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Abstract

The circadian clock helps organisms to anticipate and coordinate gene regulatory responses to changes in environmental
stimuli. Under stresses, both time of day and the circadian clock closely control the magnitude of plant responses. The
identification of clock-regulated genes is, therefore, important when studying the influence of environmental factors. Here,
we present CAST-R (Circadian And heat STress-Responsive), a “Shiny” application that allows users to identify and visualize
circadian and heat stress-responsive genes in plants. More specifically, users can generate and export profiles and heatmaps
representing transcript abundance of a single or of multiple Arabidopsis (Arabidopsis thaliana) genes over a 24-h time
course, in response to heat stress and during recovery following the stress. The application also takes advantage of pub-
lished Arabidopsis chromatin immunoprecipitation-sequencing datasets to visualize the connections between clock pro-
teins and their targets in an interactive network. In addition, CAST-R offers the possibility to perform phase (i.e. timing of
expression) enrichment analyses for rhythmic datasets from any species, within and beyond plants. This functionality com-
bines statistical analyses and graphical representations to identify significantly over- and underrepresented phases within a
subset of genes. Lastly, profiles of transcript abundance can be visualized from multiple circadian datasets generated in
Arabidopsis, Brassica rapa, barley (Hordeum vulgare), and rice (Oryza sativa). In summary, CAST-R is a user-friendly inter-
face that allows the rapid identification of circadian and stress-responsive genes through multiple modules of visualization.
We anticipate that this tool will make it easier for users to obtain temporal and dynamic information on genes of interest
that links plant responses to environmental signals.

Introduction . , , .
translation during the day in the absence of environmental

The circadian clock is an endogenous timekeeper mecha-
nism, which allows organisms to anticipate daily and sea-
sonal variations of environmental factors. In diurnal
conditions, transcripts between 25% and 90% show rhyth-
mic expression in plants (Michael et al.,, 2008; Filichkin et al,
2017; Ferrari et al, 2019; Lai et al, 2020). Significant propor-
tions of these genes show rhythmic transcription or

cues and therefore exhibit circadian oscillations (Mockler
et al, 2007; Hsu and Harmer, 2012; Romanowski et al., 2020;
Bonnot and Nagel, 2021). Thereby, thousands of genes in-
volved in diverse biological processes are clock controlled in
plants (Harmer et al, 2000; Farré, 2012; Greenham and
McClung, 2015). In Arabidopsis (Arabidopsis thaliana), for
example, circadian oscillations are observed for approximately
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30%-40% of the transcriptome and translatome (Mockler
et al, 2007; Hsu and Harmer, 2012; Romanowski et al,
2020; Bonnot and Nagel, 2021). Remarkably, up to three-
quarters of the Brassica (Brassica rapa) transcriptome ex-
hibit circadian oscillations, highlighting the strong influence
of the clock on the regulation of gene expression in plants
(Greenham et al., 2020).

The control of rhythmicity not only defines the timing of
expression and translation of genes, but also their response
to stresses. Indeed, two stresses of the same nature and
strength can lead to cellular responses with different intensi-
ties if occurring at two different times of day (Grundy et al,
2015). This phenomenon, described as gating, influences
one-third of the heat stress-responsive circadian translatome
in Arabidopsis (Bonnot and Nagel, 2021). Due to expression
rhythmicity, a gene can be upregulated in response to a
stress occurring during its lowest expression level, while the
changes can be nonsignificant during its peak expression
(Bonnot and Nagel, 2021). Consequently, the lists of differ-
entially regulated genes, commonly used to identify genes
involved in the plant response, highly differ depending on
the experimental design (e.g. the timing of stress and of
samplings). Thus, it is of prime importance to consider the
effect of time of day and the influence of the clock when
studying the plant responses to stress.

