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In the past decade, variational implicit solvation models (VISM) have achieved great success in solvation energy
predictions. However, all existing VISMs in literature lack the uniqueness of an energy minimizing solute-solvent
interface and thus prevent us from studying many important properties of the interface profile. To overcome
this difficulty, we introduce a new constrained VISM and conduct a rigorous analysis of the model. Existence,

uniqueness and regularity of the energy minimizing interface has been studied. A necessary condition for the
formation of a sharp solute-solvent interface has been derived. Moreover, we develop a novel approach to the
variational analysis of the constrained model, which provides a complete answer to a question in our previous
work [55]. Model validation and numerical implementation have been demonstrated by using several common
biomolecular modeling tasks. Numerical simulations show that the solvation energies calculated from our new
model match the experimental data very well.

1. Introduction

The description of the complex interactions between the solute and
solvent plays an important role in essentially all chemical and biolog-
ical processes. Solute-solvent interactions are typically described by
solvation energies (or closely related quantities): the free energy of
transferring the solute (e.g. macromolecules including proteins, DNA,
RNA) from the vacuum to a solvent environment of interest (e.g. water
at a certain ionic strength). There are two major approaches for solva-
tion energy analysis, i.e., explicit solvent models and implicit solvent
models [47]. Explicit models, treating solvent as individual molecules,
are too computationally expensive for large solute-solvent systems, such
as the solvation of macromolecules in ionic environments; in contrast,
implicit models, by averaging the effect of solvent phase as continuum
media [5,6,9,10,15,31,46], are much more efficient and thus are able
to handle much larger systems [6,20,32,36,37,40,49,61].

Central in the description of the solvation energy in implicit solvent
models is an interface separating the discrete solute and the continuum
solvent domains. All of the physical properties of interest, including
electrostatic free energies, biomolecular surface areas, molecular cavi-
tation volumes and pK, values are very sensitive to the interface def-
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inition [26,59,63]. Variational implicit solvation models (VISM) stand
out as a successful approach to compute the disposition of an inter-
face separating the solute and the solvent [8,16,17,21,22,28,65,71]. In
a VISM, the desired interface profile is obtained by minimizing a sol-
vation energy functional coupling the discrete description of solute and
the continuum description of solvent.

Despite of their initial successes in solvation energy calculations,
sharp solute-solvent interface models suffer from several drawbacks.
Firstly, from a physical point of view, there should be a smooth tran-
sition region, in which atoms of solute and solvent are mixed. In prin-
ciple, an isolated molecule can be analyzed by the first principle — a
quantum mechanical description of the wave function or density distri-
bution of all the electrons and nuclei. However, such a description is
computationally intractable for large biomolecules. Under physiologi-
cal conditions, biomolecules are in a non-isolated environment, and are
interacting with solvent molecules and/or other biomolecules. There-
fore, their wave functions overlap spatially, so do their electron density
distributions. Secondly, from an analytic point of view, the presence
of geometric singularities is inevitable in many conventional VISMs. It
makes the underlying model lack stability and differentiability, which
generates an intrinsic difficulty in the rigorous analysis of the model.
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Thirdly, from a computational point of view, these surface configura-
tions produce fundamental difficulty in the simulation of the governing
partial differential equations (PDEs), like the Poisson-Boltzmann (PB)
equation. Those considerations motivate the use of the diffuse solvent-
solute interface definition.

Among all effort to ameliorate the solvent-solute interface defini-
tion, arguably, one of the most extensively used models is the total
variation based model (TVBVISM), cf. [17,27,64,66-68]. The main idea
of TVBVISM is based on a transition parameter u : Q — [0, 1] such that u
takes value 1 in the solute and 0 in the solvent region. More precisely,
the following total solvation free energy was proposed in terms of u:

I=y||Du||(Q)+/Phu(x)dx+/ps(l—u(x))UVdW(x)dx

Q Q

+ / {460 [puw ) = Je VW 0?]

