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A B S T R A C T

A simple approach to rectify unconstrained neural networks for hyperelastic constitutive models is proposed
with the aim of ensuring both mathematical well-posedness (in terms of existence theorems) and physical
consistency. The surrogate involves neural networks that are made admissible by selecting a proper parameter-
ization, following standard results in continuum mechanics, and by enforcing polyconvexity through integral
representations. The relevance of the formulation is demonstrated by considering digitally synthesized and
experimental datasets for isotropic and anisotropic materials, including the case of soft biological tissues.

1. Introduction

Constitutive models based on neural networks (NN) have received
growing attention over the past few years, owing to their ability to
represent nonlinear mappings in a high dimensional setting. There is
a very substantial amount of papers published on this topic, for a
wide variety of material behaviors; see, e.g., [1–12] and the references
therein, in a non-exhaustive manner.

Beyond classical data science aspects that pertain to architecture
design, training and validation strategies, and the analysis of approx-
imation capabilities, a central concern is to make such surrogates
amenable to scientific simulations where such models are typically set
to parameterize systems of partial differential equations. In this context,
the surrogate must satisfy both physical assumptions and mathemat-
ical properties (e.g., boundedness or a certain type of convexity) to
ensure the existence (and potentially, the uniqueness) of solutions. In
the case of nonlinear elasticity for instance, a strain energy density
function is theoretically required to satisfy frame indifference, some
asymptotic behavior, and specific convexity and growth conditions.
There are various ways to enforce such properties and in particular,
the convexity requirement. The simplest strategy consists in using some
unconstrained neural network that, if properly calibrated on a rich
enough dataset, may possess desired convexity. Another way to enforce
convexity is to add a penalty term in the loss function during the
training stage; see, e.g., [13]. This latter strategy corresponds to a weak
enforcement and hence does not prevent from checking the condition
a posteriori.

In this work, we consider enforcing convexity in the strong sense, by
defining classes of surrogate models that satisfy the condition a priori.
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The issue of ensuring the convexity of a neural network is not new and
was mostly tackled by constraining the network through the use of non-
negative weights and convex activation functions [14]. Restriction on
weights can be imposed by constraining the weights during training,
or by using a mapping from R into R≥0 that acts on unconstrained
weights [11,15]. Applications in computational mechanics are pre-
sented in [10,11,16] for example. A detailed analysis about the use
of constrained neural networks for polyconvex anisotropic hyperelastic
models can be found in [12], in particular.

Here, we aim to construct a convex neural network model without
affecting expressiveness (that is, without constraining weights a priori)
and training cost (which can be affected by transformations performed
on weights at the training stage). Building upon recent works on mono-
tonic neural networks [17] and monotone transport maps for density
estimation [18], our approach relies on simple integral representations
to define an operator that transforms any arbitrary function (and in
particular, a free neural network) into a convex function. This strategy
thus entails the rectification of the whole neural network model. We
show, through various numerical experiments on both digitally syn-
thesized and experimental datasets, that the proposed rectified models
enable proper fitting. They are also seen to converge much faster than
constrained models (in terms of number of iterations)—at the expense
of an increased computational cost per iteration.

The rest of this paper is organized as follows. The mechanistic pa-
rameterization and rectification strategy are first presented in Section 2
(together with a toy example). Applications to standard hyperelastic
models relevant to both isotropic and anisotropic materials are then
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discussed in Section 3. Conclusions and avenues for future research are
finally given in Section 4.

2. Rectified neural network representations

2.1. Background in elasticity

Let 𝛺 be a collection of material points identified with their vector
of coordinates 𝑿 in R

3, and denote by 𝜕𝛺 the boundary of 𝛺. For any
material point 𝑿 ∈ 𝛺, the spatial point 𝒙 in the deformed configuration
𝛺𝜑 is given by 𝒙 = 𝜑(𝑿), where 𝜑 is the deformation map. For any
𝑿 ∈ 𝛺, the deformation gradient 𝑭 is a second-order tensor defined
as 𝑭 = 𝛁𝑿𝒙. The left and right Cauchy–Green deformation tensors are
given by 𝑩 = 𝑭𝑭 𝑇 and 𝑪 = 𝑭 𝑇𝑭 , respectively.

We seek to construct a neural network surrogate that satisfies
physical axioms and mathematical requirements arising in existence
theorem in finite elasticity. From a theoretical standpoint, strain energy
density functions are required to satisfy [19,20]:

1. Principle of material frame indifference (objectivity), stated as:
∀𝑸 ∈ SO(3),

𝑤(𝑸𝑭 ) = 𝑤(𝑭 ) , 𝑷 (𝑸𝑭 ) = 𝑸𝑷 (𝑭 ) , (1)

where 𝑷 is the first Piola–Kirchhoff stress tensor;
2. Proper convexity conditions;
3. Some asymptotic behavior as det(𝑭 ) → 0+; and
4. A coerciveness inequality (growth conditions).

