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Host-associated microbiomes play important roles in host health and pathogen
defense. In amphibians, the skin-associated microbiota can contribute to innate
immunity with potential implications for disease management. Few studies have
examined season-long temporal variation in the amphibian skin-associated
microbiome, and the interactions between bacteria and fungi on amphibian skin
remain poorly understood. We characterize season-long temporal variation in
the skin-associated microbiome of the western tiger salamander (Ambystoma
mavortium) for both bacteria and fungi between sites and across salamander life
stages. Two hundred seven skin-associated microbiome samples were collected
from salamanders at two Rocky Mountain lakes throughout the summer and fall
of 2018, and 127 additional microbiome samples were collected from lake water
and lake substrate. We used 16S rRNA and ITS amplicon sequencing with Bayesian
Dirichlet-multinomial regression to estimate the relative abundances of bacterial
and fungal taxa, test for differential abundance, examine microbial selection, and
derive alpha diversity. We predicted the ability of bacterial communities to inhibit
the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), a cutaneous
fungal pathogen, using stochastic character mapping and a database of Bd-
inhibitory bacterial isolates. For both bacteria and fungi, we observed variation in
community composition through time, between sites, and with salamander age
and life stage. We further found that temporal trends in community composition
were specific to each combination of salamander age, life stage, and lake. We found
salamander skin to be selective for microbes, with many taxa disproportionately
represented relative to the environment. Salamander skin appeared to select for
predicted Bd-inhibitory bacteria, and we found a negative relationship between
the relative abundances of predicted Bd-inhibitory bacteria and Bd. We hope
these findings will assist in the conservation of amphibian species threatened by
chytridiomycosis and other emerging diseases.

temporal variation, spatial variation, bacteria, fungi, relative abundance, Bayesian
analysis
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Introduction

Host-associated microbiomes can interact with their hosts in
many ways. Specialized metabolites produced by microbes can
influence various aspects of host biology (Sharon et al., 2014),
and host production of antimicrobial peptides can in turn
influence microbial community structure (McFall-Ngai et al.,
2013). Microbial communities are increasingly recognized as
providing beneficial and necessary services for their hosts
(Dethlefsen et al., 2007; Grice and Segre, 2011), and maintaining
and restoring healthy microbiomes can be important for host
health (Tosh and McDonald, 2012).
microbiomes can inhibit pathogens or parasites through

Host-associated

competition, the activation of host immune responses, and the
production of inhibitory secondary metabolites (Lee and
Mazmanian, 2010; Britton and Young, 2014; Grunseich et al,,
2019). An imbalance in the host-associated microbiome can
permit transient opportunistic pathogens and resident microbes
with pathogenic potential to harm the host (Lee and
Mazmanian, 2010).

Much attention has been given to the amphibian skin-
associated microbiome’s role in innate immunity for its potential
(Walke Belden, 2016).
Chytridiomycosis is a devastating amphibian skin disease caused

in disease management and
by the fungal pathogen Batrachochytrium dendrobatidis (hereafter
Bd; Longcore et al., 1999; Skerratt et al., 2007). Because numerous
amphibian skin-associated bacteria have been found to inhibit the
growth of Bd, probiotic bioaugmentation and habitat management
have the potential to influence susceptibility to chytridiomycosis
(Harris et al., 2009; Kueneman et al., 2016a; Grant et al., 2018). A
sound understanding of host-associated microbiomes and their
natural range of variation is necessary to select effective probiotics
for safe and successful probiotic bioaugmentation strategies (Bletz
etal., 2013).

While amphibian skin-associated microbiomes are species-
specific, vary with life history stage, and are distinct from
environmental microbiomes (i.e., soil, lake substrate, and lake
water microbiomes), some variation in the microbiomes is
attributable to location and abiotic water quality (McKenzie et al,
2011; Kueneman et al., 2013; Walke et al., 2014; Bletz et al.,
2017a,b; Ellison et al., 2019). The composition of skin-associated
microbial communities has been found to vary between larval and
metamorphosed life stages in both frog and salamander species,
with community diversity being higher in the adults of these
species than their larvae (Kueneman et al., 2013, 2016b; Sabino-
Pinto et al., 2017). Temperature has been found to influence
operational taxonomic unit (OTU) richness and the production
of antifungal metabolites in amphibian skin-associated
microbiomes (Daskin et al., 2014; Muletz-Wolz et al., 2019).

Although many studies have worked to characterize species-
specific and spatial variation in the amphibian skin-associated
microbiome, fine-scale season-long temporal variation in natural
systems remains a major gap in our knowledge of the amphibian
skin-associated microbiome with few applicable studies
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(Sabino-Pinto et al., 2017; Bletz et al., 2017a). Since both Bd
infection prevalence and amphibian skin-associated microbiomes
show seasonal and year-to-year variation (Savage et al., 2011;
Longo et al., 2015; Familiar Lopez et al., 2017; Douglas et al., 2021;
Basanta et al., 2022), season-long temporal variation in the
amphibian skin-associated microbiome warrants investigation for
its implications in disease management.

Using a database of amphibian skin-associated Bd-inhibitory
bacterial isolates and their 16S rRNA gene sequences (Woodhams
et al,, 2015), Bletz et al. (2017a) found that despite significant
changes in bacterial community structure on the skin of
salamandrid newts, the relative abundances of bacteria with
Bd-inhibitory potential did not change significantly during a
12-week sampling period nor across life history stages in two of
the three species studied. Sabino-Pinto et al. (2017) found
bacterial communities on the skin of two salamandrid newt
species to change significantly between months, and also using the
database of Woodhams et al. (2015), the study found the relative
abundance of putative Bd-inhibitory bacteria to be higher on the
skin of larvae compared to adults for one of the species. The
database by Woodhams et al. (2015) contains nearly 2,000
bacterial isolates tested for Bd-inhibitory function in vitro assays,
with about half of the isolates being from Central-South America.
However, the application of this database to predict amphibian
skin-associated microbiome Bd-inhibitory function is limited by
our knowledge of how these bacterial isolates function on
amphibian skin. Observing fungal responses to changes in
bacterial abundances could assist in detecting bacterial-
fungal relationships.

Despite the focus of many amphibian skin-associated
microbiome studies on bacteria, few studies have examined
how bacteria interact with non-Bd fungal taxa and other
microeukaryotes on amphibian skin (Kueneman et al., 2016b,
2017; Belasen et al., 2021). For example, Kueneman et al.
(2016b) found many correlations between bacterial and fungal
taxa on the skin of the western toad (Anaxyrus boreas), and the
authors proposed that larval stages of amphibians may depend
on high relative abundances of antifungal bacteria to confer
innate immunity before metamorphosis and the maturation of
the host adaptive immune system (Rollins-Smith, 1998).
Hence, the interactions between bacteria and fungi on
amphibian skin may have substantial implications for host
health and disease management.

Broadly, our study aims to investigate temporal variation in
the amphibian skin-associated microbiome using the western tiger
salamander (Ambystoma mavortium; hereafter salamander) as a
model amphibian. In the Rocky Mountains of North America, the
western tiger salamander serves as an apex predator in many
fishless high alpine lakes. When the snow melts at these lakes,
adult salamanders travel from upland to the lakes to breed, and
some of these salamanders remain in the lakes throughout the
early summer. During the summer months, eggs hatch and larval
salamanders may follow several life history strategies, including
metamorphosing during the same year as hatching, overwintering
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as larvae and metamorphosing the following year, and becoming
sexually mature in the larval stage as neotenes (Sexton and Bizer,
1978). Due to their local abundance and the presence of at least
one life stage throughout the warm months (June to September,
hereafter warm season) at fishless high alpine lakes, the western
tiger salamander is an ideal amphibian for consistently obtaining
skin-associated microbiome samples throughout the warm season.

In this study, we first examine season-long temporal variation
of both bacteria and fungi in the salamander skin-associated
microbiome between sites and across life history stages, and
we consider whether temporal trends are similar between sites and
life stages. Based on these data, we identify differentially abundant
microbes between salamander skin and the environment and
compare the predictive ability of spatiotemporal and water quality
covariates on microbial community composition. We then ask (i)
whether variation in the salamander skin-associated microbiome
influences predicted Bd-inhibitory function, and (ii) whether
predicted Bd-inhibitory function is correlated with the relative
abundance of Bd.

Materials and methods
Study sites

Salamanders were sampled from the largest of the Gibson
Lakes (Franklin County, ID; 447,845 easting, 4,654,056 northing,
NAD 83 UTM Zone 12; elevation: 2,579 m) and Ponds Lake
(Summit County, UT; 503,020 easting, 4,503,670 northing, NAD
83 UTM Zone 12; elevation: 3,058 m). These lakes were chosen for
sampling due to their differences in geology, substrate, and water
conditions. We chose to sample lakes with different environmental
conditions in order to investigate whether temporal trends in
microbiome composition on salamander skin were similar
between different lake environments. Both lakes are fishless, have
no tributaries or outlets, and are located in different subranges of
the Rocky Mountains. Gibson Lakes is a ~ 2.5-ha shallow lake in a
limestone basin of the Bear River Mountains. Patches of
submerged vegetation cover much of the lake bottom, and the lake
substrate is primarily composed of soft sticky mud. Ponds Lake is
a~2.3-halake in a granitic basin of the Uinta Mountains. The lake
substrate is a thick layer of loose vegetative material, and some
parts of the shoreline have floating mats of vegetation. The water
in Ponds Lake is stained red with dissolved organic carbon.