Q

NL‘
+(1 = u(x)) [—%eslw(x)lz DAl 1)] } dx. (1.1
j=1

Here the constant y > 0 is the surface tension. By the coarea formula for
a Lipschitz function u : Q — [0, 1],

1
| Dull(©) :=/d|Du|=/H2(Qnu"(t))dt,
Q 0

where H? stands for the 2-dimensional Hausdorff measure. Hence, the
total variation term || Dul||(Q) represents the mean surface area of a fam-
ily of isosurfaces Q nu~!(¢). See [66] for more detail. According to this
geometric interpretation, y|| Du||(Q), measures the disruption of inter-
molecular and/or intramolecular bonds during the solvation process.

The constant P, is the hydrodynamic pressure. In a previous work
[55], we proposed a novel physical interpretation of the characteristic
function u so that u(x) represents the volume ratio of the solute at x € Q.
Therefore, |, P,udx is the mechanical work of creating the biomolecu-
lar size vacuum in the solvent. p, is the constant solvent bulk density,
and U"W(x) is the attractive portion of the Van der Waals potential at
point x. It represents the attractive dispersion effects near the solute-
solvent interface and has been shown by Wagoner and Baker [63] to
play a crucial role in accurate nonpolar solvation analysis. The first
three terms are usually termed the nonpolar portion of the solvation
free energy.

The second and third lines of (1.1) are usually called the polar
portion of the solvation free energy, in which y is the electrostatic po-
tential. p,, is an L*-approximation of the density of molecular charges;
e, and ¢, are the dielectric constants of the solute molecule and the
solvent, respectively, with 0 <e,, <¢,. g; is the charge of ion species
j=12,-+,N,and c}” is the bulk concentration of the j-th ionic species.
Finally, p = 1/kgT, where kg is the Boltzmann constant and T is the
absolute temperature. For notational brevity, throughout this paper, we
put

N,

B(s)=p" [Z e (7% — 1)] .

Jj=1

(1.2)

Numerical simulations show that diffuse-interface models can signifi-
cantly improve the accuracy and efficiency of solvation energy compu-
tation [8,16,17,21,22,28,45,65,71]. In contrast, on a theoretical level,
there are several open questions concerning model (1.1).

First, the uniqueness of a minimizer is unknown for (1.1). Indeed,
most of the solvation energy functionals, regardless of sharp or diffuse
interfaces, only predict local minimizers, cf. [8,16,17,21,22,28,45,65,
71]. As a consequence, solutions of the corresponding Euler-Lagrange
equations may not correctly depict the energy minimizing interface pro-
file. In contrast, any minimizer of (1.1) is global. However, lacking strict
convexity, (1.1) may admit multiple global minimizers. This prevents

120

Computers and Mathematics with Applications 130 (2023) 119-136

us from studying many properties of the interface profile, e.g. the size
of the set of discontinuities. These observations motivate us to intro-
duce strict convexity into model (1.1) by including a new parameter
p= 2]2\/—’\11 with N € N so that u”(x) represents the volume ratio of the
solute at x € Q. It is important to notice that the geometric meaning
of the term || Dul|(®2) remains the same as in the original model (1.1).
We will establish the existence, uniqueness and regularity of the global
minimizer of the modified model, see (2.6).

Second, the natural admissible space to minimize (1.1) is the space
of BV -functions. Therefore, it is possible that model (1.1) is minimized
by the characteristic function of a set of finite perimeter. This corre-
sponds to a sharp solute-solvent interface, an unrealistic situation as
discussed before. Nevertheless, it is mathematically impossible to ex-
clude such situations in model (1.1) due to the lack of uniqueness of a
minimizer. Based on the modified model, this work provides a partial
answer to the question why the solvation free energy is not minimized
by a sharp interface. More precisely, we show that a necessary condition
for a nonpolar molecule to have a sharp energy-minimizing interface is
that the mean curvature of its Van Der Waals surface is everywhere
nonpositive. This condition, nevertheless, is unrealistic for almost all
real-world biomolecules. To the best of our knowledge, our work is the
first to give a mathematical explanation of such phenomenon.