In particular, the requirements (2–4) are fundamental to ensure the
existence of (at least) one minimizer for the energy functional, see
Chapter 7 in [19] (see also [21,22]).

Material frame-indifference is, in general, achieved by defining 𝑤
in terms of the right Cauchy–Green deformation tensor 𝑪, which is
an a priori objective kinematic variable [20]. Following the work by
Ball [23], polyconvexity is often imposed in lieu of convexity, as (i) it
does not conflict with any physical constraints; (ii) it is generally satis-
fied by commonly employed models; and (iii) it enables the derivation
of powerful existence results [19]. To proceed with the construction
of the model, it is instructive at this point to recall the definition
of polyconvexity. A strain energy density function 𝑤 ∶ M

3
+

→ R is
polyconvex if there exists a convex function 𝑤∗ ∶ M

3 × M
3 × R such

that

𝑤(𝑭 ) = 𝑤∗(𝑭 ,Cof(𝑭 ), det(𝑭 )) , (2)

for all 𝑭 ∈ M
3
+
, where (i) Cof(𝑭 ) and det(𝑭 ) are the cofactor matrix

and determinant of 𝑭 ; (ii) M3 and M
3
+
denote the sets of real square

matrices of order 3 with arbitrary and strictly positive determinants,
respectively. The requirements (3) and (4) above, related to volume
annihilation and coercivity, are crucial in the analytical derivation of
functional forms for 𝑤. They are, however, less relevant to surrogate
modeling which only involves bounded intervals, by construction. In
this context, the choice of a proper parameterization (in terms of 𝑪)
and the satisfaction of the polyconvexity requirement are sufficient to
ensure well-posedness and physical consistency.

Following the previous discussion, we then consider the construc-
tion of a polyconvex surrogate, that is 𝑤(𝑪) = 𝑤∗(𝐼1, 𝐼2, 𝐼3) owing to a
slight abuse of notation, where 𝐼1 = tr 𝑪 , 𝐼2 = tr[Cof 𝑪], and 𝐼3 = det 𝑪

are the polyconvex invariants of the right Cauchy–Green tensor 𝑪 . We
assume an additive decomposition and define 𝑤∗ as

𝑤∗(𝐼1, 𝐼2, 𝐼3) ∶=

3∑

𝑖=1

𝑤∗
𝑖
(𝐼𝑖) , (3)

where {𝑤∗
𝑖
}3
𝑖=1

are convex in the associated variables, hence ensuring
the polyconvexity of 𝑤∗ [24,25]. Notice that the above formulation
can readily be extended to model anisotropic behaviors, by including
mixed invariants that involve structural tensors [26] (see Sections 3.3
and 3.4).

Our aim now is to construct the set of convex functions {𝑤∗
𝑖
}3
𝑖=1

using fully unconstrained neural networks.

2.2. Rectification of unconstrained neural networks for constitutive model-
ing in finite elasticity

In order to define the functions {𝑤∗
𝑖
}3
𝑖=1
, we start by recalling the

integral representation of convex functions, using generic notation.
Let 𝑓 ∶ 𝐼 → R be a convex function. Then 𝑓 admits the representa-

tion

𝑓 (𝑥) = 𝑓 (𝑎) + ∫
𝑥

𝑎

𝜙(𝑡) 𝑑𝑡 , (4)

for 𝑎 < 𝑥 in the interval 𝐼 , where 𝜙 ∶ 𝐼 → R is a nondecreasing function.
The constant 𝑓 (𝑎) in the right-hand side of Eq. (4) can be derived by
fixing the value of 𝑓 at some point 𝑥⋆ ≥ 𝑎 in 𝐼 , that is

𝑓 (𝑎) = 𝑓 (𝑥⋆) − ∫
𝑥⋆

𝑎

𝜙(𝑡) 𝑑𝑡 . (5)

In the case of a strain energy density function, the point 𝑥⋆ is associated
with the normalization condition 𝑤(𝑰) = 0.

