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In the past decade, variational implicit solvation models (VISM) have achieved great success in solvation energy 
predictions. However, all existing VISMs in literature lack the uniqueness of an energy minimizing solute-solvent 
interface and thus prevent us from studying many important properties of the interface profile. To overcome 
this difficulty, we introduce a new constrained VISM and conduct a rigorous analysis of the model. Existence, 
uniqueness and regularity of the energy minimizing interface has been studied. A necessary condition for the 
formation of a sharp solute-solvent interface has been derived. Moreover, we develop a novel approach to the 
variational analysis of the constrained model, which provides a complete answer to a question in our previous 
work [55]. Model validation and numerical implementation have been demonstrated by using several common 
biomolecular modeling tasks. Numerical simulations show that the solvation energies calculated from our new 
model match the experimental data very well.
1. Introduction

The description of the complex interactions between the solute and 
solvent plays an important role in essentially all chemical and biolog-
ical processes. Solute-solvent interactions are typically described by 
solvation energies (or closely related quantities): the free energy of 
transferring the solute (e.g. macromolecules including proteins, DNA, 
RNA) from the vacuum to a solvent environment of interest (e.g. water 
at a certain ionic strength). There are two major approaches for solva-
tion energy analysis, i.e., explicit solvent models and implicit solvent 
models [47]. Explicit models, treating solvent as individual molecules, 
are too computationally expensive for large solute-solvent systems, such 
as the solvation of macromolecules in ionic environments; in contrast, 
implicit models, by averaging the effect of solvent phase as continuum 
media [5,6,9,10,15,31,46], are much more efficient and thus are able 
to handle much larger systems [6,20,32,36,37,40,49,61].

Central in the description of the solvation energy in implicit solvent 
models is an interface separating the discrete solute and the continuum 
solvent domains. All of the physical properties of interest, including 
electrostatic free energies, biomolecular surface areas, molecular cavi-
tation volumes and p𝐾𝑎 values are very sensitive to the interface def-
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inition [26,59,63]. Variational implicit solvation models (VISM) stand 
out as a successful approach to compute the disposition of an inter-
face separating the solute and the solvent [8,16,17,21,22,28,65,71]. In 
a VISM, the desired interface profile is obtained by minimizing a sol-
vation energy functional coupling the discrete description of solute and 
the continuum description of solvent.

Despite of their initial successes in solvation energy calculations, 
sharp solute-solvent interface models suffer from several drawbacks. 
Firstly, from a physical point of view, there should be a smooth tran-
sition region, in which atoms of solute and solvent are mixed. In prin-
ciple, an isolated molecule can be analyzed by the first principle — a 
quantum mechanical description of the wave function or density distri-
bution of all the electrons and nuclei. However, such a description is 
computationally intractable for large biomolecules. Under physiologi-
cal conditions, biomolecules are in a non-isolated environment, and are 
interacting with solvent molecules and/or other biomolecules. There-
fore, their wave functions overlap spatially, so do their electron density 
distributions. Secondly, from an analytic point of view, the presence 
of geometric singularities is inevitable in many conventional VISMs. It 
makes the underlying model lack stability and differentiability, which 
generates an intrinsic difficulty in the rigorous analysis of the model. 
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Thirdly, from a computational point of view, these surface configura-
tions produce fundamental difficulty in the simulation of the governing 
partial differential equations (PDEs), like the Poisson-Boltzmann (PB) 
equation. Those considerations motivate the use of the diffuse solvent-
solute interface definition.

Among all effort to ameliorate the solvent-solute interface defini-
tion, arguably, one of the most extensively used models is the total 
variation based model (TVBVISM), cf. [17,27,64,66–68]. The main idea 
of TVBVISM is based on a transition parameter 𝑢 ∶ Ω → [0, 1] such that 𝑢
takes value 1 in the solute and 0 in the solvent region. More precisely, 
the following total solvation free energy was proposed in terms of 𝑢:

𝐼 =𝛾‖𝐷𝑢‖(Ω) + ∫
Ω

𝑃ℎ𝑢(𝑥)𝑑𝑥+ ∫
Ω

𝜌𝑠(1 − 𝑢(𝑥))𝑈vdW(𝑥)𝑑𝑥

+ ∫
Ω

{
𝑢(𝑥)

[
𝜌𝑚(𝑥)𝜓(𝑥) − 1

2
𝜖𝑚|∇𝜓(𝑥)|2]

+(1 − 𝑢(𝑥))

[
−1
2
𝜖𝑠|∇𝜓(𝑥)|2 − 𝛽−1

𝑁𝑐∑
𝑗=1

𝑐∞𝑗 (𝑒−𝛽𝑞𝑗𝜓(𝑥) − 1)

]}
𝑑𝑥. (1.1)

Here the constant 𝛾 > 0 is the surface tension. By the coarea formula for 
a Lipschitz function 𝑢 ∶ Ω → [0, 1],

‖𝐷𝑢‖(Ω) ∶= ∫
Ω

𝑑|𝐷𝑢|= 1

∫
0

2(Ω ∩ 𝑢−1(𝑡))𝑑𝑡,

where 2 stands for the 2-dimensional Hausdorff measure. Hence, the 
total variation term ‖𝐷𝑢‖(Ω) represents the mean surface area of a fam-
ily of isosurfaces Ω ∩ 𝑢−1(𝑡). See [66] for more detail. According to this 
geometric interpretation, 𝛾‖𝐷𝑢‖(Ω), measures the disruption of inter-
molecular and/or intramolecular bonds during the solvation process.

The constant 𝑃ℎ is the hydrodynamic pressure. In a previous work 
[55], we proposed a novel physical interpretation of the characteristic 
function 𝑢 so that 𝑢(𝑥) represents the volume ratio of the solute at 𝑥 ∈Ω. 
Therefore, ∫Ω 𝑃ℎ𝑢 𝑑𝑥 is the mechanical work of creating the biomolecu-
lar size vacuum in the solvent. 𝜌𝑠 is the constant solvent bulk density, 
and 𝑈vdW(𝑥) is the attractive portion of the Van der Waals potential at 
point 𝑥. It represents the attractive dispersion effects near the solute-
solvent interface and has been shown by Wagoner and Baker [63] to 
play a crucial role in accurate nonpolar solvation analysis. The first 
three terms are usually termed the nonpolar portion of the solvation 
free energy.

The second and third lines of (1.1) are usually called the polar 
portion of the solvation free energy, in which 𝜓 is the electrostatic po-
tential. 𝜌𝑚 is an 𝐿∞-approximation of the density of molecular charges; 
𝜖𝑚 and 𝜖𝑠 are the dielectric constants of the solute molecule and the 
solvent, respectively, with 0 < 𝜖𝑚 ≪ 𝜖𝑠. 𝑞𝑗 is the charge of ion species 
𝑗 = 1, 2, ⋯ , 𝑁𝑐 ; and 𝑐∞𝑗 is the bulk concentration of the 𝑗-th ionic species. 
Finally, 𝛽 = 1∕𝑘𝐵𝑇 , where 𝑘𝐵 is the Boltzmann constant and 𝑇 is the 
absolute temperature. For notational brevity, throughout this paper, we 
put

𝐵(𝑠) = 𝛽−1

[
𝑁𝑐∑
𝑗=1

𝑐∞𝑗
(
𝑒−𝛽𝑠𝑞𝑗 − 1

)]
. (1.2)

Numerical simulations show that diffuse-interface models can signifi-
cantly improve the accuracy and efficiency of solvation energy compu-
tation [8,16,17,21,22,28,45,65,71]. In contrast, on a theoretical level, 
there are several open questions concerning model (1.1).

First, the uniqueness of a minimizer is unknown for (1.1). Indeed, 
most of the solvation energy functionals, regardless of sharp or diffuse 
interfaces, only predict local minimizers, cf. [8,16,17,21,22,28,45,65,
71]. As a consequence, solutions of the corresponding Euler-Lagrange 
equations may not correctly depict the energy minimizing interface pro-
file. In contrast, any minimizer of (1.1) is global. However, lacking strict 
convexity, (1.1) may admit multiple global minimizers. This prevents 
120
us from studying many properties of the interface profile, e.g. the size 
of the set of discontinuities. These observations motivate us to intro-
duce strict convexity into model (1.1) by including a new parameter 
𝑝 = 2𝑁

2𝑁−1 with 𝑁 ∈ ℕ so that 𝑢𝑝(𝑥) represents the volume ratio of the 
solute at 𝑥 ∈ Ω. It is important to notice that the geometric meaning 
of the term ‖𝐷𝑢‖(Ω) remains the same as in the original model (1.1). 
We will establish the existence, uniqueness and regularity of the global 
minimizer of the modified model, see (2.6).

Second, the natural admissible space to minimize (1.1) is the space 
of 𝐵𝑉 -functions. Therefore, it is possible that model (1.1) is minimized 
by the characteristic function of a set of finite perimeter. This corre-
sponds to a sharp solute-solvent interface, an unrealistic situation as 
discussed before. Nevertheless, it is mathematically impossible to ex-
clude such situations in model (1.1) due to the lack of uniqueness of a 
minimizer. Based on the modified model, this work provides a partial 
answer to the question why the solvation free energy is not minimized 
by a sharp interface. More precisely, we show that a necessary condition 
for a nonpolar molecule to have a sharp energy-minimizing interface is 
that the mean curvature of its Van Der Waals surface is everywhere 
nonpositive. This condition, nevertheless, is unrealistic for almost all 
real-world biomolecules. To the best of our knowledge, our work is the 
first to give a mathematical explanation of such phenomenon.

Third, the physical meaning of the characteristic function 𝑢 enforces 
two biological constraints: (1) 𝑢 needs to be 1 for the pure solute re-
gion and 0 in the pure solvent area, and (2) as a volume ratio function, 
it must satisfy that 0 ≤ 𝑢 ≤ 1. This leads to a constrained total variation 
model (2.6), which is a non-differentiable functional with a two-sided 
obstacle. It is known that the Euler-Lagrange equations of similar func-
tionals with simpler structure and without obstacle, e.g. Rudin-Osher-
Fatemi models, were formally derived by using the 1-Laplacian operator 
[54]. With the presence of the obstacle, on a heuristic level with suf-
ficiently smooth minimizer 𝑢 and energy functional, one expects the 
corresponding first variations with respect to 𝑢 to take the form of 
a variational inequality, or equivalently, of a 1-Laplacian type equa-
tion involving a measure supported on the coincidence sets {𝑢 = 0} and 
{𝑢 = 1}. Unfortunately, both the functional (2.6) and the minimizer 𝑢
lack the required smoothness. This casts a shadow over the study of the 
first variations of the constrained total variation model, not even for-
mally. In [55], we proposed a novel approach to the variational analysis 
of such constrained VISM via approximation by a sequence of 𝑞-energy 
type functionals. This approach was applied to the numerical study of 
the nonpolar energy in our previous work [55]. Using a similar idea 
and the new volume ratio function 𝑢𝑝, we will rigorously derive the 
variational formulas of the new total energy functional.

The rest of the paper is organized as follows. A list of the main the-
orems is stated at the end of the introduction. In Section 2, we state 
the precise definition of our new model. In Section 3, we study a fam-
ily of perturbed Poisson-Boltzmann equations. These equations will be 
used in Sections 4 and 6. Section 4 is devoted to the validation of the 
model, in which we prove the existence and uniqueness of a minimizer 
and the continuous dependence of the solvation energy on the biologi-
cal constraints. In Section 5, a necessary condition for the formation of a 
sharp solute-solvent interface is derived. The argument heavily relies on 
the tools from nonsmooth convex analysis. In Section 6, we conduct a 
variational analysis of our new model by means of an approximation ar-
gument. Base on this analysis, our model, including its solvation energy 
and solute-solvent interface predictions, is studied through numerical 
simulations. For the readers’ convenience, we include two appendices 
at the end of this article, one on 𝐵𝑉 -functions and the other on nons-
mooth convex analysis.

For the reader’s convenience, we will give a list of the main theoretic 
results here:

• Theorem 4.1: the existence and uniqueness of a global minimizer 
of the total solvation energy;
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• Theorem 4.2: the continuous dependence of the solvation energy 
on the biological constraints;

• Theorem 5.10: a necessary condition for the formation of a sharp 
solute-solvent interface;

• Theorem 6.3: the theoretic basis of the numerical simulations.

2. Solvation free energy functional

2.1. Notations

In this article, we use 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑁 ) to denote the coordinates 
in ℝ𝑁 . 𝕊𝑁−1 denotes the (𝑁 −1)-sphere in ℝ𝑁 . Given two vectors 𝑢, 𝑣 ∈
ℝ𝑁 , 𝑢 ⋅ 𝑣 is their inner products.

Given 𝑈 ⊆ℝ𝑁 , 𝑈 stands for the closure of 𝑈 . The topological bound-
ary of 𝑈 is denoted by 𝜕𝑈 . Given two domains 𝑈 and Ω in ℝ𝑁 , 𝑈 ⊂⊂Ω
means that 𝑈 ⊂Ω.

For any two Banach spaces 𝑋, 𝑌 , the notation

𝑋 ↪ 𝑌

means that 𝑋 is continuously embedded in 𝑌 . Given a sequence 
{𝑢𝑘}∞𝑘=1 = (𝑢1, 𝑢2, ⋯) in 𝑋, 𝑢𝑘 ⇀ 𝑢 in 𝑋 means that 𝑢𝑘 converge weakly 
to some 𝑢 ∈𝑋.

Given 1 ≤ 𝑝 ≤∞, let 𝑝′ be its Hölder conjugate. 𝐿𝑝(𝑈, 𝑋) is the set 
of all 𝑋-valued 𝑝-integrable (Lebesgue) measurable functions defined 
on 𝑈 , whose norm is denoted by ‖ ⋅ ‖𝑝. The notation 𝑋 is sometimes 
omitted when its choice is clear from the context. 𝑊 𝑘,𝑝(𝑈 ) stands for 
the Sobolev space consisting of functions whose weak derivatives up to 
𝑘-th power belong to 𝐿𝑝(𝑈 ). Additionally, 𝐻1(𝑈 ) =𝑊 1,2(𝑈 ).

Given two sets 𝐴 and 𝐵, 𝐴 ⊆ 𝐵 and 𝐴 ⊂ 𝐵 mean that 𝐴 is a subset 
and a proper subset of 𝐵, respectively.

Finally, we denote by 𝑁 and 𝑁−1 the 𝑁 -dimensional Lebesgue 
measure and the (𝑁 − 1)-dimensional Hausdorff measure, respectively.

2.2. An experimental based domain decomposition

Let Ω ⊆ℝ3 be a bounded and connected Lipschitz domain composed 
of three disjoint subdomains:

• Ω𝑚: solute (molecular) region;
• Ω𝑠: solvent region;
• Ω𝑡: solute-solvent mixing region.

We further assume that 𝜕Ω ⊂ 𝜕Ω𝑠 and 𝜕Ω𝑚 ⊂ 𝜕Ω𝑡. Let

Σ1 = 𝜕Ω𝑚

be a smoothed Van Der Waals surface enclosing the pure solute region 
and

Σ0 = 𝜕Ω𝑠 ⧵ 𝜕Ω= 𝜕Ω𝑡 ⧵ Σ1

be the smoothed solvent accessible surface outside which is the pure 
solvent domain. Suppose that Σ1 ∩ Σ0 = ∅ and Ω𝑚, Ω𝑠 are non-empty. 
In addition, we assume that Σ𝑖, 𝑖 = 0, 1, are embedded closed Lipschitz 
surfaces. In this article, a closed surface always means one that is com-
pact, without boundary and embedded in ℝ3. We further assume that 
the solute region Ω𝑚 contains 𝑁𝑎 solute atoms located at 𝑥1, ⋯ , 𝑥𝑁𝑎

; 
and there are 𝑁𝑐 ion species outside Ω𝑚. Finally, for notational brevity, 
we put Ω𝑤 =Ω ⧵Ω𝑠. A picture illustration of the domain definition and 
decomposition can be found in Fig. 1(A).

2.3. A novel solvation energy functional

As an improvement of the previous differential geometric based sol-
vation model [17,55], we study a novel solvation free energy, whose 
nonpolar portion is defined as
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𝐼np(𝑢) = 𝛾 ∫
Ω

𝑑|𝐷𝑢|+ ∫
Ω

[
𝑃ℎ𝑢

𝑝 + 𝜌𝑠(1 − 𝑢𝑝)𝑈vdW]
𝑑𝑥 (2.1)

with 𝑝 = 2𝑁
2𝑁−1 for some integer 𝑁 > 1 and 𝜆, 𝑃ℎ > 0. Note that 1 < 𝑝 < 3

2 . 
Since 32 = 1∗ is the Sobolev dual of 1, we have

𝐵𝑉 (Ω)↪𝐿𝑝(Ω).

