,000 warmup iterations, 100,000 sampling 

iterations, and no thinning. Gelman-Rubin convergence 

diagnostics and trace plots of the posteriors were used to assess 

model convergence.

Results

Field sampling

We observed higher amounts of microbial DNA in field 

samples compared to their associated negative controls 

(Supplementary Figure S6). Total sample counts are included in 

Table  1, and a breakdown of salamander skin-associated 

microbiome samples are displayed in Figure 2. The residency of 

different salamander age classes varied through time, and age-0 

salamanders were too small to sample during the early 

warm season.

TABLE 1 Microbiome sample counts.

Format Type Count

Swab Salamander 207

Wet negative control 11

Dry negative control 13

Water Sample 60

Negative control 20

Substrate Sample 67

Blank Negative control 12

Mock community Positive control 2

Total 392
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Based on observed sizes of males and females, most age-2+ 

salamanders – and only age-2+ salamanders – are thought to 

have been adults. Males develop swollen cloacas once sexually 

mature (Stebbins, 2003), and only one non-male age-2+ 

salamander (83 mm SVL; assumed to be female) had an SVL less 

than the smallest male (84 mm), with other small age-2+ 

salamanders in the range of 85 to 87 mm SVL being a mix of 

males (3) and females (4). Given the overlap in size between 

males and females, few subadults are expected to have been 

included in the age-2+ age class since male salamanders of this 

size were showing clear signs of sexual maturity. The absence of 

swollen cloacas from all age-0 and age-1 individuals suggests that 

only age-2+ individuals were sexually mature. 23 of 55 (41.8%) 

of sexed age-2+ salamanders were male (36.0% for Gibson Lakes 

and 46.7% for Ponds Lake).

Parameter estimates, test statistics, and p-values from the 

linear mixed-effects models for water quality are reported in 

Supplementary Table S1. These models included stratum as a 

random effect, and site, week, and their interaction were included 

as fixed effects. From the linear mixed-effects models, all water 

quality parameters (i.e., temperature, pH, conductivity, and 

dissolved oxygen [ppm and %]) changed significantly throughout 

the warm season (values of p ≤ 0.05 for all regression coefficients 

for week). We found a significant effect of site for all water quality 

parameters besides temperature, and we  found significant 

interactions between site and week for conductivity and dissolved 

oxygen (both ppm and %). These results suggest that we were 

unable to detect differences in water temperature between Gibson 

Lakes and Ponds Lake, and temperature at both lakes decreased 

throughout the warm season (βweek = −0.713, value of p < 0.001). pH 

was lower at Ponds Lake compared to Gibson Lakes (βsite = −1.048, 

value of p < 0.001) and increased throughout the warm season at 

both lakes (βweek = 0.053, value of p < 0.001; non-significant 

interaction between site and week, value of p = 0.147). For 

conductivity and dissolved oxygen (both ppm and %), temporal 

trends were dependent on the lake (p-values ≤0.05 for all site, 

week, and interaction regression coefficients). Field measurements 

of water quality are shown in Supplementary Figure S7.

Predictions of Bd-inhibitory function

Only 33 of the 15,690 taxa detected in our NextSeq 16S field 

samples were classified as Bd-inhibitory or non-Bd-inhibitory (i.e., 

posterior probabilities ≥90% or ≤ 10%; Supplementary Table S2). Of 

the 872 Woodhams et al. (2015) sequences which were used in the 

alignment, there were 361 unique sequences, and 79 of these unique 

sequences occurred across multiple bacterial isolates. We note that 

41 of these 79 sequences (51.9%) had inconsistent Bd-inhibition 

statuses (i.e., statuses varied across isolates associated with the same 

sequence). We also note that the aligned Woodhams et al. (2015) 

sequences provided limited phylogenetic coverage of the bacterial 

FIGURE 2

Counts of salamander skin-associated microbiome samples through time.
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taxa detected in our field samples (Supplementary Figure S8), with 

only 5,330 (34.0%) of our bacterial taxa belonging to phyla included 

in the Woodhams et al. (2015) database.

Microbial composition

The proportion of reads in salamander samples belonging to 

each microbial class for each combination of stage class and 

sampling event are displayed in Figures  3, 4 for bacterial and 

fungal communities, respectively. Salamander bacterial 

communities were dominated by members of the phylum 

Proteobacteria and class Gammaproteobacteria (Figure 3), which 

comprised 89.8 and 86.7% of reads, respectively. The proportion 

of reads belonging to each fungal class (Figure  4) were more 

balanced than bacteria. Among salamander fungal reads, 41.6% 

belonged to class Rhizophydiomycetes, 21.4% were unidentified 

fungi, and 15.2% belonged to class Tremellomycetes.