In 2018, access to Gibson Lakes was blocked due to snow at
lower elevations until June 9th, when salamander eggs were
observed attached to submerged vegetation. By the next week,
when field sampling began, most of the previously observed eggs
had hatched. Data from NRCS SNOTEL
Supplementary material) suggest that snow melted at both lakes

sites  (see
at about the same time in 2018, possibly within days of each other,
and snow typically melts at these lakes about a week apart. Based
on these data, it is likely that salamanders laid eggs in 2018 at
about the same time at both lakes.
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Sampling design

To ensure that the sampled salamanders were distributed
throughout the lakes, the lakes were sampled by strata. Gibson
Lakes was assigned 4 strata and Ponds Lake was assigned 5 strata
(Figure 1). The strata divide the lakes into regions based on natural
landmarks for easy recognition in the field. Within a lake, all strata
had roughly the same area, and their areas remained roughly the
same as each other as water levels dropped throughout the warm
season. Three age classes of salamanders could be distinguished
based on length and weight measurements, age-0, age-1, and
age-2+. These age classes were of distinctly different sizes, with the
length and weight of each age class increasing throughout the
warm season (Supplementary Figure S1). During each visit to a
lake (hereafter sampling event), we collected up to 20 salamanders
from each age class with a maximum of five and four salamanders
per stratum at Gibson Lakes and Ponds Lake, respectively. Each
lake was sampled every other week during the 2018 warm season.
Sampling began shortly after snowmelt and continued until the
lakes became too cold to safely catch salamanders. Sampling
began at Gibson Lakes on June 16th and Ponds Lake on June 23rd.
Gibson Lakes was too cold to sample on September 29th, marking
the end of the field season.

Salamanders were considered larvae if they retained any of
their larval gill structures, and salamanders were considered
metamorphosed individuals once all traces of their gill structures
were absorbed. For each age class, larval and metamorphosed
individuals were encountered, which we refer to as life stages, and
we refer to the six possible combinations of age class and life stage
as stage classes. We expect most age-2+ individuals to be sexually
adults, gilled
considered neotenes.

mature at which point individuals are

Data collection

Upon arriving at a lake, environmental microbiome samples
and water quality data were collected. During the first visit to
each lake, a location was selected just offshore in each stratum
to collect these samples and data. These locations were chosen
to have relatively homogeneous depths across strata and to
minimize the distance which the sampling location would need
to move with receding water levels. Water quality data was
collected prior to collecting environmental microbiome
samples to minimize disturbance to the water. Water
temperature, pH, electrical conductivity, and dissolved oxygen
(ppm and percent) were measured just below the water surface
using handheld meters (Hannah Instruments HI98129 and
HI9146). For sampling the lake water microbiome, 500 ml of
lake water was collected from the water surface in a laboratory
Nalgene bottle. Following collection of a lake water microbiome
sample, a lake substrate microbiome sample was collected from
the top ~10 cm of pond substrate using a small PVC clam gun.
The substrate column was deposited into a 15-ml conical tube,
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FIGURE 1
Strata for Gibson Lakes (left) and Ponds Lake (right). Images of (A) a young-of-year larval salamander and (B) a metamorphosed adult salamander.

and excess water was decanted. The substrate was thoroughly
stirred with a teasing needle, and ~ 1.5ml of substrate was
deposited into a sterile 2-ml microcentrifuge tube. The
microcentrifuge tubes containing substrate samples were placed
on ice in a cooler while in the field. New latex gloves were worn
for each environmental microbiome sample, and the clam gun
and teasing needle were rinsed with 95% ethanol between
substrate samples. The clam gun and teasing needle were rinsed
with 6% bleach solution followed by a thorough rinse with
distilled water between sampling events. Nalgene bottles were
rinsed thoroughly with distilled water and autoclaved for
20 min at 121°C between holding lake water samples. During
each sampling event, the depth of a predefined rock was
measured to determine relative lake elevation, the water level
of the lake relative to its height at the beginning of the
warm season.

After collecting environmental microbiomes and water quality
data for all strata, salamanders were captured for each stratum.
Salamanders were collected by hand and dip net, and salamanders
were stored in 5-gallon buckets filled with lake water. For each
stratum, different age classes were stored in separate 5-gallon
buckets to reduce the risk of smaller salamanders being harmed
from predation or aggression from larger individuals. While
storing salamanders from the same age class and stratum together
in 5-gallon buckets could have allowed for microbial
contamination between individuals, we suspect that potential
contamination between individuals was minimal for the following
reasons. First, only a few individuals were stored together at a time
(an average of 3.04 and maximum of five individuals). Second, the
period of time which individuals were stored together was short
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(typically about 25 min). Finally, individuals tended to disperse
themselves relatively evenly within the buckets, and contact
between individuals and the ventral surfaces (the body region of
interest) of others was rare.

Each salamander was handled with new latex gloves, and
snout-vent length (SVL) and weight measurements were taken to
verify age classes (Supplementary Figure S1). Sex was determined
for age-2+ salamanders. The ventral surface of each salamander
was rinsed with 50ml of distilled water (Bletz et al., 2017a) to
remove environmental material and transient microbes (Culp
et al., 2007; Lauer et al,, 2007), and the salamander’s ventral
surface was swabbed with a sterile rayon-tipped swab (MW113
Medical Wire and Equipment, Corsham, United Kingdom).
Swabbing was performed by stroking the swab across the ventral
surface ten times (one time =an up and back stroke along the full
length of the belly; Bletz et al., 2017a). Swabs used to sample
salamander skin-associated microbiomes were stored in individual
sterile 2-ml microcentrifuge tubes and placed on ice in a cooler
while in the field. After processing salamanders for a stratum was
complete, the salamanders were released back into the stratum,
and salamander collection began at the next stratum. While it is
possible that salamanders sampled in one stratum may have been
sampled again in another stratum during the same sampling
event, few salamanders were observed to have swum far from their
point of release, which was away from stratum borders.

For each sampling event, the lake was surveyed for
salamanders for a minimum of 5 person-hours divided evenly
among the lake’s strata. Salamanders were processed after the
stratum minimum sampling time was reached or the maximum
number of individuals from all available age classes had been

frontiersin.org



Goodwin et al.

collected, and the search for salamanders then proceeded to the
next stratum. After field sampling and while still at the lake, wet
and dry negative control swabs were taken. Wet control swabs
were sprayed with 50 ml of distilled water, and nothing was done
to the dry control swabs. Wet and dry control swabs were placed
in individual sterile 2-ml microcentrifuge tubes and stored on ice
in a cooler while in the field.

Following field sampling and on the same day, lake water
samples were prefiltered through a 5.0-pm prefilter membrane to
remove debris followed by filtration with a 0.22-um filter
membrane to catch microbes (Millipore Sigma SVLP02500 and
GSWP04700, respectively). Multiple 5.0-pm prefilter membranes
were used for each water sample as necessary, whereas samples
which experienced clogging on the 0.22-pm filter membrane
(three samples) were discarded. Following filtration, 0.22-pm filter
membranes were folded and stored in 2-ml microcentrifuge tubes.
For autoclavable filtration equipment, the equipment was rinsed
thoroughly with distilled water between water samples followed
by autoclaving for 20 min at 121°C. Non-autoclavable filtration
equipment was rinsed with 6% bleach solution followed by a
thorough rinse with distilled water between water samples. Every
four or five sampling events, five 500-ml distilled water samples
were filtered as negative controls.

All samples were transferred to a —80°C freezer for storage,
and the typical time from field collection to freezer storage was
about five-and-a-half hours. Salamanders were collected, stored,
handled, and released according to an approved Utah State
University Institutional Animal Care and Use Committee protocol
(#2798), a Utah Division of Wildlife Resources Certificate of
Registration (#2COLL10232), and an Idaho Department of Fish
and Game Wildlife Collection/Banding/Possession Permit
(#180110).

DNA extraction and library preparation

DNA was extracted with the DNeasy PowerSoil Pro Kit
(Qiagen, Inc.) following the manufacturers protocol, and 12
empty extractions were performed as blank negative controls.
Substrate samples were centrifuged for 30s at 10,000 x g, excess
liquid was removed with a pipette, and a scoopula was used to
collect 250 mg of substrate from each sample for DNA extraction.
Water sample filter membranes were finely diced using scissors
and forceps into reagent reservoirs before being transferred to
DNA extraction tubes. Swab samples were transferred to DNA
extraction tubes using a different pair of forceps than that used for
water samples. Pre-DNA extraction sample preparation work was
performed under a fume hood, and the scoopula, scissors, and
forceps were rinsed with 95% ethanol, flamed, and rinsed
thoroughly with distilled water between samples. Reagent troughs
were rinsed thoroughly with distilled water and autoclaved for
20 min at 121°C between water samples.

Following DNA extraction, two samples of ZymoBIOMICS
Microbial Community DNA Standard (Zymo Research D6305)
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were added as mock community positive sequencing controls. 6 pil
of a control oligo pool was added to 30 pl of full concentration DNA
extract. The control oligo pool contained 0.01 pg/pl each of 16S and
ITS well-specific cross contamination oligos (hereafter coligos;
Hawkins et al., 2018) and 0.03 pg/pl each of 16S and ITS synthetic
genes (hereafter synthgenes; Tourlousse et al., 2017). The addition
of fixed amounts of 16S and ITS synthgenes to a constant volume
of each sample’s DNA extract will be used later in estimating the
amount of microbial DNA in each sample. Sample DNA
concentrations were measured via absorption and normalized to
10ng/pl with an automated liquid handler. Combinatorial dual
indexing was performed on the samples with two-stage polymerase
chain reaction (PCR). First stage PCR amplified the 16S rRNA and
ITS genetic barcoding regions, added unique dual index
combinations to each sample, and added a portion of the Illumina
Nextera adapter. For each sample, two first-stage PCR replicates
were performed and subsequently pooled. Second stage PCR
completed Illumina adapter addition. The 16S rRNA V4 region was
amplified using the primers 515F (forward; Parada et al., 2016) and
806R (reverse; Caporaso etal., 2011). The ITSI region was amplified
using the primers ITS1-F (forward; Gardes and Bruns, 1993) and
ITS2 (reverse; White et al., 1990). A modified AxyPrep MagBead
PCR Clean-up protocol was used to purify the amplified DNA after
each PCR reaction. Library preparation occurred at the University
of Wyoming Genome Technologies Laboratory (Laramie, WY). See
Supplementary material for library preparation details.