Here 𝑢 ∶ Ω → ℝ represents a characterizing function of the solute such 
that 𝑢𝑝(𝑥) is the volume ratio at position 𝑥 ∈Ω (as shown in Fig. 1). As 
such, the physical constraints

𝑢(𝑥) ∈ [0,1] for a.a. 𝑥 ∈Ω (2.2)

and

𝑢 = 1 a.e. in Ω𝑚 and 𝑢 = 0 a.e. in Ω𝑠 (2.3)

need to be imposed. Note that 𝑈vdW(𝑥) can be formulated by ∑𝑖 𝑈
att
𝑖

(𝑥)
in which 𝑈 att

𝑖
(𝑥) represents the attractive part of Lennard-Jones poten-

tial [17,63]. To this end, the L-J potential can be divided into attractive 
𝑈 att
𝑖

and repulsive 𝑈 rep
𝑖

in different ways. Here we take a Weeks-
Chandler-Andersen (WCA) decomposition based on the original WCA 
theory [42]:

𝑈 att,WCA
𝑖

(𝑟) =
{

−𝜖𝑖𝑠(𝑥) 0 < ‖𝑥− 𝑥𝑖‖ < 21∕6𝜎𝑖𝑠
𝑈LJ
𝑖
(𝑥) ‖𝑥− 𝑥𝑖‖ ≥ 21∕6𝜎𝑖𝑠,

𝑈
rep,WCA
𝑖 (𝑥) =

{
𝑈LJ
𝑖
(𝑥) + 𝜖𝑖𝑠(𝑥) 0 < ‖𝑥− 𝑥𝑖‖ < 21∕6𝜎𝑖𝑠

0 ‖𝑥− 𝑥𝑖‖ ≥ 21∕6𝜎𝑖𝑠,

where

𝑈LJ
𝑖 (𝑟) = 4𝜖𝑖𝑠

[(𝜎𝑖𝑠
𝑟

)12
−
(𝜎𝑖𝑠

𝑟

)6
]

with parameters 𝜖𝑖𝑠 of energy and 𝜎𝑖𝑠 of length.
We choose Ω𝑚 in such a way that there exist balls 𝐵(𝑥𝑖, 𝜏) with 𝑖 =

1, ⋯ , 𝑁𝑎 and 𝜏 > 0 such that

𝑁𝑎⋃
𝑖=1

𝐵(𝑥𝑖, 𝜏) ⊂Ω𝑚

The polar portion of the solvation free energy is defined as

𝐼p(𝑢,𝜓) = ∫
Ω

[
𝜌𝑚𝜓 − 1

2
𝜖(𝑢)|∇𝜓|2 − (1 − 𝑢𝑝)𝐵(𝜓)

]
𝑑𝑥.

Here 𝜖(𝑢) = 𝑢𝑝𝜖𝑚 + (1 − 𝑢𝑝)𝜖𝑠 is the dielectric constant of the solvent/so-
lute mixture. 𝜌𝑚 is supported in Ω𝑚. In addition, the neutral condition 
holds

𝑁𝑐∑
𝑗=1

𝑐∞𝑗 𝑞𝑗 = 0. (2.4)

Recall the definition of 𝐵(⋅) from (1.2). It is important to observe that 
𝐵(0) = 0 and, by (2.4), 𝐵′(0) = 0 and 𝐵′(±∞) = ±∞. Further, 𝐵′′(𝑠) > 0. 
We thus conclude that 𝐵(0) =min

𝑠∈ℝ
𝐵(𝑠) and 𝐵 is strictly convex.

The problem of interest to us is to minimize the total energy func-
tional

𝐿(𝑢,𝜓) = 𝐼np(𝑢) + 𝐼p(𝑢,𝜓),

where 𝜓 satisfies the Dirichlet problem of a generalized Poisson-
Boltzmann equation{

div(𝜖(𝑢)∇𝜓) − (1 − 𝑢𝑝)𝐵′(𝜓) = −𝜌𝑚 in Ω;

𝜓 = 𝜓∞ on 𝜕Ω
(2.5)

for some

𝜓∞ ∈𝑊 1,∞(Ω).
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Fig. 1. (A) Illustration of the model domain definition and decomposition: Ω𝑚 : solute (molecular) region; Ω𝑠 : solvent region; Ω𝑡 : solute-solvent mixing region; (B) The 
cross line of 𝑢 and (1 − 𝑢) of a diatomic system.

}.
Therefore given 𝑢 ∈ 𝐵𝑉 (Ω) satisfying (2.2), 𝜓 = 𝜓(𝑢) is determined via 
the elliptic boundary value problem (2.5).

With the above observations, the minimization problem can be re-
stated as to minimize

𝐼(𝑢) = 𝛾 ∫
Ω

𝑑|𝐷𝑢|+ ∫
Ω

[
𝑃ℎ𝑢

𝑝 + 𝜌𝑠(1 − 𝑢𝑝)𝑈vdW]
𝑑𝑥

+ ∫
Ω

[
𝜌𝑚𝜓 − 1

2
𝜖(𝑢)|∇𝜓|2 − (1 − 𝑢𝑝)𝐵(𝜓)

]
𝑑𝑥 (2.6)

in the admissible space

 = {𝑢 ∈ 𝐵𝑉 (Ω) ∶ 𝑢 satisfies Constraints (2.2) and (2.3)}

and 𝜓 = 𝜓(𝑢) is determined via (2.5) in the space

 = {𝑣 ∈𝐻1(Ω) ∶ 𝑣|𝜕Ω = 𝜓∞}.

3. A family of perturbed Poisson-Boltzmann equation

In this section, we study a sequence of functionals associated with 
the polar free energy, which will be used in the numerical simulations 
in Section 6.

Let {𝑞𝑘}∞𝑘=1 be a sequence of decreasing real numbers with lim𝑘→∞
𝑞𝑘 =

1 and taking values in 
(
1,

𝜖𝑠
𝜖𝑠 − 𝜖𝑚

)
. In addition, set 𝑞0 = 1. For any 

𝑢 ∈ 𝐵𝑉 (Ω) and 𝑘 = 0, 1, ⋯, we put

𝐺𝑘
𝑢 (𝜓) ∶= ∫

Ω

[ 1
2
𝜖(𝑢)|∇𝜓|2 − 𝜌𝑚𝜓 + (𝑞𝑘 − 𝑢𝑝)𝐵(𝜓)

]
𝑑𝑥.

Particularly, 𝐺0
𝑢 (𝜓) ∶= −𝐼p(𝑢, 𝜓). Further, let 0 =  and for 𝑘 = 1, 2, ⋯

define

𝑘 = {𝑢 ∈𝑊 1,𝑞𝑘 (Ω) ∶ |𝑢| ≤ 𝑝
√
𝑞𝑘 a.e. in Ω and 𝑢 satisfies Constraint (2.3)

(3.1)

Correspondingly, we introduce a sequence of perturbed Poisson-
Boltzmann equations for 𝑘 = 0, 1, ⋯{

div(𝜖(𝑢)∇𝜓) − (𝑞𝑘 − 𝑢𝑝)𝐵′(𝜓) = −𝜌𝑚 in Ω;

𝜓 = 𝜓∞ on 𝜕Ω.
(3.2)

In particular, when 𝑘 = 0, (3.2) coincides with (2.5). Similar problems 
have been studied in [22,44,45,55].

Proposition 3.1. Given any 𝑢 ∈ 𝑘, 𝑘 = 0, 1, ⋯, there exists a unique 𝜓𝑢 ∈ such that

𝐺𝑘
𝑢 (𝜓𝑢) = min

𝜓∈𝐺
𝑘
𝑢 (𝜓) <∞.

Moreover, 𝜓𝑢 is the unique weak solution to (3.2). Further, 𝜓𝑢 satisfies
122
‖𝜓𝑢‖𝐻1 + ‖𝜓𝑢‖∞ ≤ 𝐶0. (3.3)

In particular, the constant 𝐶0 is independent of Ω𝑚, Ω𝑠, 𝑢 and 𝑘.

Proof. Analogous problems have been studied in the literature on var-
ious Poisson-Boltzmann type equations, cf. [22,44,45,55]. In order to 
show the determining factors of the constant 𝐶0 in (3.3), we will, nev-
ertheless, state a brief proof.

For every 𝑘, 𝜖(𝑢) ∈ 𝐿∞(Ω) with 0 < 𝜖𝑠 − 𝑞1(𝜖𝑠 − 𝜖𝑚) ≤ 𝜖(𝑢) ≤ 𝜖𝑠. Stan-
dard elliptic theory, see [34, Theorems 8.3 and 8.16], implies that{

div(𝜖(𝑢)∇𝜓) + 𝜌𝑚 = 0 in Ω;

𝜓 = 𝜓∞ on 𝜕Ω

has a unique weak solution 𝜓̂𝑢, i.e.

∫
Ω

𝜖(𝑢)∇𝜓̂𝑢 ⋅∇𝜙𝑑𝑥 = ∫
Ω

𝜌𝑚𝜙𝑑𝑥, ∀𝜙 ∈𝐻1
0 (Ω), (3.4)

satisfying

‖𝜓̂𝑢‖𝐻1 + ‖𝜓̂𝑢‖∞ ≤𝑀0.

The constant 𝑀0 depends only on Ω, 𝜖𝑠, 𝜖𝑚, 𝑞1 and 𝜓∞. Define 𝐺̃𝑘
𝑢 ∶

𝐻1
0 (Ω) →ℝ ∪ {+∞} by

𝐺̃𝑘
𝑢 (𝜓) = ∫

Ω

[1
2
𝜖(𝑢)|∇𝜓|2 + (𝑞𝑘 − 𝑢𝑝)𝐵(𝜓 + 𝜓̂𝑢)

]
𝑑𝑥.

By the direct method of calculus of variation and the strict convexity of 
𝐺̃𝑘
𝑢 (⋅), there exists a global minimizer 𝜓̄𝑢 ∈𝐻1

0 (Ω) of 𝐺̃
𝑘
𝑢 (⋅). (3.4) implies

𝐺𝑘
𝑢 (𝜓) = 𝐺̃𝑘

𝑢 (𝜓 − 𝜓̂𝑢) + ∫
Ω

[1
2
𝜖(𝑢)|∇𝜓̂𝑢|2 − 𝜌𝑚𝜓̂𝑢

]
𝑑𝑥.

Let 𝜓𝑢 = 𝜓̂𝑢 + 𝜓̄𝑢. From the above equality, we learn that 𝜓𝑢 minimizes 
𝐺𝑘
𝑢 (⋅) in 𝑘. Then following Steps (iii) and (iv) in the proof of [55, 

Proposition 2.2], we can show that

‖𝜓̄𝑢‖∞ + ‖𝜓̄𝑢‖𝐻1 ≤𝑀1

for some constant 𝑀1 depending only on 𝑀0. We can take 𝐶0 =𝑀0 +
𝑀1. □

The above proposition immediately gives the following crucial esti-
mates. For every 𝑘 and 𝑢 ∈𝑘,

𝐺𝑘
𝑢 (𝜓𝑢) <𝐺𝑘

𝑢 (𝜓∞) = ∫
Ω

[ 1
2
𝜖(𝑢)|∇𝜓∞|2 − 𝜌𝑚𝜓∞ + (𝑞𝑘 − 𝑢𝑝)𝐵(𝜓∞)

]
𝑑𝑥

≤𝐶 [‖𝜓∞‖2
𝐻1 + ‖𝜓∞‖∞ +𝐵(‖𝜓∞‖∞)

] ≤ 𝐶1, (3.5)

where 𝜓𝑢 is the solution to (3.2). The constant 𝐶1 is independent of Ω𝑚, 
Ω𝑠, 𝑘 and the choice of 𝑢.
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Proposition 3.2. Let 𝑢𝑘 ∈𝑘, 𝑘 = 0, 1, ⋯, be such that

𝑢𝑘 → 𝑢0 in 𝐿1(Ω) as 𝑘→∞.

Let 𝜓𝑘 ∈ satisfy 𝐺𝑘
𝑢𝑘
(𝜓𝑘) = min

𝑤∈𝐺
𝑘
𝑢𝑘
(𝑤). Then

𝜓𝑘 → 𝜓0 in 𝐻1(Ω) and 𝐺𝑘
𝑢𝑘
(𝜓𝑘)→𝐺0

𝑢0
(𝜓0) as 𝑘→∞. (3.6)

If, in addition, 𝑢𝑘 ∈ and 𝜓̃𝑘 ∈ satisfies 𝐺0
𝑢𝑘
(𝜓̃𝑘) = min

𝑤∈𝐺
0
𝑢𝑘
(𝑤). Then

𝜓̃𝑘 → 𝜓0 in 𝐻1(Ω) and 𝐺0
𝑢𝑘
(𝜓̃𝑘)→𝐺0

𝑢0
(𝜓0) as 𝑘→∞. (3.7)

Proof. We will only prove (3.6). The proof for (3.7) is similar.
Observe that since 𝑢𝑘 → 𝑢0 in 𝐿1(Ω) and {𝑢𝑘}∞𝑘=0 are uniformly 

bounded in 𝐿∞(Ω). From the Riesz-Thorin interpolation theorem, we 
infer that 𝑢𝑘 → 𝑢0 in 𝐿𝑟(Ω) for all 𝑟 ∈ [1, ∞). Further, by the mean value 
theorem

lim
𝑘→∞∫ |𝑢𝑝

𝑘
− 𝑢

𝑝

0|𝑟 𝑑𝑥 ≤𝑀 lim
𝑘→∞

‖𝑢𝑘 − 𝑢0‖𝑟𝑟 = 0, 𝑟 ∈ [1,∞), (3.8)

for some constant 𝑀 > 0.
Due to (3.3), there exists a subsequence of {𝜓𝑘}∞𝑘=1, not relabelled, 

and some 𝜓 ∈𝐻1(Ω) such that 𝜓𝑘 → 𝜓 in 𝐿2(Ω) and 𝜓𝑘 ⇀ 𝜓 in 𝐻1(Ω). 
Since 𝜓𝑘 weakly solves (3.2) with 𝑢 = 𝑢𝑘, for any 𝜙 ∈ 𝐶1

0 (Ω)

∫
Ω

[
𝜖(𝑢𝑘)∇𝜓𝑘 ⋅∇𝜙+ (𝑞𝑘 − 𝑢

𝑝
𝑘
)𝐵′(𝜓𝑘)𝜙

]
𝑑𝑥 = ∫

Ω

𝜌𝑚𝜙𝑑𝑥. (3.9)

The dominated convergence theorem then implies that

∫
Ω

[
𝜖(𝑢0)∇𝜓 ⋅∇𝜙+ (1 − 𝑢

𝑝

0)𝐵
′(𝜓)𝜙

]
𝑑𝑥= ∫

Ω

𝜌𝑚𝜙𝑑𝑥. (3.10)

Note that, (3.3) and a standard approximation argument imply that 
(3.9) and (3.10) hold for any 𝜙 ∈ 𝐻1

0 (Ω). In view of Proposition 3.1, 
we infer that 𝜓0 = 𝜓 . Next, we will show that

lim
𝑘→∞∫

Ω

𝜖(𝑢𝑘)|∇𝜓𝑘 −∇𝜓0|2 𝑑𝑥 = 0. (3.11)

Using 𝜙 = 𝜓𝑘 −𝜓0 as a test function in (3.9), we conclude that

lim
𝑘→∞∫

Ω

𝜖(𝑢𝑘)∇𝜓𝑘 ⋅ (∇𝜓𝑘 −∇𝜓0)𝑑𝑥 = 0.

By the dominated convergence theorem, we have

lim
𝑘→∞∫

Ω

𝜖(𝑢𝑘)|∇𝜓𝑘|2 𝑑𝑥
= lim

𝑘→∞∫
Ω

𝜖(𝑢𝑘)∇𝜓𝑘 ⋅ (∇𝜓𝑘 −∇𝜓0)𝑑𝑥+ lim
𝑘→∞∫

Ω

𝜖(𝑢𝑘)∇𝜓𝑘 ⋅∇𝜓0 𝑑𝑥.

Note that 𝜓 = 𝜓0 −𝜓∞ weakly solves the Dirichlet problem{
div(𝜖(𝑢0)∇𝜓) = (1 − 𝑢

𝑝

0)𝐵
′(𝜓0) − 𝜌𝑚 − div(𝜖(𝑢0)∇𝜓∞) in Ω;

𝜓 = 0 on 𝜕Ω.

In view of (3.3), 𝜖(𝑢0)∇𝜓∞ and (1 − 𝑢
𝑝

0)𝐵
′(𝜓0) − 𝜌𝑚 belong to 𝐿∞(Ω). By 

the Calderon-Zygmund type estimates for uniformly elliptic equation, 
cf. [48, Theorem 1], there exists some 𝑝0 > 2 such that 𝜓0 ∈𝑊 1,𝑝0 (Ω). 
Note that [48, Theorem 1] requires Ω to be of class 𝒟𝑟 for some 𝑟 > 2, cf. 
[48, Formulas (19) and (20)]. It follows from [57, Theorems B and 3.1, 
Lemma 4.1] (by taking 𝑇 = ∇(−Δ)−1div in [57, Theorem 3.1]) and the 
Poincaré’s inequality that any Lipschitz domain satisfies this condition. 
We thus infer from (3.8) that

lim
𝑘→∞∫

Ω

𝜖(𝑢𝑘)∇𝜓𝑘 ⋅∇𝜓0 𝑑𝑥= ∫
Ω

𝜖(𝑢0)|∇𝜓0|2 𝑑𝑥, (3.12)

and in turn,
123
lim
𝑘→∞∫

Ω

𝜖(𝑢𝑘)|∇𝜓𝑘|2 𝑑𝑥 = ∫
Ω

𝜖(𝑢0)|∇𝜓0|2 𝑑𝑥. (3.13)

The dominated convergence theorem, (3.12) and (3.13) imply that

lim
𝑘→∞∫

Ω

𝜖(𝑢𝑘)|∇𝜓𝑘 −∇𝜓0|2 𝑑𝑥
= lim

𝑘→∞∫
Ω

𝜖(𝑢𝑘)| (|∇𝜓𝑘|2 − 2∇𝜓𝑘 ⋅∇𝜓0 + |∇𝜓0|2) 𝑑𝑥 = 0.