The central idea is to define 𝜙 in terms of an arbitrary function,
soon to be taken as an unconstrained NN. In order to enforce the
monotonicity of 𝜙, we rely on the representation proposed in [18] to
enforce monotonicity on transport maps. Specifically, we define 𝜙 as

𝜙(𝑡) ∶= 𝛷(0) + ∫
𝑡

0

𝑔

(
𝑑𝛷(𝑧)

𝑑𝑧

)
𝑑𝑧 , (6)

where 𝛷 ∶ R → R is any smooth function and 𝑔 ∶ R → R≥0 is a positive
function. The operator defined by Eq. (6) maps any function 𝛷 into
a nondecreasing function 𝜙 and was called, for this reason, a rectifier
in [18]. We use this terminology below, and write

𝜙 = inc{𝛷} , 𝜙(𝑡) = inc{𝛷}(𝑡) ∀𝑡 ∈ R . (7)

Similarly, Eq. (4) can be written as

𝑓 = cvx{𝜙} , 𝑓 (𝑥) = cvx{𝜙}(𝑥) ∀𝑥 ∈ 𝐼 , (8)

where cvx is seen as a second rectifier. Consequently, the convex
function 𝑓 can be defined as

𝑓 = {𝛷} ,  ∶= cvx◦inc , (9)

where the composite rectifier  implicitly depends on the function 𝑔.
Several choices were proposed and studied in the literature, including
the exponential, modified soft-plus, or square functions [18]. It follows
that each function 𝑤∗

𝑖
, 1 ≤ 𝑖 ≤ 3, can be defined as

𝑤∗
𝑖
(𝐼𝑖) ∶= {𝜓𝑖({𝑾

(𝑖)
𝑗
, 𝒃

(𝑖)
𝑗
}
𝑛𝑖
𝑗=1

)}(𝐼𝑖) , (10)

where 𝜓𝑖 is the unconstrained neural network associated with input
variable 𝐼𝑖, with weights and biases gathered in {𝑾

(𝑖)
𝑗
}
𝑛𝑖
𝑗=1

and {𝒃
(𝑖)
𝑗
}
𝑛𝑖
𝑗=1
,

respectively, and 𝑛𝑖 is the number of layers (including the hidden and
output layers). The neural network 𝜓𝑖 associated with 𝐼𝑖 is written as

𝜓𝑖(𝐼𝑖) ∶= 𝑾 (𝑖)
𝑛𝑖
(…𝐴

(𝑖)

1
(𝑾

(𝑖)

1
𝐼𝑖 + 𝒃

(𝑖)

1
)…) + 𝒃(𝑖)

𝑛𝑖
, (11)

where {𝐴
(𝑖)
𝑗
}
𝑛𝑖−1

𝑗=1
are (𝑛𝑖 −1) vector-valued, component-wise acting acti-

vation functions (note that no activation function is used for the outer
layer). The rectified neural network surrogate for the strain energy
function is finally obtained as

𝑤∗(𝐼1, 𝐼2, 𝐼3) =

3∑

𝑖=1

{𝜓𝑖({𝑾
(𝑖)
𝑗
, 𝒃

(𝑖)
𝑗
}
𝑛𝑖
𝑗=1

)}(𝐼𝑖) . (12)

While the neural networks {𝜓𝑖}
3
𝑖=1

are left undefined at this stage,
it should be noticed that the architectures must be such that the
surrogate 𝑤∗ is twice differentiable. The integral representation makes
this requirement weaker, as the neural network only needs to be
differentiable. Finally, 𝑤∗ must satisfy the normalization condition

𝑤∗(3, 3, 1) = 0 , (13)
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Fig. 1. Graph of 𝛷 (unconstrained function).

as well as the constraint

𝜕𝑤∗
1
(𝐼1)

𝜕𝐼1

|||||𝐼1=3
+ 2

𝜕𝑤∗
2
(𝐼2)

𝜕𝐼2

|||||𝐼2=3
+
𝜕𝑤∗

3
(𝐼3)

𝜕𝐼3

|||||𝐼3=1
= 0 , (14)

stemming from the stationarity of the (isotropic) strain energy density
function at 𝑪 = 𝑰 .

Eq. (13) can be enforced by the shift defined by Eq. (5). The
constraint given by Eq. (14) can be accounted for in two ways. Weak
enforcement can be achieved by adding a penalty term in the loss
function during training. This strategy may, however, lead to spurious
behaviors that were reported in [11] for example. Alternatively, the
stress-free constraint may be integrated in the strong sense either by
enforcing an algebraic equation on hyperparameters, or by simply
shifting the stress value at the origin [11]. The former approach leads
to nonlinear constraints and was found to affect expressiveness in
numerical experiments. In contrast, the latter strategy usually enables
good accuracy and can easily be implemented. For these reasons, the
stress shift strategy will be used in the examples discussed in Section 3.
Note that this amounts to adding a term in the strain energy density
function that does not affect its properties in terms of theoretical
requirements (e.g., convexity); see the discussion in [11].