The diurnal and circadian transcriptome datasets that
have been generated over the past 15 years are great resour-
ces for biologists to identify if their genes of interest are po-
tentially regulated by the circadian clock (Mockler et al,
2007; Filichkin et al, 2011; Hsu and Harmer, 2012, Ferrari
et al, 2019; Lai et al, 2020; Romanowski et al, 2020; Bonnot
and Nagel, 2021). The availability of public databases and
tools to visualize these published data is also necessary to
make this information easy to interpret. The web-based tool
DIURNAL is particularly useful to identify the timing of ex-
pression of genes in diurnal and free-running conditions in
several model plants, from multiple array experiments
(http://diurnal.mocklerlab.org/; Mockler et al., 2007). In addi-
tion, chromatin immunoprecipitation-sequencing (ChIP-Seq)
data for several circadian clock genes have allowed for the
identification of direct binding targets of clock proteins
(Table 1). Another web-based tool, ATTRACTOR, integrates
the rhythmic transcriptomic (DIURNAL) and cistromic
(Clock and Light Signaling ChIP-Seq) datasets to enable the
inference of transcriptional control between the clock and
the light signaling pathway in Arabidopsis (https://greennet
work.us.es/ ATTRACTOR/; de los Reyes et al.,, 2020).

The above-mentioned datasets and tools visualize tran-
scriptomic data under normal growth conditions continue
to be an invaluable resource. In our recent study, we exam-
ined the circadian-regulated changes at the translation level
in Arabidopsis. We profiled both the transcriptome and
translatome in response to heat stress (Bonnot and Nagel,
2021). We noticed that a tool that incorporates large-scale
circadian-regulated expression datasets at multiple levels of
gene regulation and in response to environmental stresses is
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Table 1 Targets of clock proteins identified in ChIP-Seq experiments
in Arabidopsis, at normal growth temperatures

Clock protein Number of targets References

CCA1 1,991 Nagel et al. (2015)
Kamioka et al. (2016)

LHY 722 Adams et al. (2018)

PRR5 1,024 Nakamichi et al. (2012)

PRR7 113 Liu et al. (2013)

PRR9 132 Liu et al. (2016)

TOC1 772 Huang et al. (2012)

LUX 27 Ezer et al. (2017)

lacking. Here, we introduce CAST-R, an R package “Shiny”
application that allows users to quickly identify and visualize
(1) individual and groups of genes exhibiting circadian oscil-
lations at the transcriptome and/or translatome levels, and
responding to heat stress, (2) genes that are targeted by
clock proteins, and (3) phases (timing of peak expression)
that are over-represented in a list of genes of interest. Most
of the information used in this Shiny application comes
from datasets generated in Arabidopsis, but CAST-R also
provides a functionality that allows users to compare circa-
dian oscillations between datasets and plant species.
Graphical representations— that include dot plots, heat-
maps, interactive networks, and circular bar plots—can be
exported in multiple formats, along with raw data. This first
version of CAST-R, therefore, provides the plant biology re-
search community with a user-friendly interface to graphi-
cally represent circadian and heat stress-responsive genes in
plants. CAST-R can be accessed at https://nagellab.shi
nyapps.io/CASTR-v1/.

Results and discussion

Web application content

The first tab of CAST-R, “Introduction”, presents the applica-
tion and helps users to navigate through and to use the dif-
ferent tabs. Two tabs named “Single genes” and “Multiple
genes” allow the visualization of circadian and heat stress-re-
sponsive genes at the transcriptome and translatome levels
in Arabidopsis, from a single-gene locus or from multiple
loci, respectively. In another tab “Network”, connections be-
tween clock proteins and their selected downstream targets,
identified in published ChIP-Seq data, can be visualized in
an interactive network. These first three modules (“Single
genes”, “Multiple genes”, and “Network”) allow a rapid iden-
tification of clock-regulated genes in Arabidopsis. In addi-
tion, the joint graphical representation of the gene response
and recovery to heat stress provides useful information on
how time of day and the timing of gene expression and
translation affect the plant responses to temperature
stresses.

When using large-scale omics approaches to study the
plant response to stresses, a common strategy is to identify
differentially regulated genes and group them based on their
pattern of response, through clustering or network analyses.
It can then be inferred that grouped or connected genes are
potentially acting together to coordinate the appropriate
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regulatory response. When Arabidopsis plants are exposed
to cold stress, the majority of upregulated genes peak in the
afternoon, while most genes downregulated by cold peak
around dawn (Grundy et al, 2015). Thus, significant propor-
tions of genes responding to stress can be expressed at the
same time during the day and therefore be co-regulated.
Identifying over-representation of genes peaking at the same
time during the day is, therefore, very helpful to better de-
fine co-expressed gene modules. We implemented in the
tab “Phase enrichment” a functionality that allows for the
identification and visualization of over-represented phases
within a list of genes.