Bayesian Dirichlet-multinomial regression models with 

spatiotemporal predictors fit better than models with water quality 

predictors for salamander samples (Table 2), suggesting that our 

spatiotemporal predictors were better able to predict salamander 

microbial composition. All but two of the best-fitting Bayesian 

Dirichlet-multinomial regression models with spatiotemporal 

predictors included stratum as a predictor, suggesting 

compositional variation in microbial communities within the 

lakes, with the models for salamander fungal communities and 

water Bd-inhibition categories being the exceptions. Except for 

stratum in the aforementioned models, all best-fitting 

spatiotemporal Bayesian Dirichlet-multinomial regression models 

included all individual predictors or their interactions, suggesting 

that all of our measured variables contributed to our ability to 

predict the composition of microbial communities.

The ten Bayesian Dirichlet-multinomial regression models 

from the backwards variable selection process with the lowest 

WAIC values for each sample type (i.e., salamander, water, or 

substrate), predictor set (i.e., spatiotemporal or water quality), and 

microbial community type (i.e., bacterial community, fungal 

community, or Bd-inhibition categories) are included in 

Supplementary Tables S3–S7. Four best-fitting Bayesian 

FIGURE 3

Proportion of bacterial reads in salamander samples belonging to each class. The ten classes with the highest number of salamander sample reads 

are displayed along with a category for the other classes. A stacked bar chart is displayed for each combination of stage class and sampling event, 

and each stacked bar chart represents reads pooled across samples belonging to the combination of stage class and sampling event. A “G” 

proceeds the dates of sampling events at Gibson Lakes, and a “P” proceeds the dates of sampling events at Ponds Lake.
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FIGURE 4

Proportion of fungal reads in salamander samples belonging to each class. The ten classes with the highest number of salamander sample reads 

are displayed along with a category for the other classes. A stacked bar chart is displayed for each combination of stage class and sampling event, 

and each stacked bar chart represents reads pooled across samples belonging to the combination of stage class and sampling event. A “G” 

proceeds the dates of sampling events at Gibson Lakes, and a “P” proceeds the dates of sampling events at Ponds Lake.

Dirichlet-multinomial regression models had other models within 

two WAIC (i.e., the model for substrate bacterial community 

composition and models for salamander, water, and substrate 

Bd-inhibition categories). With one exception, all other models 

within two WAIC contained the same predictors or their 

interactions as the best-fitting models. For example, a model with 

age as a predictor and another model with an interaction between 

age and site both contain age. The exception was one model within 

two WAIC of the best-fitting model for Bd-inhibition categories 

in lake water, which included stratum as a predictor while the 

best-fitting model excluded it.

Throughout our results, we consider non-overlapping 95% 

credible intervals of posterior predictions to represent 

differences in taxa proportional abundances, alpha diversity, or 

the proportional abundances of Bd-inhibition categories, 

depending on the analysis. These posterior predictions are all 

from the best-fitting Bayesian Dirichlet-multinomial regression 

model (the model with the lowest WAIC) for salamander, water, 

or substrate samples for bacterial communities, fungal 

communities, or Bd-inhibition categories. The 95% credible 

intervals of posterior predictions are presented in the 

referenced figures.

The following results are from the posterior predictions of the 

best-fitting Bayesian Dirichlet-multinomial regression model for 

bacterial community composition on salamander skin. 

We observed temporal, spatial, and ontogenetic variation in the 

proportional abundances of the top 100 bacterial taxa (Figure 5; 

Supplementary Figures S9–S13), with the degree of variation 

depending on the taxon. Proportional abundance trends were 

often taxon-specific, although patterns were observed across some 

taxa. Examples of temporal variation include an increase in the 

proportional abundance of Comamonadaceae 2 (i.e., the second 

ASV classified as Comamonadaceae) through time in Gibson 

Lakes age-0 larvae and a decrease in the proportional abundance 

of Candidatus Methylopumilus 1 through time in Ponds Lake 

age-1 larvae. Ontogenetic variation is apparent among many of the 

top 100 bacterial taxa. For example, the proportional abundances 

of Comamonadaceae 3 and 6 in Ponds Lake were consistently 

higher for age-2+ metamorphosed salamanders than other stage 

classes. In Gibson Lakes age-0 individuals, we observed higher 
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proportional abundances of certain bacterial taxa on larvae 

followed by a sharp decline post-metamorphosis (e.g., 

Comamonadaceae 2, Limnohabitans 1, Methylotenera 7, 

Methylotenera 2, and Sphingorhabdus rigui 1).