Remark. To illustrate the approach, let us consider the rectification
of the function 𝛷(𝑧) = sin(𝑧) on 𝐼 = [−6, 6], and take 𝑔(𝑥) = exp(𝑥). We
have

𝜙(𝑡) = inc{𝛷}(𝑡) = sin(0) + ∫
𝑡

0

exp (cos(𝑧)) 𝑑𝑧 (15)

and

𝑓 (𝑥) = cvx{𝜙}(𝑥) = 𝑓 (−6) + ∫
𝑥

−6

𝜙(𝑡) 𝑑𝑡 . (16)

Here, we enforce the constraint 𝑓 (0) = 0 (that is, 𝑥⋆ = 0), so that

𝑓 (𝑥) = −∫
0

−6

𝜙(𝑡) 𝑑𝑡 + ∫
𝑥

−6

𝜙(𝑡) 𝑑𝑡 , ∀𝑥 ≥ −6 . (17)

The rectified function 𝑓 = {𝛷}, together with the latent functions, are
shown in Figs. 1, 2 and 3. Notice that in this example, the derivative
of the rectified function 𝑓 cannot be required to vanish at an arbitrary
point (as in Eq. (14) for example), since the primary function 𝛷 is fixed
(as opposed to the case where it can be trained).

3. Applications

We consider a standard setting where data are provided in the form
stress–strain responses. For an incompressible material for instance, the

Fig. 2. Graph of 𝜙 = inc{𝛷} (after first rectification).

Fig. 3. Graph of 𝑓 = cvx{𝜙} = {𝛷} (fully rectified function).

Cauchy stress associated with the rectified NN is evaluated as

𝜮∗(𝑭 ) = 2𝑭

(
3∑

𝑖=1

𝜕𝑤∗
𝑖
(𝐼𝑖)

𝜕𝐼𝑖

𝜕𝐼𝑖

𝜕𝑪

)
𝑭 𝑇 − 𝑝𝑰 , (18)

where the left-hand side depends on the parameters of the NN, 𝑤∗
𝑖

is defined by Eq. (10), 𝑝 is a Lagrange multiplier arising from the
incompressibility condition (in practice, 𝑝 is evaluated by imposing a
stress-free condition).

Training with respect to data can be achieved using the cost function

𝑑 =

∑𝑁

𝑖=1

(
𝛴∗(𝑭 (𝜆𝑖)) − 𝛴

data(𝑭 (𝜆𝑖))
)2

∑𝑁

𝑖=1
𝛴data(𝑭 (𝜆𝑖))

2
, (19)

along a loading path 𝜆 ↦ 𝑭 (𝜆), discretized with 𝑁 points. Here, 𝛴∗

denotes the relevant stress component (e.g., along testing direction),
and {(𝜆𝑖, 𝛴

data(𝑭 (𝜆𝑖)))}
𝑁
𝑖=1

constitutes the dataset. Note that the above
loss function can be readily extended to cases where several loading
conditions are considered (see Section 3.4).

In the applications presented below, no attempt was made to fully
optimize network architectures and training strategies. The numbers of
layers and neurons per layer were determined through a standard para-
metric analysis on the validation loss defined by Eq. (19). No activation
function was used for the toy problem presented in Section 3.1, while
the sigmoid activation function was selected for all hidden layers in all
other examples (in Section 3.2, 3.3, and 3.4).

The Adaptive Moment Estimation (ADAM) algorithm was used for
training, with an implementation in JAX [27].
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Table 1
Results for the validation step: 𝐿2-
norm errors for the rectified neural
network model (toy problem).

Function 𝑔 Error 𝜖

Square 1.5850 × 10−7

Exponential 2.0018 × 10−5

Soft-plus 1.6069 × 10−7

3.1. Toy problem

We first consider a toy example where the target convex function is
given as

𝑓 target(𝑥) = 𝑘1 exp

(
(𝑥 − 𝑘2)

2

2𝑘2
3

)
, ∀𝑥 ∈ R , (20)

where 𝑘1 = 10, 𝑘2 = 5, and 𝑘3 = 20. We seek to construct an
approximation over the interval 𝐼 = [0, 10], centered without loss of
generality around the abscissa 𝑥 = 𝑘2 at which 𝑓 target reaches its
minimum, with 𝑓 (𝑘2) = 𝑘1. A set of 100 equidistant datapoints is used
for fitting, and 20% datapoints are used as the validation set. Adopting
the generic notation 𝜓 for the neural network, the rectified model reads
as

𝑓 (𝑥) = 𝑘1 − ∫
𝑘2

0

𝜙(𝑡) 𝑑𝑡 + ∫
𝑥

0

𝜙(𝑡) 𝑑𝑡 , ∀𝑥 ∈ [0, 10] , (21)

where

𝜙(𝑡) = 𝜓(0) + ∫
𝑡

0

𝑔

(
𝑑𝜓(𝑧)

𝑑𝑧

)
𝑑𝑧 . (22)

Three different choices for 𝑔 were considered, namely the square func-
tion 𝑔(𝑥) = 𝑥2, the exponential function 𝑔(𝑥) = exp(𝑥), and the modified
soft-plus function 𝑔(𝑥) = log(2𝑥 + 1)∕ log(2).

