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Abstract

A Riemannian stochastic representation of model uncertainties in molecular dynamics is proposed. The approach relies
n a reduced-order model, the projection basis of which is randomized on a subset of the Stiefel manifold characterized
y a set of linear constraints defining, e.g., Dirichlet boundary conditions in the physical space. We first show that these
onstraints are, indeed, preserved through Riemannian pushforward and pullback actions to, and from, the tangent space to
he manifold at any admissible point. This fundamental property is subsequently exploited to derive a probabilistic model
hat leverages the multimodel nature of the atomistic setting. The proposed formulation offers several advantages, including

simple and interpretable low-dimensional parameterization, the ability to constraint the Fréchet mean on the manifold, and
ase of implementation and propagation. The relevance of the proposed modeling framework is finally demonstrated on various
pplications including multiscale simulations on graphene-based systems.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

Molecular dynamic (MD) simulations are widely employed to study microscopic processes and predict macro-
copic thermodynamical properties in various science and engineering fields, including biophysics, computational
hemistry, and materials science. The accuracy of MD simulations heavily depends on the interatomic potentials
hat are used to evaluate the force fields governing the interactions within the dynamical system. Such functions are
sually designed and calibrated according to experimental data or first-principles calculations, leading to a myriad
f models for the same atomic system.

For example, models for water–biomolecular interactions include 3-site potential models such as TIPS [1],
PC [2], TIP3P [3], SPC/E [4], as well as 4-site models such as BF [5], TIP4P [3], OPC [6], to name a few.
he coarse-grained Optimized Potential for Liquid Simulation (OPLS) potential model and its variants [7–10] can
e employed for MD simulations of polyethylene, which is one of the simplest polymer systems. In the case
f graphene sheets (which are composed of carbon atoms only), many models were proposed in the literature,
ncluding AIREBO [11], BOP [12], REBO-2 [13], LCBOP [14], ReaxFF [15], and Tersoff-type potentials [16]. For
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many systems of interest, and most critically for newly developed materials, the appropriate choice of interatomic
potentials is rarely known in advance, and a detailed analysis must be conducted before MD simulations are
performed, according to specific simulation targets and environment [17].

The selection and calibration of interatomic potentials can induce substantial uncertainties across scales. Several
pproaches have been pursued in the literature to propagate various types of uncertainties from fine to coarser
tomistic scales (see, e.g., [18–20]), as well as in MD-to-continuum coupling methods [21,22] where intermediate

coarse-scale results are estimated through fine-scale MD simulations. There is also a very substantial number of
papers that have reported on the impact of parametric uncertainties in a continuum multiscale setting; see, e.g., [23–
25], in a non-exhaustive manner. Restricting the discussion to uncertainty quantification for MD simulations,
most of the works have focused on the propagation of parametric uncertainties in potential parameters [26–29],
sampling-induced uncertainties [30], and uncertainties for models built using machine learning techniques [31].

In contrast, the consideration of model-form uncertainties has received relatively little attention to date. The
issue of adaptive model selection under uncertainty, considering candidates that are obtained through different
coarse-graining strategies for example, was addressed in [32,33] using Bayesian formalism. A framework enabling
extrapolation from one model to another, using functional perturbations, was proposed in [34]. In the recent
work [20], the probabilistic approach developed in [35] to capture model uncertainties through the construction
of a probability measure for the projection basis of a reduced-order model was applied to identify, and investigate
the effect of, model uncertainties in MD simulations. While the methodology was shown to perform satisfactorily
in terms of variability representation, the parameterization to pullback from the tangent space to the manifold
used in [20,35] does not allow for the mean of the fluctuations to be constrained. Furthermore, hyperparameter
identification suffers from a curse of dimensionality unless assumptions about the structure of the statistical
fluctuations are made—the number of hyperparameters scaling as O(n2) for a reduced-order model of dimension
n [35,36]. The aim of this work is to propose a new formulation that circumvents these limitations and fully leverages
the multimodel nature of the atomistic setting, using ad hoc Riemannian projection and retraction operators. Note
that this setting is intrinsically different from the one considered in [35], where only one model (about which
statistical fluctuations are to be prescribed) is assumed to be available. The use of Riemannian operators is motivated
by the preservation of linear constraints onto the tangent space, which enables the derivation of a particularly simple
and easily implementable model, and allows the mean of the fluctuations to be constrained in the Fréchet sense.

The remainder of this paper is organized as follows. The stochastic modeling framework is introduced in
Section 2. We present the reduced-order model, as well as strategies to parameterize the formulation on the tangent
space to the Stiefel manifold. We subsequently define the probabilistic model and propose a strategy to constrain
the Fréchet mean on the manifold. Section 3 is dedicated to various applications, including a toy example, related
to sampling on the unit sphere, and multiscale MD-based predictions on a graphene system. Conclusion is finally
presented in Section 4.

2. Riemannian stochastic representation of model uncertainties

2.1. Reduced-order modeling for molecular dynamics simulations

The evolution of the whole system, composed of Na atoms in Rd , is described by Newton’s second law of motion

[M]q̈(t) = f (t; q(t)) , (1)

here [M] ∈ RN×N , q ∈ RN , and f ∈ RN denotes the mass matrix, the position vector, and the force vector,
espectively (with N = d × Na). Appropriate initial conditions are assumed and left unspecified throughout this
ection. In addition, we assume that q satisfies a set of linear constraints, written as

[B]T q(t) = [0NCD,n] , ∀t ≥ 0 , (2)

here NCD is the number of constrained degrees of freedom in the system and [B] ∈ RN×NCD satisfies

[B]T [B] = [INC D ] . (3)
he above constraint can be used to specify homogeneous Dirichlet boundary condition, for example.
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To fix ideas, assume that the system is defined for a given choice of interatomic potential (describing all types of
nteractions). A reduced-order model (ROM) can then be constructed by using a proper orthogonal decomposition
POD). To that end, we consider the state variable

z(t) = q(t)− q(0) , ∀t ∈ [0, T ] , (4)

which satisfies the equilibrium equation

[M] z̈(t) = f̃ (t) , (5)

supplemented with appropriately modified boundary conditions, and f̃ (t) = f (z(t)+ q(0), t).
Let t0 = 0 < t1 < · · · < tNt = T be a discretization of the time interval [0, T ], where t j = j∆t and ∆t is

the time step. Let J = { j1, . . . , jNs } ⊂ {1, . . . , Nt }, with 1 ⩽ Ns ⩽ Nt , not necessarily ordered and with distinct
lements, and consider the sequence of snapshots {µ(k)