Ninety of the top 100 bacterial taxa detected in salamander 

samples were also detected in environmental samples. We detected 

86 and 82 of the top 100 bacterial taxa in water and substrate 

samples, respectively. From the posterior predictions of the best-

fitting salamander, water, and substrate Bayesian Dirichlet-

multinomial regression models for bacterial community 

composition, 32 of the top  100 bacterial taxa were 

disproportionately more abundant on salamander skin relative to 

the environment for the majority of combinations of stage class 

and sampling event (Figure 5; Supplementary Figures S9–S13), 

including Sanguibacter 1 and Gracilibacteria 3. Taxa detected 

exclusively on salamander skin include Pseudochrobactrum 

kiredjianiae 1 and Roseomonas 2. None of the top 100 bacterial 

taxa had lower proportional abundances on salamander skin than 

in the environment for the majority of combinations of stage class 

and sampling event.

As for bacteria, we observed spatiotemporal and ontogenetic 

variation in the proportional abundances of the top 100 fungal taxa 

based on the posterior predictions of the best-fitting Bayesian 

Dirichlet-multinomial regression model for fungal community 

composition on salamander skin (Figure  6; Supplementary  

Figures S14–S18). Naganishia diffluens experienced an increase in 

TABLE 2 Predictors included in the best-fitting Bayesian Dirichlet-multinomial regression models for microbiome composition.

Sample 
type

Microbial 
community

Predictor 
set

Best-fit model predictors
Best-fit 
model 
WAIC

Full 
model 
WAIC

Number 
of 

models 
fit

Number 
of taxa 

included

Total 
CPU 
days

Salamander Bacterial Spatiotemporal Stratum + Age + Life Stage + Site + Age:Life 

Stage + Age:Site + Life Stage:Site + Life 

Stage:Week + Site:Week + Site:Week2 + Age:Life 

Stage:Site + Age:Life 

Stage:Week + Age:Site:Week + Life 

Stage:Site:Week2 + Age:Life Stage:Site:Week2

140041.5 140505.6 196 101 105.7

Water quality Age + Life Stage + Life Stage:Temperature + Life 

Stage:pH + Temperature:pH + Life Stage:DO 

(ppm) + Age:Life Stage:pH + Age:pH:DO 

(ppm) + Age:Life Stage:Temperature:DO 

(ppm) + Life Stage:Temperature:pH:DO (ppm)

140706.1 141839.3 452 101 253.9

Fungal Spatiotemporal Life Stage + Life Stage:Site + Age:Week2 + Site:Week2 120600.2 121624.9 295 101 161.9

Water quality Age + Life Stage + Life Stage:Temperature + Life 

Stage:DO (ppm) + Age:Life Stage:pH + Age:Life 

Stage:pH:DO (ppm) + Age:Temperature:pH:DO 

(ppm)

121168.6 122711.0 476 101 257.1

Bd-inhibition 

categories

Spatiotemporal Stratum + Life Stage + Week + Week2 + Age:Life 

Stage + Age:Site + Life 

Stage:Site + Age:Week + Age:Week2 + Life 

Stage:Week + Life 

Stage:Week2 + Site:Week + Site:Week2 + Age:Life 

Stage:Site + Age:Life Stage:Week + Age:Life 

Stage:Week2 + Age:Site:Week + Age:Site:Week2 + Life 

Stage:Site:Week + Life Stage:Site:Week2 + Age:Life 

Stage:Site:Week + Age:Life Stage:Site:Week2

4998.5 5005.0 70 3 1.6

Water Bacterial Spatiotemporal Stratum + Site + Week + Site:Week + Site:Week2 44272.9 44329.3 12 87 0.7

Fungal Spatiotemporal Stratum + Week + Week2 + Site:Week + Site:Week2 29359.9 29392.3 12 68 0.6

Bd-inhibition 

categories

Spatiotemporal Site + Week + Site:Week + Site:Week2 1673.2 1676.1 16 3 0.1

Substrate Bacterial Spatiotemporal Stratum + Site + Week + Site:Week + Site:Week2 34202.2 34440.6 12 83 1.0

Fungal Spatiotemporal Stratum + Week + Site:Week + Site:Week2 51644.8 51924.2 16 92 2.1

Bd-inhibition 

categories

Spatiotemporal Stratum + Site + Week + Site:Week + Site:Week2 1391.7 1400.6 12 3 0.1

Best-fit models are those selected by backwards variable selection by WAIC, and the full model is the initial model fit during backwards variable selection which includes all predictors. 

DO is dissolved oxygen.
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FIGURE 5

Proportional abundance predictions from Bayesian Dirichlet-multinomial regression models for the first ten bacterial taxa from the top 100. 