In this example, a simple neural network architecture with one
hidden layer and two neurons is used (without activation functions).
The learning rate for the ADAM optimizer is set to 0.01. Mean square
validation errors for the rectified functions are reported in Table 1 for
the three choices of 𝑔. The square and modified soft-plus functions
provide fairly similar validation errors, smaller than the one obtained
with the exponential function. In addition, the model rectified with
the square function converged in 3,000 epochs, while the rectified
model with the modified soft-plus function converged in about 8,000
epochs. The model with the exponential function converged in more
than 10,000 epochs, which is slower than with the other two positive
functions. In order to qualitatively assess the accuracy, the predictions
obtained with the rectified neural network for the validation dataset
are shown in Fig. 4 (see Table 1 for validation metrics). Recall that
no restrictions are imposed on weights and activation functions in the
proposed formulation.

3.2. Mooney–Rivlin model

Here we address the case of a Mooney–Rivlin material, defined by
the stored energy function

𝑤MR(𝐼1, 𝐼2) = 𝐶1(𝐼1 − 3) + 𝐶2(𝐼2 − 3) , (23)

where 𝐶1 and 𝐶2 are strictly positive material parameters (see [19],
p. 189). The rectified model is written as

𝑤∗(𝐼1, 𝐼2) = 𝑤∗
1
(𝐼1) +𝑤

∗
2
(𝐼2) , (24)

with

𝑤∗
1
(𝐼1) = {𝜓1({𝑾

(1)
𝑗
, 𝒃

(1)
𝑗
}
𝑛1
𝑗=1

)}(𝐼1) (25)

and

𝑤∗
2
(𝐼2) = {𝜓2({𝑾

(2)
𝑗
, 𝒃

(2)
𝑗
}
𝑛2
𝑗=1

)}(𝐼2) . (26)

Fig. 4. Target function (black dashed line), reference values (blue star), and rectified
neural network predictions (red circles) for the validation dataset (random selection).

The Cauchy stress is given by (see [28], p. 224)

𝜮 = 2𝐶1𝑩 − 2𝐶2𝑩
−1 − 𝑝𝑰 . (27)

We consider uniaxial tension along the first direction for training
purposes, in which case the uniaxial Cauchy stress writes

𝛴(𝜆) = 2

(
𝐶1 +

𝐶2

𝜆

)(
𝜆2 −

1

𝜆

)
, (28)

where 𝜆 is the driving principal stretch. The uniaxial Cauchy stress
associated with the rectified model can be evaluated as

𝛴∗(𝜆) = 2

(
𝜕𝑤∗

1
(𝐼1)

𝜕𝐼1
+
𝜕𝑤∗

2
(𝐼2)

𝜕𝐼2

1

𝜆

)(
𝜆2 −

1

𝜆

)
, (29)

with

𝜕𝑤∗
𝑖
(𝐼𝑖)

𝜕𝐼𝑖
=

(
𝜓𝑖(0) + ∫

𝐼𝑖

0

𝑔

(
𝑑𝜓𝑖

𝑑𝑧

)
𝑑𝑧

)
. (30)

Derivatives are computed using automatic differentiation. In this exam-
ple, we consider an approximation for 𝜆 ∈ [1.0, 1.4] (𝐼1 ≥ 3 and 𝐼2 ≥ 3).
The material parameters are arbitrarily chosen as 𝐶1 = 10 and 𝐶2 = 5.
Normalization condition is imposed by taking 𝑤∗

1
(3) = 𝑤∗

2
(3) = 0 with

the constant terms (see Eq. (4), with 𝑎 = 3) set to 0. Note that the stress
free condition is automatically satisfied owing to the definition of 𝑝.

Two hundreds datapoints are generated using Eq. (28), with 20% of
samples allocated for validation. Parametric studies on validation error
were conducted to identify the NN architecture, using a learning rate
set to 0.01, 5,000 epochs, and the square function (in the first rectifier);
see Fig. 5. Results predicted by the calibrated rectified neural network
model (with 5 layers and 40 neurons per layer) on the validation
dataset is shown in Fig. 6.