}
Ns
k=1 such that µ(k)

= q(t jk ). Let

[X ] = [µ(1) . . . µ(Ns )] , (6)

here µ(k)
= µ(k)

− q(0) for 1 ⩽ k ⩽ Ns , and introduce the singular value decomposition

[X ] = [U ][S][V ]T , (7)

here the sequence of singular values is nonincreasing. A reduced-order basis (ROB) [Φ] can be classically obtained
y retaining the n first columns (which are referred to as POD modes) of [U ]. The number n of modes can be

determined through a convergence analysis enabling a tradeoff between dimensionality reduction and projection
error.

Now consider the linear mapping

z(t) = [Φ] y(t) , (8)

where y is the reduced variable with values in Rn . The matrix [Φ] satisfies the orthogonality property

[Φ]T [Φ] = [In] , (9)

as well as the boundary condition

[B]T [Φ] = [0NCD,n] , (10)

here [B]T defines a boundary condition operator and NCD is the number of constrained degrees of freedom in
he system. The Galerkin projection of Eq. (5) expressed in terms of atom displacements (with physical variable z)

reads as

[M] ÿ(t) = F(t) , (11)

where [M] and F are the projected mass matrix and reduced force vector, respectively:

[M] = [Φ]T [M][Φ] , F(t) = [Φ]T f̃ (t) . (12)

Note at this stage that the previous reduced-order formulation is not introduced to accelerate simulations since most
of the computational time is spent into assembling procedures. This numerical burden may be circumvented, in
practice, by bypassing back-and-forth projections between the physical and reduced space, using, e.g., machine-
learning-based surrogates for forces in the reduced space. This aspect is out of the scope of the present
work.

Since the reduced-order basis [Φ] satisfies the orthogonality property stated in Eq. (9), it is necessary to introduce
the set of orthogonal matrices

St(N , n) = {[Y ] ∈ RN×n such that [Y ]T [Y ] = [In]} , (13)

called the compact Stiefel manifold, where RN×n is the set of all N×n real matrices. Owing to the constraint given
by Eq. (10), the matrix [Φ] then belongs to the subset SN ,n ⊂ St(N , n) defined as

SN ,n = {[Y ] ∈ RN×n such that [Y ]T [Y ] = [In] , [B]T [Y ] = [0NCD,n]} . (14)

The set SN ,n constitutes the admissible space for [Φ], and can therefore be interpreted as the support of the
probability measure for the stochastic counterpart of [Φ], denoted by [Φ]. The main challenge then lies in the

construction of a proper probabilistic model for [Φ].
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Notation. In the following, we denote by [W (1)], . . . , [W (m)] the reduced-order bases in SN ,n obtained by
considering each interatomic potential separately, assuming here that m candidate models are available. The global
reduced-order basis obtained by concatenating snapshots obtained for all considered potentials is denoted by [W ].

2.2. Construction of the stochastic reduced-order model

2.2.1. Problem statement
We consider the stochastic modeling of the random matrix [Φ], defined on a probability space (Θ, T , P) and tak-

ing values in the subset SN ,n of the Stiefel manifold St(N , n). We assume that the collection {[W (1)], . . . , [W (m)], [W ]
of reduced-order bases is given, and that [W ] belongs to the convex hull of [W (1)], . . . , [W (m)]. The tangent space
of St(N , n) at [Y ] is defined as

T[Y ]St(N , n) = {[∆] ∈ RN×n
| [Y ]T [∆]+ [∆]T [Y ] = [0n]} ⊂ RN×n , (15)

where [Y ] ∈ St(N , n) is called the base (or reference) point on the Stiefel manifold, and [0n] is the null matrix of
size n×n. The projection onto the tangent space to the Stiefel manifold at [Y ] (push-forward operation) is denoted
by

P[Y ] : St(N , n)→ T[Y ]St(N , n) , (16)

while the retraction (pull-back operation) is denoted by

R[Y ] : T[Y ]St(N , n)→ St(N , n) . (17)

There are several ways to define such projection and retraction operators; see, e.g., Chapter 4 in [37]. The retraction
operator based on the polar decomposition (see Eq. (4.7), p. 59, in [37]), namely

R[Y ]([∆]) = ([Y ]+ [∆])
(
[In]+ [∆]T [∆]

)−1/2
, (18)

was used in [35], in particular (see [20] for an application in a molecular dynamics setting). In fact, using the
parameterization

[∆] = [A]− [W ][D] (19)

on T[W ]St(N , n), where [A] ∈ RN×n is arbitrary and [D] = Sym([W ]T [A]), it is seen that the pulled-back point

[Ỹ ] = R[Y ](s[∆]) = ([W ]+ s[∆])
(
[In]+ s2[∆]T [∆]

)−1/2
s ≥ 0 , (20)

satisfies the Dirichlet boundary condition [B]T [Ỹ ] = [0NCD,n] if [A] also satisfies

[B]T [A] = [0NCD,n] . (21)

The representation

[A] = ([I ]− [B][B]T )[U ] , [U ] ∈ RN×n arbitrary , (22)

trivially satisfies Eq. (21) (see Eq. (3)) and was introduced in [35] to model uncertainties through the randomization
of [U ]. The main advantage of this approach is that the model ensures admissibility of samples by construction, since
the stochastic reduced-order basis belongs to S almost surely. The complexity of (and nonlinearity in) the retraction
operator, however, makes statistical inference intricate, since the mean of the stochastic model cannot be enforced
for instance. In addition, the formulation introduced in [35] to model the stochastic version of [U ] introduces a
curse of dimensionality in terms of hyperparameters, with a number of parameters that scales as O(n2); see [36] for
a discussion. In the following section, we propose a new representation that fully takes advantage of the multimodel
molecular dynamics setting and in particular, of the dataset {[W (1)], . . . , [W (m)], [W ]}.