This establishes (3.11). It follows from the Poincaré inequality that 
𝜓𝑘 → 𝜓0 in 𝐻1(Ω). The convergence 𝐺𝑘

𝑢𝑘
(𝜓𝑘) → 𝐺0

𝑢0
(𝜓0) then can be 

shown by using (3.13) and the dominated convergence theorem. □

4. Properties of global minimizers

The following theorem on the existence and uniqueness of a mini-
mizer of 𝐼(⋅) can be proved essentially in the same way as [55, Theo-
rem 2.4] by using Propositions 3.2, A.2 and A.3.

Theorem 4.1. There exists a unique 𝑢min ∈ such that 𝐼(𝑢min) =min
𝑢∈𝐼(𝑢).

To show the robustness of the model (2.6), one needs to answer the 
question whether the solvation energy 𝐼(𝑢min) depends continuously on 
Ω𝑚 and Ω𝑠 in a suitable topology? The answer to the above question 
is affirmative. We will present the proof of a partial result in this sub-
section. Due to the length of this article, a complete answer will be 
presented in a subsequent paper.

Assume that {Ω̃𝑚;𝑛}∞𝑛=1 and {Ω̃𝑠;𝑛}∞𝑛=1 are two sequences of Lipschitz 
subdomains such that
𝑁𝑎⋃
𝑖

𝐵(𝑥𝑖, 𝜎) ⊂ Ω̃𝑚;𝑛 ⊆Ω𝑚 and Ω̃𝑠;𝑛 ⊆Ω𝑠 with 𝜕Ω ⊂ 𝜕Ω̃𝑠;𝑛. (4.1)

We consider the sequence of energy functionals 𝐼𝑛(⋅) defined by replac-
ing Ω𝑚 and Ω𝑠 by Ω̃𝑚;𝑛 and Ω̃𝑠;𝑛 in 𝐼(⋅), respectively. The corresponding 
admissible spaces are

̃𝑛 = {𝑢 ∈𝐵𝑉 (Ω) ∶ 0 ≤ 𝑢 ≤ 1 a.e. in Ω and 𝑢 = 1 a.e. in Ω̃𝑚;𝑛 and

𝑢 = 0 a.e. in Ω̃𝑠;𝑛}.

Theorem 4.2. Assume (4.1) and as 𝑛 →∞

𝜒Ω̃𝑚;𝑛
→ 𝜒Ω𝑚

and 𝜒Ω̃𝑠;𝑛
→ 𝜒Ω𝑠

in 𝐿1(Ω).

Then for each 𝑛, there is a unique minimizer 𝑢𝑛 of 𝐼𝑛(⋅) in ̃𝑛. Moreover, 
lim
𝑛→∞

𝐼𝑛(𝑢𝑛) = 𝐼(𝑢min).

Proof. The existence and uniqueness of a minimizer of 𝐼𝑛(⋅) in ̃𝑛 for 
each 𝑛 follows from Theorem 4.1. Observe that 𝑢min ∈ ̃𝑛 for all 𝑛. Thus

𝐼𝑛(𝑢𝑛) ≤ 𝐼(𝑢min) = 𝐼𝑛(𝑢min).

This implies that

𝛾 ∫
Ω

𝑑|𝐷𝑢𝑛|+ 𝑃ℎ‖𝑢𝑛‖𝑝𝑝 + 𝜌𝑠 ∫
Ω⧵Ω𝑚

𝑈vdW 𝑑𝑥−𝐶1 ≤ 𝐼(𝑢min),

where 𝐶1 is the constant in (3.5). Therefore, ‖𝑢𝑛‖𝐵𝑉 is uniformly 
bounded with respect to 𝑛. Proposition A.2 implies that there exists 
a subsequence, not relabelled, and some 𝑢 ∈ 𝐵𝑉 (Ω) such that 𝑢𝑛 → 𝑢

in 𝐿1(Ω). From Propositions A.3, Propositions 3.2 and the dominated 
convergence theorem, we infer that

𝐼(𝑢min) ≤ 𝐼(𝑢) ≤ lim inf
𝑛→∞

𝐼𝑛(𝑢𝑛) ≤ limsup
𝑛→∞

𝐼𝑛(𝑢𝑛) ≤ 𝐼(𝑢min).

This proves the convergence assertion. □
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A case of particular interest is when Ω𝑡 = ∅, that is, Ω = Ω𝑚 ∪ Γ ∪
Ω𝑠 with Γ = 𝜕Ω𝑚 ∩ 𝜕Ω𝑠 being the Lipschitz sharp interface separating 
the solute and solvent regions. Further, suppose that Ω𝑚 ⊂⊂ Ω. In this 
case, (2.6) reduces to a sharp interface model. The corresponding sharp-
interface solvation free energy is given by the one proposed in [27,28]

𝐸0 =𝛾Per(Ω𝑚;Ω) + 𝑃ℎ3(Ω𝑚) + ∫
Ω𝑠

𝜌𝑠𝑈
vdW 𝑑𝑥+𝐺ele(Ω𝑚), (4.2)

where Per(Ω𝑚; Ω) is the perimeter of Ω𝑚 in Ω, see Appendix A, 
and 𝐺ele(Ω𝑚) is the electrostatic free energy. In the classic Poisson-
Boltzmann theory, it is defined by

𝐺ele(Ω𝑚) = ∫
Ω𝑚

[
𝜌𝑚𝜓 −

𝜖𝑚
2

|∇𝜓|2] 𝑑𝑥− ∫
Ω𝑠

[ 𝜖𝑠
2
|∇𝜓|2 +𝐵(𝜓)

]
𝑑𝑥,

cf. [2,15,23,43,56,69,70]. The electrostatic potential 𝜓 solves the clas-
sic sharp-interface Poisson-Boltzmann equation:{

div((𝜖𝑚𝜒Ω𝑚
+ 𝜖𝑠𝜒Ω𝑠

)∇𝜓) − 𝜒Ω𝑠
𝐵′(𝜓) = −𝜌𝑚 in Ω;

𝜓 = 𝜓∞ on 𝜕Ω.

The following corollary shows that (4.2) is in some sense the limiting 
case of our diffuse interface model.

Corollary 4.3. Assume that Ω = Ω𝑚 ∪ Γ ∪ Ω𝑠 and Γ = 𝜕Ω𝑚 ∩ 𝜕Ω𝑠 is Lip-
schitz. Further, suppose that Ω𝑚 ⊂⊂ Ω. Under the same assumptions as in 
Theorem 4.2, lim

𝑛→∞
𝐼𝑛(𝑢𝑛) =𝐸0.

Remark 4.4. In a subsequent paper, we will show that, under mild reg-
ularity assumption on Σ1 and Σ0, the conditions Ω̃𝑚;𝑛 ⊆Ω𝑚 and Ω̃𝑠;𝑛 ⊆Ω𝑠

in Theorem 4.2 can be relaxed.

5. How to exclude the formation of sharp interfaces?

In Theorem 4.1, we have shown that there is a unique character-
izing function 𝑢min ∈ 𝐵𝑉 (Ω) minimizing (2.6) in  . However, since 
𝐵𝑉 -functions allow jump discontinuities, a natural question to ask is 
whether the minimizing energy state is achieved by a sharp interface 
between the solute and solvent regions, or equivalently, whether the 
characterizing function 𝑢min is the characteristic function of a set of fi-
nite perimeter.

To simplify the analysis, we will focus on the nonpolar portion of 
the solvation energy, i.e. (2.1). Motived by the idea in [12–14], we will 
show that when the mean curvature of Σ0 is positive at some point, 
the energy minimizing state is never achieved by a sharp interface. See 
Theorem 5.10.

5.1. Necessary conditions for the minimizer of nonpolar energy

Throughout this section, we assume that Ω𝑡 ≠ ∅. First consider the 
minimization problem of the nonpolar energy

𝐼np(𝑢) =𝛾 ∫
Ω

𝑑|𝐷𝑢|+ ∫
Ω

[
𝑃ℎ𝑢+ 𝜌𝑠(1 − 𝑢𝑝)𝑈vdW]

𝑑𝑥 (5.1)

in the admissible space

 = {𝑢 ∈𝐵𝑉 (Ω) ∶ 𝑢 satisfies Constraint (2.3)}.

One will show that the minimizer 𝑢min of (5.1) automatically satisfies 
Constraint (2.2). The reason to exclude (2.2) in the definition of the 
admissible space is due to the following consideration. Any subdiffer-
ential of 𝐼np(⋅) with Constraint (2.2) contains a function which may be 
discontinuous along 𝜕{𝑢min = 1} and 𝜕{𝑢min = 0}. This will prevent us 
from establishing the continuity of 𝑢min in these two sets.

Theorem 5.1. (5.1) has a unique minimizer 𝑢min ∈  , which satisfies Con-
straint (2.2).
124
Proof. Note that  is closed and convex in 𝐵𝑉 (Ω). Based on the strict 
convexity, lower semicontinuity of 𝐼np and the direct method of Calcu-
lus of Variation, we can readily establish the existence and uniqueness 
of a global minimizer 𝑢min. If 3({𝑢min > 1} ∪ {𝑢min < 0}) > 0, let

𝑢̃min(𝑥) =
⎧⎪⎨⎪⎩
1 when 𝑢min(𝑥) > 1;
0 when 𝑢min(𝑥) < 0;
𝑢min(𝑥) elsewhere.

Direct computations show that 𝐼np(𝑢̃min) < 𝐼np(𝑢min). A contradiction. 
Therefore, 0 ≤ 𝑢min ≤ 1 a.e. in Ω. □

Next, we derive necessary conditions for the minimizer of (5.1). 
We will use tools from non-smooth analysis, cf. [24,25,29], to derive 
the subdifferential of (5.1). However, very little is known about the 
dual space of 𝐵𝑉 (Ω). To overcome this difficulty and tackle the Con-
straint (2.3), we will consider 𝐼np as a functional defined on 𝐿𝑝(Ω) and 
include two extra terms. Define

𝐸np(𝑢) = 𝐼np(𝑢) + 𝛾 ∫
𝜕Ω

|Tr𝑢|𝑑2 + 𝐼𝐾 (𝑢) (5.2)

in 𝐿𝑝(Ω), where Tr𝑢 is the trace of 𝑢 on 𝜕Ω and

𝐾 = {𝑢 ∈𝐿𝑝(Ω) ∶ 𝑢 = 1 in Ω𝑚, and 𝑢 = 0 in Ω𝑠 a.e.}

and 𝐼𝐾 is the indicator function of 𝐾 . In addition, we put

𝐸1(𝑢) = 𝛾‖𝐷𝑢‖(Ω) + 𝛾 ∫
𝜕Ω

|Tr𝑢|𝑑2,

and

𝐸2(𝑢) = ∫
Ω

[
𝑃ℎ𝑢

𝑝 + 𝜌𝑠(1 − 𝑢𝑝)𝑈vdW]
𝑑𝑥.

The latter is Lipschitz continuous in 𝐿𝑝(Ω). It is understood that

𝐸1(𝑢) =

{
𝛾‖𝐷𝑢‖(Ω) + 𝛾 ∫𝜕Ω |Tr𝑢|𝑑2 if 𝑢 ∈ 𝐵𝑉 (Ω)
+∞ if 𝑢 ∈𝐿𝑝(Ω) ⧵𝐵𝑉 (Ω).

So, dom(𝐸1) = 𝐵𝑉 (Ω) and dom(𝐼𝐾 ) = 𝐾 . Using these notations, we can 
restate Problem (5.2) as to minimize a functional 𝐸np ∶𝐿𝑝(Ω) →ℝ ∪{∞}
defined by

𝐸np(𝑢) ∶=𝐸1(𝑢) +𝐸2(𝑢) + 𝐼𝐾 (𝑢).

Direct computations show that 𝑢min minimizes (5.1) in  iff it minimizes 
𝐸np(⋅) in 𝐿𝑝(Ω).

Note that 𝐾 is closed and convex in 𝐿𝑝(Ω). This implies that 𝐼𝐾 is 
convex and lower semicontinuous. What is more, by the definition of 
subdifferentials, for every 𝑢 ∈𝐾 , 𝑢∗ ∈ 𝜕𝐼𝐾 (𝑢) iff

⟨𝑢∗, 𝑢⟩ ≥ ⟨𝑢∗, 𝑣⟩, ∀𝑣 ∈𝐾.

Here ⟨⋅, ⋅⟩ is the duality pairing between 𝐿𝑝(Ω) and 𝐿𝑝′ (Ω), that is

⟨𝑣,𝑤⟩ = ∫
Ω

𝑣𝑤𝑑𝑥, 𝑣 ∈𝐿𝑝(Ω), 𝑤 ∈𝐿𝑝′ (Ω).

If 3({𝑢∗ > 0} ∩Ω𝑡) > 0, set 𝐷 = {𝑢∗ > 0} ∩Ω𝑡. We define

𝑣(𝑥) =

{
𝑢(𝑥) + 1, 𝑥 ∈𝐷

𝑢(𝑥), elsewhere.

Then 𝑣 ∈𝐾 and

⟨𝑢∗, 𝑣− 𝑢⟩ > 0.

A contradiction. Similarly, we can show that 3({𝑢∗ < 0} ∩Ω𝑡) = 0. Thus, 
𝑢∗ = 0 a.e. in Ω𝑡. This is also the sufficient condition of 𝑢∗ ∈ 𝜕𝐼𝐾 (𝑢). 
Indeed, given any 𝑢∗ ∈𝐿𝑝′ (Ω) with 𝑢∗ = 0 a.e. in Ω𝑡, for any 𝑣 ∈𝐾 ,



Z. Chen and Y. Shao Computers and Mathematics with Applications 130 (2023) 119–136
⟨𝑢∗, 𝑣− 𝑢⟩ = ∫
Ω⧵Ω𝑡

𝑢∗(𝑢− 𝑣)𝑑𝑥+ ∫
Ω𝑡

𝑢∗(𝑢− 𝑣)𝑑𝑥 = 0.

To sum up, a function 𝑢∗ ∈𝐿𝑝′ (Ω) belongs to 𝜕𝐼𝐾 (𝑢) iff 𝑢∗ = 0 in Ω𝑡.
To compute 𝜕𝐸1(𝑢), we define

𝑋∞
𝑝′ ∶= {𝑧 ∈𝐿∞(Ω,ℝ3) ∶ div𝑧 ∈𝐿𝑝′ (Ω)}.

Here, div𝑧 ∈𝐿𝑝′ (Ω) means that there exists 𝑓 ∈𝐿𝑝′ (Ω) such that

∫
Ω

𝑓𝜙𝑑𝑥 = −∫
Ω

𝑧 ⋅∇𝜙𝑑𝑥

for all 𝜙 ∈ 𝐶∞
0 (Ω). Given any 𝑢 ∈ 𝐵𝑉 (Ω) and 𝑧 ∈ 𝑋∞

𝑝′
, there exists a 

Radon measure, denoted by 𝑧 ⋅𝐷𝑢, such that for any 𝜙 ∈ 𝐶∞
0 (Ω), with a 

little abuse of notation,

⟨𝑧 ⋅𝐷𝑢,𝜙⟩ ∶= ∫
Ω

𝜙(𝑧 ⋅𝐷𝑢) = −∫
Ω

𝑢𝑧div𝜙𝑑𝑥− ∫
Ω

𝑢𝜙div𝑧𝑑𝑥.

The measure 𝑧 ⋅𝐷𝑢 is absolutely continuous with respect to |𝐷𝑢|. By the 
Radon-Nikodym Theorem, there is a |𝐷𝑢|-measurable function 𝜃(𝑧, 𝐷𝑢)
s.t.

∫
𝐴

𝑧 ⋅𝐷𝑢 = ∫
𝐴

𝜃(𝑧,𝐷𝑢)𝑑|𝐷𝑢| (5.3)

for all Borel sets 𝐴 ⊆Ω. Let

𝑀∗
𝑝′ ∶= {𝑣∗ ∈𝐿𝑝′ (Ω) ∶ 𝑣∗ = −div𝑧 for some 𝑧 ∈𝑋∞

𝑝′ with ‖𝑧‖∞ ≤ 1}.

One can follow the idea of [39, Proposition 4.23(1)] and prove that

𝑢∗ ∈ 𝜕𝐸1(𝑢) iff 𝐸1(𝑢) = 𝛾⟨𝑢∗, 𝑢⟩, 𝑢∗ ∈𝑀∗
𝑝′ ,

that is,

𝐸1(𝑢) = −𝛾 ∫
Ω

𝑢div𝑧𝑑𝑥 = 𝛾 ∫
Ω

𝑧 ⋅𝐷𝑢− 𝛾 ∫
𝜕Ω

(𝑧 ⋅ 𝜈𝜕Ω)𝑢𝑑2 (5.4)

for some 𝑧 ∈𝑋∞
𝑝′
with ‖𝑧‖∞ ≤ 1, where 𝜈𝜕Ω is the outward unit normal 

of Ω. The last equality follows from [3, Theorem 1.9]. In addition, [3, 
Corollary 1.6] shows that ‖𝑧‖∞ = 1 whenever 𝑢 ≠ 0.