Remark. As indicated in Section 1, Input-Convex Neural Networks
(ICNNs) can be obtained by forcing all weights, except those connected
to the input, to be non-negative, and by using only convex non-
decreasing activation functions [10–12,14]. In order to evaluate the
performance of such constrained neural networks in terms of training
results, we consider a model of the form

𝜓ICNN(𝐼1, 𝐼2) = 𝜓
(1)

ICNN
(𝐼1) + 𝜓

(2)

ICNN
(𝐼2) , (31)

where each ICNN involves unconstrained weights that are mapped
to positive weights in the loss function, using the modified soft-plus
activation function proposed in [10,11]. The validation loss history
for each approach is shown in Fig. 7 for the Mooney–Rivlin dataset.
Reported results were obtained with 2 hidden layers and 20 neurons
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Fig. 5. Loss function 𝑑 for different neural network architectures on the validation
dataset (Mooney–Rivlin material).

Fig. 6. Reference stress response 𝜆 ↦ 𝛴(𝜆) (black dashed line), reference values (blue
star), and rectified neural network predictions (red circle) for the validation dataset
(random selection). Here, 5 hidden layers and 40 neurons per layer are used.

per layer for both strategies, based on a parametric convergence study
on the validation metric. It is seen that the rectified NN converges
much faster than the ICNN and leads to a lower training error. While
similar results were obtained for a wide range of architectures, it should
be pointed out that the computational cost per iteration is greater in
the case of rectified NNs, which require numerical integration to be
performed. In addition, opposite trends with respect to learning rates
were observed: ICNNs tend to perform slightly better at large learning
rates (e.g., 1.5) but require a very large number of iterations (greater
than 40,000) at standard learning rates (e.g., 0.001). These observations
are most likely imputable to the transformation of negative weights,
which generates large regions with ‘‘flat’’ gradients in the optimization
process. In contrast, rectified NNs were found to perform steadily in
terms of training cost, regardless of the learning rate, and typically
performs (much) better at smaller rates. An extensive comparison of
the tradeoffs between these approaches is left for future work.

Fig. 7. Loss history for ICNN and the proposed rectified NN.

3.3. Anisotropic model for digital dataset

We next consider an anisotropic strain energy density function,
relevant to the modeling of soft biological tissues such as arterial
vessels [29,30]. It should be noticed such materials are often modeled
as nearly-incompressible in a computational setting, in which case
the strain energy density function is typically expressed in terms of
isochoric invariants. The reference function is defined as

𝑤(𝐼1, 𝐼2, 𝐽
(1)

4
, 𝐽

(2)

4
) = 𝑤MR(𝐼1, 𝐼2) +𝑤

A(𝐽
(1)

4
, 𝐽

(2)

4
) , (32)

where 𝑤MR is given by Eq. (23) and the anisotropic term is defined as

𝑤A(𝐽
(1)

4
, 𝐽

(2)

4
) =

2∑

𝑘=1

𝑤ti(𝐽
(𝑘)

4
) , (33)

with

𝑤ti(𝐽
(𝑘)

4
) =

𝜇4

𝛽4

{
exp

(
𝛽4𝑤

𝐵(𝐼1, 𝐽
(𝑘)

4
)
)
− 1

}
(34)

where 𝑤𝐵(𝐼1, 𝐽
(𝑘)

4
) = (1− 𝜌)(𝐼1 −3)2 + 𝜌⟨𝐽 (𝑘)

4
−1⟩2

𝑚
, and 𝐽 (𝑘)

4
= tr(𝑪𝑴 (𝑘)).

The structural tensors𝑴 (𝑘) = 𝒂(𝑘)⊗𝒂(𝑘) are defined in terms of the unit
vectors

𝒂(1) = cos(𝛼)𝒆(1) + sin(𝛼)𝒆(2) , (35a)

𝒂(2) = cos(𝛼)𝒆(1) − sin(𝛼)𝒆(2) , (35b)

where 𝒆(1) and 𝒆(2) are unit basis vectors and 𝛼 is the angle defining
the directions of anisotropy. In Eq. (34), 𝜇4, 𝛽4, and 𝜌 are material
parameters, and ⟨⋅⟩𝑚 denotes the Macaulay bracket. Note that the angle
𝛼 is also considered as a trainable parameter.