2.2.2. Riemannian stochastic modeling
Let [Y ] be a reference point on the Stiefel manifold St(N , n), and consider two points, denoted by [∆] and [∆̃],

on the tangent space T[Y ]St(N , n). The canonical inner product associated with the tangent space T[Y ]St(N , n) is
then given by

⟨[∆], [∆̃]⟩[Y ] = tr([∆]T ([IN ]−
1

[Y ][Y ]T )[∆̃]) (23)

2
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and induces the (canonical) metric ∥[∆]∥[Y ] = ⟨[∆], [∆]⟩1/2
[Y ] . Note that ∥[∆]∥[Y ] is the length of tangent vector [∆]

on the tangent space at the base point [Y ] and corresponds to the arc length between [∆] and [Y ] on the Stiefel
manifold.

A Riemannian projection operator P[Y ] : St(N , n) ∋ [Ỹ ] ↦→ [∆] ∈ T[Y ]St(N , n) can be obtained as

[∆] = logSt
[Y ]([Ỹ ]) , (24)

where logSt
[Y ] is the Riemannian Stiefel logarithm at point [Y ], defined such that ∥∆∥[Y ] = ⟨[∆], [∆]⟩1/2

[Y ] represents
the geodesic distance between [Ỹ ] and [Y ]. The retraction operator R[Y ] : T[Y ]St(N , n) ∋ [∆] ↦→ [Ỹ ] ∈ St(N , n) is
defined as

[Ỹ ] = expSt
[Y ]([∆]) , (25)

where expSt
[Y ] is the Riemannian Stiefel exponential at [Y ] ∈ St(N , n); see Chapter 5 in [37] for a review.

No closed-form results exist for the computation of the Riemannian Stiefel logarithm, which must be evaluated
numerically. An optimization-based approach was proposed in [38], while iterative algorithms based on matrix-
algebraic representations geodesic can be found in [39] (see Algorithms 7 and 8 therein for the computation of the
Stiefel exponential and logarithm, respectively); see also [40]. Note that there exists an empirical condition, given
by ∥[Y ]− [Ỹ ]∥2 ≤ 2, that ensures that the Stiefel logarithm algorithm converges.

In this work, we rely on the algorithms proposed in [39,40] and utilize the iterative matrix construction to
demonstrate important results related to the constraint given in Eq. (10). These results are presented in the form of
propositions below. Note that n ≤ N/2 and that for most dynamical systems of interest, the condition n ≪ N is
met.

Proposition 1. Let [Y ] and [Ỹ ] be two points belonging to SN ,n ⊂ St(N , n). Then [∆] = logSt
[Y ]([Ỹ ]) ∈

T[Y ]St(N , n), where the Riemannian Stiefel logarithm is defined through the matrix-algebraic representation
roposed in [39], satisfies the linear constraint

[B]T [∆] = [0NCD×n],

here [B] is defined by Eq. (10).

roof. Using the matrix-algebraic representation derived in [39] (see Algorithm 8 therein, as well as [40]), the
tiefel logarithm can be computed as

[∆] = logSt
[Y ]([Ỹ ]) = [Y ][Aτ ]+ [QL ][Bτ ] , (26)

here [QL ] ∈ RN×n stems from the compact (thin) QR decomposition

([IN ]− [Y ][Y ]T )[Ỹ ] = [QL ][NL ] . (27)

he matrices [Ak] ∈ Rn×n and [Bk] ∈ Rn×n are associated with the sequence of matrices {[Ak], [Bk]}k≥0 satisfying
the system of nonlinear algebraic equations[

[Ak+1] −[Bk+1]T

[Bk+1] [Ck+1]

]
= log

{
exp

{[
[Ak] −[Bk]T

[Bk] [Ck]

]}
exp

{[
[0n] [0n]
[0n] −[Ck]

]}}
, (28)

with [
[A0] −[B0]T

[B0] [C0]

]
= log

{[
[Y ]T [Ỹ ] [X0]

[NL ] [Y0]

]}
. (29)

The matrices {[X0], [Y0]} are obtained by completion, and τ is the smallest integer such that ∥[Cτ ]∥2 ≤ ϵ, with
ϵ a given threshold parameter. Assuming the invertibility of [NL ] ∈ Rn×n (which follows when rank(([IN ] −
[Y ][Y ]T )[Ỹ ]) = n), we have that

[B]T [∆] = [B]T ([Y ][Aτ ]+ [QL ][Bτ ]) ,

= [B]T [Y ][Aτ ]+ [B]T ([IN ]− [Y ][Y ]T )[Ỹ ][NL ]−1[Bτ ] ,

= [0NCD×n] ,

(30)

T T ˜
since [B] [Y ] = [B] [Y ] = [0NCD×n]. □
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Proposition 2. Let [Y ] ∈ SN ,n ⊂ St(N , n) and consider [∆] ∈ T[Y ]St(N , n) satisfying [B]T [∆] = [0NCD×n], where
[B] is defined by Eq. (10). Then [Ỹ ] = expSt

[Y ]([∆]) ∈ St(N , n) (Riemannian Stiefel exponential) satisfies the linear
constraint

[B]T [Ỹ ] = [0NCD×n],

hat is, [Ỹ ] ∈ SN ,n ⊂ St(N , n).

roof. Following [41], the Riemannian exponential is evaluated as

St(N , n) ∋ [Ỹ ] = expSt
[Y ]([∆]) = [Y ][M]+ [QE ][NE ] , (31)

where [M], [NE ] ∈ Rn×n are defined as[
[M]
[NE ]

]
= exp

{[
[Y ]T [∆] −[RE ]T

[RE ] [0n]

]}[
[In]
[0n]

]
. (32)

The matrices [QE ] ∈ RN×n and [RE ] ∈ Rn×n arise in the compact (thin) QR decomposition

([IN ]− [Y ][Y ]T )[∆] = [QE ][RE ] . (33)

ssuming that [RE ] is invertible (which follows when rank(([IN ]− [Y ][Y ]T )[∆]) = n), we deduce