DNA sequencing and processing

Paired-end DNA sequencing of pooled amplicon product was
performed on both Illumina MiSeq (v3 600-cycle kit, 2 x 300 base
pair [bp] reads) and Illumina NextSeq (v2 300-cycle kit, 2x 150 bp
reads) platforms at the Utah State University Center for Integrated
Biosystems (Logan, UT). Both sequencing platforms offer their
own advantages for 16S and ITS amplicon sequencing, where
Mumina MiSeq produces longer but fewer reads than Illumina
NextSeq. The longer MiSeq sequences provide greater taxonomic
resolution, and the greater number of NextSeq sequences reduces
uncertainty in relative abundance estimates. We leverage the
benefits of both sequencing platforms by using the longer-length
MiSeq sequences as study-specific 16S and ITS reference libraries
to enhance the taxonomic resolution of our shorter but more
numerous NextSeq sequences. Illumina MiSeq produced 19
million paired-end reads, and Illumina NextSeq produced 187
million paired-end reads.

MiSeq reads were partitioned into 16S and ITS datasets based
on their primer regions using a custom Perl script (version 5.18.1;
see Data Availability for script), and index tags were removed.
Since variable length index tags were used, MiSeq reads were
trimmed to 290 bp using cutadapt (version 2.10; Martin, 2011) to
ensure that non-overlapping sequences did not appear different
simply due to read length. Using cutadapt, read pairs that
contained Ns were removed, and forward primers and reverse
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complements of reverse primers were trimmed (with a maximum
error rate of 0.15, a minimum trimmed length of 1bp, and
discarding untrimmed read pairs), with trimming the reverse
primer’s reverse complement being required for 16S read pairs.
Variable length index tags reduce amplicon sequencing error on
Mlumina platforms by increasing heterogeneity in the composition
of bases called in each cycle (Fadrosh et al., 2014).

The DADA2 bioinformatics pipeline (version 3.10; Callahan
etal,, 2016) was used in the R statistical software program (version
4.0.2; R Core Team, 2020) for quality filtering, phiX removal,
denoising, merging pairs, chimera removal, and taxonomic
assignment of MiSeq reads (see Supplementary material for
details). While 16S reads were of appropriate lengths for merging
pairs, the variable length of the ITS region resulted in both
overlapping and non-overlapping read pairs. DADA2 has the
ability to work with both overlapping and non-overlapping read
pairs, allowing for the retention of fungal taxa with long ITS genes.
Overlapping ITS read pairs were merged, while non-overlapping
ITS read pairs were retained in the pipeline as concatenated
sequences with 10-N spacers, which DADA2’s implementation of
the naive Bayesian classifier is designed to work with. DADA2’s
naive Bayesian classifier (Wang et al., 2007) was used to classify
unique sequences in the MiSeq 16S and ITS datasets using Silva
(version 138; Quast et al., 2012) and UNITE (general dynamic
FASTA release for fungi; version 8.2; Nilsson et al., 2019) reference
libraries, respectively. To create study-specific 16S and ITS
reference libraries, NextSeq-length forward and reverse reads were
created from the classified MiSeq 16S and ITS sequences, and
consensus taxonomies and MiSeq-length sequences (for
predicting Bd-inhibitory function) were generated for duplicate
reference read pairs (see Supplementary material for details).
Integers were appended to reference taxa names to differentiate
each amplicon sequence variant (ASV) associated with a taxon.

NextSeq reads were assigned to PCR replicate, barcode region,
and sample (i.e., reads were demultiplexed) using Perl while
allowing 1bp mismatches in the index tags (index tags were
designed to differ by at least 2bp). Allowing 1 bp mismatches in
the index tags allows reads which experience sequencing error in
the index tag regions to be retained if the index tags can still
be uniquely identified. We note that allowing sequencing errors in
index tag regions is not uncommon during demultiplexing. For
example, demultiplexing in cutadapt and QIIME 2 (qiime
cutadapt demux-paired command; version 2022.8; Bolyen et al.,
2019) allow for 10% mismatches in index tags by default.
Following demultiplexing, phiX reads were discarded and index
tags were removed using Perl. The following steps were performed
sequentially on the NextSeq reads using cutadapt: reads were
trimmed to 140 bp to make all reads the same length, read pairs
with Ns were removed, forward primers and reverse complements
of reverse primers were trimmed (with the same settings as the
MiSeq data but without requiring trimming of the reverse primers’
reverse complements).

Using exact matching in R, 21.4 million of 54.3 million
NextSeq 16S reads were identified to 15,792 reference sequences,

Frontiers in Microbiology

06

10.3389/fmicb.2022.1020329

and 60.4 million of 113.9 million NextSeq ITS reads were
identified to 3,488 reference sequences. Of the identified NextSeq
sequences, 17.0% of 16S sequences were coligos or the synthgene,
and 79.5% of ITS sequences were coligos or the synthgene. All
samples were checked for between-well cross contamination
through use of the coligos. Three salamander samples and one
blank control sample were removed from the 16S dataset due to
high amounts of between-well contamination (having a ratio of
any contaminant coligo to non-contaminant coligo greater than
0.1 after summing coligo read counts across PCR replicates). Two
salamander samples were removed from the ITS dataset due to
lack of detection of any non-synthgene and non-coligo sequences
in both PCR replicates. Coligos were removed from the datasets
for all subsequent analyses. In the mock community samples,
we observed strong amplification bias in the ITS data
(Supplementary Figure S2), and one fungal taxon was split into
three substantial ASVs. In an effort to mitigate the potential
impact of fungal taxa being split into multiple ASVs, we merged
fungal ASVs which were assigned the same taxonomy into the
same taxa. We chose to forego rarefaction of our samples as it
increases uncertainty in relative abundances (McMurdie and
Holmes, 2014).

We performed principal component analyses (PCAs) on
the proportional abundances of taxa across PCR replicate and
sample type (Supplementary Figures S3-S5). Taxa proportional
abundances within samples were similar across PCR replicates,
so read counts were summed across PCR replicates for each
sample. There were ten salamander samples which grouped
closely with wet swab and dry swab negative controls in the
16S PCAs on sample type, so these samples were removed
from the 16S data for all subsequent analyses. Following
Harrison et al. (2021), we used synthgene read counts to
calculate the amount of microbial DNA in each sample relative
to the synthgene (i.e., microbial read count divided by
synthgene read count), and we compared the amount of
microbial DNA in field samples to their associated negative
controls (Supplementary Figure S6). Synthgenes were
subsequently removed from the datasets. The final datasets for
our field samples contained 15,690 bacterial taxa (6,529 for
salamander, 8,873 for water, and 14,591 for substrate) and 469
fungal taxa (289 for salamander, 224 for water, and 413
for substrate).

Water quality between sites and through
time

To examine how water quality changed throughout the warm
season, we fit a linear mixed-effects model for each water quality
parameter (i.e., temperature, pH, conductivity, and dissolved
oxygen [ppm and %]) using the ImerTest R package (version 3.1.3;
Kuznetsova et al., 2017). In these linear mixed-effects models,
stratum was treated as a random effect, and site, week, and their
interaction were included as fixed effects. Stratum was coded with

frontiersin.org



Goodwin et al.

nine values representing the four strata in Gibson Lakes and the
five strata in Ponds Lake. Site was treated as a categorical predictor,
and week was treated as a continuous predictor. Week represented
the number of weeks since June 9th, 2018. Water quality
measurements are displayed in Supplementary Figure S7.

Predicting Bd-inhibitory function

A database of amphibian skin-associated microbiome
Bd-inhibitory bacterial isolates (Woodhams et al., 2015) was used
to predict which bacteria observed in our datasets exhibit
Bd-inhibitory properties (see Supplementary material for details).
We trimmed sequences in the database of Woodhams et al. (2015)
to the 16S rRNA V4 region using our 16S amplification primers
with R, and we aligned the MiSeq 16S sequences of taxa detected
in our NextSeq 168 field samples with the Woodhams et al. (2015)
sequences using Clustal Omega (version 1.2.4; Sievers et al., 2011).
We used FastTree 2 (version 2.1.11; Price et al., 2010) to create a
phylogenetic tree, and we used stochastic character mapping with
the make.simmap function in the phytools package (version
0.7.70; Revell, 2012) to predict the Bd-inhibition statuses of our
observed taxa. Stochastic character mapping extends ancestral
state reconstruction to probabilistically predict unobserved traits
at the tips of a phylogenetic tree (Bollback, 2006). While existing
applications of the Woodhams et al. (2015) database tend to
employ local alignment or clustering methods to classify bacterial
taxa as “potentially” Bd-inhibitory (e.g., Kueneman et al., 2016b;
Bletz et al., 2017a; Kruger, 2020), stochastic character mapping
provides the benefit of yielding probabilistic predictions that
bacterial taxa are actually Bd-inhibitory. We further note that
extended ancestral trait reconstruction is commonly applied in
predicting the metabolic function of gut microbiomes (Langille
etal., 2013). We visualized our phylogenetic tree with the posterior
probabilities of our taxa being Bd-inhibitory using the Interactive
Tree of Life (Supplementary Figure S8; version 6.5.4; Letunic and
Bork, 2021).