Third, the physical meaning of the characteristic function u enforces
two biological constraints: (1) u needs to be 1 for the pure solute re-
gion and 0 in the pure solvent area, and (2) as a volume ratio function,
it must satisfy that 0 <u < 1. This leads to a constrained total variation
model (2.6), which is a non-differentiable functional with a two-sided
obstacle. It is known that the Euler-Lagrange equations of similar func-
tionals with simpler structure and without obstacle, e.g. Rudin-Osher-
Fatemi models, were formally derived by using the 1-Laplacian operator
[54]. With the presence of the obstacle, on a heuristic level with suf-
ficiently smooth minimizer » and energy functional, one expects the
corresponding first variations with respect to u to take the form of
a variational inequality, or equivalently, of a 1-Laplacian type equa-
tion involving a measure supported on the coincidence sets {u =0} and
{u = 1}. Unfortunately, both the functional (2.6) and the minimizer u
lack the required smoothness. This casts a shadow over the study of the
first variations of the constrained total variation model, not even for-
mally. In [55], we proposed a novel approach to the variational analysis
of such constrained VISM via approximation by a sequence of g-energy
type functionals. This approach was applied to the numerical study of
the nonpolar energy in our previous work [55]. Using a similar idea
and the new volume ratio function u?, we will rigorously derive the
variational formulas of the new total energy functional.

The rest of the paper is organized as follows. A list of the main the-
orems is stated at the end of the introduction. In Section 2, we state
the precise definition of our new model. In Section 3, we study a fam-
ily of perturbed Poisson-Boltzmann equations. These equations will be
used in Sections 4 and 6. Section 4 is devoted to the validation of the
model, in which we prove the existence and uniqueness of a minimizer
and the continuous dependence of the solvation energy on the biologi-
cal constraints. In Section 5, a necessary condition for the formation of a
sharp solute-solvent interface is derived. The argument heavily relies on
the tools from nonsmooth convex analysis. In Section 6, we conduct a
variational analysis of our new model by means of an approximation ar-
gument. Base on this analysis, our model, including its solvation energy
and solute-solvent interface predictions, is studied through numerical
simulations. For the readers’ convenience, we include two appendices
at the end of this article, one on BV -functions and the other on nons-
mooth convex analysis.

For the reader’s convenience, we will give a list of the main theoretic
results here:

+ Theorem 4.1: the existence and uniqueness of a global minimizer
of the total solvation energy;
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» Theorem 4.2: the continuous dependence of the solvation energy
on the biological constraints;

» Theorem 5.10: a necessary condition for the formation of a sharp
solute-solvent interface;

+ Theorem 6.3: the theoretic basis of the numerical simulations.

2. Solvation free energy functional
2.1. Notations

In this article, we use x = (x,x,,+,xy) to denote the coordinates
in RN, SN-! denotes the (N — 1)-sphere in RV Given two vectors u,v €
RN, u- v is their inner products.

Given U C RV, U stands for the closure of U. The topological bound-
ary of U is denoted by aU. Given two domains U and Q in RN, U cc Q
means that U c Q.

For any two Banach spaces X,Y, the notation

XoY

means that X is continuously embedded in Y. Given a sequence
{ue)2, = (uy,up, ) in X, u = u in X means that u; converge weakly
to some u € X.

Given 1 < p < oo, let p/ be its Holder conjugate. LP(U, X) is the set
of all X-valued p-integrable (Lebesgue) measurable functions defined
on U, whose norm is denoted by || - ||,. The notation X is sometimes
omitted when its choice is clear from the context. W*?(U) stands for
the Sobolev space consisting of functions whose weak derivatives up to
k-th power belong to L?(U). Additionally, H'(U) = W 2(U).

Given two sets A and B, AC B and A C B mean that A is a subset
and a proper subset of B, respectively.

Finally, we denote by £V and H"V-! the N-dimensional Lebesgue
measure and the (N — 1)-dimensional Hausdorff measure, respectively.