Next, Proposition B.1 implies that for any 𝑢 ∈ 𝐿𝑝(Ω),

𝜕𝐸2(𝑢) = 𝑝𝑃ℎ𝑢
𝑝−1 − 𝑝𝜌𝑠𝑢

𝑝−1𝑈vdW.

Because of the lack of continuity of 𝐸1 and 𝐼𝐾 , in general, we can only 
conclude that 𝜕𝐸1(𝑢) +𝜕𝐼𝐾 (𝑢) ⊆ 𝜕(𝐸1+𝐼𝐾 )(𝑢). In order to compute 𝜕(𝐸1+
𝐼𝐾 )(𝑢), we will use Propositions B.3. It suffices to verify the closed linear 
space condition. An easy computation shows that

dom(𝐸1) − dom(𝐼𝐾 ) = {𝑣 ∈𝐿𝑝(Ω) ∶ 𝑣|Ω𝑚∪Ω𝑠
∈ 𝐵𝑉 (Ω𝑚 ∪Ω𝑠)},

which is obviously a linear subspace of 𝐿𝑝(Ω). We learn from Proposi-
tions A.3 and A.6 that dom(𝐸1) −dom(𝐼𝐾 ) is closed. Now Proposition B.3
immediately implies that

𝜕(𝐸1 + 𝐼𝐾 )(𝑢) = 𝜕𝐸1(𝑢) + 𝜕𝐼𝐾 (𝑢).

We thus have

𝜕𝐸(𝑢) = 𝜕𝐸1(𝑢) + 𝜕𝐸2(𝑢) + 𝜕𝐼𝐾 (𝑢). (5.5)

From the definition of subdifferential and (5.5), we learn that

𝑢 ∈  minimizes (5.2) iff 0 ∈ 𝜕𝐸(𝑢) = 𝜕𝐸1(𝑢) + 𝜕𝐸2(𝑢) + 𝜕𝐼𝐾 (𝑢).

More precisely, this means that there is some 𝑧 ∈ 𝑋∞
𝑝′
with ‖𝑧‖∞ = 1

satisfying (5.4) and 𝑤 ∈𝐿𝑝′ (Ω) with 𝑤 ≡ 0 in Ω𝑡 such that

0 = −𝛾div𝑧+ 𝑝𝑢
𝑝−1
min

(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
+𝑤 in Ω, (5.6)

where 𝑧 satisfies
125
∫
Ω

𝑧 ⋅𝐷𝑢min = −∫
Ω

𝑢mindiv𝑧𝑑𝑥 = ‖𝐷𝑢min‖(Ω).
In particular, it holds that

0 = −𝛾div𝑧+ 𝑝𝑢
𝑝−1
min

(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
in Ω𝑡.

5.2. Regularity of the minimizer 𝑢min

As in the previous subsection, 𝑢min is the minimizer of (5.2) in 𝐿𝑝(Ω). 
Set

𝐸𝑡 ∶= {𝑢min > 𝑡}, 𝑡 ∈ [0,1) (5.7)

to be the super-level sets of 𝑢min. Recall Ω𝑤 =Ω ⧵Ω𝑠.

Proposition 5.2. For all 𝑡 ∈ [0, 1), 𝐸𝑡 is a solution of

min
𝐸∈

⎡⎢⎢⎣𝛾Per(𝐸;Ω) + ∫
𝐸

𝑝𝑡𝑝−1
(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝑑𝑥

⎤⎥⎥⎦ , (5.8)

where the minimum is taken in the set

 = {𝐸 ⊂Ω is of finite perimeter ∶ Ω𝑚 ⊆ 𝐸 ⊆Ω𝑤}.

Proof. Take 𝑧 as in (5.6). (5.3) and (5.4) show that

‖𝐷𝑢min‖(Ω) = ∫
Ω

𝑧 ⋅𝐷𝑢min = ∫
Ω

𝜃(𝑧,𝐷𝑢min)𝑑|𝐷𝑢min|.
By [3, Corollary 1.6], it holds that ‖𝜃(𝑧, 𝐷𝑢min)‖𝐿∞(Ω,|𝐷𝑢min|) ≤ ‖𝑧‖∞ = 1. 
We thus infer that 𝜃(𝑧, 𝐷𝑢min) = 1 |𝐷𝑢min|-a.e. For any 𝑎, 𝑏 ∈ [0, 1) with 
𝑎 < 𝑏, define

𝑣(𝑥) =
⎧⎪⎨⎪⎩
𝑏 if 𝑢min(𝑥) > 𝑏

𝑢min(𝑥) if 𝑎 ≤ 𝑢min(𝑥) ≤ 𝑏

𝑎 if 𝑢min(𝑥) < 𝑎.

Given any 𝜙 ∈ 𝐶0(Ω), by [3, Proposition 2.7(i) and Formula (2.15)], we 
have

∫
Ω

𝜙𝑑|𝐷𝑣|= ∫
Ω

𝜙𝜃(𝑧,𝐷𝑣)𝑑|𝐷𝑣|= ⟨𝑧 ⋅𝐷𝑣,𝜙⟩= 𝑏

∫
𝑎

∫
Ω

𝜙(𝑧 ⋅𝐷𝜒𝐸𝑡
)𝑑𝑡.

On the other hand, by the coarea formula (A.3),

∫
Ω

𝜙𝑑|𝐷𝑣|= 𝑏

∫
𝑎

∫
Ω

𝜙𝑑|𝐷𝜒𝐸𝑡
|𝑑𝑡.

It shows that
𝑏

∫
𝑎

∫
Ω

𝜙(𝑧 ⋅𝐷𝜒𝐸𝑡
)𝑑𝑡 =

𝑏

∫
𝑎

∫
Ω

𝜙𝑑|𝐷𝜒𝐸𝑡
|𝑑𝑡, ∀𝜙 ∈ 𝐶∞

0 (Ω).

Because 𝑎 and 𝑏 are arbitrary, (𝑧 ⋅𝐷𝜒𝐸𝑡
) = |𝐷𝜒𝐸𝑡

| in the sense of measure 
for a.a. 𝑡 ∈ [0, 1). This implies that

∫
Ω

𝑧 ⋅𝐷𝜒𝐸𝑡
= ‖𝐷𝜒𝐸𝑡

‖(Ω) for a.a. 𝑡 ∈ [0,1). (5.9)

Denote by 𝐷 the set of all 𝑡 satisfying (5.9). If 𝑡 ∈ 𝐷, (5.9) and [3, 
Corollary 1.6, Theorem 1.9] imply that

−∫
Ω

div𝑧(𝜒𝐹 − 𝜒𝐸𝑡
)𝑑𝑥 = ∫

Ω

𝑧 ⋅𝐷𝜒𝐹 𝑑𝑥− ∫
Ω

𝑧 ⋅𝐷𝜒𝐸𝑡
𝑑𝑥

= ∫
Ω

𝑧 ⋅𝐷𝜒𝐹 𝑑𝑥− Per(𝐸𝑡;Ω)

≤ Per(𝐹 ;Ω) − Per(𝐸𝑡;Ω)
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holds for all 𝐹 ∈. Combining with (5.6), we thus deduce that

𝛾Per(𝐹 ;Ω) − 𝛾Per(𝐸𝑡;Ω)

≥− ∫
Ω

𝑝𝑢
𝑝−1
min

(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
(𝜒𝐹 − 𝜒𝐸𝑡

)𝑑𝑥− ∫
Ω

𝑤(𝜒𝐹 − 𝜒𝐸𝑡
)𝑑𝑥

≥− ∫
Ω

𝑝𝑡𝑝−1
(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
(𝜒𝐹 − 𝜒𝐸𝑡

)𝑑𝑥

+ ∫
Ω

𝑝(𝑡𝑝−1 − 𝑢
𝑝−1
min )

(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
(𝜒𝐹 − 𝜒𝐸𝑡

)𝑑𝑥

≥− ∫
Ω

𝑝𝑡𝑝−1
(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
(𝜒𝐹 − 𝜒𝐸𝑡

)𝑑𝑥

by observing that

(𝑡𝑝−1 − 𝑢
𝑝−1
min )(𝑃ℎ − 𝜌𝑠𝑈

vdW)(𝜒𝐹 − 𝜒𝐸𝑡
) ≥ 0

and

∫
Ω

𝑤(𝜒𝐹 − 𝜒𝐸𝑡
)𝑑𝑥 = 0.

If 𝑡 ∉ 𝐷, then take a decreasing sequence {𝑡𝑛}∞𝑛=1 ⊂ 𝐷 such that 𝑡𝑛 →
𝑡+. It is clear that ⋃

𝑛
𝐸𝑡𝑛

= 𝐸𝑡. By the dominated convergence theorem, 

𝜒𝐸𝑡𝑛
→ 𝜒𝐸𝑡

in 𝐿1(Ω). Then Proposition A.3 shows that

Per(𝐸𝑡;Ω) ≤ lim inf
𝑛→∞

Per(𝐸𝑡𝑛
;Ω).

On the other hand, (5.9) and [3, Corollary 1.6 and Theorem 1.9] imply 
that

Per(𝐸𝑡𝑛
;Ω) = ∫

Ω

𝑧 ⋅𝐷𝜒𝐸𝑡𝑛
= −∫

𝐸𝑡𝑛

div𝑧𝑑𝑥

→− ∫
𝐸𝑡

div𝑧𝑑𝑥 = ∫
Ω

𝑧 ⋅𝐷𝜒𝐸𝑡
≤ Per(𝐸𝑡;Ω), as 𝑛→∞.

Therefore, (5.9) holds for 𝑡. We thus deduce that the assertion holds for 
any 𝑡 ∈ [0, 1). □

Remark 5.3. The existence of a minimizer of (5.8) can be proved by 
using the classical method of Calculus of Variation for every 𝑡 ∈ [0, 1). 
See [38] for a related problem.

Lemma 5.4. Let 𝑡′ < 𝑡. If 𝐹𝑡 and 𝐹𝑡′ are minimizers of (5.8) with 𝑡 and 𝑡′, 
respectively, then 𝐹𝑡 ⊆ 𝐹𝑡′ .

Proof. We clearly have

𝛾Per(𝐹𝑡;Ω) + ∫
𝐹𝑡

𝑝𝑡𝑝−1
(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝑑𝑥

≤ 𝛾Per(𝐹𝑡 ∩𝑈𝑡′ ;Ω) + ∫
𝐹𝑡∩𝐹𝑡′

𝑝𝑡𝑝−1
(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝑑𝑥

and

𝛾Per(𝐹𝑡′ ;Ω) + ∫
𝐹𝑡′

𝑝(𝑡′)𝑝−1
(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝑑𝑥

≤ 𝛾Per(𝐹𝑡 ∪ 𝐹𝑡′ ;Ω) + ∫
𝐹𝑡∪𝐹𝑡′

𝑝(𝑡′)𝑝−1
(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝑑𝑥.

Because

Per(𝐹𝑡 ∩ 𝐹𝑡′ ;Ω) + Per(𝐹𝑡 ∪ 𝐹𝑡′ ;Ω) ≤ Per(𝐹𝑡;Ω) + Per(𝐹𝑡′ ;Ω),

we deduce that
126
(𝑡′)𝑝−1
⎡⎢⎢⎢⎣∫𝐹𝑡′

(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝑑𝑥− ∫

𝐹𝑡∪𝐹𝑡′

(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝑑𝑥

⎤⎥⎥⎥⎦
≤𝑡𝑝−1

⎡⎢⎢⎢⎣ ∫
𝐹𝑡∩𝐹𝑡′

(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝑑𝑥− ∫

𝐹𝑡

(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝑑𝑥

⎤⎥⎥⎥⎦ ,
i.e.

(𝑡′)𝑝−1 ∫
𝐹𝑡⧵𝐹𝑡′

(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝑑𝑥≥ 𝑡𝑝−1 ∫

𝐹𝑡⧵𝐹𝑡′

(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝑑𝑥.

But 𝑡′ < 𝑡. This implies that 𝐹𝑡 ⊆ 𝐹𝑡′ . □

Proposition 5.5. For all but countably many 𝑡 ∈ (0, 1], the minimizer of 
(5.8) is unique, i.e. 𝐸𝑡.

Proof. Fix 𝑡 ∈ (0, 1) and assume that 𝐹 is a minimizer of (5.8). Take an 
arbitrary increasing sequence {𝑠𝑛}∞𝑛=1 ⊆ (0, 1) and an arbitrary decreas-
ing sequence {𝑡𝑛}∞𝑛=1 ⊆ (0, 1) such that lim

𝑛→∞
𝑠𝑛 = 𝑡 = lim

𝑛→∞
𝑡𝑛.

It follows from Proposition 5.2 and Lemma 5.4 that⋃
𝑛

𝐸𝑡𝑛
⊆ 𝐹 ⊆

⋂
𝑛

𝐸𝑠𝑛
.

Note that⋂
𝑛

𝐸𝑠𝑛
=𝐸𝑡 ∪ {𝑢 = 𝑡} and

⋃
𝑛

𝐸𝑡𝑛
=𝐸𝑡.

However, there are only countably many 𝑡 such that 3({𝑢 = 𝑡}) > 0. 
This implies that

𝐹 =𝐸𝑡 for a.a. 𝑡 ∈ [0,1).

This completes the proof. □

Proposition 5.6. For any 𝑡 ∈ [0, 1), the singular set of 𝐸𝑡 is contained in 
Σ0 ∪ Σ1 and 𝜕𝐸𝑡 ⧵ (Σ0 ∪ Σ1) is of class 𝐶∞.

Proof. For any 𝑥 ∈ 𝜕𝐸𝑡 ∩Ω𝑡, for sufficiently small 𝑟 > 0, the ball 𝐵(𝑥, 𝑟)
is contained in Ω𝑡. For any local perturbation of 𝐸𝑡 in 𝐵(𝑥, 𝑟), i.e. a set 
𝐹 of finite perimeter such that 𝐹Δ𝐸𝑡 = (𝐹 ⧵𝐸𝑡) ∪ (𝐸𝑡 ⧵ 𝐹 ) ⊂⊂ 𝐵(𝑥, 𝑟), we 
have

Per(𝐸𝑡;𝐵(𝑥, 𝑟)) ≤Per(𝐹 ;𝐵(𝑥, 𝑟)) +𝐶 ∫
𝐵(𝑥,𝑟)

𝑝𝑡𝑝−1
(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝑑𝑥

≤Per(𝐹 ;𝐵(𝑥, 𝑟)) +𝐶𝑟2+𝛿

by Hölder inequality for any 𝛿 ∈ (0, 1). Note that the constant 𝐶 in the 
above inequality is independent of the position of 𝑥. Hence 𝐸𝑡 ∩ Ω𝑡 is 
almost minimal in Ω𝑡 in the sense of [60, Definition 1.5]. Therefore, [60, 
Theorem 1.9] implies that the singular set of 𝐸𝑡 is contained in Σ0 ∪ Σ1
and 𝜕𝐸𝑡 ⧵ (Σ0 ∪Σ1) is a 𝐶1-hypersurface. Then the assertion follows from 
the standard regularity theorem of non-parametric minimizing surfaces, 
see [35] for example. For the reader’s convenience, we will state a proof 
here. For every 𝑥0 ∈ 𝜕𝐸𝑡 ⧵ (Σ0 ∪ Σ1), denote by 𝐻𝑥0

the tangent plane of 
𝜕𝐸𝑡 at 𝑥0. Near 𝑥0, we can rewrite the coordinates in the form 𝑥 = (𝑦, 𝑧), 
where 𝑦 is the coordinates in 𝐻 and 𝑧 is the coordinate in the normal 
direction of 𝐻 . We use the convention 𝑧 = 𝑦 = 0 at 𝑥0. For sufficiently 
small 𝑟 > 0, let 𝑈𝑟 =𝐵(𝑥, 𝑟) ∩𝐻𝑥0

. Build a cylinder 𝐶𝑟 =𝑈𝑟 × (−𝑟, 𝑟) ⊂⊂Ω𝑡

in (𝑦, 𝑧)-coordinates centered at 𝑥0. Inside 𝐶𝑟, we can express 𝜕𝐸𝑡 as the 
graph of a 𝐶1-function 𝑣:

𝑧 = 𝑣(𝑦), 𝑦 ∈𝑈𝑟.

See Fig. 2. Then
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Fig. 2. A coordinate system near 𝑥0 ∈ 𝜕𝐸𝑡 ⧵ (Σ0 ∪ Σ1).

𝛾Per(𝐸𝑡;𝐶𝑟) + ∫
𝐶𝑟∩𝐸𝑡

𝑝𝑡𝑝−1
(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝑑𝑥

=𝛾 ∫
𝑈𝑟

√
1 + |∇𝑦𝑣(𝑦)|2 𝑑𝑦+ ∫

𝑈𝑟

𝑣(𝑦)

∫
0

(
𝑃ℎ − 𝜌𝑠𝑈

vdW(𝑦, 𝑧)
)
𝑑𝑧𝑑𝑦.

By the fundamental theorem of Calculus, 𝑣 solves{
𝐴(𝑣)𝑣 = 𝑓 (𝑦, 𝑣(𝑦)) in 𝑈𝑟;

𝑣 = 𝑔 on 𝜕𝑈𝑟

for some 𝑔 ∈ 𝐶1(𝜕𝑈𝑟). Here

𝐴(𝑣)𝑤 =
Δ𝑦𝑤(𝑦)√

1 + |∇𝑦𝑣(𝑦)|2 −
(∇𝑦𝑣)∇2

𝑦𝑤(∇𝑦𝑣)𝑇

(
√

1 + |∇𝑦𝑣(𝑦)|2)3 ,
𝑓 (𝑦, 𝑧) =

(
𝑃ℎ − 𝜌𝑠𝑈

vdW(𝑦, 𝑧)
)
∕𝛾.