The vast majority of our taxa had low confidence in their
Bd-inhibition statuses (99.5% of posterior probabilities were
between 47.9 and 52.5%), whereas most posterior probabilities
which were <40% or >60% were also <10% or >90% (33 of 39).
Therefore, we considered our bacterial taxa to be Bd-inhibitory if
their posterior probabilities of Bd-inhibition were>90%, and
we considered our bacterial taxa to be non-Bd-inhibitory if their
posterior probabilities of Bd-inhibition were <10%. Otherwise,
we considered our bacterial taxa to have an uncertain
Bd-inhibition status.

Microbial composition modeling
For both bacterial and fungal communities, we fit Bayesian

Dirichlet-multinomial regression models to the salamander,
water, and substrate microbiome data to identify differentially
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abundant microbes and to evaluate differences in overall
community composition. Bayesian Dirichlet-multinomial
regression estimates the effect of covariates on a set of proportions
which sum to one (i.e., a simplex) and uses a set of counts as a
multivariate response. In the context of microbiome data, the
model uses read counts to estimate the expected proportional
abundances of microbial taxa in the community, and the model
considers the underlying uncertainty in each samples
composition, which is dictated by the sample’s total read count
(i.e., its sampling effort). Bayesian Dirichlet-multinomial models
outperform other analyses of compositional data in detecting
differences in community composition, and the model further
allows for the identification of the taxa responsible for those
differences (i.e., the model allows for differential abundance
testing; Harrison et al., 2020).

Our Bayesian Dirichlet-multinomial regression model was
adapted from the Bayesian Dirichlet regression model of
Sennhenn-Reulen (2018), and we used backwards variable
selection by widely applicable information criterion (WAIC) to
optimize predictive accuracy. WAIC is a Bayesian analog to AIC
and approximates the predictive accuracy of leave-one-out cross-
validation (Gelman et al., 2014). In our model, sample read counts
are distributed according to the Dirichlet-multinomial
distribution. Each taxon receives a linear predictor combination,
and the softmax function (a multivariate inverse logit) normalizes
linear predictor combinations for all taxa into expected
proportions. The last taxon serves as a reference category, and its
intercept and regression coefficients are set to zero to allow for
model identifiability. A precision parameter controls the degree of
overdispersion relative to the multinomial distribution. See
Supplementary material for model details.

Our Bayesian Dirichlet-multinomial regression models were
computationally intensive to fit, with the number of model
parameters and model run time increasing with the number of
taxa included. To keep model run-times practical, we opted to
select the 100 most proportionally abundant taxa from the
salamander samples, plus an “other” category, for inclusion in the
composition models. To select these taxa, we calculated the
proportion of reads of each taxon in each salamander sample. For
each barcode region (i.e., 16S or ITS), we then averaged each
taxon’s proportion of reads by combinations of site and life stage.
We then averaged across these averages, and we took the 100 taxa
with the highest averaged proportion of reads for each barcode
region for use in modeling. Other taxa which were not included
in the top 100 for each barcode region had their read counts
merged into an “other” category. By weighting each combination
of site and life stage equally (i.e., by taking averages of averages) in
selecting the top 100 taxa, we ensured that the top 100 taxa were
not dominated by taxa from one site or life stage simply due to
differences in sample size. Including the “other” category in the
models ensures that the proportional abundances of the top 100
taxa remain unbiased. We chose to select the top 100 taxa because
these comprise the vast majority of reads in salamander samples
(93.1% of bacterial and 98.6% of fungal reads). As such, we expect
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variation in the composition of these taxa to represent most of the
variation in community composition. Additionally, following
initial testing, we deemed including 101 categories in the
composition models (the top 100 taxa plus the “other” category)
to be near the upper reasonable limit of our computing capacity
on a high-performance computing cluster. Ultimately, our
Bayesian Dirichlet-multinomial regression models, coupled with
our backwards variable selection approach, took 785 CPU days to
run. Datasets used in the modeling of water and substrate
microbial communities included the same taxa as used for the
salamander modeling, plus their own “other” categories.
Proportional abundance estimates from Bayesian Dirichlet-
multinomial regression models for water and substrate are later
used to identify microbes which are disproportionately abundant
on salamander skin relative to the environment. Since not all top
microbial taxa in the salamander samples were detected in the
water and substrate samples, the water and substrate datasets used
in modeling had fewer than 101 taxa.

As water quality was highly correlated with space and time
(Supplementary Figure S7), we fit models with two different sets
of predictors. One predictor set included spatiotemporal
covariates, while the other predictor set substituted spatiotemporal
covariates with water quality. The spatiotemporal predictor set
included four-way interactions between age, life stage, site, and a
second-degree polynomial for week, all lower-level interactions,
and the individual predictors. Stratum was also included as a
predictor and treated as a hierarchical effect. The water quality
predictor set included a five-way interaction between age, life
stage, temperature (°C), pH, and dissolved oxygen (ppm), all
lower-level interactions, and the individual predictors. Models for
water and substrate lacked age and life stage predictors. Site and
life stage were treated as categorical predictors, and age and week
were treated as continuous predictors. Age took whole integers
from zero (age-0) to two (age-2+), and week represented the
number of weeks since June 9th, 2018.

Bayesian Dirichlet-multinomial regression models were fit in
Stan (version 2.21.0; Carpenter et al., 2017) using the rstan R
interface (version 2.21.2; Stan Development Team, 2020) with
four Hamiltonian Monte Carlo (HMC) chains, 500 warmup
iterations, 500 sampling iterations, and no thinning. Stan was
chosen for its efficient HMC algorithm, and HMC chains were
run in parallel on a University of Utah high—performar}ce
computing cluster. Gelman-Rubin convergence diagnostics ( R )
and trace plots of the posteriors were used to assess model
convergence. Since interpreting the effect of Dirichlet-
multinomial regression coefficients on proportional abundances
is not straightforward (see Supplementary material for a
discussion), we opted for a graphical interpretation of the best-fit
models (i.e., the models selected by backwards variable selection).
We generated posterior predictions of proportional abundances
for each combination of non-stratum predictors observed in the
datasets, where predictions were for the average stratum (see
Supplementary material for prediction details). The posterior
predictions of taxa proportional abundances were summarized

Frontiers in Microbiology

08

10.3389/fmicb.2022.1020329

with 95% credible intervals, 50% credible intervals, and their
median values.

For salamander microbiomes, Hill’s diversity index with =2
(Haegeman et al., 2013) was derived from the posterior predictions
of taxa proportional abundances. By treating Hill’s diversity as a
derived parameter from the Bayesian Dirichlet-multinomial
regression models, we propagated the uncertainty associated with
taxa proportional abundances to our diversity index. We chose
Hill’s diversity (¢=2) as our alpha diversity index because it is
insensitive to the many rare taxa expected in microbial
communities, and can therefore be robustly estimated from
microbiome data (Haegeman et al, 2013). Because of its
insensitivity to rare taxa, we expected our grouping of rare taxa
into an “other” category in the Bayesian Dirichlet-multinomial
regression models to have a negligible impact on Hill’s diversity.
We tested this expectation in the context of our data as follows. By
grouping rare taxa into an “other” category, we created a situation
of maximum unevenness within the group (i.e., the entire
abundance of the “other” category was composed of a single
taxon). We evaluated the sensitivity of Hill's diversity to rare taxa
by considering how evenly distributing the abundance of the
“other” category across all of its member taxa influenced the
index. For each HMC sample, we split the proportional abundance
predictions of the “other” category into its individual members
with uniform proportional abundances. We then re-derived Hill’s
diversity and compared the posterior medians with the original
values. After excluding a single combination of stage class and
sampling event for bacterial communities, we observed a very
strong correlation in Hill’s diversity estimates between the two
methods (Pearson correlation coefficient of >0.999 for both
bacteria and fungi). The excluded combination of stage class and
sampling event was age-0 metamorphosed salamanders at Gibson
Lakes on September 15th, which had a high proportional
abundance of “other” bacterial taxa (posterior median of 0.196)
and whose diversity estimate was found to be sensitive to the
grouping of rare taxa into an “other” category (Hill’s diversity
increased by 226.6% in the described test). We removed this
combination of stage class and sampling event from our Hill’s
diversity estimates for bacteria so that all remaining diversity
estimates were reliable. The posterior distributions of Hill’s
diversity were summarized with 95% credible intervals, 50%
credible intervals, and their median values.

To estimate the Bd-inhibitory function of bacterial
communities, we summed the read counts of bacteria belonging
to each Bd-inhibition category within each sample, and we fit
additional Bayesian Dirichlet-multinomial regression models for
salamander, water, and substrate samples with three response
Bd-inhibition
Bd-inhibitory, non-Bd-inhibitory, and uncertain Bd-inhibition

categories representing the statuses  (i.e.,
status). These models used the spatiotemporal predictor set, and
backwards variable selection by WAIC was again used to optimize
predictive accuracy. We again generated posterior predictions of
proportional abundances for each combination of non-stratum

predictors observed in the datasets, where predictions were for the

frontiersin.org



Goodwin et al.

average stratum. We summarized the proportional abundances of
each Bd-inhibition category with 95% credible intervals, 50%
credible intervals, and their median values.

To examine which taxa and Bd-inhibition categories were
disproportionately abundant on salamander skin relative to the
environment, we considered the proportional abundance of
microbes that salamanders experience in their environments to
be a mixture between water and substrate proportional
abundances, with the mixing ratio being a product of salamander
behavior. Although we do not know this ratio, we expect that the
result of this mixture is between the lower of the 0.025 quantiles
(the lower ends of the 95% credible intervals) and the upper of the
0.975 quantiles (the upper ends of the 95% credible intervals) of
the proportional abundance posterior predictions from water and
substrate Bayesian Dirichlet-multinomial regression models, and
we consider this range to represent the proportional abundance of
a taxon or Bd-inhibition category in the environment. In
determining this range, if a taxon was not detected in the water or
substrate samples, and therefore was not included in the Bayesian
Dirichlet-multinomial regression modeling for that sample type,
it was considered to have 0.025 and 0.975 quantiles of proportional
abundance predictions for that sample type of zero. The end result
is that, if the proportional abundance of a taxon on salamander
skin is higher than this range, then the taxon is disproportionately
more abundant on salamander skin compared to both water and
substrate. Conversely, if the proportional abundance of a taxon on
salamander skin is lower than this range, then the taxon is
disproportionately more abundant in both water and substrate
than on salamander skin.