2.2. An experimental based domain decomposition

Let Q C R3 be a bounded and connected Lipschitz domain composed
of three disjoint subdomains:

+ Q,: solute (molecular) region;
+ Q,: solvent region;
+ Q,: solute-solvent mixing region.

We further assume that 0Q C 9Q, and 0Q,, C 9Q,. Let

T, =09,

be a smoothed Van Der Waals surface enclosing the pure solute region
and

T =0Q,\0Q=0Q,\ %,

be the smoothed solvent accessible surface outside which is the pure
solvent domain. Suppose that £, n %, = and Q,,,Q, are non-empty.
In addition, we assume that X;, i =0, 1, are embedded closed Lipschitz
surfaces. In this article, a closed surface always means one that is com-
pact, without boundary and embedded in R3. We further assume that
the solute region Q,, contains N, solute atoms located at x;,,xy ;
and there are N, ion species outside Q,,. Finally, for notational brevity,
we put Q, =Q\ Q,. A picture illustration of the domain definition and
decomposition can be found in Fig. 1(A).

2.3. A novel solvation energy functional
As an improvement of the previous differential geometric based sol-

vation model [17,55], we study a novel solvation free energy, whose
nonpolar portion is defined as
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Inp(u):y/dlDul +/ [P + py(1 = uP)UYV] dx 2.1
Q Q

2N
2N-1
Since % = 1* is the Sobolev dual of 1, we have

with p= for some integer N > 1 and 4, P, > 0. Note that 1 < p < %

BV (Q) o LP(Q).

Here u : Q — R represents a characterizing function of the solute such
that u?(x) is the volume ratio at position x € Q (as shown in Fig. 1). As
such, the physical constraints

u(x)€[0,1] fora.a.xeQ (2.2)
and
u=1 ae inQ, and u=0 a.e inQ; (2.3)

need to be imposed. Note that U4V (x) can be formulated by 2 UM (x)
in which U}"'(x) represents the attractive part of Lennard-Jones poten-
tial [17,63]. To this end, the L-J potential can be divided into attractive
U™ and repulsive U;" in different ways. Here we take a Weeks-
Chandler-Andersen (WCA) decomposition based on the original WCA
theory [42]:

; —€; 0<|lx —x;|| <265,
U“m,WCA(;»)={ €;5(x) f is
i UM llx—xll > 25,
UM@ +e,(x)  0<|lx—x;ll <200,

rep, WCA _
Ui (X)_{O ||X—X,-||Z2I/60"

is?
12 5,\6
)= (%2)]
with parameters ¢;, of energy and o, of length.

We choose Q,, in such a way that there exist balls B(x;,7) with i =
1,--,N, and 7 > 0 such that

where

.
UM () =4, [( 2

N,

a

UBex.nca,

i=1

The polar portion of the solvation free energy is defined as

1
Iwy) = / [ = 5€@IVy P = (1 —un)Bw)] dx.
Q
Here e(u) =uPe,, + (1 — uP)e, is the dielectric constant of the solvent/so-
lute mixture. p,, is supported in Q,. In addition, the neutral condition
holds

NC
Z c;.’° q;=0.
j=1
Recall the definition of B(-) from (1.2). It is important to observe that
B(0) =0 and, by (2.4), B'(0) =0 and B’(+o0) = +c0. Further, B”(s) > 0.
We thus conclude that B(0) = mi[FI{}B(S) and B is strictly convex.

NS

2.4)

The problem of interest to us is to minimize the total energy func-
tional
L(u,w) = Iypw) + I, p),

where y satisfies the Dirichlet problem of a generalized Poisson-
Boltzmann equation

div(e@)Vy)— (1 —u")B'(y)=—p,, in
(2.5)
y=y, on 0JQ
for some
Ve EWR(Q).
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u=0
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Fig. 1. (A) Illustration of the model domain definition and decomposition: Q,,: solute (molecular) region; Q,: solvent region; €,: solute-solvent mixing region; (B) The

cross line of v and (1 — u) of a diatomic system.