Points, thick lines, and thin lines represent posterior medians, 50% credible intervals, and 95% credible intervals, respectively. Hatched ranges 

represent environmental proportional abundances. Taxa without hatched ranges were not detected in either water or substrate. Note the square 

root scale on the y-axis. Taxa are ordered (left to right, top to bottom) by descending average proportion of reads in salamander samples in which 

each combination of site and life stage receives equal weight. Proportional abundance prediction plots for the remaining top 100 bacterial taxa 

can be found in the Supplementary material.

proportional abundance through time for age-0 and age-2+ 

salamanders at both lakes, and the proportional abundance of 

Vishniacozyma victoriae increased through time for Gibson Lakes 

age-0 larvae. Notably, the proportional abundance of Bd in Ponds 

Lake metamorphosed individuals was very high (between 35 and 

55%) compared to Ponds Lake larvae and either life stage at Gibson 

Lakes (all <2.5%; Figure  6). In contrast, metamorphosed 

individuals at Ponds Lake had lower proportional abundances of 

Cystobasidium slooffiae compared to Ponds Lake larvae and either 

life stage at Gibson Lakes, the opposite of the pattern 

observed for Bd.

Ninety-three of the top 100 fungal taxa detected in salamander 

samples were also detected in environmental samples. We detected 

67 and 91 of the top 100 fungal taxa in water and substrate samples, 

respectively. From the posterior predictions of the best-fitting 

salamander, water, and substrate Bayesian Dirichlet-multinomial 
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regression models for fungal community composition, 27 of the 

top 100 fungal taxa were disproportionately more abundant on 

salamander skin relative to the environment for the majority of 

combinations of stage class and sampling event (Figure  6; 

Supplementary Figures S14–S18), including Candida sake, 

Wallemia muriae, and Vishniacozyma. Taxa detected exclusively on 

salamander skin include Pleosporales, Melanodiplodia 

tianschanica, and Buckleyzyma aurantiaca. Four of the top 100 

fungal taxa had lower proportional abundances on salamander 

skin than in the environment for the majority of combinations of 

stage class and sampling event, including Ascomycota, 

Basidiomycota, and Rozellomycota.

Salamander bacterial and fungal diversity (i.e., Hill’s diversity 

with α = 2 derived from the posterior predictions of the best-

fitting Bayesian Dirichlet-multinomial regression models for 

salamander bacterial and fungal communities, respectively) are 

displayed in Figure  7. Salamander bacterial diversity had the 

highest values in early-season age-1 metamorphosed individuals 

FIGURE 6

Proportional abundance predictions from Bayesian Dirichlet-multinomial regression models for the first ten fungal taxa from the top 100. Points, 

thick lines, and thin lines represent posterior medians, 50% credible intervals, and 95% credible intervals, respectively. Hatched ranges represent 

environmental proportional abundances. Note the square root scale on the y-axis. Taxa are ordered (left to right, top to bottom) by descending 

average proportion of reads in salamander samples in which each combination of site and life stage receives equal weight. Proportional 

abundance prediction plots for the remaining top 100 fungal taxa can be found in the Supplementary material.
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FIGURE 7

Hill’s diversity index (α = 2) for bacterial and fungal communities on salamander skin. Diversity estimates were derived from proportional abundance 

predictions of bacterial and fungal taxa from Bayesian Dirichlet-multinomial regression models. Points, thick lines, and thin lines represent 

posterior medians, 50% credible intervals, and 95% credible intervals, respectively. Note that bacterial diversity for age-0 metamorphosed 

salamanders at Gibson Lakes on September 15th is omitted because, for this combination of stage class and sampling event only, we found Hill’s 

diversity to be sensitive to our grouping of rare taxa (i.e., those not belonging to the top 100) into an “other” category in the Bayesian Dirichlet-

multinomial regression models.

at Gibson Lakes, age-2+ neotenes at Ponds Lake in July, and age-0 

larvae after mid-August at Gibson Lakes (Figure 7). Bacterial 

diversity for age-1 larvae increased throughout the early warm 

season at Ponds Lake when most of this stage class was observed. 

Bacterial diversity in age-2+ metamorphosed individuals tended 

to decrease through time at both lakes. In late August and early 

September, bacterial diversity was higher for age-0 larvae at 

Gibson Lakes than Ponds Lake. Patterns of microbial diversity for 

fungi differed than those for bacteria. Salamander fungal diversity 

was highest among age-0 larvae at Gibson Lakes, age-1 larvae at 

the beginning of the warm season at Ponds Lake, and late-season 

larvae at Ponds Lake (Figure  7). Fungal diversity increased 

throughout the early warm season for metamorphosed individuals 

at both lakes, with metamorphosed individuals at Ponds Lake 

having lower fungal diversity than at Gibson Lakes (Figure 7). The 

lower fungal diversity for metamorphosed individuals at Ponds 

Lake compared to Gibson Lakes may be  due to the high 

proportional abundance of a single fungal taxon – reducing 

species evenness – on Ponds Lake metamorphosed salamanders 

(the posterior medians of this taxon, Bd, ranged from 0.390 to 

0.508; Figure 6).