Relationship between Bd-inhibitory
bacteria and Bd

We detected Bd from ITS amplicon sequencing (i.e., there
were fungal microbiome reads which were classified as Bd) on
salamander skin at both lakes, and since Bd was absent in all
negative control samples, we are confident that this was not the
result of contamination. To verify that fungal microbiome reads
which the naive Bayesian classifier assigned to Bd were likely
classified correctly, we performed an online nucleotide BLAST
search (Zhang et al., 2000) with default settings for each of the
25 Bd ASV's which were previously merged into the Bd taxon. For
each Bd ASV, the best-matching BLAST hit (the match with the
lowest E-value) was a reference sequence belonging to Bd. 92%
of Bd ASVs had 96.7% similarity or greater compared to their
best-matching Bd reference sequence, and all ASV's had at least
94.5%
reference sequence.

similarity compared to their best-matching Bd

We tested for a relationship between the relative abundances
of Bd-inhibitory bacteria and Bd on the skin of metamorphosed
salamanders by fitting a Bayesian beta-binomial regression model
with a logit link. We restricted this analysis to metamorphosed
individuals because cutaneous Bd infections do not typically
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produce disease in larval amphibians (Marantelli et al., 2004). In
our samples, Bd was detected on the skin of only 2.2% of larval or
neotenic individuals (3 of 139) compared to 57.6% of
metamorphosed individuals (38 of 66). The Bayesian beta-
binomial regression model can be viewed as a univariate version
of our earlier Bayesian Dirichlet-multinomial regression model.
The Bayesian beta-binomial regression accounts for uncertainty
in response values (i.e., the proportional abundance of Bd in
fungal communities) by considering Bd read counts to be beta-
binomially distributed, and a precision parameter controls the
degree of overdispersion relative to the binomial distribution. Our
model additionally accounts for uncertainty in the predictor
values (i.e., the proportional abundance of Bd-inhibitory bacteria
in bacterial communities) by estimating predictor values within
the model from Bd-inhibitory read counts. Within the model,
Bd-inhibitory read counts are beta-binomially distributed, and the
logit linearizes Bd-inhibitory proportional abundance estimates
for use as predictor values. See Supplementary material for model
details. The model was fit in JAGS (version 4.3.0; Plummer, 2003)
using the rjags R interface (version 4.10; Plummer, 2019) with
three Markov chain Monte Carlo (MCMC) chains, 20,000
adaptation iterations, 20,000 warmup iterations, 100,000 sampling
iterations, and no thinning. Gelman-Rubin convergence
diagnostics and trace plots of the posteriors were used to assess
model convergence.

Results
Field sampling

We observed higher amounts of microbial DNA in field
samples compared to their associated negative controls
(Supplementary Figure S6). Total sample counts are included in
Table 1, and a breakdown of salamander skin-associated
microbiome samples are displayed in Figure 2. The residency of
different salamander age classes varied through time, and age-0
salamanders were too small to sample during the early
warm season.

TABLE 1 Microbiome sample counts.

Format Type Count
Swab Salamander 207
Wet negative control 11
Dry negative control 13
Water Sample 60
Negative control 20
Substrate Sample 67
Blank Negative control 12
Mock community Positive control 2
Total 392
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Salamanders Captured by Sampling Event
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FIGURE 2

Counts of salamander skin-associated microbiome samples through time.

Based on observed sizes of males and females, most age-2+ oxygen (both ppm and %). These results suggest that we were
salamanders — and only age-2+ salamanders — are thought to unable to detect differences in water temperature between Gibson
have been adults. Males develop swollen cloacas once sexually Lakes and Ponds Lake, and temperature at both lakes decreased
mature (Stebbins, 2003), and only one non-male age-2+ throughout the warm season (.= —0.713, value of p<0.001). pH
salamander (83 mm SVL; assumed to be female) had an SVL less was lower at Ponds Lake compared to Gibson Lakes (f.=—1.048,
than the smallest male (84mm), with other small age-2+ value of p<0.001) and increased throughout the warm season at
salamanders in the range of 85 to 87mm SVL being a mix of both lakes (f,.=0.053, value of p<0.001; non-significant
males (3) and females (4). Given the overlap in size between interaction between site and week, value of p=0.147). For
males and females, few subadults are expected to have been conductivity and dissolved oxygen (both ppm and %), temporal
included in the age-2+ age class since male salamanders of this trends were dependent on the lake (p-values <0.05 for all site,
size were showing clear signs of sexual maturity. The absence of week, and interaction regression coefficients). Field measurements
swollen cloacas from all age-0 and age-1 individuals suggests that of water quality are shown in Supplementary Figure S7.

only age-2+ individuals were sexually mature. 23 of 55 (41.8%)

of sexed age-2+ salamanders were male (36.0% for Gibson Lakes

and 46.7% for Ponds Lake). Predictions of Bd-inhibitory function
Parameter estimates, test statistics, and p-values from the

linear mixed-effects models for water quality are reported in Only 33 of the 15,690 taxa detected in our NextSeq 16S field
Supplementary Table S1. These models included stratum as a samples were classified as Bd-inhibitory or non-Bd-inhibitory (i.e.,
random effect, and site, week, and their interaction were included posterior probabilities >90% or < 10%; Supplementary Table S2). Of
as fixed effects. From the linear mixed-effects models, all water the 872 Woodhams et al. (2015) sequences which were used in the
quality parameters (ie., temperature, pH, conductivity, and alignment, there were 361 unique sequences, and 79 of these unique
dissolved oxygen [ppm and %]) changed significantly throughout sequences occurred across multiple bacterial isolates. We note that
the warm season (values of p <0.05 for all regression coefficients 41 of these 79 sequences (51.9%) had inconsistent Bd-inhibition
for week). We found a significant effect of site for all water quality statuses (i.e., statuses varied across isolates associated with the same
parameters besides temperature, and we found significant sequence). We also note that the aligned Woodhams et al. (2015)
interactions between site and week for conductivity and dissolved sequences provided limited phylogenetic coverage of the bacterial
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Proportion of Bacterial Reads in Salamander Samples
G: Gibson Lakes — P: Ponds Lake
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FIGURE 3
Proportion of bacterial reads in salamander samples belonging to each class. The ten classes with the highest number of salamander sample reads
are displayed along with a category for the other classes. A stacked bar chart is displayed for each combination of stage class and sampling event,

10.3389/fmicb.2022.1020329

and each stacked bar chart represents reads pooled across samples belonging to the combination of stage class and sampling event. A “G”
proceeds the dates of sampling events at Gibson Lakes, and a "P" proceeds the dates of sampling events at Ponds Lake.

taxa detected in our field samples (Supplementary Figure S8), with
only 5,330 (34.0%) of our bacterial taxa belonging to phyla included
in the Woodhams et al. (2015) database.

Microbial composition

The proportion of reads in salamander samples belonging to
each microbial class for each combination of stage class and
sampling event are displayed in Figures 3, 4 for bacterial and
fungal communities, respectively. Salamander bacterial
communities were dominated by members of the phylum
Proteobacteria and class Gammaproteobacteria (Figure 3), which
comprised 89.8 and 86.7% of reads, respectively. The proportion
of reads belonging to each fungal class (Figure 4) were more
balanced than bacteria. Among salamander fungal reads, 41.6%
belonged to class Rhizophydiomycetes, 21.4% were unidentified
fungi, and 15.2% belonged to class Tremellomycetes.

Bayesian Dirichlet-multinomial regression models with

spatiotemporal predictors fit better than models with water quality

Frontiers in Microbiology

predictors for salamander samples (Table 2), suggesting that our
spatiotemporal predictors were better able to predict salamander
microbial composition. All but two of the best-fitting Bayesian
Dirichlet-multinomial regression models with spatiotemporal
predictors included stratum as a predictor, suggesting
compositional variation in microbial communities within the
lakes, with the models for salamander fungal communities and
water Bd-inhibition categories being the exceptions. Except for
stratum in the aforementioned models, all best-fitting
spatiotemporal Bayesian Dirichlet-multinomial regression models
included all individual predictors or their interactions, suggesting
that all of our measured variables contributed to our ability to
predict the composition of microbial communities.

The ten Bayesian Dirichlet-multinomial regression models
from the backwards variable selection process with the lowest
WAIC values for each sample type (i.e., salamander, water, or
substrate), predictor set (i.e., spatiotemporal or water quality), and
microbial community type (i.e., bacterial community, fungal
community, or Bd-inhibition categories) are included in
Supplementary Tables S3-S7. Four best-fitting Bayesian
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Age-1 Metamorphosed Age-2+ Metamorphosed

Proportion of Fungal Reads in Salamander Samples
G: Gibson Lakes — P: Ponds Lake
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Proportion of fungal reads in salamander samples belonging to each class. The ten classes with the highest number of salamander sample reads
are displayed along with a category for the other classes. A stacked bar chart is displayed for each combination of stage class and sampling event,
and each stacked bar chart represents reads pooled across samples belonging to the combination of stage class and sampling event. A “G"
proceeds the dates of sampling events at Gibson Lakes, and a "P" proceeds the dates of sampling events at Ponds Lake.