[B]T [Ỹ ] = [B]T ([Y ][M]+ [QE ][NE ]) ,

= [B]T [Y ][M]+ [B]T ([IN ]− [Y ][Y ]T )[∆][RE ]−1[NE ] ,

= [0NCD×n] ,

(34)

s [Y ] and [∆] satisfy [B]T [Y ] = [B]T [∆] = [0NCD×n]. □

Propositions 1 and 2 imply that the satisfaction of the linear constraint is preserved through the pushforward
nd pullback actions defined by the Riemannian Stiefel logarithm and exponential. Applying these results to the
roposed framework, we can now derive

roposition 3. Let {[∆(i)]}mi=1 be the projections of the reduced-order bases {[W (i)] ∈ SN ,n}
m
i=1 onto the tangent

pace T[W ]St(N , n) at [W ] ∈ SN ,n , [∆(i)] = logSt
[W ]([W

(i)]) for 1 ≤ i ≤ m. Then the linear combination
∆̃] =

∑m
i=1 pi [∆(i)], with (p1, . . . , pm) ∈ Rm , satisfies the property

expSt
[W ]([∆̃]) ∈ SN ,n ⊂ St(N , n).

roof. The result is immediate using Propositions 1 and 2. □

The above proposition suggests to seek the stochastic representation as

[Φ] := expSt
[W ]

{
m∑

i=1

Pi logSt
[W ]([W

(i)])

}
. (35)

his form ensures that [Φ] takes values in the constrained set SN ,n , by construction.
In Eq. (35), the random vector P = (P1, . . . , Pm)T is defined on a probability space (Θ, T , P). A natural choice

or the probability measure of P is the Dirichlet distribution with concentration parameter α, P ∼ D(α). This
hoice ensures that Pi ≥ 0 and

∑m
i=1 Pi = 1 almost surely, and therefore defines a stochastic Riemannian convex

ombination on the Stiefel manifold. In practice, this construction leads to samples that belong to the convex hull
efined by the reduced-order bases dataset {[W (i)]}mi=1 (see [42] for an analysis in a deterministic setting).

emark 1. With the proposed formulation, uncertainty propagation can be achieved through Monte Carlo
imulations, as well as by using state-of-the-art stochastic collocation methods. More specifically, let Y be the
andom variable with values in Rm

>0 and with independent components, such that Yi ∼ G(αi , 1). In this case, P and
Y are related through

Pi =
Yi∑m , 1 ≤ i ≤ m . (36)

j=1 Y j

6
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It follows that [Φ] can equivalently be viewed as a function of Y (that is, [Φ] = [Φ(P)] = [Φ(Y )]), which enables
he use of, e.g., polynomial chaos expansions in terms of Laguerre polynomials [43,44] to represent, and efficiently
dentify, stochastic quantities of interest defined through a multiscale operator; see [45,46] for reviews regarding
epresentations and stochastic solvers.

.2.3. Integrating a constraint on Fréchet mean
The aim of this section is to derive a formulation that allows the empirical mean model associated with the

epresentation (35) to be prescribed. To this end, we assume that the global reduced-order basis [W ] belongs to the
onvex hull of {[W (i)]}mi=1, and consider the identification of the concentration parameter α such that

E{[Φ]} ≈ [W ] , (37)

here the mean holds in the Fréchet sense (note that in the above equation, the right-hand side may alternatively be
efined by exploiting strategies from model averaging). Recall that the Riemannian L2 center of mass of a dataset
[Φ(1)], . . . , [Φ(q)]} composed of q samples of [Φ] (in St(N , n)) is defined as the minimizer of

h([V ]) =
1
2

q∑
i=1

wi d([V ], [Φ(i)])2 , (38)

here {wi }
q
i=1 are scalar weights in the (q − 1)-dimensional simplex and d is the Riemannian canonical distance.

mposing that the gradient of the objective function vanishes at [W ] then yields
q∑

i=1

wi logSt
[W ]

{
[Φ(i)]

}
= [0N×n] . (39)

sing the definition (35) and taking wi = 1/q for all weights then implies
m∑

j=1

(
1
q

q∑
i=1

p(i)
j

)
logSt

[W ]([W
( j)]) = [0N×n] , (40)

here p(i)
j denotes the i th realization of the component Pj of P ∼ D(α) (p(i)

j = p j (θi ), θi ∈ Θ). Since

1
q

q∑
i=1

p(i)
j ≈

α j∑m
i=1 αi

(41)

for q sufficiently large, it can be deduced that the concentration parameters must satisfy

T[W ]St(N , n) ∋
m∑

j=1

α j logSt
[W ]([W

( j)]) = [0N×n] . (42)

he above property can hence be enforced by imposing the constraint

∥

m∑
j=1

α j logSt
[W ]([W

( j)])∥F = 0 . (43)

n practice, α can be evaluated as

α = argmina∈Rm
>0
∥

m∑
i=1

ai logSt
[W ]([W

( j)])∥2
F , (44)

which is recast, for implementation purposes, as

α = argmina∈Rm
>0

aT [H ]a , (45)

where [H ] is the symmetric positive-definite matrix in Rm×m , the entries of which are given by

Hi j = tr
(
logSt

[W ]([W
(i)])T logSt

[W ]([W
( j)])

)
. (46)

This problem can be solved by any conventional quadratic programming algorithm. In this work, the built-in

MATLAB function quadprog is used for the sake of illustration.
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Fig. 1. Schematic view of the proposed stochastic modeling strategy on SN ,n , with m = 3. Riemannian operators are defined with respect
to the canonical metric. Note that geometries of sets are illustrative and may not reflect actual structures.

2.2.4. Scaling fluctuations on the tangent space
Defining the stochastic reduced-order basis as

[Φ] = expSt
[W ]

{
m∑

i=1

Pi logSt
[W ]([W

(i)])

}
, P ∼ D(α) , (47)

restricts statistical fluctuations in the convex hull of {[W (i)]}mi=1. In order to increase fluctuations, a scaling parameter
≥ 1 is introduced to scale variations on the tangent space:

[Φ] = expSt
[W ]

{
c

m∑
i=1

Pi logSt
[W ]([W

(i)])

}
. (48)

t should be noticed that the calibration strategy for the concentration parameter α is insensitive to multiplicative
caling (see Section 2.2.3). Consequently, considering c > 1 may lead to a shift in the Fréchet mean that is all
he more pronounced that the distance between the Fréchet mean taken over the dataset {[W (i)]}mi=1 and the global
educed-order basis [W ] is important. The value of c may be calibrated in practice solving a statistical inverse
roblems on microscopic or macroscopic quantities of interest (see Section 3.3.3 for an example).