By choosing 𝑟 > 0 sufficiently small, one can infer from [34, Theo-
rems 16.10] that 𝑣 ∈ 𝐶2(𝑈𝑟). The remaining regularity follows from a 
bootstrapping argument, cf. [34, Theorems 6.13 and 6.17]. □

Remark 5.7. If we assume, in addition, that Σ𝑖 ∈ 𝐶1,1 for 𝑖 = 0, 1, then 
following the argument in [60, Section 1.14(iv)], one can show that 
the singular set of 𝐸𝑡 is empty and 𝜕𝐸𝑡 ∈ 𝐶1,1. Since this fact will not 
be used below, to keep the article in a reasonable length, we will not 
provide a rigorous proof here.

Proposition 5.8. The jump set, 𝐽𝑢min
, of 𝑢min is contained in Σ0 ∪ Σ1.

Proof. The proof follows the idea in [13, Theorem 3.4]. By (A.4), it 
suffices to show that for any 𝑡1 < 𝑡2 ∈ [0, 1) and 𝑡1, 𝑡2 ∈ℚ, it holds

(𝜕𝐸𝑡1
∩ 𝜕𝐸𝑡2

) ⧵ (Σ0 ∪ Σ1) = ∅.

Assume that 𝑥0 ∈ (𝜕𝐸𝑡1
∩ 𝜕𝐸𝑡2

) ⧵ (Σ0 ∪ Σ1). By Proposition 5.6, both 𝜕𝐸𝑡1
and 𝜕𝐸𝑡2

are regular in a neighbourhood of 𝑥0. From the fact 𝐸𝑡2
⊆ 𝐸𝑡1

, 
we deduce that the tangent space of 𝐸𝑡2

and 𝐸𝑡1
at 𝑥0 agrees. Denote the 

tangent space by 𝐻𝑥0
. We define the coordinates in the form 𝑥 = (𝑦, 𝑧)

and the cylinder 𝐶𝑟 = (−𝑟, 𝑟) ×𝑈𝑟 as in the previous proof. Then we can 
express 𝐸𝑡𝑖

with 𝑖 = 1, 2 as graphs over 𝑈𝑟 as

𝑧 = 𝑣𝑖(𝑦) 𝑖 = 1,2

with 𝑣𝑖 ∈ 𝐶∞(𝑈𝑟). 𝐸𝑡2
⊆ 𝐸𝑡1

implies that 𝑣1 ≥ 𝑣2 in 𝑈𝑟. Similar to the 
previous proof, we have
127
𝛾div𝑦

⎛⎜⎜⎜⎝
∇𝑦𝑣𝑖(𝑦)√

1 + |∇𝑦𝑣𝑖(𝑦)|2
⎞⎟⎟⎟⎠ = 𝑝𝑡

𝑝−1
𝑖

(
𝑃ℎ − 𝜌𝑠𝑈

vdW(𝑦, 𝑣𝑖(𝑦))
)
.

Since 𝑡2 > 𝑡1, 𝑣𝑖(0) = 0, ∇𝑦𝑣𝑖(0) = 0, by choosing 𝑟 > 0 small enough, we 
have

𝑝𝑡
𝑝−1
2

(
𝑃ℎ − 𝜌𝑠𝑈

vdW(𝑦, 𝑣2(𝑦))
)(√

1 + |∇𝑦𝑣2(𝑦)|2)3

> 𝑝𝑡
𝑝−1
1

(
𝑃ℎ − 𝜌𝑠𝑈

vdW(𝑦, 𝑣1(𝑦))
)(√

1 + |∇𝑦𝑣1(𝑦)|2)3

for all 𝑦 ∈ 𝑈𝑟. This implies that(
1 + |∇𝑦𝑣2|2)Δ𝑦𝑣2 − ∇𝑦𝑣2∇2

𝑦𝑣2∇𝑦𝑣2 >
(
1 + |∇𝑦𝑣1|2)Δ𝑦𝑣1 − ∇𝑦𝑣1∇2

𝑦𝑣1∇𝑦𝑣1

in 𝑈𝑟. In view of the boundary condition 𝑣1 ≥ 𝑣2 on 𝜕𝑈𝑟, we infer from 
[34, Theorem 10.1] that 𝑣2 < 𝑣1 in 𝑈𝑟, which contradicts 𝑣1(𝑥0) = 𝑣2(𝑥0). 
Therefore, (𝜕𝐸𝑡1

∩ 𝜕𝐸𝑡2
) ⧵ (Σ0 ∪ Σ1) = ∅. □

Remark 5.9. In particular, Proposition 5.8 implies that 𝑢 ∈ 𝐶(Ω𝑡).

5.3. Necessary conditions for the formation of a sharp interface

In this section, we first consider the case that Ω𝑡 is connected. In or-
der to state the main theorem of this section, we define the orientations 
of Σ𝑖 in such a way that

• the outer normal of Σ1 points into Ω𝑡, and
• the outer normal of Σ0 points into Ω𝑠.

With these conventions, a sphere of radius 𝑅 > 0 has constant mean 
curvature −1∕𝑅.

Theorem 5.10. Suppose that Ω𝑡 is connected and Σ𝑖, for 𝑖 = 0, 1, are 𝐶2-

closed surfaces. Let 𝜅 be the mean curvature of Σ1. If 𝜅(𝗉) > 0 for some 
𝗉 ∈ Σ1, then there is no sharp solute-solvent interface, that is, the minimizer 
𝑢min of (2.6) is not the characteristic function of a set 𝐸 of finite perimeter 
with Ω𝑚 ⊆ 𝐸 ⊆Ω𝑤.

Proof. Assume, to the contrary, that there exists a set 𝐸 of finite 
perimeter such that Ω𝑚 ⊆ 𝐸 ⊆Ω𝑤 and 𝜒𝐸 minimizes (2.6).

(1) By the De Giorgi Theorem, cf. [1, Theorem 3.59 and Example 
3.68], we have

𝜕∗𝐸 ⊆ 𝐽𝜒𝐸 ⊆ Σ0 ∪ Σ1.

For every 𝑥 ∈ Ω𝑡 ∩ 𝐸, (A.1) implies that Per(𝐸; 𝐵(𝑥, 𝑟)) = 0 for all 𝑟 > 0
so small that 𝐵(𝑥, 𝑟) ⊂ Ω𝑡. Thus the isoperimeteric inequality, cf. [30, 
Theorem 5.6.2], implies that

min{3(𝐵(𝑥, 𝑟) ∩𝐸),3(𝐵(𝑥, 𝑟) ⧵𝐸)}2∕3 ≤ 𝐶Per(𝐸;𝐵(𝑥, 𝑟)) = 0.

If 3(𝐸 ∩ Ω𝑡) > 0, assume that there exist two distinct points 𝑥1, 𝑥2 ∈
Ω𝑡 such that 3(𝐵(𝑥1, 𝑟) ∩ 𝐸) = 0 and 3(𝐵(𝑥2, 𝑟) ⧵ 𝐸) = 0. Since Ω𝑡 is 
connected, we can find a continuous path 𝛾 ∶ [0, 1] →Ω𝑡 such that

𝛾(0) = 𝑥1, 𝛾(1) = 𝑥2.

Further assume that 𝑟 > 0 is so small that 𝐵(𝑥, 𝑟) ⊂Ω𝑡 for all 𝑥 ∈ 𝛾([0, 1]). 
Then for any 𝑥 ∈ 𝛾([0, 1]) ∩𝐵(𝑥1, 𝑟), we have 3(𝐵(𝑥, 𝑟) ∩𝐸) = 0. Repeat-
ing this argument for finitely many times shows that 3(𝐵(𝑥2, 𝑟) ∩𝐸) = 0. 
A contradiction. Therefore, 3(𝐵(𝑥, 𝑟) ⧵𝐸) = 0 for all 𝑥 ∈Ω𝑡 and all 𝑟 > 0
so small that 𝐵(𝑥, 𝑟) ⊂Ω𝑡. We immediately infer that

3(Ω𝑡 ⧵𝐸) = 0

and thus 𝜒𝐸 = 𝜒Ω𝑤
a.e. To sum up, we have either 𝐸 =Ω𝑚 or 𝐸 =Ω𝑤.

(2) Consider the case that 𝐸 =Ω𝑚, or equivalently 𝑢min = 𝜒𝐸 . Define 
𝐸𝑡 as in (5.7). Then for each 𝑡 ∈ [0, 1), 𝐸𝑡 = Ω𝑚. Therefore, 𝜒Ω𝑚

is the 
unique minimizer of (5.8) for every 𝑡 ∈ [0, 1).
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Since Σ1 is 𝐶2, it has a tubular neighborhood 𝐵𝔞(Σ1) of width 𝔞 > 0, 
cf. [34, Exercise 2.11] and [41, Remark 3.1]. Given any 𝜌 ∈ 𝐶1(Σ1) with 
0 ≤ 𝜌 ≤ 1, the map

Ψ𝜌 ∶ (−𝔞,𝔞) × Σ1 →ℝ3 ∶ (𝜀,𝗉)↦𝗉+ 𝜀𝜌(𝗉)𝜈Σ1 (𝗉),

is a 𝐶1-diffeomorphism onto its image, where 𝜈Σ1 is the outward unit 
normal of Σ1 pointing into Ω𝑡. Put Γ𝜀 ∶= Ψ𝜌(𝜀, Σ) and Ω𝜀 as the region 
enclosed by Γ𝜀. Observe that Ω0 = Ω𝑚 and

Ω𝑚 ⊆Ω𝜀 ⊆Ω𝑤

for all 𝜀 ∈ [0, 𝔞) with sufficiently small 𝔞. Define a functional

𝐹𝑡(𝜀) = 𝛾Per(Γ𝜀;Ω) + ∫
Ω𝜀

𝑝𝑡𝑝−1
(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝑑𝑥, 𝜀 ∈ [0,𝔞).

Note that 𝐹𝑡(𝜀) ≥ 𝐹𝑡(0). By [38, Equation (21)],

lim
𝜀→0+

𝐹𝑡(𝜀) − 𝐹𝑡(0)
𝜀

=∫
Σ1

𝜌
(
−2𝛾𝜅 + 𝑝𝑡𝑝−1𝑃ℎ − 𝑝𝑡𝑝−1𝜌𝑠𝑈

vdW)
𝑑Σ1,

where 𝑑Σ1 is the volume element on Σ1. Thus

∫
Σ1

𝜌
(
−2𝛾𝜅 + 𝑝𝑡𝑝−1𝑃ℎ − 𝑝𝑡𝑝−1𝜌𝑠𝑈

vdW)
𝑑Σ1 ≥ 0

for all 𝜌 ∈ 𝐶1(Σ1) with 𝜌 ≥ 0. This implies that

𝑝𝑡𝑝−1𝑃ℎ − 𝑝𝑡𝑝−1𝜌𝑠𝑈
vdW ≥ 2𝛾𝜅

for all 𝑡 ∈ [0, 1). Taking 𝑡 = 0 above yields

0 ≥ 𝜅 on Σ1.

This is a necessary condition for 𝐸 =Ω𝑚. Therefore, if 𝜅(𝗉) > 0 for some 
𝗉 ∈ Σ1, then 𝐸 ≠Ω𝑚.

(3) Let 𝜅 be the mean curvature of Σ0. If 𝐸 =Ω𝑤, then following the 
above argument, we conclude that

∫
Σ0

𝜌
(
−2𝛾𝜅 + 𝑝𝑡𝑝−1𝑃ℎ − 𝑝𝑡𝑝−1𝜌𝑠𝑈

vdW)
𝑑Σ0 ≥ 0

for all 𝜌 ∈ 𝐶1(Σ0) with 𝜌 ≤ 0 and 𝑡 ∈ [0, 1). Here 𝑑Σ0 is the volume ele-
ment on Σ0. Pushing 𝑡 → 1− implies that

𝜅 ≥ 𝑝𝑃ℎ − 𝑝𝜌𝑠𝑈
vdW

2𝛾
> 0

is a necessary condition for 𝐸 =Ω𝑤 However, it is well known that there 
is no closed hypersurface with everywhere positive mean curvature in 
ℝ3. Therefore, 𝐸 ≠Ω𝑤 □

Remark 5.11. The mean curvature condition 𝜅(𝗉) > 0 for some 𝗉 ∈ Σ1
is very common for real-world biomolecules. This explains why diffuse 
interfaces are indeed more realistic in real-world solvation processes. 
It is equally important to point out that the mean curvature condition 
is in some sense “stable”. Recall that the Hausdorff metric on compact 
subsets 𝐾 ⊂ℝ𝑛, 𝑛 ∈ℕ, is defined by

𝑑 (𝐾1,𝐾2) = max

{
sup
𝑥∈𝐾1

𝑑(𝑥,𝐾2), sup
𝑥∈𝐾2

𝑑(𝑥,𝐾1)

}
.

Given a closed surface Σ in ℝ3, its second normal bundle is given by

 2Σ = {(𝗉, 𝜈Σ(𝗉),∇Σ𝜈Σ(𝗉)) ∶ 𝗉 ∈ Σ} ⊂ℝ3 ×ℝ3 ×ℝ9,

where ∇Σ is the surface gradient defined by

∇Σ𝑣(𝗉) = 𝑃Σ(𝗉)∇𝑣(𝗉), 𝑣 ∈ 𝐶1(𝐵𝑟(Σ),ℝ3)

for some 𝑟 > 0. Here 𝑃Σ(𝗉) = 𝐼 − 𝜈Σ(𝗉) ⊗ 𝜈Σ(𝗉). Denote by  the set 
of all connected closed surfaces in ℝ3. Equipped with the metric 𝑑 , 
128
Fig. 3. Illustration of a solute with one cavity inside.

 is a Banach manifold, cf. [51,52]. If a connected component, 𝖬1, 
of Σ1 satisfies the condition in Theorem 5.10, then any Σ ∈ that is 
sufficiently close to 𝖬1 with respect to the metric 𝑑 satisfies the same 
condition.

Remark 5.12. The connectedness condition of Ω𝑡 was used in the proof 
of Theorem 5.10. It is well-known that cavities may appear inside 
macromolecules, which corresponds to the situation of disconnected 
Ω𝑚. In the case of 𝑁 cavities inside Ω𝑚, Ω𝑡 consists of 𝑁 + 1 connected 
components. More precisely,

Σ1 =
𝑁⋃
𝑗=0

Γ𝑗 ,

where Γ𝑗 are 𝐶2-closed and connected hypersurfaces and Γ𝑗 , 𝑗 =
1, ⋯ , 𝑁 , are the boundary of the 𝑗-th cavity. Correspondingly,

Ω𝑡 =
𝑁⋃
𝑗=0

Ω𝑡,𝑗 ,

where Ω𝑡,𝑗 are the connected components of Ω𝑡 and Ω𝑡,𝑗 , 𝑗 = 1, ⋯ , 𝑁 , is 
the 𝑗-th cavity bounded by Γ𝑗 and Ω𝑡,0 ∩ Ω𝑠 ≠ ∅. See Fig. 3 for a picture 
illustration of a solute molecule with one cavity inside. To make the 
convention of the mean curvature consistent, we define the orientation 
of Γ𝑗 in the following way:

• the outer normal of Γ0 points into Ω𝑏,0;
• for 𝑗 = 1, ⋯ , 𝑁 , the outer normal of Γ𝑗 points into Ω𝑚.

Under these conventions, we can follow the proof of Theorem 5.10 and 
show that Γ𝑗 (𝑗 = 1, ⋯ , 𝑁) is a sharp interface iff Γ𝑗 has everywhere 
positive mean curvature, which is impossible. Therefore, none of the 
cavities can be purely occupied by the solvent.

6. Numerical simulations

The non-differentiable structure of (2.6) and the Constraints (2.2)
and (2.3) generate an essential difficulty in the numerical simulations of 
(2.6). These motive us to study a sequence of approximation problems.

6.1. An approximation problem

Recall the definition of {𝑞𝑘}∞𝑘=1 from Section 3. We introduce a fam-
ily of perturbed solvation free energy functionals

𝐼𝑘(𝑢) =𝛾 ∫
Ω

|∇𝑢|𝑞𝑘 𝑑𝑥+ ∫
Ω

[
𝑃ℎ𝑢

𝑝 + 𝜌𝑠(1 − 𝑢𝑝)𝑈vdW]
𝑑𝑥

+ ∫
Ω

[
𝜌𝑚𝜓 − 1

2
𝜖(𝑢)|∇𝜓|2 − (𝑞𝑘 − 𝑢𝑝)𝐵(𝜓)

]
𝑑𝑥, (6.1)

where 𝜓 ∈ satisfies (3.2). We will seek a minimizer of 𝐼𝑘(⋅) in 𝑘, cf.
(3.1). For notational brevity, we term the second line of (6.1) 𝐼p,𝑘(𝑢, 𝜓).

Let 𝑢min be a minimizer of (2.6) in  and 𝜓min = 𝜓𝑢min
be the solution 

of (2.5) with 𝑢 = 𝑢min.