Lastly, a tab named “Multispecies circadian oscillations”
allows users to compare the timing of transcript accumula-
tion between published circadian datasets, and in different
plant species: Arabidopsis, B. rapa, barley (Hordeum vulgare),
and rice (Oryza sativa). Although the first version of CAST-R
is limited to four species, future versions could include other
plant species.

Module 1—Circadian oscillations and heat stress
response of single genes

In the “Single genes” tab, users can enter an Arabidopsis
AGiI locus code (example: AT3G47500, i.e. the CYCLING DOF
FACTOR 3 [CDF3] gene, Figure 1) and click on “Submit”.
This will generate plots from the Arabidopsis transcriptome
and translatome datasets published in Bonnot and Nagel
(2021). All data were obtained from 12-d-old seedlings that
were grown in light (12 h) and dark cycles (12 h) at 22°C for
10days and then transferred to constant light for 2 d before
sampling (see Bonnot and Nagel, 2021 for further details).

The first box shows the normalized transcript abundance
of the gene during a 24-h time course at 22°C. Above the
plots, a table summarizes the information related to the cir-
cadian oscillations: the “Phase”, the “Adjusted P-value” corre-
sponding to the BH.Q value of the Metacycle analysis, and a
column “Cycling” indicating if the transcript is significantly
cycling or not, based on the criteria used in Bonnot and
Nagel (2021).

In a second box, the plots represent the time course
obtained at 22°C and the heat stress response of the gene
at different times of day, from early morning (ZT48) to end
of night (ZT69). At each time point, the heat stress condi-
tion corresponds to a 1-h treatment at 37°C. Below the
plots, users can visualize if the difference between the two
temperatures is significant (false discovery rate [FDR]
< 0.05, green dots) or not (FDR > 0.05, gray dots). In addi-
tion, heatmaps represent as color gradients the log, fold
change values (37°C versus 22°C). Of note, genes were con-
sidered as significantly differentially regulated when the
FDR < 0.05 and the log, fold change > |1| in Bonnot and
Nagel (2021). In our example, the gene CDF3 is significantly
upregulated at ZT66 at the transcriptome level and at ZT63
and ZT66 at the translatome level, based on these criteria
(Figure 1).

Bonnot et al.

In a third box, users can visualize as colored dots and
heatmaps the gene recovery following a 1-h heat stress
(37°C) applied in the middle of the day (from ZT53 to
ZT54, ie. from 5 to 6 h after dawn). Below the transcript
profile, colored dots and heatmaps highlight the comparison
between the stress and the control conditions, and repre-
sent FDR and log2 fold change values, respectively. For ex-
ample, CDF3 is significantly downregulated at 6 h of
recovery at the transcriptome level (Figure 1).

Module 2—Circadian oscillations and heat stress
response of multiple genes

The “Multiple genes” tab uses the same information as the
“Single Genes” tab, but enables the user to visualize the
results for multiple AGI codes at once. In the different boxes
(“Time course at 22°C", “Heat stress response” and
“Recovery following heat stress”), heatmaps are generated
and allow the users to identify genes responding to heat
stress, and to compare results between the transcriptome
and the translatome. This functionality is particularly useful
to analyze groups of genes with a similar pattern of expres-
sion or of response to stress, or that belong to the same
gene family. These plots also allow users to rapidly visualize
and identify circadian genes and the peak of expression
(phase). As an example, we provided in CAST-R the lists of
transcription factor (TF) families identified by Pruneda-Paz
et al. (2014). Users can select any of the families and gener-
ate heatmaps. For example, if the “C2C2-DOF TF family is
selected, 30 members are represented on the heatmaps
(Figure 2). Eight and 19 of them are significantly cycling at
the transcriptome and at the translatome levels, respectively.
Thus, 11 members exhibit circadian oscillations specifically
at the translatome level, based on our data published by
Bonnot and Nagel (2021). Others show circadian rhythmicity
at both levels of regulation, such as five of the six members
of the CDF subfamily (Figure 2). Users can either sort genes
based on their phase, their average heat stress response over
the day, their average heat stress recovery (between 1 h and
6 h of recovery following heat stress), or keep the same or-
der as the gene list that they provide to CAST-R.