Dirichlet-multinomial regression models had other models within
two WAIC (i.e., the model for substrate bacterial community
composition and models for salamander, water, and substrate
Bd-inhibition categories). With one exception, all other models
within two WAIC contained the same predictors or their
interactions as the best-fitting models. For example, a model with
age as a predictor and another model with an interaction between
age and site both contain age. The exception was one model within
two WAIC of the best-fitting model for Bd-inhibition categories
in lake water, which included stratum as a predictor while the
best-fitting model excluded it.

Throughout our results, we consider non-overlapping 95%
credible intervals of posterior predictions to represent
differences in taxa proportional abundances, alpha diversity, or
the proportional abundances of Bd-inhibition categories,
depending on the analysis. These posterior predictions are all
from the best-fitting Bayesian Dirichlet-multinomial regression
model (the model with the lowest WAIC) for salamander, water,
or substrate samples for bacterial communities, fungal
communities, or Bd-inhibition categories. The 95% credible
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intervals of posterior predictions are presented in the
referenced figures.

The following results are from the posterior predictions of the
best-fitting Bayesian Dirichlet-multinomial regression model for
bacterial community composition on salamander skin.
We observed temporal, spatial, and ontogenetic variation in the
proportional abundances of the top 100 bacterial taxa (Figure 5;
Supplementary Figures S9-S13), with the degree of variation
depending on the taxon. Proportional abundance trends were
often taxon-specific, although patterns were observed across some
taxa. Examples of temporal variation include an increase in the
proportional abundance of Comamonadaceae 2 (i.e., the second
ASV classified as Comamonadaceae) through time in Gibson
Lakes age-0 larvae and a decrease in the proportional abundance
of Candidatus Methylopumilus 1 through time in Ponds Lake
age-1 larvae. Ontogenetic variation is apparent among many of the
top 100 bacterial taxa. For example, the proportional abundances
of Comamonadaceae 3 and 6 in Ponds Lake were consistently
higher for age-2+ metamorphosed salamanders than other stage

classes. In Gibson Lakes age-0 individuals, we observed higher
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TABLE 2 Predictors included in the best-fitting Bayesian Dirichlet-multinomial regression models for microbiome composition.

10.3389/fmicb.2022.1020329

Sample  Microbial Predictor . Best-fit  Full Nm(:}ber Number  Total
type community  set Best-fit model predictors model model models . oftaxa ~ CPU
WAIC WAIC fit included days
Salamander ~ Bacterial Spatiotemporal ~ Stratum + Age + Life Stage + Site + Age:Life 140041.5  140505.6 196 101 105.7
Stage + Age:Site + Life Stage:Site + Life
Stage:Week + Site:Week + Site:-Week” + Age:Life
Stage:Site + Age:Life
Stage:Week + Age:Site:Week + Life
Stage:Site:Week? + Age:Life Stage:Site:Week?
Water quality Age + Life Stage + Life Stage:Temperature + Life 140706.1  141839.3 452 101 253.9
Stage:pH + Temperature:pH + Life Stage:DO
(ppm) + Age:Life Stage:pH + Age:pH:DO
(ppm) + Age:Life Stage:Temperature:DO
(ppm) + Life Stage:Temperature:pH:DO (ppm)
Fungal Spatiotemporal  Life Stage + Life Stage:Site + Age:Week” + Site:Week? ~ 120600.2  121624.9 295 101 161.9
Water quality Age + Life Stage + Life Stage:Temperature + Life 121168.6  122711.0 476 101 257.1
Stage:DO (ppm) + Age:Life Stage:pH + Age:Life
Stage:pH:DO (ppm) + Age:Temperature:pH:DO
(ppm)
Bd-inhibition Spatiotemporal  Stratum + Life Stage + Week + Week? + Age:Life 4998.5 5005.0 70 3 1.6
categories Stage + Age:Site + Life
Stage:Site + Age:Week + Age:Week” + Life
Stage:Week + Life
Stage:Week® + Site:Week + Site: Week” + Age:Life
Stage:Site + Age:Life Stage:Week + Age:Life
Stage:Week? + Age:Site:Week + Age:Site: Week? + Life
Stage:Site:Week + Life Stage:Site:Week? + Age:Life
Stage:Site:Week + Age:Life Stage:Site:Week?
Water Bacterial Spatiotemporal  Stratum + Site + Week + Site:Week + Site:Week? 442729 44329.3 12 87 0.7
Fungal Spatiotemporal  Stratum + Week + Week? + Site:Week + Site:Week? 29359.9 29392.3 12 68 0.6
Bd-inhibition Spatiotemporal  Site + Week + Site:Week + Site:Week? 1673.2 1676.1 16 3 0.1
categories
Substrate Bacterial Spatiotemporal  Stratum + Site + Week + Site:Week + Site:Week? 34202.2 34440.6 12 83 1.0
Fungal Spatiotemporal  Stratum + Week + Site:Week + Site:Week? 51644.8 51924.2 16 92 2.1
Bd-inhibition Spatiotemporal  Stratum + Site + Week + Site:Week + Site: Week® 1391.7 1400.6 12 3 0.1

categories

Best-fit models are those selected by backwards variable selection by WAIC, and the full model is the initial model fit during backwards variable selection which includes all predictors.

DO is dissolved oxygen.

proportional abundances of certain bacterial taxa on larvae
followed by a sharp decline post-metamorphosis (e.g.,
1, Methylotenera 7,
Methylotenera 2, and Sphingorhabdus rigui 1).

Comamonadaceae 2, Limnohabitans

Ninety of the top 100 bacterial taxa detected in salamander
samples were also detected in environmental samples. We detected
86 and 82 of the top 100 bacterial taxa in water and substrate
samples, respectively. From the posterior predictions of the best-
fitting salamander, water, and substrate Bayesian Dirichlet-
multinomial regression models for bacterial community
32 of the top
disproportionately more abundant on salamander skin relative to

composition, 100 bacterial taxa were

the environment for the majority of combinations of stage class
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and sampling event (Figure 5; Supplementary Figures S9-513),
including Sanguibacter 1 and Gracilibacteria 3. Taxa detected
exclusively on salamander skin include Pseudochrobactrum
kiredjianiae 1 and Roseomonas 2. None of the top 100 bacterial
taxa had lower proportional abundances on salamander skin than
in the environment for the majority of combinations of stage class
and sampling event.

As for bacteria, we observed spatiotemporal and ontogenetic
variation in the proportional abundances of the top 100 fungal taxa
based on the posterior predictions of the best-fitting Bayesian
Dirichlet-multinomial regression model for fungal community
composition on salamander skin (Figure 6; Supplementary
Figures S14-S18). Naganishia diffluens experienced an increase in
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Proportional abundance predictions from Bayesian Dirichlet-multinomial regression models for the first ten bacterial taxa from the top 100.
Points, thick lines, and thin lines represent posterior medians, 50% credible intervals, and 95% credible intervals, respectively. Hatched ranges
represent environmental proportional abundances. Taxa without hatched ranges were not detected in either water or substrate. Note the square
root scale on the y-axis. Taxa are ordered (left to right, top to bottom) by descending average proportion of reads in salamander samples in which
each combination of site and life stage receives equal weight. Proportional abundance prediction plots for the remaining top 100 bacterial taxa

proportional abundance through time for age-0 and age-2+
salamanders at both lakes, and the proportional abundance of
Vishniacozyma victoriae increased through time for Gibson Lakes
age-0 larvae. Notably, the proportional abundance of Bd in Ponds
Lake metamorphosed individuals was very high (between 35 and
55%) compared to Ponds Lake larvae and either life stage at Gibson
Lakes (all <2.5%; Figure 6). In contrast, metamorphosed
individuals at Ponds Lake had lower proportional abundances of
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Cystobasidium slooffiae compared to Ponds Lake larvae and either
life stage at Gibson Lakes, the opposite of the pattern
observed for Bd.

Ninety-three of the top 100 fungal taxa detected in salamander
samples were also detected in environmental samples. We detected
67 and 91 of the top 100 fungal taxa in water and substrate samples,
respectively. From the posterior predictions of the best-fitting
salamander, water, and substrate Bayesian Dirichlet-multinomial
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Proportional abundance predictions from Bayesian Dirichlet-multinomial regression models for the first ten fungal taxa from the top 100. Points,
thick lines, and thin lines represent posterior medians, 50% credible intervals, and 95% credible intervals, respectively. Hatched ranges represent
environmental proportional abundances. Note the square root scale on the y-axis. Taxa are ordered (left to right, top to bottom) by descending

average proportion of reads in salamander samples in which each combination of site and life stage receives equal weight. Proportional
abundance prediction plots for the remaining top 100 fungal taxa can be found in the Supplementary material.

regression models for fungal community composition, 27 of the
top 100 fungal taxa were disproportionately more abundant on
salamander skin relative to the environment for the majority of
combinations of stage class and sampling event (Figure 6;
Supplementary Figures S14-S18), including Candida sake,
Wallemia muriae, and Vishniacozyma. Taxa detected exclusively on
salamander skin include Pleosporales, Melanodiplodia
tianschanica, and Buckleyzyma aurantiaca. Four of the top 100
fungal taxa had lower proportional abundances on salamander
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skin than in the environment for the majority of combinations of
stage class and sampling event, including Ascomycota,
Basidiomycota, and Rozellomycota.

Salamander bacterial and fungal diversity (i.e., Hill’s diversity
with a=2 derived from the posterior predictions of the best-
fitting Bayesian Dirichlet-multinomial regression models for
salamander bacterial and fungal communities, respectively) are
displayed in Figure 7. Salamander bacterial diversity had the
highest values in early-season age-1 metamorphosed individuals
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multinomial regression models.