.3. Summary of the proposed approach

The main steps of the proposed modeling framework are listed below and are schematically illustrated in
ig. 1. Recall that {[W (1)], . . . , [W (m)]} are the reduced-order bases in SN ,n computed through a proper orthogonal
ecomposition with snapshots associated with the full dynamical system for m different input candidate models,
nd that [W ] denotes the global reduced-order basis obtained by gathering all snapshots for all models. The global
OB is taken as base point and target Fréchet mean in the sampling procedure.

tep 1: Compute the tangent vectors {[∆(1)], . . . , [∆(m)]} using the Riemannian projection operator, [∆(i)] =
logSt

[W ][W
(i)] with [∆(i)] ∈ T[W ]St(N , n).

tep 2: Compute the concentration parameters α = (α1, . . . , αm) by solving the quadratic programming problem
defined in Eq. (45).

tep 3: Draw ν samples { p(θ j )}νj=1 of P ∼ D(α), θ j ∈ Θ for 1 ≤ j ≤ ν.
tep 4: Compute the associated samples {[Φ(θ j )]}νj=1 of [Φ] as

[Φ(θ j )] = expSt
[W ]

{
c

m∑
i=1

pi (θ j ) logSt
[W ]([W

(i)])

}
∈ SN ,n ⊂ St(N , n) , (49)

where c = 1 for stochastic Riemannian convex combinations or c ≥ 1 to enforce fluctuations beyond the

convex hull of the dataset.

8



H. Zhang and J. Guilleminot Computer Methods in Applied Mechanics and Engineering 403 (2023) 115702

w

v
t
S
s
a
c
d
f

s
v
f
c
s
w
t
“

3

c

Fig. 2. Dataset on the unit sphere in R3: base point (red star) and vertices (red points).

In the next section, we deploy the proposed approach on a variety of applications. The case of the unit sphere
is first presented in Section 3.1 to illustrate the approach with standard visualization in R3. Applications to
molecular dynamics simulations on graphene-based systems are then discussed in Sections 3.2 and 3.3, with focus
on microscopic and macroscopic responses respectively. The open-source package LAMMPS [47] is used for both
full-order and reduced-order MD simulations.

3. Applications

3.1. Illustrative example: Sampling on (a subset of) the unit sphere St(3, 1)

3.1.1. Sampling without linear constraints
In this first example, we consider sampling on the half unit sphere (that is, without the linear constraints defined

by the matrix [B], see Eq. (2)). The dataset consists of seven points randomly distributed on the sphere (m = 6),
ith one base point included in the convex hull defined by the remaining points; see Fig. 2.
Two specific choices are made at this point. In a first setting, all concentration parameters are set to the same

alue, αi = 0.2 for i ∈ {1, . . . , 6}. In the second configuration, concentration parameters are calibrated such that
he Fréchet mean is as close as possible to the aforementioned base point, following the strategy proposed in
ection 2.2.3. Here, c is set to 1 so that only stochastic Riemannian convex combinations are used. Fig. 3 shows a
et of 2,000 samples for both cases. It is seen that uniform sampling in the convex hull can be achieved by setting
ll concentration parameters equal to a small value (see the left panel in Fig. 3). The Fréchet mean of the samples,
omputed using the algorithm detailed in the Appendix, then lies far away from the chosen base point. In contrast,
etermining the concentration parameters by solving the quadratic programming problem defined in Eq. (45) allows
or the Fréchet mean to be constrained to the neighborhood of the base point.

We next consider c = 3, using the same two configurations for the concentration parameters. Samples can be
een in Fig. 4. As expected, the generated samples are distributed beyond the convex hull defined by the given
ertices (red dots). In addition, the distance between the Fréchet mean and the base point substantially increases
or unconstrained sampling (left panel in Fig. 4), while remaining small for constrained sampling (recall that the
oncentration parameters are not adjusted a posteriori since the calibration formulation is insensitive to multiplicative
caling). In fact, the later observation strongly depends on the positions of the vertices relative to the target mean:
hen the distance between the center of mass of the vertices and the target mean is sufficiently small, scaling on

he tangent space generally leads to a small drift in the Fréchet mean. On the contrary, a large distance implies a
lack of symmetry” in the definition of the sampling domain, in which case the mean is affected more significantly.

.1.2. Sampling with linear constraints
We now turn to the proper integration of linear constraints on the half unit sphere. The only relevant case
orresponds to NCD = 1, other values leading to overconstrained problems that are not appropriate in terms of

9



H. Zhang and J. Guilleminot Computer Methods in Applied Mechanics and Engineering 403 (2023) 115702

s

s
S
p
o
C
i
p

3

3

c
s
r

w
i

Fig. 3. Left panel (unconstrained sampling): samples obtained for c = 1 and αi = 0.2 for i ∈ {1, . . . , 6}. Right panel (constrained sampling):
amples obtained for c = 1 and α = (0.2357, 0.2000, 0.1820, 0.1805, 1.4151, 0.2866)T .

ampling. Let [B] = [b1, b2, b3]T
∈ R3×1, with ∥[B]∥ = 1 (see Eq. (3)), and consider [Φ] = [Φ1,Φ2,Φ3]T

∈

3×1 ⊂ St(3, 1). In this case, S3,1 defines a semi-ellipse (as the intersection of the unit sphere and an arbitrary
lane) embedded in R3. Without loss of generality, six points are randomly chosen through uniform sampling
n a semi-ellipse (m = 6), and one base point is selected near the middle of the curve defined by these points.
oncentration parameters are chosen as αi = 0.2 for i = 1, . . . , 6, and samples are shown in Fig. 5 for c = 1. It

s seen that all samples are distributed on the ellipse in a uniform manner (given the choice of the concentration
arameters), which qualitatively shows that the linear constraint is properly satisfied.