Module 3—Interactive network of Arabidopsis clock
proteins and their targets

The “Network” functionality of CAST-R takes advantage of
identified interactions between clock proteins and their tar-
gets in Arabidopsis to build an interactive network. Targets
of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LONG
HYPOCOTYL (LHY), PSEUDO RESPONSE REGULATOR 5
(PRRS5), PRR7, PRRY, LUX ARRHYTHMO (LUX), and TIMING
OF CAB EXPRESSION 1 (TOC1) proteins were determined
in published ChIP-Seq data (Table 1). These connections are
represented in the network as edges from the clock proteins
to the targeted genes (Figure 3). Similar to the “Multiple
genes” tab, users can either select a TF family or paste a list
of Arabidopsis AGI codes. From the selected or provided
list, CAST-R identifies genes that are known to be targeted
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Figure 1 Circadian oscillations, heat stress response and heat stress recovery of single gene visualized in the CAST-R tool. The gene CDF3
(AT3G47500) is represented as an example. In the box “Time course at 22°C”, the adjusted P-value corresponds to the BH.Q value obtained in the
Metacycle analysis (for details, see Bonnot and Nagel, 2021). Gray areas represent the subjective night. Time of day is referred to as Zeitgeber Time
(ZT) and corresponds to the hours after moving seedlings into constant conditions (light and temperature). ZT48 and ZT60 correspond to dawn
and the beginning of the subjective night, respectively. The color scales correspond to log, fold change values (37°C versus 22°C).
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beginning of subjective night, respectively). In the column 'Cycling’, "Yes' or 'No' indicate if the circadian oscillation was detected as significant
(black) or not (white) in Bonnot and Nagel (2021), respectively. In columns '48' to '69', the color scale from blue to red represents the transcript
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Times 48 - 60 and 60 - 89 correspond to the day and the subjective night, respectively
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Figure 2 Circadian oscillations, heat stress response and heat stress recovery of multiple genes. The C2C2-DOF family is represented as an exam-
ple. Members of the CDF subfamily are highlighted and have been manually annotated on the figure. For each heatmap, the column “Phase” indi-
cates the transcript phase (timing of peak abundance), the color gradient from yellow to dark blue representing the subjective dawn and the end
of the subjective night, respectively. The column “Cycling” indicates if the circadian oscillation was detected as significant (black) or not (white) in
Bonnot and Nagel (2021), respectively. In the “Time course at 22°C” box, color gradients from purple to yellow represent the normalized transcript
abundance (rlog normalized counts) during a 24 h time course. In the “Heat stress response” and “Recovery following heat stress” boxes, color gra-
dients from blue to red correspond to log, fold change values (37°C versus 22°C). For size constraints, heatmaps of the “Recovery following heat
stress” box is not represented on this figure.
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Figure 3 Interactive network of genes targeted by clock proteins. The “C2C2-DOF’ TF family is represented as an example. Members of the CDF
subfamily are highlighted and have been manually annotated for figure preparation. Users can either select a TF family or paste a list of
Arabidopsis AGI codes to generate a network. Nodes correspond to clock proteins (squares) and their known targets from the list of input genes
(circles). Edges from clock proteins to target genes were identified in published ChIP-Seq data (see Table 1). Nodes are colored based on the se-
lected criteria (i.e. the phases at the transcriptome or translatome level, the heat stress response at the transcriptome or translatome level). Here,

“Phases at the transcriptome level” is selected.

by clock proteins. For example, 13 members of the “C2C2-
DOF” family are direct targets of clock proteins, including
five CDFs (Figure 3). The generated network is interactive
and allows users to move nodes and to add new nodes and
connections in the network. Specific nodes and their con-
nections can be highlighted in the network by directly
pointing or clicking on the nodes, or by scrolling in the list
of IDs and selecting a gene.

To connect this network representation with the informa-
tion provided in the “Single genes” and “Multiple genes”
tabs, we implemented an option to color nodes based on
their phase or on their heat stress response, from our pub-
lished transcriptome and translatome datasets (Bonnot and
Nagel, 2021). On the graphical network visualization, an op-
tion allows to highlight genes by group (i.e. timing of expres-
sion/translation or level of downregulation or upregulation
under heat stress). Of note, the gene IDs for clock proteins
and targets are shown under the “Select by id” drop down
box. Hovering on a node also provides its function, assigned
to each locus ID using BioMart (https://plants.ensembl.org/
biomart/martview/). In addition, clicking on a node makes

accessible its AGI to copy and paste in the “Single gene”
module for example.