Based on the best-fitting Bayesian Dirichlet-multinomial 

regression models for the composition of bacterial Bd-inhibition 

categories (i.e., Bd-inhibitory, non-Bd-inhibitory, and uncertain 

Bd-inhibition status), Bd-inhibitory taxa were disproportionately 

more abundant on salamander skin relative to the environment for 

most combinations of stage class and sampling event (23 of 25; 

Figure 8). Non-Bd-inhibitory bacterial taxa were disproportionately 

more abundant on salamander skin relative to the environment for 

most combinations of stage class and sampling event at Ponds Lake 

(10 of 15), but we  were unable to detect differences in the 

proportional abundances of non-Bd-inhibitory bacterial taxa 

between salamander skin and the environment for any combination 

of stage class and sampling event at Gibson Lakes (Figure  8). 

Bacterial taxa of uncertain Bd-inhibition status were 

disproportionately more abundant in the environment compared 

to salamander skin for most combinations of stage class and 

sampling event (23 of 25; Figure 8).
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Relationship between Bd-inhibitory 
bacteria and Bd

From our Bayesian beta-binomial regression model, there is 

a > 99.9% probability that a negative relationship exists between 

the proportional abundance of Bd-inhibitory bacteria in bacterial 

communities and the proportional abundance of Bd in fungal 

communities on the skin of metamorphosed salamanders (i.e., 

> 99.9% of MCMC samples for the regression coefficient were 

negative). The posterior median of the regression coefficient was 

−2.402, and the 95% credible interval was −3.386 to −1.586. The 

modeled relationship between the relative abundances of 

Bd-inhibitory bacteria and Bd on the skin of metamorphosed 

salamanders is shown in Figure 9.

Discussion

We observed spatiotemporal and ontogenetic variation in the 

relative abundances and microbial diversity of bacterial and fungal 

taxa in the skin-associated microbiome of the western tiger 

salamander at two high alpine Rocky Mountain lakes. Our best-

fitting Bayesian Dirichlet-multinomial regression models for 

microbial community composition included all predictors or their 

interactions except for the models of fungal communities on 

salamander skin and Bd-inhibition categories in lake water, for 

which the stratum predictor was excluded (Table 2). Because rare 

taxa (i.e., not members of the top  100) were grouped into an 

“other” category in our Bayesian Dirichlet-multinomial regression 

models, variation in the relative abundances of these rare taxa 

were masked within changes in the relative abundance of the 

“other” category. Therefore, our results should be  considered 

conservative estimates of the variation in microbial community 

composition on tiger salamander skin because variation within 

the “other” category was not considered. Because our top 100 taxa 

comprise the vast majority of reads in salamander samples (93.1% 

of bacterial and 98.6% of fungal reads), we expect variation in the 

composition of these taxa, plus the “other” category, to represent 

most of the variation in salamander microbiomes. When viewed 

conservatively, our models already suggest that all of our covariates 

(except for stratum in the aforementioned cases) contribute to our 

ability to predict microbial community composition, so we expect 

FIGURE 8

Proportional abundance predictions of Batrachochytrium dendrobatidis (Bd) and Bd-inhibitory bacterial taxa from Bayesian Dirichlet-multinomial 

regression models. Points, thick lines, and thin lines represent posterior medians, 50% credible intervals, and 95% credible intervals, respectively. 

Hatched ranges represent environmental proportional abundances. Note the square root scale on the y-axis.
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FIGURE 9

Bayesian beta-binomial regression between the proportional abundances of Bd-inhibitory bacteria and Bd in bacterial and fungal communities, 

respectively, on the skin of metamorphosed salamanders. Solid and dashed lines represent the medians and 95% credible intervals of posterior 

predictions, respectively. Points represent observations from metamorphosed salamanders. Note that there is uncertainty associated with both the 

response and predictor values (i.e., proportional abundances), and the Bayesian beta-binomial regression considers this uncertainty within the 

model.

this outcome would be  largely unaffected by the inclusion of 

additional taxa outside of the “other” category.

Our findings of variation in microbial community 

composition between sites, across life stages, and through time is 

consistent with the results of other studies (Kueneman et al., 2013; 

Longo et al., 2015; Bletz et al., 2017a,b). The inclusion of stratum 

as a predictor in the best-fitting composition model of bacteria on 

salamander skin, as well as for composition models of bacteria and 

fungi in the environment, suggests that we  observed spatial 

variation in microbial community composition within lakes in 

addition to between lakes. Furthermore, the inclusion of 

salamander age as a predictor in the best-fitting models of 

bacterial and fungal community composition on salamander skin 

suggests that, within life stages, we  also observed variation in 

microbial community composition with salamander age. For 

salamander skin-associated bacterial and fungal communities, 

composition was better explained by spatiotemporal than water 

quality covariates. In agreement with other amphibian skin-

associated microbiome studies, we  found that the skin of the 

western tiger salamander is a selective environment with taxa 

disproportionately represented compared to their relative 

abundances in water and substrate (Kueneman et al., 2013; Walke 

et al., 2014; Bletz et al., 2017a).