Therefore given u € BV (Q) satisfying (2.2), w = w(u) is determined via
the elliptic boundary value problem (2.5).

With the above observations, the minimization problem can be re-
stated as to minimize

I(M)=y/d|Du|+/[Phul’_;,_px(]_up)uvdW] dx

Q Q
+ / [y - %e(unvw ~ (1= un)Bw)| dx (2.6)
Q

in the admissible space

Y ={ue BV (Q) : u satisfies Constraints (2.2) and (2.3)}

and y = y(u) is determined via (2.5) in the space
A={veH (©Q): Vg =Weo )
3. A family of perturbed Poisson-Boltzmann equation

In this section, we study a sequence of functionals associated with
the polar free energy, which will be used in the numerical simulations
in Section 6.

Let {q; };2, be a sequence of decreasing real numbers with klgl; q =

€s

1 and taking values in <1, ) In addition, set g, = 1. For any

€~ €m

u€ BV (Q)and k=0,1,---, we put

Giy) = / [3e@IVw > = o + (a — ) B dx.
Q

Particularly, Gf,)(lll) :
define

=1, u,y). Further, let Yy =Y and for k=1,2, -

Ve={ue Wi Q) : |u| < {/q; a.e.in Q and u satisfies Constraint (2.3)}.

3.1

Correspondingly, we introduce a sequence of perturbed Poisson-
Boltzmann equations for k=0, 1, --

{div(e(")vw) = (g —u")B' W) ==p,

V=V

in Q

3.2)

on 0Q.

In particular, when k =0, (3.2) coincides with (2.5). Similar problems
have been studied in [22,44,45,55].

Proposition 3.1. Given any u€ Y,, k=0, 1, ---, there exists a unique y, €
A such that

k — mi k
Glty,) = minGy(y) < o.

Moreover, y, is the unique weak solution to (3.2). Further, y, satisfies

122

vl + vl < Co- (3.3)

In particular, the constant C, is independent of Q,,, Q., u and k.

Proof. Analogous problems have been studied in the literature on var-
ious Poisson-Boltzmann type equations, cf. [22,44,45,55]. In order to
show the determining factors of the constant 50 in (3.3), we will, nev-
ertheless, state a brief proof.

For every k, e(u) € L®(Q) with 0 <e¢, — q,(¢;, — €,) < e(u) < €. Stan-
dard elliptic theory, see [34, Theorems 8.3 and 8.16], implies that

{div(e(u)Vw) +p,=0

V=V

in Q;

on 0Q

has a unique weak solution ¥, i.e.

/e(u)Vﬁ/u -Vodx= /pm¢ dx, V¢e H(; (Q), 3.9
Q Q
satisfying

1 11+ 11l < M.

The constant M, depends only on &, ¢, ¢,, ¢, and y,,. Define G* :
H(;(Q) — RU {+o0} by

Ghy) = / [2e@IVyl? + (g - B +9,)] dx.
Q

By the direct method of calculus of variation and the strict convexity of
Gk(-), there exists a global minimizer , € H(;(Q) of G¥(-). (3.4) implies

G ) =Gy -y + / [%e(u)lwful2 - pmtifu] dx.
Q

Let y, =y, + ,. From the above equality, we learn that y, minimizes
G’u‘(~) in Y,. Then following Steps (iii) and (iv) in the proof of [55,
Proposition 2.2], we can show that

19, lleo + 19,11 11 < M,
for some constant M, depending only on M,. We can take 50 =M, +

M. O

The above proposition immediately gives the following crucial esti-
mates. For every k and u € Y,

G <Ghw) = [ [ 2eITULP = pyvec + =) Bw)| dx
Q

<C [IWely + Weollos + Blllwsllos)] < Ei. 35)

where y, is the solution to (3.2). The constant C, is independent of Q,,
Q,, k and the choice of u.
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Proposition 3.2. Let u;, € Y, k=0, 1, ---, be such that

ug = uy in LYQ) as k- co.