Module 4—Phase enrichment analysis

The “Phase enrichment” tab combines statistical analysis
and graphical representations to identify and represent un-
der- and over-represented timing of peak expression (phase)
within a list of genes. To do so, users need to select an exist-
ing reference (Table 2), which corresponds to all circadian
transcripts that were identified in published datasets, or to
provide their own reference. Existing references provided in
CAST-R were established from Arabidopsis seedlings grown
in free-running conditions (constant light and temperatures,
necessary to identify circadian oscillations) after entrainment
with thermocycles and/or photocycles (Table 2). For exam-
ple, the reference “Bonnot and Nagel_Transcriptome” corre-
sponds to all 8,028 circadian transcripts identified at the
transcriptome level by Bonnot and Nagel (2021). Users then
need to provide a list of AGI codes of interest, to see if any
phases are enriched within this group. CAST-R will generate
three plots and a table. Two circular bar plots represent the
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Table 2 Description of the datasets that can be used in the application as the reference for the phase enrichment analysis
Dataset Reference name Tool used to detect Cutoff Number of circadian References
oscillations transcripts
1 Bonnot and Metacycle (combining ~ BH.Q < 0.01 and tran- 8,028 Bonnot and Nagel
Nagel_Transcriptome_LL_LDHH JTK_CYCLE and scripts with (2021)
2 Bonnot and Nagel Lomb-Scargle) 0.01 < BH.Q < 0.05 10,657
Translatome_LL_LDHH and overlapping
with circadian tran-
scripts in datasets
3-8
4 Michael et al_LL_LDHC Phaser Correlation > 0.7 8,909 Michael et al. (2008)
5 Michael et al_LL_LLHC 7,955
6 Covington and Harmer_LL_LDHH 7,858 Covington and
Harmer (2007)
7 Edwards et al_LL_LDHH 9,940 Edwards et al. (2006)
8 Hsu and Harmer LL_LDHH COSOPT pMMCS < 0.05 7,124 Hsu and Harmer
JTK_CYCLE P < 0.01and (2012)
g < 0.05
9 Romanowski_LL_LDHH JTK_CYCLE P < 0.01and g < 0.01 9,128 Romanowski et al.

(2020)

phase distribution within the selected reference and within
the pasted list of AGI codes, respectively (Figure 4). Within
the user subset, only circadian genes are used for this analy-
sis. CAST-R then compares the proportions of each phase
between the reference and the user subset of genes. Under-
represented (fold enrichment < 1) and over-represented
(fold enrichment > 1) phases in the subset of genes are rep-
resented on a circular dot plot. Significant differences are
assessed at P < 0.05 using Chi-squared tests and significant
phases are highlighted on the dot plot and in a table that
summarizes the analysis (Figure 4).

As lists of circadian transcripts can substantially differ be-
tween published datasets, we highly encourage the users to
perform the analysis using different references and to com-
pare the results. The rapidity of the analysis makes it very
useful to determine if a pattern of peak expression is partic-
ularly represented in a list of genes of interest. In addition,
this phase enrichment functionality is very flexible and not
restricted to Arabidopsis nor to the references that are pro-
vided. We provide an option that allows users to use their
own reference (not listed or not published yet) of circadian
transcripts and perform the same analysis (formatting details
are specified when “Use your own reference” is selected).
Moreover, as long as a rhythmic omics dataset is provided
as a reference, and the information of phase for each mea-
sured variable is provided, phase enrichment can be per-
formed. Thus, phase enrichment analyses with CAST-R can
be performed in multiple organisms other than plants and
with diverse types of omics data.

Module 5—Comparison of circadian oscillations
between Arabidopsis and rice orthologs

In the last tab of CAST-R, entitled “Multispecies circadian
oscillations”, users can plot the transcript abundance of indi-
vidual genes in Arabidopsis, brassica, barley, and rice over
different time courses performed in free-running conditions
(Edwards et al, 2006; Covington and Harmer, 2007; Mockler

et al, 2007; Michael et al, 2008; Filichkin et al, 2017;
Greenham et al, 2020; Miiller et al,, 2020; Romanowski et al.,
2020; Bonnot and Nagel, 2021). The aim of this CAST-R
functionality is to propose a multi-view tab where users can
plot multiple gene expression profiles in different plant spe-
cies. If the orthologous genes are known, this allows them
to rapidly look for potentially conserved profiles between
species. For example, AtLHY (AT1G01060) peaks at ZTO and
ZT24 in the “Diurnal LL_LDHC” Arabidopsis dataset, and
BrLHY (BraA10g01800R) peaks at ZT24, ZT46, and ZT68 in
the “Greenham LL_LLHC" Brassica dataset (Figure 5).