Z. Chen and Y. Shao Computers and Mathematics with Applications 130 (2023) 119–136
To prepare for the main result of this section, we introduce

Ω𝑗,𝑘 ∶= {𝑥 ∈Ω ∶ dis(𝑥,Ω𝑗 ) < 1∕𝑘}, 𝑗 ∈ {𝑚, 𝑠}

and

𝑘 ∶= {𝑢 ∈ ∶ 𝑢 ≡ 1 in Ω𝑚,𝑘 and 𝑢 ≡ 0 in Ω𝑠,𝑘}, 𝑘 ∈ℕ,

and quote the following two lemmas from [55].

Lemma 6.1. ([55, Lemma 2.6]) For every 𝑓 ∈ 𝑘, there exists a sequence 
{𝑓𝑛}∞𝑛=1 ⊂ 𝐶∞(Ω) satisfying Constraints (2.2) and (2.3) such that

(i) 𝑓𝑛 → 𝑓 in 𝐿1(Ω), and
(ii) ‖𝐷𝑓𝑛‖(Ω) → ‖𝐷𝑓‖(Ω) as 𝑛 →∞.

Lemma 6.2. ([55, Lemma 2.7]) For every 𝑓 ∈  , we define {𝑓𝑘}∞𝑘=1 ⊂
𝐵𝑉 (Ω) by

𝑓𝑘(𝑥) =
⎧⎪⎨⎪⎩
1, 𝑥 ∈Ω𝑚,𝑘

0, 𝑥 ∈Ω𝑠,𝑘

𝑓 (𝑥), elsewhere.

If Σ𝑖 ∈ 𝐶2 with 𝑖 ∈ {0, 1}, then

(i) 𝑓𝑘 → 𝑓 in 𝐿1(Ω) and
(ii) ‖𝐷𝑓𝑘‖(Ω) → ‖𝐷𝑓‖(Ω) as 𝑘 →∞.

The theoretic basis of the numerical simulation is the following the-
orem.

Theorem 6.3. For each 𝑘 = 1, 2, ⋯, there exists a unique 𝑢min,𝑘 ∈ 𝑘 ∩ 
such that 𝐼𝑘(𝑢min,𝑘) = min

𝑢∈𝑘

𝐼𝑘(𝑢). If, in addition, Σ𝑖 ∈ 𝐶2, 𝑖 ∈ {0, 1},

lim
𝑘→∞

𝐼𝑘(𝑢min,𝑘) = 𝐼(𝑢min),

and as 𝑘 →∞

𝑢min,𝑘 → 𝑢min in 𝐿𝑟(Ω)

for all 𝑟 ∈ [1, ∞) and

𝜓min,𝑘 → 𝜓min in 𝐻1(Ω),

where 𝜓min,𝑘 = 𝜓𝑢min,𝑘
is the solution to (3.2) with 𝑢 = 𝑢min,𝑘.

Proof. (i) The existence and uniqueness of a minimizer 𝑢min,𝑘 ∈ 𝑘 of 
𝐼𝑘(⋅) for each 𝑘 can be proved in the same manner as in Theorem 4.1.

(ii) We will show that 𝑢min,𝑘 is a global minimizer of 𝐼𝑘(⋅) iff 
(𝑢min,𝑘, 𝜓min,𝑘) is a saddle point of

𝐿𝑘(𝑢,𝜓) ∶=∫
Ω

[
𝛾|∇𝑢|𝑞𝑘 + 𝑃ℎ𝑢

𝑝 + 𝜌𝑠(1 − 𝑢𝑝)𝑈vdW]
𝑑𝑥

+ ∫
Ω

[
𝜌𝑚𝜓 − 1

2
𝜖(𝑢)|∇𝜓|2 − (𝑞𝑘 − 𝑢𝑝)𝐵(𝜓)

]
𝑑𝑥 (6.2)

in 𝑘 ×𝒜, where

𝒜 ∶= {𝑣 ∈ ∶ ‖𝑣‖𝐻1 ≤ 𝐶0 and ‖𝑣‖∞ ≤ 𝐶0}.

Here 𝐶0 is the constant in (3.3). Proposition 3.1 shows that 𝜓min,𝑘 ∈𝒜. 
Denote by 𝑘 the set of all saddle points of 𝐿𝑘. Recall that (𝑢0, 𝜓0) ∈ 𝑘

iff

𝐿𝑘(𝑢0, 𝜓) ≤𝐿𝑘(𝑢0, 𝜓0) ≤𝐿𝑘(𝑢,𝜓0), ∀(𝑢,𝜓) ∈𝑘 ×𝒜. (6.3)

It follows from Proposition 3.1 and Theorem 4.1 that

𝐼𝑘(𝑢min,𝑘) =∶𝑀𝑘 = min
𝑢∈ max

𝜓∈𝒜
𝐿𝑘(𝑢,𝜓).
𝑘

129
Note that 𝑘 and 𝒜 are closed and convex in 𝑊 1,𝑞𝑘 (Ω) and 𝐻1(Ω), 
respectively. Moreover,

[𝑢↦𝐿𝑘(𝑢,𝜓)] is strictly convex and lower semi-continuous ∀𝜓 ∈𝒜,

and

[𝜓 ↦𝐿𝑘(𝑢,𝜓)] is strictly concave and upper semi-continuous ∀𝑢 ∈𝑘.

Since 𝒜 is bounded in 𝐻1(Ω), [29, Remark VI.2.3] implies that

max
𝜓∈𝒜

inf
𝑢∈𝑘

𝐿𝑘(𝑢,𝜓) = min
𝑢∈𝑘

max
𝜓∈𝒜

𝐿𝑘(𝑢,𝜓) =𝑀𝑘.

It follows from the direct method of Calculus of Variation that the infi-
mum is achieved. Therefore,

max
𝜓∈𝒜

min
𝑢∈𝑘

𝐿𝑘(𝑢,𝜓) = min
𝑢∈𝑘

max
𝜓∈𝒜

𝐿𝑘(𝑢,𝜓) =𝐿𝑘(𝑢min,𝑘,𝜓min,𝑘). (6.4)

By [29, Proposition VI.1.2], (𝑢min,𝑘, 𝜓min,𝑘) ∈ 𝑘. Conversely, if (𝑢0, 𝜓0) ∈𝑘, then (6.3) and Proposition 3.1 show that 𝜓0 is the solution of (3.2)
with 𝑢 = 𝑢0. What is more, since (6.4) still holds true if we replace 
(𝑢min,𝑘, 𝜓min,𝑘) by (𝑢0, 𝜓0), we infer that 𝑢0 = 𝑢min,𝑘.

If 3({𝑢min,𝑘 > 1} ∪ {𝑢min,𝑘 < 0}) > 0, define

𝑢̄min,𝑘(𝑥) =
⎧⎪⎨⎪⎩
1, if 𝑢min,𝑘(𝑥) > 1,
0, if 𝑢min,𝑘(𝑥) < 0,
𝑢min,𝑘(𝑥), elsewhere.

Then direct computations show that

𝐿𝑘(𝑢̄min,𝑘,𝜓min,𝑘) <𝐿𝑘(𝑢𝑘,𝜓min,𝑘).

A contradiction. Hence, 𝑢min,𝑘 ∈ .
(iii) Fix 𝑣 ∈𝑘. Then, by (3.5), 𝐺𝑘

𝑣 (𝜓𝑣) < 𝐶1, where 𝜓𝑣 is the solution 
to (3.2) with 𝑢 = 𝑣. Then

𝐼𝑘(𝑣) ≤ 𝛾 ∫
Ω

|∇𝑣|𝑞𝑘 𝑑𝑥+ 2𝑃ℎVol(Ω) − ∫
Ω⧵Ω𝑠

𝜌𝑠𝑈
vdW 𝑑𝑥+𝐶0‖𝜌𝑚‖∞Vol(Ω𝑚)

≤ 𝐶2,

where 𝐶0 is the constant in Proposition 3.1 and 𝐶2 is independent of 𝑘
and 𝑣. This yields that

𝐶2 ≥ 𝐼𝑘(𝑢min,𝑘) ≥ 𝛾 ∫
Ω

|∇𝑢min,𝑘|𝑞𝑘 𝑑𝑥+ 𝑃ℎ‖𝑢min,𝑘‖𝑝𝑝 +𝐶3 −𝐶1

≥ 𝛾‖∇𝑢min,𝑘‖𝑞𝑘1 (Vol(Ω))1−𝑞𝑘 + 𝑃ℎ‖𝑢min,𝑘‖𝑝𝑝 +𝐶3 −𝐶1, (6.5)

where 𝐶3 = ∫Ω⧵Ω𝑚
𝜌𝑠𝑈

vdW 𝑑𝑥. We thus infer from (6.5) that

‖𝑢min,𝑘‖𝑊 1,1 = ‖𝑢min,𝑘‖𝐵𝑉 ≤ 𝐶4

for some 𝐶4 independent of 𝑘. Proposition A.2 implies that there exists 
a subsequence of {𝑢min,𝑘}∞𝑘=1, not relabelled, converging to some 𝑢0 ∈ in 𝐿1(Ω). The Riesz-Thorin interpolation theorem then implies that 
𝑢min,𝑘 → 𝑢0 in 𝐿𝑟(Ω) for all 𝑟 ∈ [1, ∞) as 𝑘 →∞. Note that

∫
Ω

|∇𝑢min,𝑘|𝑞𝑘 𝑑𝑥 ≥ ‖∇𝑢min,𝑘‖𝑞𝑘1 (Vol(Ω))1−𝑞𝑘 .

Then it follows from Propositions A.3 and 3.2 that

𝐼(𝑢0) ≤ lim inf
𝑘→∞

𝐼𝑞𝑘 (𝑢min,𝑘).

On the other hand, we define

𝑤𝑛(𝑥) =
⎧⎪⎨⎪⎩
1, 𝑥 ∈Ω𝑚,𝑛

0, 𝑥 ∈Ω𝑠,𝑛

𝑢0(𝑥), elsewhere.

We will show that



Z. Chen and Y. Shao Computers and Mathematics with Applications 130 (2023) 119–136
limsup
𝑘→∞

𝐼𝑘(𝑢min,𝑘) ≤ 𝐼(𝑤𝑛). (6.6)

Lemma 6.1 implies that we can find a sequence {𝑤𝑛,𝑖}∞𝑖=1 such that 𝑤𝑛,𝑖 ∈
𝐶∞(Ω) ∩𝑘 for all 𝑘 and

𝑤𝑛,𝑖 →𝑤𝑛 in 𝐿1(Ω) and ‖𝐷𝑤𝑛,𝑖‖(Ω)→ ‖𝐷𝑤𝑛‖(Ω) as 𝑖→∞.

Since 𝑢min,𝑘 minimizes 𝐼𝑘(⋅) in 𝑘, we have

𝐼𝑘(𝑢min,𝑘) ≤ 𝐼𝑘(𝑤𝑛,𝑖).

Pushing 𝑘 → ∞, the dominated convergence theorem and Proposi-
tion 3.2 imply that

limsup
𝑘→∞

𝐼𝑘(𝑢min,𝑘) ≤ 𝐼(𝑤𝑛,𝑖).

Then Lemma 6.1 and Proposition 3.2 immediately yield (6.6). Now 
Lemma 6.2 and Proposition 3.2 give that

limsup
𝑘→∞

𝐼𝑘(𝑢min,𝑘) ≤ 𝐼(𝑢0).

Finally, the convergence of 𝜓min,𝑘 is a direct consequence of Proposi-
tion 3.2.

(iv) Denote by 𝜓𝑘 the solution of (3.2) with 𝑢 = 𝑢min. Then by Propo-
sition 3.1,

𝐼(𝑢min) ≥ 𝐼np(𝑢min) + 𝐼p(𝑢min, 𝜓𝑘) ≥ 𝐼np(𝑢min) + 𝐼p,𝑘(𝑢min, 𝜓𝑘) ≥ 𝐼𝑘(𝑢min,𝑘).

This yields

𝐼(𝑢min) ≥ lim
𝑘→∞

𝐼𝑘(𝑢min,𝑘) = 𝐼(𝑢0).

By the uniqueness of a global minimizer of 𝐼(⋅), we conclude that 𝑢0 =
𝑢min. □

6.2. Variation of solvation free energy

Motivated by Theorem 6.3, we will study the numerical simulations 
of the approximating functional (6.1). As the first step, we will derive 
the variational formulas of (6.1) at 𝑢min,𝑘. Recall that 𝑢min,𝑘 minimizes 
(6.1) in 𝑘 iff (𝑢min,𝑘, 𝜓min,𝑘) is a saddle point of (6.2) in 𝑘 ×𝒜, where 
𝜓min,𝑘 solves (3.2) with 𝑢 = 𝑢min,𝑘. This means that

𝐿𝑘(𝑢min,𝑘,𝜓min,𝑘) = min
𝑢∈𝑘

𝐿𝑘(𝑢,𝜓min,𝑘).

Given any 𝜙 ∈ 𝐶∞
0 (Ω𝑡), as 𝑢min,𝑘 ∈ , for sufficiently small 𝛿 > 0,

𝑢min,𝑘 + 𝜀𝜙 ∈𝑘, |𝜀| < 𝛿.

Therefore, we can verify that 𝑢min,𝑘 satisfies

𝛾 ∫
Ω

𝑞𝑘|∇𝑢min,𝑘|𝑞𝑘−2∇𝑢min,𝑘 ⋅∇𝜙𝑑𝑥+ ∫
Ω

[
𝑝𝑢

𝑝−1
min,𝑘

(
𝑃ℎ − 𝜌𝑠𝑈

vdW)
𝜙
]
𝑑𝑥

+∫
Ω

[
𝑝𝑢

𝑝−1
min,𝑘

(
𝐵(𝜓min,𝑘) +

𝜖𝑠 − 𝜖𝑚
2

|∇𝜓min,𝑘|2)𝜙
]
𝑑𝑥 = 0

for all 𝜙 ∈ 𝐶∞
0 (Ω𝑡). Therefore, 𝑢min,𝑘 solves

𝛾𝑞𝑘div
(|∇𝑢|𝑞𝑘−2∇𝑢)− 𝑝𝑢𝑝−1𝑉 (𝜓min,𝑘) = 0 in Ω𝑡

in the weak sense, where

𝑉 (𝜓) = 𝑃ℎ − 𝜌𝑠𝑈
vdW +𝐵(𝜓) +

𝜖𝑠 − 𝜖𝑚
2

|∇𝜓|2.
In view of (3.2), (𝑢min,𝑘, 𝜓min,𝑘) solves the following elliptic system
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

div(𝜖(𝑢)∇𝜓) + (𝑞𝑘 − 𝑢𝑝)
𝑁𝑐∑
𝑗=1

𝑐∞𝑗 𝑞𝑗𝑒
−𝛽𝜓𝑞𝑗 = −𝜌𝑚 in Ω;

𝜓 = 𝜓∞ on 𝜕Ω;

𝛾𝑞𝑘div
(|∇𝑢|𝑞𝑘−2∇𝑢)− 𝑝𝑢𝑝−1𝑉 (𝜓) = 0 in Ω𝑡;

𝑢 = 1 on Σ1;

𝑢 = 0 on Σ0.

(6.7)

Remark 6.4. The approach in this section actually gives a solution to 
the variational analysis of (1.1) with Constraints (2.2) and (2.3), which 
provides a complete answer to a question in our previous work [55].

6.3. Computational methods

This section presents the computational methods and algorithms for 
the solution of the coupled system (6.7) and its associated parameteriza-
tion process. The solution of (6.7) provides a physically sound “diffuse 
solute-solvent interface profile” 𝑢 and the electrostatic potential 𝜓 , and 
thereby the calculation of the total solvation free energy.

While solving for 𝑢 and 𝜓 , the surface evolution equation and the 
perturbed PB equation cannot be decoupled and thus need to be solved 
simultaneously. In the following, we first describe in more detail about 
the solution methods for each equation and their discretized formula-
tions. Then the scheme for the convergence of two coupled equations 
is presented as well as a simple parameterization approach for optimal 
parameter values.

6.3.1. The perturbed Poisson-Boltzmann equation
For the solution of perturbed PB (PPB) equation, we adopted the fi-

nite difference scheme. Thanks to the continuous dielectric function, an 
accurate solution can be achieved with a standard second-order cen-
ter difference scheme. Specifically, for a solvent without salt, the PPB 
equation can be simplified to a perturbed Poisson equation. If the po-
sition (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) is represented by the pixel (𝑖, 𝑗, 𝑘), its discretized form 
becomes

𝜖(𝑖+ 1
2
, 𝑗, 𝑘)[𝜓(𝑖+ 1, 𝑗, 𝑘) −𝜓(𝑖, 𝑗, 𝑘)]

− 𝜖(𝑖− 1
2
, 𝑗, 𝑘)[𝜓(𝑖− 1, 𝑗, 𝑘) −𝜓(𝑖, 𝑗, 𝑘)]

+ 𝜖(𝑖, 𝑗 + 1
2
, 𝑘)[𝜓(𝑖, 𝑗 + 1, 𝑘) −𝜓(𝑖, 𝑗, 𝑘)]

− 𝜖(𝑖, 𝑗 − 1
2
, 𝑘)[𝜓(𝑖, 𝑗 − 1, 𝑘) −𝜓(𝑖, 𝑗, 𝑘)]

+ 𝜖(𝑖, 𝑗, 𝑘+ 1
2
)[𝜓(𝑖, 𝑗, 𝑘+ 1) −𝜓(𝑖, 𝑗, 𝑘)]

− 𝜖(𝑖, 𝑗, 𝑘− 1
2
)[𝜓(𝑖, 𝑗, 𝑘− 1) −𝜓(𝑖, 𝑗, 𝑘)] = −𝑞(𝑖, 𝑗, 𝑘)∕ℎ

where the uniform grid spacing ℎ is applied at 𝑥, 𝑦 and 𝑧 directions, 
and 𝜖(𝑖 + 1

2 , 𝑗, 𝑘) = 𝜖(𝑢(𝑥𝑖 +
1
2ℎ, 𝑦𝑗 , 𝑧𝑘)), 𝑞(𝑖, 𝑗, 𝑘) is used to describe the 

fractional charge at grid point (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘). The fractional charge is calcu-
lated by the second-order interpolation (trilinear) of the charge density 
𝜌𝑚. Then a standard linear algebraic equation system is resulted from 
the discretized perturbed Poisson equation in the form of 𝐴𝑋 = 𝐵, in 
which 𝑋 is the targeted solution. Matrix 𝐴 is the discretization matrix 
and 𝐵 is the source term according to the discrete charges.