.2. Single graphene sheet subjected to harmonic excitation

.2.1. System description
In this section, we apply the approach to molecular dynamics simulations on a single graphene sheet (in R3),

omposed of 272 carbon atoms, see Fig. 6. A zero Dirichlet boundary condition is applied on the left side of the
tructure (hence defining the linear constraints and matrix [B]), while a harmonic excitation force is applied on the
ight side according to

f ext (t) = A sin(2πωt)e2 , t ≥ 0 , (50)

ith A = 6 [kcal mol−1 Å−1] and ω = 20 × 109 [rad/s]. Model uncertainties arise from the selection of the
nteratomic potentials governing the evolution of the system, and six different potentials commonly employed
10
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Fig. 4. Left panel (unconstrained sampling): samples obtained for c = 3 and αi = 0.2 for i ∈ {1, . . . , 6}. Right panel (constrained sampling):
amples obtained for c = 3 and α = (0.24, 0.20, 0.18, 0.18, 1.42, 0.27)T .

Fig. 5. Samples obtained for c = 1 and αi = 0.2 for i ∈ {1, . . . , 6} (no constraint on Fréchet mean). Observe that all samples properly
elong to S3,1, owing to the use of the Riemannian projection and retraction operators.
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Fig. 6. Single-layer graphene sheet model composed of 272 atoms. A zero homogeneous Dirichlet boundary condition is applied on the left
edge, and a harmonic excitation force is applied on the right edge.

Fig. 7. Snapshots of horizontal and vertical displacements at t = 80 [ps] (top row) and 100 [ps] (bottom row), computed with six different
nteratomic potentials.

o model graphene-based systems are considered, namely AIREBO [11], BOP [12], LCBOP [14], Modified-
orse [48], REBO-2 [13], and Tersoff-2010 [49]. Atom displacement is chosen as the quantity of interest to

tudy the influence of model-form uncertainties in the graphene system. Relaxation is performed through energy
inimization before the external force f ext is applied. Sampling is conducted in the microcanonical ensemble

NVE), with a time step set to 1 [fs] (1× 10−15 [s]).

.2.2. Forward simulations and model reduction
The impact of model selection, viewed from the perspective of model uncertainties, is illustrated in Fig. 7 where

orizontal and vertical displacements for all atoms are displayed at t = 80,000 and t = 100, 000 [fs], respectively,
for the six considered potentials. It is seen that the choice of the potential has a significant impact on the fine-
scale dynamics of the graphene system, motivating the use of the proposed approach to quantify and propagate
model-form uncertainties at relevant scales.

The POD approach is next employed to construct the reduced-order bases {[W (i)]}6i=1 (the bases {[W (1)], . . . ,
W (6)]} are associated with AIREBO, BOP, LCBOP, Modified-Morse, REBO-2, and Tersoff-2010 potentials,
espectively). For each MD configuration (choice of interatomic potential), 1,000 displacement snapshots are
ollected with a time interval between consecutive snapshots set to 200 [fs] to promote independence (see Eq. (4)).
ecall that the global ROB [W ] is obtained by concatenating the displacement snapshots for all MD configurations.
singular value decomposition is used to identify the reduced dimension (taken as the minimum over all

12
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Fig. 8. Graph of the L2 error function for all scenarios.

onfigurations) and the associated projection bases. Using a threshold of 1×10−4, we identify the reduced dimension,
= 5 (see Fig. 8), and therefore consider stochastic modeling in S816,5 ⊂ St(816, 5). Note that the dimension of

St(816, 5) is: 816× 5− 1
2 × 5× (5+ 1) = 4, 065.

.2.3. Sampling results
The proposed stochastic model and sampling procedure are then deployed to generate reduced-order basis

amples on S816,5. The scaling parameter c is taken as 1, meaning that only Riemannian convex combinations
re considered, and the concentration parameters are computed by solving the quadratic programming problem
efined in Eq. (45) (to reduce the distance between the global reduced-order basis [W ] and the center of mass of
he generated samples):

α = (0.494, 0.601, 0.006, 0.236, 0.421, 0.242)T . (51)

In this example, the smallest eigenvalue of [H ] (in Eq. (45)) is 0.482, which shows the well-posedness of the
quadratic programming problem.

To visualize the dataset and the 2,500 generated samples in a low-dimensional space (here, a two-dimensional
space), several commonly used non-linear dimension reduction techniques were tested, including spectral embed-
ding [50], t-SNE [51], UMAP [52], and PACMAP [53]. It was found through extensive numerical experiments that
the spectral embedding approach typically delivers representations that can be interpreted more easily, in terms of
structure; see Fig. 9. This figure illustrates the fact that all samples are generated inside the convex hull defined
by the dataset, with curved edges owing to the use of the non-linear reduction technique (data compression). It is
also observed that the Fréchet mean computed with the samples appears close to the global reduced-order basis
[W ], demonstrating the efficiency of the proposed methodology to identify the concentration parameters based on
a Fréchet mean constraint in a molecular dynamics setting.

Such visualization techniques and results should, however, be handled and interpreted with caution, due to the
reduction process. A comparative study about such representations is beyond the scope of this work. Their use in
the context of reduced-order modeling for dynamical systems, in particular, is an interesting topic that is left for
future work.

3.2.4. Forward propagation of model uncertainties
In this section, model-form uncertainties are propagated through Monte Carlo simulations with the stochastic

reduced-order model corresponding to the graphene system subjected to harmonic excitation. This step necessitates
the selection of the interatomic potential used after pullback in the physical space (to evaluate forces). Two strategies
can be pursued at this point. In a first scenario, the same potential is used for all simulations, regardless of
the reduced-order basis sample. This potential may be chosen, in practice, as the one minimizing the distance
13
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Fig. 9. First two dimensions after dimension reduction using the spectral embedding approach [50]. A total number of 5,000 samples are
enerated and shown, together with the original samples and the Fréchet mean.