Time or its interactions were included as predictors in all best-

fitting Bayesian Dirichlet-multinomial regression models for 

microbial community composition (Table  2), suggesting that 

microbial communities changed throughout the warm season. 

Notably, an interaction between time, salamander age, life stage, 

and lake was included in the best-fitting model for bacterial 

communities on salamander skin. Additionally, the best-fitting 

model for fungal communities on salamander skin included both 

an interaction between time and salamander age and an 

interaction between time and lake. This suggests that temporal 

trends in salamander bacterial and fungal community composition 

varied by lake and salamander stage class. While time was 

included as a predictor in the best-fitting model for Bd-inhibition 

categories on salamander skin, we failed to detect changes in the 

relative abundances of Bd-inhibitory bacteria through time for any 

stage class (i.e., within a stage class, all 95% credible intervals 

overlapped; Figure 8). This concurs with the findings of Bletz et al. 
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(2017a), which found changes in bacterial community 

composition through time but stability in predicted Bd-inhibitory 

function. We are hesitant to draw the same conclusion, however, 

both because failing to detect change does not mean that change 

has not occurred, and because we could only confidently predict 

the Bd-inhibition status of a small minority of observed bacterial 

taxa. We did detect changes in the relative abundances of common 

bacteria (e.g., Comamonadaceae 2 and Candidatus Methylopumilus 

1; Figure  5) and fungi (e.g., Naganishia diffluens and 

Vishniacozyma victoriae; Figure 6) through time on salamander 

skin. We also detected changes in bacterial and fungal diversity 

through time for stage classes at both lakes (Figure 7).

Similar to time, life stage or its interactions were also included 

as predictors in all best-fitting Bayesian Dirichlet-multinomial 

regression models for microbial community composition 

(Table 2). Notably, the proportional abundance of the bacterial 

taxon Comamonadaceae 1 was higher on the skin of 

non-metamorphosed salamanders (i.e., larval or neotenic 

individuals) than metamorphosed salamanders (i.e., 95% credible 

intervals did not overlap) throughout the warm season at both 

lakes (Figure 5). This taxon was very abundant on the skin of 

non-metamorphosed salamanders, typically comprising more 

than 20% of the bacterial community, and sometimes exceeding 

40% (Figure 5). Kueneman et al. (2013) also observed a very high 

relative abundance (>65%) of a single member of 

Comamonadaceae on a life stage of the Cascades frog (Rana 

cascadae), but the taxon dominated the skin of metamorphosed 

frogs instead of tadpoles. In our study, Comamonadaceae 1 was 

also disproportionately more abundant on the skin of 

non-metamorphosed salamanders relative to the environment, 

whereas we were unable to detect differences in the proportional 

abundance of this taxon between the environment and the skin of 

metamorphosed salamanders (Figure 5). While we compared the 

proportional abundances of microbial taxa on salamander skin to 

environmental proportional abundances in lake water and lake 

substrate, we note that metamorphosed salamanders – although 

caught from the water – may have also had access to terrestrial 

sources of microbiota (e.g., soil) which we did not sample. For 

fungi, both the proportional abundance of Cryptococcus 

uniguttulatus and community diversity were higher on the skin of 

non-metamorphosed salamanders at every time point where both 

metamorphosed and non-metamorphosed salamanders were 

observed (Figures  6, 7). This contrasts with the findings of 

Kueneman et al. (2016b), in which microeukaryote diversity was 

higher on adult western toads (Anaxyrus boreas) than tadpoles.

We detected Bd on salamander skin at both lakes, with the 

relative abundance of Bd being highest for age-1 and age-2+ 

metamorphosed salamanders at Ponds Lake (Figure  6). The 

higher abundance of Bd on the skin of metamorphosed compared 

to larval amphibians is supported by other studies and is thought 

to be  the result of increased keratin, a substrate for Bd, in 

amphibian skin following metamorphosis, during which 

structural changes to the skin occur (Berger et al., 1998; Marantelli 

et al., 2004; Frost et al., 2006). We are unsure why differences in 

the relative abundance of Bd was much less pronounced between 

larval and metamorphosed individuals at Gibson Lakes. Since Bd 

was absent in all negative control samples, we are confident that 

Bd was present at Gibson Lakes and that its detection was not the 

result of contamination from Ponds Lake samples.