We emphasize that this CAST-R functionality does not in-
dicate if the genes are significantly cycling or not. To vali-
date circadian oscillations of specific genes, we encourage
users to either check the lists of identified circadian genes in
the corresponding studies, and select a significance cutoff, or
to download the data from CAST-R and to perform a detec-
tion of rhythmicity using appropriate tools such as
Metacycle (Wu et al, 2016). This “Multispecies circadian
oscillations” functionality also offers the possibility to com-
pare the expression patterns of individual genes between
datasets, within the same species. Although the provided
datasets were obtained from similar conditions (i.e. light and
temperature conditions), slight differences in experimental
design (seedling age, media composition, etc.) might lead to
differences in expression rhythmicity.

Summary and future directions

Through the diverse modules proposed in the first version
of CAST-R, users can determine if their Arabidopsis genes of
interest have been identified as circadian and heat stress-
responsive genes. The main objective is to help biologists
formulate new hypotheses on the regulation of their candi-
date genes by considering the influence of the time of day
and the clock. Importantly, circadian expression and time of
day heat responses of individual genes can be compared
with other members within a gene family or genes that
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CAST-R: A shiny application to visualize and identify Circadian And heat STres:

Introduction Single genes

1. Select phase reference
dataset type
= Existing reference

Use your own reference
2. Pick a dataset

Bonnot and &
Nagel_Transcriptome_LL_LDH}

3. Paste a list of genes
AT5G66052
AT5G66053
AT5G66070
AT5G66080
ATSG66110
AT5GB6170
AT5GBB400
ATSGE6620
AT5G66580
AT5GE7060
AT5G67300
AT5G67480
ATCGO0470
ATCG00480
ATCGO0780
ATCG00820
ATCG00830
ATMGO00630
ATMGO1170

One AGI per line, no separator
We suggest providing a minimal

list size of 100 genes for a
meaningful enrichment calculation

Submit

Figure 4 Phase enrichment analysis and visualization. Here, a list of 1,262 genes differentially regulated under heat stress is used as an example.
The list of 8,028 circadian transcripts identified at the transcriptome level in Bonnot and Nagel (2021) is used as the reference (“Bonnot and
Nagel_Transcriptome_LL_LDHH"). The phase distribution (i.e. the number of transcripts per phase) is represented in this reference and in the
subset of genes provided by the user. In this example, 858 of the 1,262 genes provided by the user overlap with the selected reference (and there-
fore exhibit circadian oscillations at the transcriptome level) and are represented in the box “Phase distribution in the user subset of genes”. The
phase enrichment dot plot shows the over- (purple) and under-represented (green) phases in the subset of 858 genes as compared to the 8,028
genes in the reference. In this example, four phases are significantly differentially represented (filled circles, P < 0.05, Chi-squared test) in the sub-
set of 858 genes: 6 and 7.5 (over-represented, fold enrichment > 1) and 13.5 and 18 (under-represented, fold enrichment <1). A summary of the
phase distribution in the reference and the user subset of genes is indicated in the “Phase enrichment summary” table, as well as the fold enrich-
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The phase is defined as the timing of peak abundance (a phase of 0 and 12
indicates a peak abundance at subjective dawn and the beginning of subjective
night, respectively). The circular barplot represents the counts of the different
phases identified in the selected reference.
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The phase is defined as the timing of peak abundance (a phase of 0 and 12
indicates a peak abundance at subjective dawn and the beginning of subjective
night, respectively). Proportions of the different phases are compared between
the user subset of genes and the defined phase reference data, and the circular
bubble plot represents the over- and under-represented phases in the user
subset of genes as compared to the defined phase reference dataset. Only
genes identified as circadian are considered for this analysis. Chi-Square tests
are performed and significance is judged at P-value < 0.05
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phases identified in the user subset of genes, from the information found in the
defined phase reference dataset. Only circadian genes are represented on this
plot
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Phase: timing of peak abundance (a phase of 0 and 12 indicates a peak
abundance al subjective dawn and the beginning of subjective night
respectively)