The boundary condition of PPB equation is computed via the 
summation of electrostatic potential contributions of individual atom 
charges [33]. The resulted linear system can be solved by various 
linear solvers (like biconjugate gradient in this study) together with 
pre-conditioners for potential acceleration. 0 can be used for the initial 
guess of the solution and convergence tolerance is set as a small number 
such as 10−6. It has been shown that the designed PB solver is capable 
of delivering second-order accuracy [17].
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6.3.2. The surface evolution equation
The solution of the surface evolution equation can be attained via 

the following parabolic PDE as done in earlier work [7,17].

𝜕𝑢

𝜕𝑡
= |∇𝑢|2−𝑞𝑘 [div(𝛾𝑞𝑘

∇𝑢|∇𝑢|2−𝑞𝑘
)
+ 𝑝𝑢𝑝−1𝑉

]
, (6.8)

As a result, the steady state solution of Equation (6.8) can be directly 
taken as the solution of the original elliptic equation.

Computationally, the equation (6.8) can be expanded into a form as 
follows.

𝜕𝑢

𝜕𝑡
= 𝛾𝑞𝑘

(𝑢2𝑥+𝑢
2
𝑦+(𝑞𝑘−1)𝑢

2
𝑧)𝑢𝑧𝑧+(𝑢

2
𝑥+(𝑞𝑘−1)𝑢

2
𝑦+𝑢

2
𝑧)𝑢𝑦𝑦+((𝑞𝑘−1)𝑢

2
𝑥+𝑢

2
𝑦+𝑢

2
𝑧)𝑢𝑥𝑥

𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

−𝛾(2 − 𝑞𝑘)𝑞𝑘
2𝑢𝑥𝑢𝑦𝑢𝑥𝑦+2𝑢𝑥𝑢𝑧𝑢𝑥𝑧+2𝑢𝑧𝑢𝑦𝑢𝑦𝑧

𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

+
(√

𝑢2𝑥 + 𝑢2𝑦 + 𝑢2𝑧

)2−𝑞𝑘
𝑝𝑢𝑝−1𝑉 .

In particular, the time-dependent derivative is carried out by explicit 
Euler scheme. Note that other implicit schemes can be designed to 
improve the solution efficiency and will be pursued later. The first 
and second order spatial derivatives are handled by finite difference 
schemes [17]. To impose the domain decomposition in (6.7), we let 𝑢
be fixed as one in the pure solute area Ω𝑚 and as zero in the pure sol-
vent region Ω𝑠. Here the pure solute area is numerically defined to be 
enclosed by a smoothed Van Der Waals surface (vdW) and the pure sol-
vent region is the area outside a smoothed solvent accessible surface 
(SAS). The initial value of 𝑢 in between Ω𝑚 and Ω𝑠 can be set between 
0 and 1.

6.3.3. Coupling of the perturbed Poisson Boltzmann and surface evolution 
equations

In principle, the surface evolution equation needs to be solved si-
multaneously with the perturbed PB equation until the solution process 
reaches a self-consistency. To speed up the whole iterative process, elec-
trostatic potential 𝜓 is updated after a number of time steps (i.e., 10 to 
100 steps) evolution of the parabolic surface equation [17].

Moreover, a simple relaxation algorithm is adopted to guarantee the 
convergence of the iterative process as follows [17]:

𝑢 = 𝛼𝑢𝑛𝑒𝑤 + (1 − 𝛼)𝑢𝑜𝑙𝑑 , 0 < 𝛼 < 1,

𝜓 = 𝛼′𝜓new + (1 − 𝛼′)𝜓old, 0 < 𝛼′ < 1,

where 𝑢𝑛𝑒𝑤 and 𝑢𝑜𝑙𝑑 are the new and old 𝑢 profile values from current 
and previous steps, respectively. 𝜓old and 𝜓new denote previous and new 
electrostatic potentials, respectively. 𝛼 = 0.5 and 𝛼′ = 0.5 are set in our 
calculation.

In addition, a simple cutoff strategy is conducted to apply Constraint 
(2.2) and to avoid possible numerical errors:

𝑢 =
⎧⎪⎨⎪⎩
𝑢(𝑥) 𝑢 ∈ [0,1]
0 𝑢 < 0
1 𝑢 > 1.

The cutoff checkup is carried out every time step or several steps during 
the solution of surface evolution equation.

Finally, to reduces the total iteration number and save the computa-
tional time significantly, first of all, one may start the iterative process 
with an initial 𝑢 from solving Eq. (6.8) without the electrostatic poten-
tial term. Second, one may take the prior potential 𝜓 as a good guess 
for the next resulted linear system in the PPB solution. That will make 
the PPB solver converges faster.

6.3.4. Parameterization
There are some parameter values that need to be determined for 

real numerical simulations of solvation free energy. They include sol-
vent density 𝜌𝑠, the solvent radius 𝜎𝑠, 𝛾 , 𝑃ℎ and so on. Since most of 
the parameters are involved in nonpolar solvation energy, a previous 
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simple parameter fitting strategy is adopted here [19,55]. In particu-
lar, on the one side, some parameter values are fixed or given such as: 
𝜌𝑠 = 0.03341∕Å3; solvent radius 𝜎𝑠 = 0.65 Å; radii of solute atoms like 
𝜎𝑐 = 1.87 Å. On the other side, some are considered as fitting parame-
ters like 𝛾 , 𝑃ℎ, and well depth parameters 𝜖𝑖𝑠 where 𝑖 denotes different 
atom types. The following iterative procedure is used to obtain the op-
timal fitting parameter values:

Step 0: An initial guess of fitting parameters and a trial set of 
molecules are determined with their existing information such as 
atomic coordinates, radii, and experimental data of solvation free en-
ergies.

Step 1: For individual 𝑗-th molecule, 𝑗 = 1, ⋯ 𝑁𝑚 where 𝑁𝑚 is the 
total number of molecules in the trial set, the coupled system (6.7) is 
solved until self-consistency is reached to find the quasi-steady state 
solution of 𝑢𝑗 and 𝜓𝑗 with latest parameter values. Note that if the trial 
set is nonpolar, one only needs to solve the surface evolution equation 
without a driven potential from the electrostatic field. Then the fitting 
process is exactly the same as our previous paper [55].

Step 2: Electrostatic solvation energy 𝐼𝑗𝑝,𝑞𝑘 is calculated for each 
molecule using the profile of 𝜓𝑗 .

Step 3: A non-negative least squares algorithm is used to update all 
non-negative parameters 𝑃ℎ, 𝛾 , and 𝜖𝑖𝑠 with a minimization problem

𝑇 = min
(𝑝,𝛾,𝜖𝑖𝑠)

𝑁𝑚∑
𝑗=1

(
𝐼𝑗𝑛𝑝,𝑞𝑘

+ 𝐼𝑗𝑝,𝑞𝑘
− 𝐼

𝑗,exp
𝑞𝑘

)2
,

where 𝐼𝑗,exp𝑞𝑘
is the existing experimental data of solvation free energies 

in the literature.
Step 4: The iterative loop from Step 1 to Step 3 is repeated until all 

fitting parameters converge to a certain set of values within a pre-set 
tolerance.

6.4. Simulation results

In this section, both nonpolar and polar molecules are taken for the 
numerical simulation and model validation. Nonpolar molecules are 
simulated first to justify the usage of 𝑢𝑝 which represents the volume 
ratio of solute. That may minimize modeling uncertainties from solvent-
solute electrostatic interactions. It is followed by the calculation of polar 
molecules to demonstrate the potential of current proposed model for 
the prediction of polar solvation energies.

6.4.1. Nonpolar molecules
To validate the current constrained variational model, we start with 

a set of 11 alkanes as a calibration set for numerical implementation of 
model solution and the associated parameterization process. First of all, 
two parameters 𝑁 and 𝑞𝑘 need to be pre-determined for each simula-
tion. It turns out that optimal fitting parameters are uniquely computed 
for a set of arbitrary 𝑁 > 1 and 𝑞𝑘, where 𝑝 =

2𝑁
2𝑁−1 , and 𝑞𝑘 → 1+. For in-

stance, when 𝑁 = 40 and 𝑞𝑘 = 1.00001, the calculated optimal fitting 
parameters are the following: 𝛾 = 0.0746 kcal/(mol Å2), 𝑃ℎ = 0.0090
kcal/(mol Å3) and 𝜖𝑐𝑠 = 0.486 kcal/mol, and 𝜖ℎ𝑠 = 0.00 kcal/mol. Note 
that 𝜖ℎ𝑠 and 𝜖𝑐𝑠 are well depth parameters of the hydrogen and car-
bon, respectively. Moreover, it is shown that the current model is able 
to reproduce the total solvation free energies of 11 alkanes very well 
(see Table 1). The root mean square (RMS) error of 11 alkenes is 0.109 
kcal/mol. For the nonpolar solvation free energy, the repulsive and at-
tractive parts of solvation free energy are also calculated for detailed 
comparisons with others in the literature. Note that the first two terms 
of (2.1) are considered as the repulsive part of solvation free energy.

Next, it is interesting to see whether the model parameter 𝑁 or 
equivalently 𝑝 = 2𝑁

2𝑁−1 , which is introduced in the volume ratio of solute 
𝑢𝑝, plays an important role in the solvation free energy calculation and 
prediction. For this purpose, different 𝑁 values are chosen for the set 
of 11 alkanes while fixing all other simulation setting. It is evident that 
almost identical simulation results are obtained for large enough 𝑁 (See 
Table 2).
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Table 1

Computed total solvation free energies of the trial set of 11 alkane compounds 
and their repulsive and attractive decomposition when 𝑞𝑘 = 1.00001. 𝛾 = 0.0746
kcal/(mol Å2), 𝑃ℎ = 0.0090 kcal/(mol Å3) and 𝜖𝑐𝑠 = 0.486 kcal/mol, and 𝜖ℎ𝑠 =
0.00 kcal/mol.

Compound Rep. part Att. part Numerical Experimental [11]

(kcal/mol)

methane 4.21 -2.21 2.00 2.00
ethane 5.90 -3.95 1.95 1.83
propane 9.00 -6.89 2.12 1.96
butane 7.45 -5.42 2.03 2.08
pentane 10.58 -8.27 2.30 2.33
hexane 12.13 -9.75 2.38 2.49
isobutane 8.90 -6.64 2.26 2.52
2-methylbutane 10.20 -7.80 2.40 2.38
neopentane 10.21 -7.61 2.60 2.50
cyclopentane 9.21 -8.04 1.17 1.20
cyclohexane 10.45 -9.08 1.37 1.23
RMS of calibration set 0.109

Table 2

Different optimized parameters and RMS errors for various 𝑁 values when 𝑞𝑘 =
1.00001.

𝑞 value 𝛾

(kcal/(molÅ2))
𝑃ℎ

(kcal/(molÅ3))
𝜖𝑐𝑠
(kcal/mol)

RMS 
(kcal/mol)

1 0.0758 0.0078 0.493 0.105
2 0.0749 0.0085 0.487 0.108
5 0.0746 0.009 0.486 0.109
10 0.0746 0.009 0.486 0.109
20 0.0746 0.009 0.486 0.109
40 0.0746 0.009 0.486 0.109

Table 3

Computed total solvation free energies of 11 alkene compounds when 𝑞 =
1.00001 and 𝑁 = 40.

Compound Rep. part Att. part Numerical Experimental [53]

(kcal/mol)

3-methyl-1- butene 10.15 -8.32 1.84 1.82
1-butene 8.68 -7.04 1.64 1.38
ethene 5.51 -4.12 1.49 1.27
1-heptene 13.42 -11.58 1.84 1.66
1-hexene 11.83 -10.05 1.78 1.68
1-nonene 16.64 -14.59 1.95 2.06
2-methyl-2-butene 10.08 -8.33 1.74 1.31
1-octene 14.99 -13.01 1.98 2.17
1-pentene 10.22 -8.58 1.65 1.66
1-propene 7.12 -5.59 1.53 1.27
trans-2-heptene 13.45 -11.62 1.83 1.66
RMS of prediction set 0.209

Moreover, with 𝑞 = 1.00001 and 𝑁 = 40, a predictive study is con-
ducted for a set of 11 alkene compounds which was also used before 
[19,53,55]. The assumed similar solvent environment allows one to 
apply the above-obtained optimized parameters of 11 alkanes here be-
cause of the fact that both nonpolar sets only possess two types of atoms 
(C and H). It turns out that the numerical prediction of the current 
model matches the experimental data well as shown in Table 3. The 
RMS error of 11 alkenes is 0.21 kcal/mol.

Furthermore, we have theoretically proved that total solvation ener-
gies converge to the case of 𝑞𝑘 = 1 when 𝑞𝑘 → 1+. Numerically, the con-
vergence can be demonstrated as follows: choosing a set of molecules 
like the above alkene compounds and fixing all other numerical set-
tings, one allows the value of 𝑞𝑘 to approach 1 by creating a sequence 
of 𝑞𝑘 (𝑞𝑘 = 1.01, 1.001, 1.0001, 1.00001, 1.000001). Then the total solvation 
free energy of each molecule is computed. Table 4 illustrates the con-
vergence of total solvation free energies for all eleven alkenes.
132
Table 4

Convergence of total solvation free energies of eleven alkene molecules when 
𝑞→ 1+ with other parameter values fixed.
Compound 1.01 1.001 1.0001 1.00001 1.000001

(kcal/mol)

3-methyl-1- butene 2.567 1.908 1.844 1.837 1.837
1-butene 2.268 1.701 1.647 1.641 1.641
ethene 1.888 1.524 1.489 1.485 1.485
1-heptene 2.797 1.930 1.846 1.837 1.837
1-hexene 2.625 1.857 1.784 1.776 1.775
1-nonene 3.126 2.060 1.957 1.946 1.946
2-methyl-2-butene 2.468 1.751 1.744 1.745 1.745
1-octene 3.049 2.083 1.990 1.980 1.980
1-pentene 2.381 1.716 1.653 1.646 1.645
1-propene 2.043 1.575 1.530 1.525 1.525
trans-2-heptene 2.789 1.918 1.835 1.826 1.826

Table 5

Comparison of total free energies (kcal/mol) for 17 compounds.
Compound Δ𝐺 Exptl Error

glycerol triacetate -10.10 -8.84 -1.26
benzyl bromide -2.38 -2.38 0.00
benzyl chloride -3.95 -1.93 -2.02
m-bis(trifluoromethyl)benzene 1.07 1.07 0.00
N,N-dimethyl-p-methoxybenzamide -8.74 -11.01 2.27
N,N-4-trimethylbenzamide -8.60 -9.76 1.16
bis-2-chloroethyl ether -3.26 -4.23 0.97
1,1-diacetoxyethane -5.49 -4.97 -0.52
1,1-diethoxyethane -4.51 -3.28 -1.23
1,4-dioxane -4.84 -5.05 0.21
diethyl propanedioate -5.10 -6.00 -0.90
dimethoxymethane -1.28 -2.93 1.65
ethylene glycol diacetate -6.48 -6.34 -0.14
1,2-diethoxyethane -4.64 -3.54 -1.10
diethyl sulfide -1.43 -1.43 0.00
phenyl formate -4.35 -4.08 -0.27
imidazole -10.83 -9.81 -1.02
RMS of 17 polar molecules 1.107

Remark that regarding the numerical calculation of solvation free 
energy for nonpolar molecules, the currently computed results are al-
most the same as the previous constrained solvation model [55] when 
𝑁 is large enough. The similarity can be explained by the fact that 
𝑝𝑢𝑝−1 → 1 for 0 < 𝑢 < 1 when 𝑝 = 2𝑁

2𝑁−1 → 1 with 𝑁 →∞.

6.4.2. Polar molecules
The introduction of 𝑢𝑝 as solute volume ratio enables us to de-

rive the system (6.7) from proposed constrained total solvation energy 
model (2.6). It has been a theoretical advance from our previous con-
strained model in which a PDE was derived only for nonpolar energy 
functional due to the complex two-obstacle problem [55].

In this section, the model potential and validation are demonstrated 
numerically for polar molecules. To the end, a challenging set of 17 
compounds is chosen. The challenge arises partially due to strong 
solvent-solute interactions caused by polyfunctional or interacting polar 
groups. Actually, its challenge can be seen quantitatively. For instance, 
using an explicit solvent model, Nicholls et al. obtained the root mean 
square error (RMS) as 1.71 ± 0.05 kcal/mol via [50]. With an improved 
multiscale model equipped with self-consistent quantum charge density 
by Chen et al. [18], RMS was still around 1.50 kcal/mol.