Let y, € A satisfy G, (y)= gleigG’;k(w). Then

wi—w, inH'(Q and Gj (y)— G, (W) ask— co. (3.6)

If, in addition, u, € ¥ and iy, € A satisfies G,?k(VN’k) = miﬁng(w). Then
we.

Pe—wy inH'(Q and G) i)~ G, (W) ask— co. 3.7)
Proof. We will only prove (3.6). The proof for (3.7) is similar.
Observe that since u; — ug in L'(Q) and {u}? are uniformly
bounded in L*®(Q). From the Riesz-Thorin interpolation theorem, we
infer that u;, — u, in L"(Q) for all r € [1, o). Further, by the mean value
theorem
Igirg/ |uf — ug|’dx < Mljirg lug —uoll- =0, rell, o), (3.8)
for some constant M > 0.
Due to (3.3), there exists a subsequence of {we )2, » not relabelled,
and some y € H'(Q) such that y, -y in L2(Q) and y, — v in H'(Q).
Since y, weakly solves (3.2) with u=u,, for any ¢ € Cé Q)

/ (e )V, - Vo + (q, —ub) B ()] dx = /pmtﬁ dx. (3.9
Q Q

The dominated convergence theorem then implies that

/ [eCuo)Vy - Vo + (1 —ub) B'(y)p] dx:/pqudX. (3.10)

Q Q

Note that, (3.3) and a standard approximation argument imply that
(3.9) and (3.10) hold for any ¢ € H(} (). In view of Proposition 3.1,
we infer that y, = y. Next, we will show that

Jim /e(uk)|Vu/k—Vy/0|2dx=0. (3.11)
— 00
Q

Using ¢ =y, — y as a test function in (3.9), we conclude that

k]im / e(u)Vyy - (Vy — V) dx =0.
-0
Q

By the dominated convergence theorem, we have

lim /e(uk)|Vy/k|2dx
k—o0
Q

= klim /e(uk)Vv/k -(Vyy = Vyg)dx + klim /e(uk)Vu/k - Vypdx.
Q Q

Note that y =y, — w,, weakly solves the Dirichlet problem

in Q;

{div(s(uoww = (1= u))B (W) — ppy — div(eup) V)
0Q.

=0 on

In view of (3.3), e(uy)Vy,, and (1 — uS)B’(y/O) - p,, belong to L®(Q). By
the Calderon-Zygmund type estimates for uniformly elliptic equation,
cf. [48, Theorem 1], there exists some p, > 2 such that y, € WP (Q).
Note that [48, Theorem 1] requires Q to be of class " for some r > 2, cf.
[48, Formulas (19) and (20)]. It follows from [57, Theorems B and 3.1,
Lemma 4.1] (by taking T = V(-A)~'div in [57, Theorem 3.1]) and the
Poincaré’s inequality that any Lipschitz domain satisfies this condition.
We thus infer from (3.8) that

klg&/ e(u)Vyy - Vygdx = / e(u0)|Vq/0|2 dx, (3.12)
Q Q

and in turn,
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Jim /e(uk)|V1//k|2dx:/e(u0)|Vy/0|2dx. (3.13)
—00
Q Q

The dominated convergence theorem, (3.12) and (3.13) imply that

lim /s(uk)Wy/k — Vyol? dx
k—oc0
Q

=,35n;°/e<uk)| (19w = 2V - Vi + |V ) dx =00
Q

This establishes (3.11). It follows from the Poincaré inequality that
v, =y in H'(Q). The convergence G’;k ) — GBU(WO) then can be
shown by using (3.13) and the dominated convergence theorem. []

4. Properties of global minimizers

The following theorem on the existence and uniqueness of a mini-
mizer of I(-) can be proved essentially in the same way as [55, Theo-
rem 2.4] by using Propositions 3.2, A.2 and A.3.