Hill's Diversity Index (a = 2) on Salamander Skin
Point: Posterior median — Thick line: 50% credible interval — Thin line: 95% credible interval

Hill's diversity index (a=2) for bacterial and fungal communities on salamander skin. Diversity estimates were derived from proportional abundance
predictions of bacterial and fungal taxa from Bayesian Dirichlet-multinomial regression models. Points, thick lines, and thin lines represent
posterior medians, 50% credible intervals, and 95% credible intervals, respectively. Note that bacterial diversity for age-0 metamorphosed
salamanders at Gibson Lakes on September 15th is omitted because, for this combination of stage class and sampling event only, we found Hill's
diversity to be sensitive to our grouping of rare taxa (i.e., those not belonging to the top 100) into an “other” category in the Bayesian Dirichlet-

Stage Class
Age-0 Larvae
+ Age-0 Metamorphosed
+ Age-1 Larvae
+ Age-1 Metamorphosed
Age-2+ Neotene
+ Age-2+ Metamorphosed

Site

I:] Gibson Lakes
D Ponds Lake

at Gibson Lakes, age-2+ neotenes at Ponds Lake in July, and age-0
larvae after mid-August at Gibson Lakes (Figure 7). Bacterial
diversity for age-1 larvae increased throughout the early warm
season at Ponds Lake when most of this stage class was observed.
Bacterial diversity in age-2+ metamorphosed individuals tended
to decrease through time at both lakes. In late August and early
September, bacterial diversity was higher for age-0 larvae at
Gibson Lakes than Ponds Lake. Patterns of microbial diversity for
fungi differed than those for bacteria. Salamander fungal diversity
was highest among age-0 larvae at Gibson Lakes, age-1 larvae at
the beginning of the warm season at Ponds Lake, and late-season
larvae at Ponds Lake (Figure 7). Fungal diversity increased
throughout the early warm season for metamorphosed individuals
at both lakes, with metamorphosed individuals at Ponds Lake
having lower fungal diversity than at Gibson Lakes (Figure 7). The
lower fungal diversity for metamorphosed individuals at Ponds
Lake compared to Gibson Lakes may be due to the high
proportional abundance of a single fungal taxon - reducing
species evenness — on Ponds Lake metamorphosed salamanders
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(the posterior medians of this taxon, Bd, ranged from 0.390 to
0.508; Figure 6).

Based on the best-fitting Bayesian Dirichlet-multinomial
regression models for the composition of bacterial Bd-inhibition
categories (i.e., Bd-inhibitory, non-Bd-inhibitory, and uncertain
Bd-inhibition status), Bd-inhibitory taxa were disproportionately
more abundant on salamander skin relative to the environment for
most combinations of stage class and sampling event (23 of 25;
Figure 8). Non-Bd-inhibitory bacterial taxa were disproportionately
more abundant on salamander skin relative to the environment for
most combinations of stage class and sampling event at Ponds Lake
(10 of 15), but we were unable to detect differences in the
proportional abundances of non-Bd-inhibitory bacterial taxa
between salamander skin and the environment for any combination
of stage class and sampling event at Gibson Lakes (Figure 8).
Bacterial taxa of uncertain Bd-inhibition status were
disproportionately more abundant in the environment compared
to salamander skin for most combinations of stage class and

sampling event (23 of 25; Figure 8).
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Hatched ranges represent environmental proportional abundances. Note the square root scale on the y-axis.

Relationship between Bd-inhibitory
bacteria and Bd

From our Bayesian beta-binomial regression model, there is
a>99.9% probability that a negative relationship exists between
the proportional abundance of Bd-inhibitory bacteria in bacterial
communities and the proportional abundance of Bd in fungal
communities on the skin of metamorphosed salamanders (i.e.,
>99.9% of MCMC samples for the regression coefficient were
negative). The posterior median of the regression coefficient was
—2.402, and the 95% credible interval was —3.386 to —1.586. The
modeled relationship between the relative abundances of
Bd-inhibitory bacteria and Bd on the skin of metamorphosed
salamanders is shown in Figure 9.

Discussion

We observed spatiotemporal and ontogenetic variation in the
relative abundances and microbial diversity of bacterial and fungal
taxa in the skin-associated microbiome of the western tiger
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salamander at two high alpine Rocky Mountain lakes. Our best-
fitting Bayesian Dirichlet-multinomial regression models for
microbial community composition included all predictors or their
interactions except for the models of fungal communities on
salamander skin and Bd-inhibition categories in lake water, for
which the stratum predictor was excluded (Table 2). Because rare
taxa (i.e., not members of the top 100) were grouped into an
“other” category in our Bayesian Dirichlet-multinomial regression
models, variation in the relative abundances of these rare taxa
were masked within changes in the relative abundance of the
“other” category. Therefore, our results should be considered
conservative estimates of the variation in microbial community
composition on tiger salamander skin because variation within
the “other” category was not considered. Because our top 100 taxa
comprise the vast majority of reads in salamander samples (93.1%
of bacterial and 98.6% of fungal reads), we expect variation in the
composition of these taxa, plus the “other” category, to represent
most of the variation in salamander microbiomes. When viewed
conservatively, our models already suggest that all of our covariates
(except for stratum in the aforementioned cases) contribute to our
ability to predict microbial community composition, so we expect
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Bayesian Beta-Binomial Regression for Metamorphosed Salamanders
Point: Observation — Solid line: Posterior median — Dashed line: 95% credible interval

Proportional Abundance of Bd-lnhibitory Bac;[erial Taxa

0.3 0.4

Bayesian beta-binomial regression between the proportional abundances of Bd-inhibitory bacteria and Bd in bacterial and fungal communities,
respectively, on the skin of metamorphosed salamanders. Solid and dashed lines represent the medians and 95% credible intervals of posterior
predictions, respectively. Points represent observations from metamorphosed salamanders. Note that there is uncertainty associated with both the
response and predictor values (i.e., proportional abundances), and the Bayesian beta-binomial regression considers this uncertainty within the

model.

this outcome would be largely unaffected by the inclusion of
additional taxa outside of the “other” category.

Our findings of variation in microbial community
composition between sites, across life stages, and through time is
consistent with the results of other studies (Kueneman et al., 2013;
Longo et al,, 2015; Bletz et al.,, 2017a,b). The inclusion of stratum
as a predictor in the best-fitting composition model of bacteria on
salamander skin, as well as for composition models of bacteria and
fungi in the environment, suggests that we observed spatial
variation in microbial community composition within lakes in
addition to between lakes. Furthermore, the inclusion of
salamander age as a predictor in the best-fitting models of
bacterial and fungal community composition on salamander skin
suggests that, within life stages, we also observed variation in
microbial community composition with salamander age. For
salamander skin-associated bacterial and fungal communities,
composition was better explained by spatiotemporal than water
quality covariates. In agreement with other amphibian skin-
associated microbiome studies, we found that the skin of the
western tiger salamander is a selective environment with taxa
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disproportionately represented compared to their relative
abundances in water and substrate (Kueneman et al., 2013; Walke
et al., 2014; Bletz et al., 2017a).

Time or its interactions were included as predictors in all best-
fitting Bayesian Dirichlet-multinomial regression models for
microbial community composition (Table 2), suggesting that
microbial communities changed throughout the warm season.
Notably, an interaction between time, salamander age, life stage,
and lake was included in the best-fitting model for bacterial
communities on salamander skin. Additionally, the best-fitting
model for fungal communities on salamander skin included both
an interaction between time and salamander age and an
interaction between time and lake. This suggests that temporal
trends in salamander bacterial and fungal community composition
varied by lake and salamander stage class. While time was
included as a predictor in the best-fitting model for Bd-inhibition
categories on salamander skin, we failed to detect changes in the
relative abundances of Bd-inhibitory bacteria through time for any
stage class (i.e., within a stage class, all 95% credible intervals
overlapped; Figure 8). This concurs with the findings of Bletz et al.
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(2017a), which found changes in bacterial community
composition through time but stability in predicted Bd-inhibitory
function. We are hesitant to draw the same conclusion, however,
both because failing to detect change does not mean that change
has not occurred, and because we could only confidently predict
the Bd-inhibition status of a small minority of observed bacterial
taxa. We did detect changes in the relative abundances of common
bacteria (e.g., Comamonadaceae 2 and Candidatus Methylopumilus
1; Figure 5) and fungi (e.g., Naganishia diffluens and
Vishniacozyma victoriae; Figure 6) through time on salamander
skin. We also detected changes in bacterial and fungal diversity
through time for stage classes at both lakes (Figure 7).

Similar to time, life stage or its interactions were also included
as predictors in all best-fitting Bayesian Dirichlet-multinomial
regression models for microbial community composition
(Table 2). Notably, the proportional abundance of the bacterial
taxon Comamonadaceae 1 was higher on the skin of
non-metamorphosed salamanders (i.e., larval or neotenic
individuals) than metamorphosed salamanders (i.e., 95% credible
intervals did not overlap) throughout the warm season at both
lakes (Figure 5). This taxon was very abundant on the skin of
non-metamorphosed salamanders, typically comprising more
than 20% of the bacterial community, and sometimes exceeding
40% (Figure 5). Kueneman et al. (2013) also observed a very high
(>65%) of
Comamonadaceae on a life stage of the Cascades frog (Rana

relative abundance of a single member
cascadae), but the taxon dominated the skin of metamorphosed
frogs instead of tadpoles. In our study, Comamonadaceae 1 was
also disproportionately more abundant on the skin of
non-metamorphosed salamanders relative to the environment,
whereas we were unable to detect differences in the proportional
abundance of this taxon between the environment and the skin of
metamorphosed salamanders (Figure 5). While we compared the
proportional abundances of microbial taxa on salamander skin to
environmental proportional abundances in lake water and lake
substrate, we note that metamorphosed salamanders - although
caught from the water — may have also had access to terrestrial
sources of microbiota (e.g., soil) which we did not sample. For
fungi, both the proportional abundance of Cryptococcus
uniguttulatus and community diversity were higher on the skin of
non-metamorphosed salamanders at every time point where both
metamorphosed and non-metamorphosed salamanders were
observed (Figures 6, 7). This contrasts with the findings of
Kueneman et al. (2016b), in which microeukaryote diversity was
higher on adult western toads (Anaxyrus boreas) than tadpoles.
We detected Bd on salamander skin at both lakes, with the
relative abundance of Bd being highest for age-1 and age-2+
metamorphosed salamanders at Ponds Lake (Figure 6). The
higher abundance of Bd on the skin of metamorphosed compared
to larval amphibians is supported by other studies and is thought
to be the result of increased keratin, a substrate for Bd, in
amphibian skin following metamorphosis, during which
structural changes to the skin occur (Berger et al., 1998; Marantelli
et al,, 2004; Frost et al., 2006). We are unsure why differences in
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the relative abundance of Bd was much less pronounced between
larval and metamorphosed individuals at Gibson Lakes. Since Bd
was absent in all negative control samples, we are confident that
Bd was present at Gibson Lakes and that its detection was not the
result of contamination from Ponds Lake samples.