The rectified neural network is sought as

𝑤∗
1
(𝐼1) +𝑤

∗
2
(𝐼2) +𝑤

∗
3
(𝐽

(1)

4
) +𝑤∗

4
(𝐽

(2)

4
) , (36)

where

𝑤∗
𝑖
(𝐼𝑖) = {𝜓𝑖({𝑾

(𝑖)
𝑗
, 𝒃

(𝑖)
𝑗
}
𝑛𝑖
𝑗=1

)}(𝐼𝑖) , 𝑖 = 1, 2 , (37)

𝑤∗
3
(𝐽

(1)

4
) = {𝜓3({𝑾

(3)
𝑗
, 𝒃

(3)
𝑗
}
𝑛3
𝑗=1

)}(𝐽
(1)

4
) , (38)

and

𝑤∗
4
(𝐽

(2)

4
) = {𝜓4({𝑾

(4)
𝑗
, 𝒃

(4)
𝑗
}
𝑛4
𝑗=1

)}(𝐽
(2)

4
) . (39)

Biaxial tension is used for training purposes. The Cauchy stress associ-
ated with the reference model is obtained as

𝛴(𝜆) = 𝛴MR(𝜆) + 𝛴ti
(1)
(𝜆) + 𝛴ti

(2)
(𝜆) , (40)
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Fig. 8. Parametric study of the mean squared error for different NN architectures on
the validation dataset (Anisotropic material).

with

𝛴MR(𝜆) = 2𝐶1(𝜆
2 −

1

𝜆4
) − 2𝐶2(

1

𝜆2
− 𝜆4) , (41)

and

𝛴ti
(𝑘)
(𝜆) = 4𝜆2𝜇4

{
(1 − 𝜌)(𝐼1 − 3)

(
1 −

1

𝜆6

)

+ 𝜌⟨𝐽 (𝑘)

4
− 1⟩𝑚 cos2(𝛼)

}

× exp(𝛽4𝑤
𝐵(𝐼1, 𝐽

(𝑘)

4
)) , 𝑘 = 1, 2 . (42)

with a slight abuse of notation. The Cauchy stress for the rectified
model defined by Eq. (36) is given by

𝛴∗ = 𝛴∗
1
(𝜆) + 𝛴∗

2
(𝜆) + 𝛴∗

3
(𝜆) + 𝛴∗

4
(𝜆) , (43)

where terms in the right-hand side are defined as

𝛴∗
1
(𝜆) = 2

𝜕𝑤∗
1
(𝐼1)

𝜕𝐼1

(
𝜆2 −

1

𝜆4

)
, (44)

𝛴∗
2
(𝜆) = −2

𝜕𝑤∗
2
(𝐼2)

𝜕𝐼2

(
1

𝜆2
− 𝜆4

)
, (45)

𝛴∗
3
(𝜆) = 2𝜆2

𝜕𝑤∗
3
(𝐽

(1)

4
)

𝜕𝐽
(1)

4

cos2(𝛼) , (46)

𝛴∗
4
(𝜆) = 2𝜆2

𝜕𝑤∗
4
(𝐽

(2)

4
)

𝜕𝐽
(2)

4

cos2(𝛼) . (47)

Since cos(𝛼) ≠ 0 in practice, the stress free constraint reduces to
𝛴∗
3
(1) + 𝛴∗

4
(1) = 0. In the numerical example below, the material

parameters correspond to the values identified in [31] for sample #10
in the media layer: 𝐶1 = 0.7071 [kPa], 𝐶2 = 0.0531 [kPa], 𝛼 = 0.2740

[rad], 𝜇4 = 15.5753 [kPa], 𝛽4 = 2.5561, and 𝜌 = 0.0986. Similarly to
the previous case, we generated 200 datapoints, 20% of which are
used as the validation set. The learning rate is set to 0.005 for the
first 3,000 epochs and then to 0.001 for 3,000 epochs, and presented
results were obtained using the exponential function in the rectifier
(i.e., 𝑔(𝑥) = exp(𝑥)). The validation errors for different neural network
architectures are shown in Fig. 8.

Results predicted with the fitted rectified neural network model on
the validation dataset are shown in Figs. 9. The validation metric in
this example is 3.46 × 10−6.

Fig. 9. Reference stress response 𝜆↦ 𝛴(𝜆) (black dashed line), reference values (blue
star), and rectified neural network predictions (red circle) for the validation dataset
(random selection). Here, the NN involves 4 hidden layers and 40 neurons per layer.

3.4. Anisotropic model for experimental dataset

We finally apply the proposed rectification method to the experi-
mental dataset presented in [32], corresponding to uniaxial extension
tests on human illiac arterial walls. In those experiments, two different
strips were harvested along the circumferential and longitudinal direc-
tions on each specimen to capture anisotropic effects. For the sake of
illustration, two samples are randomly selected as target data for each
layer defining the artery (adventitia, media, intima), and 10% of the
data is used as the validation dataset. The rectified neural network is
similar to the one used in Section 3.3 (see Eq. (36)).