Theorem 4.1. There exists a unique u,;, € Y such that I(u;,) = mii’]l] (w).
ue,

To show the robustness of the model (2.6), one needs to answer the
question whether the solvation energy I(u,,;,) depends continuously on
Q,, and Q in a suitable topology? The answer to the above question
is affirmative. We will present the proof of a partial result in this sub-
section. Due to the length of this article, a complete answer will be
presented in a subsequent paper.

Assume that {ﬁm;n};’,": , and {ﬁs;n};’,": , are two sequences of Lipschitz
subdomains such that

cQ, withoQcaQ,,.

(4.1)

sin

Nﬂ
JBx0cQ,,cQ, and Q
i

We consider the sequence of energy functionals T, (-) defined by replac-
ing Q, and Q; by Q,., and Q,,, in I(-), respectively. The corresponding
admissible spaces are

Y,={ueBV(Q):0<u<lae inQ and u=1a.e.in§~2m;"and

u=0a.e.in Ezsm}.
Theorem 4.2. Assume (4.1) and as n — oo

X5 —xo, and x5 =y in L'(Q).

Then for each n, there is a unique minimiger u, of I,(-) in ¥,. Moreover,

1im 7,,(u,) = ().

Proof. The existence and uniqueness of a minimizer of I(-) in 3, for
each n follows from Theorem 4.1. Observe that u,,, € Y, for all n. Thus

[Nn(un) < l(umin) = Tn(umin)'

This implies that

r [ aiDul+ Pl 4o, [0 dx= € <
Q \Q,

where 51 is the constant in (3.5). Therefore, ||u,|lp, is uniformly
bounded with respect to n. Proposition A.2 implies that there exists
a subsequence, not relabelled, and some u € BV(Q) such that u, — u
in L1(Q). From Propositions A.3, Propositions 3.2 and the dominated
convergence theorem, we infer that

T (i) < 1(u) < liminf T, (u,) < limsup T, (u,) < I(ttgiy)-
n—oo n—oo

This proves the convergence assertion.

O
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A case of particular interest is when Q, =§, thatis, Q=Q, uT"U
Q, with T =0Q,, Nn 0Q; being the Lipschitz sharp interface separating
the solute and solvent regions. Further, suppose that Q, cc Q. In this
case, (2.6) reduces to a sharp interface model. The corresponding sharp-
interface solvation free energy is given by the one proposed in [27,28]

Eq =yPer(Q,,;Q) + P,L3(Q,) + / 2. U WY dx 4 G (Q,), 4.2)

Q

s

where Per(Q,,;Q) is the perimeter of Q, in , see Appendix A,
and G,.(Q,) is the electrostatic free energy. In the classic Poisson-
Boltzmann theory, it is defined by

é‘m 2 €S 2
Gae@) = [ [ouw = Z19w] ax= [ |Z19+ ] ax,
Q Q

'm

cf. [2,15,23,43,56,69,70]. The electrostatic potential y solves the clas-
sic sharp-interface Poisson-Boltzmann equation:

{le((é‘m Q, + Gxﬂfgg)VlI/) - /YQS B,(W) ==Pm

V=¥

s

in Q;

on 0Q.

The following corollary shows that (4.2) is in some sense the limiting
case of our diffuse interface model.

Corollary 4.3. Assume that Q =, UT'UQ, and I =9Q, N 9Q; is Lip-
schitz. Further, suppose that Q,, cC Q. Under the same assumptions as in
Theorem 4.2, lim I,(u,) = E,.

n—00

Remark 4.4. In a subsequent paper, we will show that, under mild reg-
ularity assumption on X; and X, the conditions Q,,., CQ,, and Q ., C Q
in Theorem 4.2 can be relaxed.

5. How to exclude the formation of sharp interfaces?

In Theorem 4.1, we have shown that there is a unique character-
izing function uy;, € BV () minimizing (2.6) in Y. However, since
BV -functions allow jump discontinuities, a natural question to ask is
whether the minimizing energy state is achieved by a sharp interface
between the solute and solvent regions, or equivalently, whether the
characterizing function u,;, is the characteristic function of a set of fi-
nite perimeter.