We observed that Bd-inhibitory bacterial taxa were 

disproportionately more abundant on salamander skin relative to 

the environment for most combinations of stage class and 

sampling event (Figure 8). If bacterial taxa for which we have high 

confidence in their Bd-inhibition statuses can be considered a 

random sample from both salamander skin and the environment, 

then this could be taken as evidence that salamander skin selects 

for Bd-inhibitory bacteria. However, salamander skin also 

appeared to select for non-Bd-inhibitory bacteria at one lake, and 

for both lakes, bacteria of uncertain Bd-inhibition status were 

disproportionately more abundant in the environment than on 

salamander skin. Since environmental bacteria are not the focus 

of the Woodhams et al. (2015) database, we suspect that bacteria 

in this reference database are more likely to be  common on 

amphibian skin than in the environment. This could result in 

more environmental bacteria having an uncertain Bd-inhibition 

status, and Bd-inhibitory and non-Bd-inhibitory bacteria would 

subsequently appear to be disproportionately more abundant on 

salamander skin than in the environment. Still, the apparent 

selection for Bd-inhibitory bacteria on salamander skin is stronger 

than for non-Bd-inhibitory bacteria (Figure 8), suggesting that 

selection for Bd-inhibitory bacteria may indeed be  occurring. 

Despite harboring Bd, tiger salamanders have been found to 

tolerate chytridiomycosis (Davidson et al., 2003), and we suggest 

that selection for Bd-inhibitory bacteria by tiger salamander skin 

may contribute to this disease tolerance.

When viewed across combinations of stage class and sampling 

event, we  did not observe any noticeable patterns between the 

relative abundances of Bd-inhibitory bacteria and Bd (Figure 8). That 

is, across combinations of stage class and sampling event, the relative 

abundance of Bd was not high or low when the relative abundance 

of Bd-inhibitory bacteria was high or low. We did, however, observe 

a negative pattern between the relative abundances of Bd and the 

fungal taxon Cystobasidium slooffiae (i.e., the relative abundance of 

Bd was low when the relative abundance of Cystobasidium slooffiae 

was high; Figure  6). Conversely, we  observed positive patterns 

between the relative abundances of Bd and Comamonadaceae 3 and 

6 (i.e., the relative abundance of Bd was high when the relative 

abundances of these taxa were high; Figures 5, 6). Comamonadaceae 

has been found to be abundant on the skin of multiple amphibian 

species, including the tiger salamander (McKenzie et al., 2011), and 

some members show evidence of Bd-inhibition or negative 

co-occurrence with fungal taxa (Woodhams et al., 2015; Kueneman 

et al., 2016b). Despite this, Walke et al. (2015) found a very weak 

correlation between a member of Comamonadaceae and Bd, and 

we  found positive patterns between the relative abundances of 

members of Comamonadaceae and Bd. While we were unable to 

confidently predict the Bd-inhibition statuses of Comamonadaceae 

3 and 6, we  did predict one member of Comamonadaceae to 
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be Bd-inhibitory (Comamonadaceae 5). Still, we observed no pattern 

between the relative abundances of this taxon and Bd (Figures 5, 6).

Within metamorphosed salamanders, we  found strong 

evidence (> 99.9% probability from a Bayesian beta-binomial 

regression) of a negative relationship between the relative 

abundances of Bd-inhibitory bacteria and Bd in bacterial and 

fungal communities, respectively (Figure 9). We caution, however, 

that the mechanism behind this relationship is unclear from our 

data. We do not know whether Bd-inhibitory bacteria inhibit Bd 

growth, or if the opposite is true. Infection with Bd can lead to the 

restructuring of microbial communities on amphibian skin (Jani 

and Briggs, 2014; Jani and Briggs, 2018), and it is possible that Bd 

infection may directly or indirectly inhibit the growth of 

Bd-inhibitory bacteria. Our use of microbiome read counts to test 

for a relationship between Bd-inhibitory bacteria and Bd produced 

comparable results to studies which used quantitative PCR to detect 

and quantify the abundance of Bd. For example, Jiménez et al. 

(2022) found that Bd infection intensity significantly decreased on 

the skin of the eastern newt (Notophthalmus viridescens) as the 

relative abundance of putative Bd-inhibitory bacteria increased. 

Similarly, Flechas et al. (2019) found lower Bd infection prevalence 

within post-metamorphic life stages which also had high relative 

abundances of Bd-inhibitory bacteria in two frog species.