o the mean behavior. A second strategy consists in performing selection for each sample of the reduced-order
asis, retaining the potential (in the physical space) that is the closest to the sample under consideration in the
educed-order space. In this case, the potential can be identified by computing relative distances between the sample
Φ(θ j )] and all elements in the dataset (i.e., [W (1)], . . . , [W (m)]), using the canonical metric, or by leveraging
he definition through a convex combination. Specifically, let I j , with 1 ≤ I j ≤ m, be the integer such that
pI j (θ j ) = max{p1(θ j ), . . . , pm(θ j )}. The sample [Φ(θ j )] is then located closer to [W (I j )], so that the (I j )th potential

ay be used in the physical space.
Results obtained with the above two strategies are shown in Fig. 10. In this example, the BOP potential [12]

s used in the first strategy, and 200 samples are generated using the values given in Section 3.2.3. Snapshots of
he vertical displacement (along e2) are displayed at t = 22 and t = 25 [ps]. Trajectories computed for the 200
amples of the stochastic reduced-order basis are shown, together with the trajectories corresponding to full-order

D simulations with all six reference potentials. It is seen that both strategies yield fairly similar results in terms
f spread. The domain defined by the set of full-order simulations is properly captured by the sampled trajectories,
hich indicates that model uncertainty has been successfully encoded into stochastic modeling process. It is worth
entioning that the zero Dirichlet boundary condition is also preserved across all samples and full-order models.
Fine-scale uncertainties generated by model error can also be observed using confidence intervals and probability

istributions. The mean trajectories and 90% confidence intervals are shown in Fig. 11 for the two selection
trategies. The estimated probability density functions for the vertical displacement of atom #100 at t = 22

and t = 25 [ps] are also shown in Fig. 12. These results show that the choice of the selection strategies does
not significantly impact predictions. It should however be noticed that sample-based selection allows to better
differentiate between contributions in the dataset; see, e.g., the peak observed for the BOP potential in the bottom-
right figure (as compared to the top-right figure) in Fig. 12. Moreover, this strategy does not generate additional
computational cost, and does not rely on a priori selection. For these reasons, the sample-based selection approach
will be used in subsequent calculations and in particular, in the multiscale results presented in Section 3.3.

3.3. Single graphene sheet subjected to tension

3.3.1. System description
We finally model and quantify the impact of model-form uncertainties in both fine- and coarse-scale predictions

on a graphene sheet under tension. The graphene sheet is composed of 1,008 carbon atoms with an overall in-plane
14
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Fig. 10. Trajectories predicted by the reduced-order MD simulations using 200 ROB samples (gray solid lines), together with full-order MD
simulation results (colored solid lines) at simulation times t = 22 [ps] (left panels) and t = 25 [ps] (right panels), respectively. In the top
row, the BOP potential is used for all the reduced-order MD simulations, while sample-based selection is carried out in the bottom row.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

size of 50.17 × 49.74 [Å], a size that is large enough to produce size-independent coarse-scale tensile test results
see [54]). The carbon bond length is selected as 1.418 [Å], in accordance with [55]. The tensile test is conducted
n both zigzag and armchair directions, as shown in Fig. 13. In each virtual tensile test, a zero Dirichlet boundary
ondition is applied to the atoms located on one edge of the sheet (e.g., to the atoms satisfying x1 = 0 for the zigzag

direction) and a stretching force is applied to the atoms on the opposite edge. The time step is set to 1 [fs], with
a total simulation time of 20 [ps] for both directions. Load stepping is used with increments prescribed every 100
time steps in order to ensure proper relaxation. The loads are specifically defined such that the largest engineering
strain rate is equal to 0.22 for the tensile test in the zigzag direction, and to 0.19 in the armchair direction.

3.3.2. Deterministic forward simulations
The uncertainty resulting from the selection of the interatomic potential is evaluated using full-order MD

simulations and the AIREBO, BOP, LCBOP, REBO-2, and Tersoff-2010 potentials (see Section 3.2.1).
Two quantities of interest are considered. First, a fine-scale characterization is obtained by analyzing the

displacements along the e1 and e2 directions. Second, the impact on a coarse-scale property, namely the apparent
strain energy, is illustrated. For the sake of comparison, results obtained with the continuum-mechanics-based model
presented in [56] are also reported as complementary reference. The relationships between the strain energy and
the engineering strain, denoted by u and ϵ respectively, are given by

uzz =
1
2

E
1− ν2 ϵ2

+
1
6

C111ϵ
3 ,

uac =
1 E

ϵ2
+

1
C222ϵ

3 ,

(52)
2 1− ν2 6
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Fig. 11. Mean/extreme trajectory and confidence interval for the vertical displacement of all atoms at t = 22 [ps] (left panels) and t = 25
ps] (right panels). In the top row, the BOP potential is used for all the reduced-order MD simulations, while sample-based selection is
arried out in the bottom row.

here the subscripts “zz” and “ac” refer to the zigzag and armchair directions, E = 312 [N/m] denotes the
oung’s modulus, ν = 0.31 is the Poisson ratio, C111 = −1689.2 [N/m] and C222 = −1487.7 [N/m] are the
lastic constants [56].

The evolution of the strain energy in both directions and for all potentials is shown in Fig. 14. Very large
ariations induced by model-form uncertainties can be observed. Specifically, the discrepancy in strain energy for a
5%-strain is 26.3% in the zigzag direction, and 40.6% for the armchair direction. Such discrepancies may generate
ubstantial fluctuations when propagated through multiscale approaches [57], which underpins the need to properly
apture such variability and perform uncertainty quantification within MD simulations.

.3.3. Stochastic modeling and forward propagation of model uncertainties
In order to apply the proposed modeling framework, a total number of 500 snapshots are collected for each

ensile direction and all interatomic potentials. The five reduced-order bases {[W (1)], . . . , [W (5)]} (associated with
IREBO, BOP, LCBOP, REBO-2, and Tersoff-2010 potentials, respectively), together with the global reduced-order
asis [W ], are then calculated using the POD approach. Selecting n = 10 modes leads to a truncation error that is
ess than 10−4 for all candidates, so we consider sampling on S3024,10 ⊂ St(3024, 10).