Both axial and circumferential tension data are used for training.
The Cauchy stress for the rectified model defined by Eq. (36) in the
circumferential direction reads as in Eq. (43), in which

𝛴∗
1
(𝜆) = 2

𝜕𝑤∗
1

𝜕𝐼1

(
𝜆2 −

1

𝜆

)
, (48)

𝛴∗
2
(𝜆) = 2

𝜕𝑤∗
2

𝜕𝐼2

(
𝜆 −

1

𝜆2

)
, (49)

𝛴∗
3
(𝜆) = 2𝜆2

𝜕𝑤∗
3
(𝐽

(1)

4
)

𝜕𝐽
(1)

4

cos2(𝛼) , (50)

𝛴∗
4
(𝜆) = 2𝜆2

𝜕𝑤∗
4
(𝐽

(2)

4
)

𝜕𝐽
(2)

4

cos2(𝛼) . (51)

for uniaxial elongation.
The Cauchy stress for the tissue contribution in the longitudinal

direction involves the terms

𝛴∗
3
(𝜆) = 2𝜆2

𝜕𝑤∗
3
(𝐽

(1)

4
)

𝜕𝐽
(1)

4

sin2(𝛼) (52)

and

𝛴∗
4
(𝜆) = 2𝜆2

𝜕𝑤∗
4
(𝐽

(2)

4
)

𝜕𝐽
(2)

4

sin2(𝛼) . (53)

The loss function in terms of datapoints is then defined as

𝑑 =

∑𝑛𝑐𝑝

𝑖=1

(
𝛴exp(𝜆𝑐

1
) − 𝛴∗(𝜆𝑐

1
;𝒑)

)2

∑𝑛𝑐𝑝

𝑖=1
𝛴exp(𝜆𝑐

1
)2

+

∑𝑛𝑎𝑝

𝑖=1

(
𝛴exp(𝜆𝑎

1
) − 𝛴∗(𝜆𝑎

1
;𝒑)

)2

∑𝑛𝑎𝑝

𝑖=1
𝛴exp(𝜆𝑎

1
)2

, (54)
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Fig. 10. Reference stress response 𝜆 ↦ 𝛴(𝜆) (black dashed line), reference values (blue
star), and rectified neural network predictions (red circle) for the validation dataset in
the circumferential direction (six experimental responses are considered for illustration
purposes).

Fig. 11. Reference stress response 𝜆 ↦ 𝛴(𝜆) (black dashed line), reference values (blue
star), and rectified neural network predictions (red circle) for the validation dataset in
the axial direction (six experimental responses are considered for illustration purposes).

where the superscripts ‘‘c’’ and ‘‘a’’ refer to data obtained by stretching
along the circumferential and axial directions, respectively, 𝑛𝑐

𝑝
and 𝑛𝑎

𝑝

are the associated numbers of datapoints. As in Section 3.3, the stress
free constraint is enforced in a strong sense by shifting the Cauchy
stress.

Predictions obtained with the rectified neural network can be qual-
itatively compared with reference values in Figs. 10 and 11, while
validation errors can be found in Table 2. In this application, we used
2 hidden layers per neural network and 100 neurons per hidden layer.
The rectified NN is trained for 2,000 epochs with a learning rate set
to 0.01, then for 2,000 epochs with a learning rate taken as 0.001,
and finally for 2,000 epochs at a learning rate set to 0.0001. With a
maximal validation error equal to 1.0096 × 10−4 (obtained for sample
#XI, intima layer), it is seen that the rectified neural network can
reproduce the experimental data very well, for all different layers in
the two directions.

Table 2
Validation errors for each sample. Specimen numbers
are those reported in [32].

Layer/Specimen number Error 𝑑 ×10−4

Adventitia/#III 0.9972
Adventitia/#XIII 0.1331
Intima/#V 0.7994
Intima/#XI 1.0096
Media/#III 0.0252
Media/#XI 0.0355

4. Conclusion

A method to correct unconstrained neural networks for hyperelastic
models was proposed. The approach relies on a composite mapping
that transforms any function into a convex function, hence ensuring
the polyconvexity of the neural network — without constraints on the
weights and activation functions.

The strategy was first illustrated on a toy problem to character-
ize the impact of the positive function used to enforce monotonicity
(in terms of accuracy and training effort). The rectified NN models
were then deployed on digitally synthesized and experimental datasets,
relevant to both isotropic and anisotropic materials. Good fitting ca-
pabilities were observed in all applications. It was shown that the
proposed rectified models typically convergence faster than a priori
constrained models, at the expense of a greater computational cost per
iteration.

Avenues for future research include the generalization to other
types of strain energy density functions, as well as more extensive
comparisons with a priori constrained representations.
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