An analysis between the absolute abundances of Bd-inhibitory 

bacteria and Bd, instead of the relative abundances, would be of 

greater interest biologically. Following DNA extraction and prior to 

PCR, fixed amounts of 16S and ITS synthgenes (i.e., synthetic gene 

spike-ins) were added to a constant volume of each sample’s DNA 

extract. The synthgene read counts provide a benchmark to compare 

taxon read counts with, and can serve as the basis for absolute 

abundance estimation (Harrison et  al., 2021). While we  used 

synthgenes to estimate the amount of microbial DNA in our samples 

relative to negative controls, we were unable to use the synthgenes 

for estimating the densities (i.e., count per unit area) of microbial 

taxa on salamander skin because, as we were not aware of synthgenes 

at the time, we  did not measure swabbed area in the field. 

Furthermore, a length-weight regression suggested that salamanders 

grow allometrically (i.e., the body does not grow proportionally in 

all dimensions; see Supplementary material), so an assumption 

about salamander growth would have to be made in order to derive 

surrogates of swabbed area from length measurements (i.e., SVL 

squared could not be used as a surrogate for swabbed area). We also 

considered limitations in our swabbing protocol. Since our study 

focused on variation in microbiome composition, we adopted the 

swabbing protocol of Bletz et al. (2017a), in which a swab is stroked 

across the ventral surface of the amphibian ten times (one time = an 

up and back stroke along the full length of the belly). While 

swabbing, the ten strokes along the length of the belly were 

distributed across the belly’s width. Due to the fixed size of the swab, 

this means that the same belly area was swabbed more times for 

smaller salamanders than for larger salamanders. This implies that 

even if we had measured swabbed area, we would have to assume 

that the number of microbes collected asymptotes after a certain 

swabbing intensity, and we  must have further assumed that 

we reached this threshold of swabbing intensity. We suggest that the 

need for these assumptions can be avoided by using a different 

swabbing protocol. For example, instead of stroking a swab across 

the ventral surface a certain number of times while covering an area 

of interest, one could swab the full area of interest (e.g., the belly) a 

certain number of times and measure the swabbed area, a method 

which is already applied in studies of Bd load (North and Alford, 

2008). If such a swabbing protocol were applied, we suggest that 

taxon density on amphibian skin could be modeled using a negative 

binomial regression for rates (i.e., taxon read count per unit “time”) 

– where rate represents taxon density, and synthgene read count and 

swabbed area serve as measures of “time.”

A key aim of amphibian skin-associated microbiome 

studies relates to understanding what role microbial 

communities play in protecting their hosts against cutaneous 

diseases such as chytridiomycosis. While DNA metabarcoding 

is commonly employed to characterize the composition of 

microbial communities, we  experienced challenges relating 

community composition to functional activity. Using 16S 

rRNA gene sequences, we were unable to predict Bd-inhibition 

statuses for the vast majority of our bacterial taxa with any 

reasonable certainty. This is not surprising given that, after 

trimming to our amplicon region, the majority of sequences in 

the Woodhams et al. (2015) database which were shared across 

multiple bacterial isolates had variable Bd-inhibition statuses, 

and the isolates included in the database provided limited 

phylogenetic coverage of our bacterial taxa. Similarly, Becker 

et al. (2015) found bacterial congeners to frequently range from 

complete inhibition to facilitation of Bd. Another approach to 

exploring the functional activity of microbial communities 

involves metatranscriptomics, the sequencing of RNA within a 

microbiome to investigate gene expression (Nichols and 

Davenport, 2021). With a metatranscriptomics approach to 

exploring functional activity, antifungal secondary metabolite 

production by microbes experiencing real-world biotic and 

abiotic conditions on salamander skin could be observed, and 

a precise knowledge of community composition, while still 

informative, would not be a pre-requisite for inference.

Our study emphasizes two traditionally understudied areas of 

amphibian skin-associated microbial ecology, temporal variation 

in community composition and expanding our view of the 

microbiome to include fungi in addition to bacteria. Temporal 

variation in community composition could prove challenging for 

studies examining spatial variation, where temporal and spatial 

variation may be  confounded. We  also identified additional 

sources of variation in community composition which are not 

typically considered. Within life stages, we identified additional 

variation with salamander age, and within lakes, we identified 

additional variation between strata. Furthermore, we observed 

that the relationships between community composition and 

spatiotemporal and stage class covariates are interdependent, 

complex, and best described using interactions.

Through this study, we have gained a greater understanding 

of microbial ecology on amphibian skin through the examination 



Goodwin et al. 10.3389/fmicb.2022.1020329

Frontiers in Microbiology 21 frontiersin.org

of season-long temporal variation of bacterial and fungal 

communities. In addition to identifying further sources of 

variation in community composition, we  have identified 

differentially abundant taxa, have examined microbial selection by 

salamander skin, have investigated alpha diversity, and have tested 

for a relationship between predicted Bd-inhibitory function and 

Bd. Ultimately, we hope our findings will assist in the conservation 

of amphibian species threatened by chytridiomycosis.
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