Model-form uncertainties can then be propagated using the modeling strategy summarized in Section 2.3,
combined with a Monte Carlo approach. The concentration parameters are determined by solving the quadratic
programming problem given by Eq. (45) to ensure that Fréchet mean of the generated samples are close to the
global ROB, which is the base point to define the tangent space. These coefficients are found to be

α = (0.89, 0.80, 0.45, 0.78, 1.08)T (53)
zz
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Fig. 12. Estimated probability density function (pdf) for the vertical displacement of atom #100 at t = 22 [ps] (left panels) and t = 25
[ps] (right panels). Full-order MD simulation results are also reported for the sake of comparison. Note that the markers associated with
the AIREBO and LCBOP potentials are quite close to one another. In the top row, the BOP potential is used for all the reduced-order MD
simulations, while sample-based selection is carried out in the bottom row.

Fig. 13. Single-layer graphene sheet with 1,008 carbon atoms. Tensile test is conducted in zigzag (left subfigure) and armchair (middle
subfigure) directions. A zero Dirichlet boundary condition is applied on one edge of the sheet and a driving force is applied to the atoms
located on the opposite edge.
17
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Fig. 14. Evolution of the strain energy (in [eV]) as a function of applied strain, for all potentials and the continuum-mechanics-based model,
in the zigzag (left) and armchair (right) direction.

Fig. 15. Fine-scale and coarse-scale scale predictions for tensile test in the zigzag direction, obtained for c = 1 (stochastic Riemannian convex
combination) and the concentration parameters given in Eq. (53). The interatomic potential in physical space is chosen using sample-based
selection.

for the zigzag direction, and

αac = (0.82, 0.80, 1.14, 0.62, 0.62)T (54)

for the armchair direction.
Fine-scale and coarse-scale scale stochastic predictions for the tensile test in the zigzag direction are shown

in Fig. 15, using Riemannian convex combinations (c = 1) and 200 samples. It is seen that while the sampled
trajectories are evenly distributed within the region defined by the potential candidates (Fig. 15, left subfigure),
the distribution of the coarse-scale properties is limited to a small region around the original full-order-model
results (Fig. 15, right subfigure). In order to increase the range of coarse-scale fluctuations (if required based on
the application), scaling of the fluctuations can be performed in the tangent space; see Section 2.2.4. A simple and
natural way to identify the additional parameter c is to impose that the range of observed values for a given coarse-
scale quantity of interest is included in the confidence region predicted by the stochastic model. Other strategies
to solve statistical inverse problems can also be deployed, depending on the availability and nature of coarse-scale
data.

A total number of 200 reduced-order basis samples are generated on S3024,10 for both the zigzag and armchair
irections. The scaling factor is set to c = 8 for the zigzag direction, and to c = 4 for the armchair direction.
18



H. Zhang and J. Guilleminot Computer Methods in Applied Mechanics and Engineering 403 (2023) 115702
Fig. 16. Atom displacements for tension in the zigzag direction (first row, with scale factor c = 8) and armchair direction (second row,
with scale factor c = 4). Selected atoms are displayed in red in the top-left and bottom-right subfigures. Gray curves correspond to samples
obtained with the stochastic reduced-order MD simulations, while the colored curves are associated with full-order MD simulations.

Fine-scale results, in the form of displacements for a few selected atoms, are first shown in Fig. 16 (using sample-
based selection for the potential in physical space). Displacement along e1 and e2 are collected at simulation time
t = 10 [ps]. As expected, it is observed that the range of displacements becomes much larger as c increases, hence
highlighting the sensitivity to this parameter.

The impact of model uncertainties can also be quantified on the distribution of the coarse-scale strain energy.
Fig. 17 shows the 90% confidence interval of the strain energy with regard to the engineering strain in the two
stretching directions. The estimated probability density function for the strain energy is shown in Fig. 18 for the
two different stretching directions. In these figures, the strain is chosen as 0.11 for the zigzag direction, and as 0.10
for the armchair direction. These results demonstrate the capability of the proposed formulation to capture model-
form uncertainties at fine scale and to propagate them on a coarse-scale quantity of interest. Such uncertainties can
be properly encoded into the ROB samples such that the distribution of the quantity of interest can be analyzed in
a multi-scale pipeline.

4. Conclusion

A Riemannian stochastic representation of model-form uncertainties in molecular dynamics was proposed. The
approach relies on a stochastic reduced-order model, defined through a randomized projection basis on a subset of
the Stiefel manifold. It was shown that the use of Riemannian projection and retraction operators allows linear

constraints, relevant to Dirichlet boundary conditions for instance, to be preserved. This fundamental property
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Fig. 17. 90% confidence interval for the coarse-scale strain energy, together with the strain energy obtained with the full-order MD simulations,
the continuum model, and the extreme samples.

Fig. 18. Estimated probability density function for the strain energy in zigzag direction (left) and armchair direction (right). Values obtained
ith full-order MD simulations (with all potential candidates) and the continuum-mechanics-based model are also reported.

nables the consideration of convex Riemannian combinations on the tangent space. The proposed formulation offers
everal advantages, including a simple and interpretable low-dimensional parameterization, the ability to constraint
he Fréchet mean solving a quadratic programming problem, and ease of implementation and propagation through
tochastic collocation methods. The relevance of the proposed modeling framework was finally demonstrated on
arious applications, including sampling on the unit sphere and multiscale simulations on graphene-based systems.
erspectives for future work include the application of the proposed stochastic framework to more complex
olecular systems, as well as model refinements exploring possible connections with model averaging and model

election strategies.
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ppendix. Computation of the fréchet mean

The algorithm to compute the Fréchet mean on a Stiefel manifold, denoted by M, based on a set of samples is
given in Alg. 1 (see [58]).

Algorithm 1 Calculation of Fréchet Mean Based on a Gradient Descent Method

Input: set of samples {[Y (i)] ∈ M}qi=1, stepsize t , convergence threshold ϵ, algorithms to compute the projection
and retraction operators

1: Choose a initial guess, denoted by [Y(0)] ∈M, for the Fréchet mean, and set Err = Inf and k = 0
2: while Err > ϵ do
3: Calculate: ∇h([Y(k)]) = −

∑q
i=1 P[Y(k)]([Y

(i)])
4: Calculate the error: Err = ∥h([Y(k)])∥2
5: Update the Fréchet mean: [Y(k+1)] = R[Y(k)](−tk

∇h([Y(k)]))
6: k + 1← k
7: end while

Output: Fréchet mean: [Y ] = [Y(k)]
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