We observed that Bd-inhibitory bacterial taxa were
disproportionately more abundant on salamander skin relative to
the environment for most combinations of stage class and
sampling event (Figure 8). If bacterial taxa for which we have high
confidence in their Bd-inhibition statuses can be considered a
random sample from both salamander skin and the environment,
then this could be taken as evidence that salamander skin selects
for Bd-inhibitory bacteria. However, salamander skin also
appeared to select for non-Bd-inhibitory bacteria at one lake, and
for both lakes, bacteria of uncertain Bd-inhibition status were
disproportionately more abundant in the environment than on
salamander skin. Since environmental bacteria are not the focus
of the Woodhams et al. (2015) database, we suspect that bacteria
in this reference database are more likely to be common on
amphibian skin than in the environment. This could result in
more environmental bacteria having an uncertain Bd-inhibition
status, and Bd-inhibitory and non-Bd-inhibitory bacteria would
subsequently appear to be disproportionately more abundant on
salamander skin than in the environment. Still, the apparent
selection for Bd-inhibitory bacteria on salamander skin is stronger
than for non-Bd-inhibitory bacteria (Figure 8), suggesting that
selection for Bd-inhibitory bacteria may indeed be occurring.
Despite harboring Bd, tiger salamanders have been found to
tolerate chytridiomycosis (Davidson et al., 2003), and we suggest
that selection for Bd-inhibitory bacteria by tiger salamander skin
may contribute to this disease tolerance.

When viewed across combinations of stage class and sampling
event, we did not observe any noticeable patterns between the
relative abundances of Bd-inhibitory bacteria and Bd (Figure 8). That
is, across combinations of stage class and sampling event, the relative
abundance of Bd was not high or low when the relative abundance
of Bd-inhibitory bacteria was high or low. We did, however, observe
a negative pattern between the relative abundances of Bd and the
fungal taxon Cystobasidium slooffiae (i.., the relative abundance of
Bd was low when the relative abundance of Cystobasidium slooffiae
was high; Figure 6). Conversely, we observed positive patterns
between the relative abundances of Bd and Comamonadaceae 3 and
6 (ie., the relative abundance of Bd was high when the relative
abundances of these taxa were high; Figures 5, 6). Comamonadaceae
has been found to be abundant on the skin of multiple amphibian
species, including the tiger salamander (McKenzie et al., 2011), and
some members show evidence of Bd-inhibition or negative
co-occurrence with fungal taxa (Woodhams et al., 2015; Kueneman
et al, 2016b). Despite this, Walke et al. (2015) found a very weak
correlation between a member of Comamonadaceae and Bd, and
we found positive patterns between the relative abundances of
members of Comamonadaceae and Bd. While we were unable to
confidently predict the Bd-inhibition statuses of Comamonadaceae
3 and 6, we did predict one member of Comamonadaceae to
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be Bd-inhibitory (Comamonadaceae 5). Still, we observed no pattern
between the relative abundances of this taxon and Bd (Figures 5, 6).

Within metamorphosed salamanders, we found strong
evidence (>99.9% probability from a Bayesian beta-binomial
regression) of a negative relationship between the relative
abundances of Bd-inhibitory bacteria and Bd in bacterial and
fungal communities, respectively (Figure 9). We caution, however,
that the mechanism behind this relationship is unclear from our
data. We do not know whether Bd-inhibitory bacteria inhibit Bd
growth, or if the opposite is true. Infection with Bd can lead to the
restructuring of microbial communities on amphibian skin (Jani
and Briggs, 2014; Jani and Briggs, 2018), and it is possible that Bd
infection may directly or indirectly inhibit the growth of
Bd-inhibitory bacteria. Our use of microbiome read counts to test
for a relationship between Bd-inhibitory bacteria and Bd produced
comparable results to studies which used quantitative PCR to detect
and quantify the abundance of Bd. For example, Jiménez et al.
(2022) found that Bd infection intensity significantly decreased on
the skin of the eastern newt (Notophthalmus viridescens) as the
relative abundance of putative Bd-inhibitory bacteria increased.
Similarly, Flechas et al. (2019) found lower Bd infection prevalence
within post-metamorphic life stages which also had high relative
abundances of Bd-inhibitory bacteria in two frog species.

An analysis between the absolute abundances of Bd-inhibitory
bacteria and Bd, instead of the relative abundances, would be of
greater interest biologically. Following DNA extraction and prior to
PCR, fixed amounts of 16S and ITS synthgenes (i.e., synthetic gene
spike-ins) were added to a constant volume of each sample’s DNA
extract. The synthgene read counts provide a benchmark to compare
taxon read counts with, and can serve as the basis for absolute
abundance estimation (Harrison et al., 2021). While we used
synthgenes to estimate the amount of microbial DNA in our samples
relative to negative controls, we were unable to use the synthgenes
for estimating the densities (i.e., count per unit area) of microbial
taxa on salamander skin because, as we were not aware of synthgenes
at the time, we did not measure swabbed area in the field.
Furthermore, a length-weight regression suggested that salamanders
grow allometrically (i.e., the body does not grow proportionally in
all dimensions; see Supplementary material), so an assumption
about salamander growth would have to be made in order to derive
surrogates of swabbed area from length measurements (i.e., SVL
squared could not be used as a surrogate for swabbed area). We also
considered limitations in our swabbing protocol. Since our study
focused on variation in microbiome composition, we adopted the
swabbing protocol of Bletz et al. (2017a), in which a swab is stroked
across the ventral surface of the amphibian ten times (one time=an
up and back stroke along the full length of the belly). While
swabbing, the ten strokes along the length of the belly were
distributed across the belly’s width. Due to the fixed size of the swab,
this means that the same belly area was swabbed more times for
smaller salamanders than for larger salamanders. This implies that
even if we had measured swabbed area, we would have to assume
that the number of microbes collected asymptotes after a certain
swabbing intensity, and we must have further assumed that
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we reached this threshold of swabbing intensity. We suggest that the
need for these assumptions can be avoided by using a different
swabbing protocol. For example, instead of stroking a swab across
the ventral surface a certain number of times while covering an area
of interest, one could swab the full area of interest (e.g., the belly) a
certain number of times and measure the swabbed area, a method
which is already applied in studies of Bd load (North and Alford,
2008). If such a swabbing protocol were applied, we suggest that
taxon density on amphibian skin could be modeled using a negative
binomial regression for rates (i.e., taxon read count per unit “time”
— where rate represents taxon density, and synthgene read count and
swabbed area serve as measures of “time?”

A key aim of amphibian skin-associated microbiome
studies relates to understanding what role microbial
communities play in protecting their hosts against cutaneous
diseases such as chytridiomycosis. While DNA metabarcoding
is commonly employed to characterize the composition of
microbial communities, we experienced challenges relating
community composition to functional activity. Using 16S
rRNA gene sequences, we were unable to predict Bd-inhibition
statuses for the vast majority of our bacterial taxa with any
reasonable certainty. This is not surprising given that, after
trimming to our amplicon region, the majority of sequences in
the Woodhams et al. (2015) database which were shared across
multiple bacterial isolates had variable Bd-inhibition statuses,
and the isolates included in the database provided limited
phylogenetic coverage of our bacterial taxa. Similarly, Becker
etal. (2015) found bacterial congeners to frequently range from
complete inhibition to facilitation of Bd. Another approach to
exploring the functional activity of microbial communities
involves metatranscriptomics, the sequencing of RNA within a
microbiome to investigate gene expression (Nichols and
Davenport, 2021). With a metatranscriptomics approach to
exploring functional activity, antifungal secondary metabolite
production by microbes experiencing real-world biotic and
abiotic conditions on salamander skin could be observed, and
a precise knowledge of community composition, while still
informative, would not be a pre-requisite for inference.

Our study emphasizes two traditionally understudied areas of
amphibian skin-associated microbial ecology, temporal variation
in community composition and expanding our view of the
microbiome to include fungi in addition to bacteria. Temporal
variation in community composition could prove challenging for
studies examining spatial variation, where temporal and spatial
variation may be confounded. We also identified additional
sources of variation in community composition which are not
typically considered. Within life stages, we identified additional
variation with salamander age, and within lakes, we identified
additional variation between strata. Furthermore, we observed
that the relationships between community composition and
spatiotemporal and stage class covariates are interdependent,
complex, and best described using interactions.

Through this study, we have gained a greater understanding
of microbial ecology on amphibian skin through the examination
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of season-long temporal variation of bacterial and fungal
communities. In addition to identifying further sources of
variation in community composition, we have identified
differentially abundant taxa, have examined microbial selection by
salamander skin, have investigated alpha diversity, and have tested
for a relationship between predicted Bd-inhibitory function and
Bd. Ultimately, we hope our findings will assist in the conservation
of amphibian species threatened by chytridiomycosis.
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