For the current simulation, the structure data of the set of 17 
molecules is taken from the supporting information of the paper of 
Nicholls et al. [50] as we did before. The dielectric constants are slightly 
adjusted. In the solute region 𝜖𝑚 ≈ 1, while 𝜖𝑠 ≤ 80 for the solvent region. 
For this 17 set, different well-depth parameters 𝜖𝑖𝑠 need to be opti-
mized based on the above-described simple parameterization scheme. 
It is shown that the computed solvation free energy is quite comparable 
with the experimental data. The root mean square error can be im-
proved to 1.107 kcal/mol (See Table 5) when 𝜖𝑚 = 1.15 and 𝜖𝑠 = 70. In 
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Table 6

Some optimized parameters and RMS errors from various 𝑁 values when 𝑞𝑘 =
1.00001.

𝑞 value 𝛾

(kcal/(molÅ2))
𝑃ℎ

(kcal/(molÅ3))
𝜖𝑐𝑠
(kcal/mol)

RMS 
(kcal/mol)

4 0.314 0.000 1.105 1.107
8 0.314 0.000 1.105 1.107
16 0.314 0.000 1.105 1.107
32 0.314 0.000 1.105 1.107

addition, it is found that almost identical simulation results are obtained 
for large enough 𝑁 . In other words, model parameter value 𝑁 does 
not play an important role for the solvation energy prediction while it 
obviously benefits the theoretical derivation and the proof for current 
constrained variational model. The minor effect of different 𝑁 values 
can be found in Table 6.

7. Conclusions

Variational implicit solvation models (VISM) with diffuse solvent-
solute interface definition have been considered as a successful ap-
proach to compute the disposition of an interface separating the solute 
and the solvent. It has been shown numerically that variational diffuse-
interface solvation models can significantly improve the accuracy and 
efficiency of solvation energy computation. However, there are several 
open questions concerning those models at a theoretic level. In partic-
ular, all existing VISMs in literature lack the uniqueness of an energy 
minimizing solute-solvent interface and thus prevent us from studying 
many important properties of the interface profile.

Therefore, by introducing a new volume ratio function 𝑢𝑝, in this 
work, we have developed a novel constrained VISM based on a promis-
ing previously-proposed total variation based model (TVBVISM). Ex-
istence, uniqueness and regularity of the energy minimizing solute-
solvent interface have been studied. Moreover, with the assistance of 
the precise depiction of the interface profile, this work provides a partial 
answer to the question why the solvation free energy is not minimized 
by a sharp solute-solvent interface. It turns out that when the mean cur-
vature of Σ0 is positive at some point, the energy minimizing state is 
never achieved by a sharp interface.

In addition, for the variational analysis of the new model and for 
the numerical computation of the solvation energy, a novel approach 
has been proposed to overcome the essential difficulty generated by 
the involved constraints in the model. Specifically, the variational for-
mulas of the new energy functional can be rigorously derived via the 
introduction of the new volume ratio function 𝑢𝑝 together with an ap-
proximation technique by a sequence of 𝑞-energy type functionals. This 
is another advance from our previous work in which only the numeri-
cal study of nonpolar energy can be conducted for a constrained VISM. 
Model validation and numerical implementation have been demon-
strated by using several common biomolecular modeling tasks. Numer-
ical simulations show that the solvation energies calculated from our 
new model match the experimental data very well.

For the future work, we will provide a complete proof for the con-
tinuous dependence of the solvation free energy on the surfaces Ω𝑚 and 
Ω𝑠 in a suitable topology. Numerically, based on the derived elliptic 
system, we intend to further improve the accuracy and efficiency of 
the solvation energy prediction via refined parameterization schemes. 
Moreover, analysis of the current and potential numerical schemes like 
convergence will be a topic for future study.
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133
Acknowledgements

This work is supported in part by National Science Foundation (NSF) 
grant No. DMS-1818748 (Z. Chen)

Appendix A. BV-functions

In Appendix A, we will introduce some notations and preliminaries 
of 𝐵𝑉 -functions. The main reference is [1,30]. Let Ω ⊂ℝ𝑁 be open.

Definition A.1. The space of functions of bounded variations on Ω, de-
noted by 𝐵𝑉 (Ω), is the collections of all 𝐿1(Ω)-functions whose gradient 
𝐷𝑓 in the sense of distributions is a (vector-valued) Radon measure with 
finite total variation in Ω. The total variation of 𝑓 in Ω is defined by

sup
⎧⎪⎨⎪⎩∫Ω 𝑓div𝑧𝑑𝑥 ∶ 𝑧 ∈ 𝐶∞

0 (Ω;ℝ𝑁 ), ‖𝑧‖∞ ≤ 1
⎫⎪⎬⎪⎭

and is denoted by ‖𝐷𝑓‖(Ω) or ∫Ω 𝑑|𝐷𝑓 |. 𝐵𝑉 (Ω) is a Banach space en-
dowed with the norm

‖𝑓‖𝐵𝑉 ∶= ‖𝑓‖1 + ‖𝐷𝑓‖(Ω).
By the structure theorem of 𝐵𝑉 -functions, for every 𝑓 ∈ 𝐵𝑉 (Ω), 

there exist Radon measure 𝜇 and a 𝜇-measurable function 𝜎 ∶ Ω → ℝ𝑁

such that

• |𝜎(𝑥)| = 1 a.e. and
• ∫Ω 𝑓div𝑧 𝑑𝑥 =− ∫Ω 𝑧 ⋅ 𝜎 𝑑𝜇 for all 𝑧 ∈ 𝐶∞

0 (Ω; ℝ𝑁 ).

We write |𝐷𝑓 | for the measure 𝜇.
Sobolev embedding also holds for functions of bounded variations:

𝐵𝑉 (Ω)↪𝐿𝑝(Ω), for all 1 ≤ 𝑝 ≤ 1∗ = 𝑁

𝑁 − 1
.

The embedding is compact when 1 ≤ 𝑝 < 1∗.

Proposition A.2. Let Ω be bounded and with Lipschitz boundary. Assume 
that {𝑓𝑛}∞𝑛=1 ⊂ 𝐵𝑉 (Ω) satisfies

sup
𝑛

‖𝑓𝑛‖𝐵𝑉 <∞.

Then there exists a subsequence, not relabelled, such that

𝑓𝑛 → 𝑓 in 𝐿1(Ω) for some 𝑓 ∈ 𝐵𝑉 (Ω).

Proposition A.3. Suppose that {𝑓𝑛}∞𝑛=1 ⊂ 𝐵𝑉 (Ω) and 𝑓𝑛 → 𝑓 in 𝐿1
𝑙𝑜𝑐

(Ω). 
Then

‖𝐷𝑓‖(Ω) ≤ lim inf
𝑛→∞

‖𝐷𝑓𝑛‖(Ω).
An Lebesgue measurable set 𝐸 ⊂ ℝ𝑁 is said to have finite perimeter

in Ω if

𝜒𝐸 ∈ 𝐵𝑉 (Ω).

Per(𝐸; Ω) ∶= ‖𝐷𝜒𝐸‖(Ω) is called the perimeter of 𝐸 in Ω.

Definition A.4. Let 𝐸 be of finite perimeter in Ω. We call the reduced 
boundary 𝜕𝐸∗ the collection of all points 𝑥 ∈ supp|𝐷𝜒𝐸 | ∩ Ω such that 
the limit

𝜈𝐸 (𝑥) ∶= − lim
𝑟→0+

𝐷𝜒𝐸 (𝐵(𝑥, 𝑟))‖𝐷𝜒𝐸‖(𝐵(𝑥, 𝑟))
exists in ℝ𝑁 and satisfies |𝜈𝐸 |(𝑥) = 1 a.e.. The function 𝜈𝐸 ∶ 𝜕𝐸∗ → 𝕊𝑁−1

is called the generalized outer normal to 𝐸. 𝜕𝐸 ⧵𝜕𝐸∗ is called the singular 
set of 𝐸. In particular, we have
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Per(𝐸;ℝ𝑁 ⧵ 𝜕𝐸∗) = 0. (A.1)

Proposition A.5. Let Ω be bounded and with Lipschitz boundary. There is 
a bounded linear map

Tr ∶ 𝐵𝑉 (Ω)→𝐿1(𝜕Ω)

such that

∫
Ω

𝑓div𝜙𝑑𝑥 = −∫
Ω

𝜙 ⋅𝐷𝑓 + ∫
𝜕Ω

(𝜙 ⋅ 𝜈)Tr𝑓 𝑑𝑁−1,

where 𝜈 is the outer unit normal on 𝜕Ω. It is understood that the measure on 
𝜕Ω is 𝑁−1. The function Tr𝑓 , which is uniquely defined 𝑁−1 a.e. on 𝜕Ω, 
is called the trace of 𝑓 on 𝜕Ω.

Proposition A.6. Let Ω be bounded and Lipschitz. Assume that 𝑓1 ∈𝐵𝑉 (Ω)
and 𝑓2 ∈𝐵𝑉 (ℝ𝑁 ⧵Ω). Define

𝑓 (𝑥) =

{
𝑓1(𝑥) 𝑥 ∈Ω
𝑓2(𝑥) 𝑥 ∈ℝ𝑁 ⧵Ω.

Then 𝑓 ∈ 𝐵𝑉 (ℝ𝑁 ). Moreover,

‖𝐷𝑓‖(ℝ𝑁 ) = ‖𝐷𝑓1‖(Ω) + ‖𝐷𝑓2‖(ℝ𝑁 ⧵Ω) + ∫
𝜕Ω

|Tr𝑓1 − Tr𝑓2|𝑑𝑁−1.

Given 𝑓 ∈𝐿1
𝑙𝑜𝑐

(Ω), we say that 𝑓 has an approximate limit at 𝑥 ∈Ω if 
there exists 𝑧 ∈ℝ such that

lim
𝑟→0+

1|𝐵(𝑥, 𝑟)| ∫
𝐵(𝑥,𝑟)

|𝑢(𝑦) − 𝑧|𝑑𝑦 = 0. (A.2)

The set of points where this does not hold is called the approximate 
discontinuity set of 𝑓 , and it is denoted by 𝑆𝑓 . By Lebesgue differenti-
ation theorem, 𝑁 (𝑆𝑓 ) = 0. 𝑧 is uniquely determined via (A.2) and is 
denoted by 𝑓 (𝑥). 𝑓 is said to be approximately continuous at 𝑥 if 𝑥 ∉ 𝑆𝑓

and 𝑓 (𝑥) = 𝑓 (𝑥).
We say 𝑓 ∈ 𝐿1

𝑙𝑜𝑐
(Ω) has an approximate jump point at 𝑥 ∈ Ω if there 

exist 𝑎 ≠ 𝑏 ∈ℝ and 𝜇 ∈ 𝕊𝑁−1 such that 𝑎 ≠ 𝑏 and

lim
𝑟→0+

1|𝐵(𝑥, 𝑟)| ∫
𝐵+
𝜈 (𝑥,𝑟)

|𝑓 (𝑦) − 𝑎|𝑑𝑦 = 0 and

lim
𝑟→0+

1|𝐵(𝑥, 𝑟)| ∫
𝐵−
𝜈 (𝑥,𝑟)

|𝑓 (𝑦) − 𝑏|𝑑𝑦 = 0.

Here{
𝐵+
𝜈 (𝑥, 𝑟) ∶= {𝑦 ∈𝐵(𝑥, 𝑟) ∶ 𝜈 ⋅ (𝑦− 𝑥) > 0}

𝐵−
𝜈 (𝑥, 𝑟) ∶= {𝑦 ∈𝐵(𝑥, 𝑟) ∶ 𝜈 ⋅ (𝑦− 𝑥) < 0}.

The set of all approximate jump points of 𝑓 is denoted by 𝐽𝑓 . When 
𝑓 ∈ 𝐵𝑉 (Ω), 𝑆𝑓 is countably 𝑁−1-rectifiable and 𝐽𝑓 is a Borel subset of 
𝑆𝑓 . Further 𝑁−1(𝑆𝑓 ⧵ 𝐽𝑓 ) = 0.

If 𝑓 ∈𝐵𝑉 (Ω), we define the super-level sets of 𝑓 by

𝐸𝑡 ∶= {𝑓 > 𝑡}, 𝑡 ∈ℝ.

Then for 1-a.a. 𝑡, 𝐸𝑡 is of finite perimeter and the function

[𝑡↦ Per(𝐸𝑡;Ω)]

is 1-measurable. Moreover, the coarea formula holds:

∫
Ω

𝑣(𝑥)𝑑|𝐷𝑢| = ∞

∫
−∞

∫
Ω

𝑣(𝑥)𝑑|𝐷𝜒𝐸𝑡
|𝑑𝑡 (A.3)

for all |𝐷𝑢|-integrable function 𝑣 ∶ Ω →ℝ. In addition,

𝐽𝑓 =
⋃

𝑡 ,𝑡 ∈ℚ, 𝑡 <𝑡

𝜕𝐸𝑡1
∩ 𝜕𝐸𝑡2

. (A.4)

1 2 1 2
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If 𝐸 ⊂ℝ𝑁 is measurable, we can define the upper and lower density 
of 𝐸 at 𝑥 by

𝐷(𝐸,𝑥) = limsup
𝑟→0+

|𝐸 ∩𝐵(𝑥, 𝑟)||𝐵(𝑥, 𝑟)| and 𝐷(𝐸,𝑥) = lim inf
𝑟→0+

|𝐸 ∩𝐵(𝑥, 𝑟)||𝐵(𝑥, 𝑟)| ,

respectively. If 𝑢 ∈𝐵𝑉 (Ω), we define

𝑢∗(𝑥) = inf{𝑠 ∶ 𝐷({𝑢 ≥ 𝑠}, 𝑥) = 0} and 𝑢∗(𝑥) = sup{𝑠 ∶ 𝐷({𝑢 ≤ 𝑠}, 𝑥) = 0}.

Then 𝑢 is approximately continuous at 𝑥 ∈Ω iff 𝑢∗(𝑥) = 𝑢∗(𝑥).

Appendix B. Tools from convex analysis

In Appendix B, we will state some useful tools from Convex Analysis. 
Interested readers may refer to the books [29,58] for more details.

Let 𝑋 be a Banach space with norm ‖ ⋅‖. Throughout, we assume that 
𝑓 ∶𝑋 →ℝ ∪{±∞} is convex and lower semicontinuous (l.s.c.) function. 
Its effective domain is defined by is

dom(𝑓 ) = {𝑢 ∈𝑋 ∶ 𝑓 (𝑢) < +∞}.

𝑓 is said to be proper if it nowhere takes value −∞ and is not identically 
equal to +∞ on 𝑋.

Given any subset 𝑈 ⊂𝑋, its indicator function 𝐼𝑈 is defined by

𝐼𝑈 (𝑥) =

{
0 when 𝑥 ∈𝑈

∞ when 𝑥 ∈𝑋 ⧵𝑈.

We denote by 𝑋∗ the topological dual of 𝑋 and ⟨⋅, ⋅⟩ the duality 
pairing. When 𝑓 is proper, the subdifferential of 𝑓 at 𝑢 ∈ dom(𝑓 ) is the 
set of all 𝑢∗ ∈𝑋∗ such that

⟨𝑢∗, 𝑣− 𝑢⟩ ≤ 𝑓 (𝑣) − 𝑓 (𝑢), ∀𝑣 ∈𝑋,

and is denoted by 𝜕𝑓 (𝑢). Each element of 𝜕𝑓 (𝑢) is called a subdifferential
of 𝑓 at 𝑢. When 𝜕𝑓 (𝑢) ≠ ∅, we say that 𝑓 is subdifferentiable at 𝑢.

The relationship between subdifferentiability and Gâteaux-
differentiability is described by the following proposition.

Proposition B.1. Let 𝑓 ∶ 𝑋 → ℝ ∪ {+∞} be convex and proper. If 𝑓 is 
Gâteaux-differentiable at 𝑢 ∈ int(dom(𝑓 )), then 𝜕𝑓 (𝑢) = 𝑓 ′(𝑢), where 𝑓 ′(𝑢)
is the Gâteaux-derivative of 𝑓 at 𝑢.

By the definition of the subdifferential, it is obvious that

𝜕𝑓1(𝑣) + 𝜕𝑓2(𝑣) ⊆ 𝜕(𝑓1 + 𝑓2)(𝑣).

However, the converse is not always true. We list below several cases 
where the converse holds.

Proposition B.2. Suppose that 𝑓1, 𝑓2 ∶𝑋 →ℝ ∪ {+∞} is convex and l.s.c. 
and 𝑢 ∈ dom(𝐹1) ∩ dom(𝐹2). If 𝑓2 is continuous at 𝑢, then

𝜕𝑓1(𝑣) + 𝜕𝑓2(𝑣) = 𝜕(𝑓1 + 𝑓2)(𝑣) ∀𝑣 ∈𝑋.

Proposition B.3. Let 𝑓, 𝑔 ∶𝑋 →ℝ ∪{∞} be proper, l.s.c. and convex func-
tions such that⋃
𝜇>0

𝜇(dom(𝑓 ) − dom(𝑔)) is a closed linear subspace of 𝑋,

then

𝜕(𝑓 + 𝑔)(𝑢) = 𝜕𝑓 (𝑢) + 𝜕𝑔(𝑢) ∀𝑢 ∈ dom(𝑓 ) ∩ dom(𝑔).

Proof. This is [4, Corollary 2.1]. See also [62] for an easy proof. □
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