Reference list. counts of the different phases identified in the defined phase
reference dataset

User list counts of the different phases identified in the user subset of genes,
from the information found in the defined phase reference dataset

Fold enrichment: Ratio between the proportion of the phase in the user subset of
genes vs in the defined phase reference dataset

P value: result of a Chisquare test. P values indicated in bold and highlighted in
green are < 0.05 and are considered significantly over- (if fold enrichment = 1) or
under-represented (if fold enrichment < 1) in the user subset of genes
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Figure 5 Multispecies circadian oscillations. Here, LHY is represented as an example. The conditions “Michael et al_LL_LDHC”", “Greenham
et al_LL_LLHC”, “Muller et al_LL_LDHH”, and “Filichkin et al_LLHH_LDHC" are used for the Arabidopsis (A. thaliana), brassica (B. rapa), barley (H.
vulgare), and rice (O. Sativa) time course datasets, respectively. Two profiles are represented on the plot in the ‘Time course in Oryza sativa’ box,
corresponding to different probes in the microarray analysis (for details, see Filichkin et al., 2011).

function in a similar biological pathway. By producing plots
that can easily be exported in multiple formats, CAST-R also
represents a useful platform to generate publication-quality
figures. For example, phase enrichment circular plots have
been used in our recent paper (Bonnot and Nagel, 2021),
and can be produced with CAST-R from data obtained in
any organism, as long as a rhythmic dataset is provided as a
reference. Future developments will aim at improving com-
parisons between conditions and plant species. They will

include rhythmic datasets obtained in diverse plants in addi-
tion to Arabidopsis, brassica, barley, and rice present in this
first version, and in both free-running and diurnal conditions.
In the network analysis, other connections determined in
DNA Affinity Purification-Sequencing or interactome data
could be added to build more complete gene regulatory net-
works. In the long term, CAST-R may represent a major plat-
form to identify clock regulation of abiotic stress responses
and conservation between plant species.
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Materials and methods

The first version of CAST-R was built from R (R Core Team,
2020) with the package “Shiny” (Chang et al, 2020) and was
tested on Firefox 89.0.2, Google Chrome 91.0.4472.106,
Opera 77.0.4054.90, and Safari 14.1.1 on Windows 10 home,
Mac OS Catalina and Pop!_OS 20.10. The large heatmaps
are generated using the R package “pheatmap” (Kolde,
2019). The interactive network is built with the R package
“visNetwork” (Almende and Thieurmel, 2019). All other
plots are made using the R package “ggplot2” (Wickham,
2016).

All datasets used in the development and design of this
web application were described previously (Edwards et al,
2006; Covington and Harmer, 2007; Mockler et al, 2007
Michael et al, 2008; Filichkin et al, 2011; Hsu and Harmer,
2012, Huang et al, 2012; Nakamichi et al, 2012; Liu et al,
2013; Pruneda-Paz et al, 2014; Nagel et al, 2015; Kamioka
et al, 2016; Liu et al, 2016; Ezer et al, 2017, Adams et al,
2018; Romanowski et al, 2020; Greenham et al,, 2020; Miiller
et al, 2020; Bonnot and Nagel, 2021). Within each CAST-R
tab, an “Instructions and methodological details” window
gives information about these datasets and provides links to
the corresponding papers.

In the ‘Phase enrichment” tab, proportions of phases
within the user subset of genes are compared with those of
the selected reference (i.e. all circadian genes identified in
the corresponding study). The fold enrichment corresponds
to the ratio between the proportion of the phase in the
user subset of genes versus the proportion of the same
phase in the selected reference. A fold enrichment <1 and
>1 indicates an under-representation and an over-
representation of the phase in the user subset of genes as
compared to the reference, respectively. Chi-square tests are
then performed and significance is judged at P < 0.05. For
this analysis, as mentioned on the control panel of the ap-
plication, we suggest to provide a minimal list size of 100
genes for a meaningful enrichment calculation.

Accession numbers

CDF3, AT3G47500;,  AtLHY,  AT1G01060; BrLHY,
BraA10g01800R; CCA1, AT2G46830; PRRS5, AT5G24470;
PRR7, AT5G02810; PRR9, AT2G46790, LUX, AT3G46640;
TOC1, AT5G61380.
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