To simplify the analysis, we will focus on the nonpolar portion of
the solvation energy, i.e. (2.1). Motived by the idea in [12-14], we will
show that when the mean curvature of X is positive at some point,
the energy minimizing state is never achieved by a sharp interface. See
Theorem 5.10.

5.1. Necessary conditions for the minimizer of nonpolar energy

Throughout this section, we assume that Q, # . First consider the
minimization problem of the nonpolar energy

T () :y/dlDu|+/ [P+ p,(1 = u"UYV] dx (5.1)

Q Q

in the admissible space

X ={ue BV(Q) : u satisfies Constraint (2.3)}.

One will show that the minimizer u,;, of (5.1) automatically satisfies
Constraint (2.2). The reason to exclude (2.2) in the definition of the
admissible space is due to the following consideration. Any subdiffer-
ential of I () with Constraint (2.2) contains a function which may be
discontinuous along d{u,, =1} and o{u,;, = 0}. This will prevent us
from establishing the continuity of u;, in these two sets.

Theorem 5.1. (5.1) has a unique minimizer u,;, € X, which satisfies Con-
straint (2.2).
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Proof. Note that X is closed and convex in BV (Q2). Based on the strict
convexity, lower semicontinuity of /,, and the direct method of Calcu-
lus of Variation, we can readily establish the existence and uniqueness
of a global minimizer u,;,. If £3({uy;, > 1} U {4y <0}) > 0, let

1 when u;, (x) > 1;
Unin () =40 when u;, (x) < 0;

umin(x)  elsewhere.
Direct computations show that I,,(#yin) < Inp(Umin)- A contradiction.

Therefore, 0 <u,;, <lae. inQ. [J

Next, we derive necessary conditions for the minimizer of (5.1).
We will use tools from non-smooth analysis, cf. [24,25,29], to derive
the subdifferential of (5.1). However, very little is known about the
dual space of BV (Q). To overcome this difficulty and tackle the Con-
straint (2.3), we will consider I,,asa functional defined on L?(Q) and
include two extra terms. Define

Enp()=I,u)+7y / | Tru| dH? + I (v) (5.2)
0Q

in LP(Q), where Tru is the trace of u on 0Q and

K={uel’(©Q:u=1inQ,, andu=0in Q, a.e.}

and Iy is the indicator function of K. In addition, we put

Eyw) =711 Dull@) + 7 / (Tru] d 2,
0Q

and

Ey(u) = / [Py + py(1 —uP)UYY] dx.
Q

The latter is Lipschitz continuous in L?(Q). It is understood that

ifue LP(Q)\ BV(Q).

+00

E\w)= {y”Du”(g)“/ag TruldH?  ifue BV(Q)

So, dom(E) = BV () and dom(Ig) = K. Using these notations, we can
restate Problem (5.2) as to minimize a functional E,, 1 LP(Q) - RU{}
defined by

E () 1= E W) + Ey(u) + I (u).

Direct computations show that u,;, minimizes (5.1) in X iff it minimizes
E,p() in LP(Q).

Note that K is closed and convex in L?(Q). This implies that I is
convex and lower semicontinuous. What is more, by the definition of
subdifferentials, for every u € K, u* € a1l (u) iff

W, u) > (W, v), VYveKk.

Here (-,-) is the duality pairing between L?(Q) and L? (Q), that is
(v,w) = / owdx, veL(Q), we L’ (Q).

Q
If L3({u* >0} NQ,) >0, set D= {u*>0}NQ,. We define

fuw+1,
v {u(x»

Then v € K and

xeD
elsewhere.

W, v—u)>0.

A contradiction. Similarly, we can show that £3({u* <0} nQ,) =0. Thus,
u* =0 a.e. in Q,. This is also the sufficient condition of u* € oI (u).
Indeed, given any u* € L (Q) with u* =0 a.e. in Q,, for any ve K,
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(W, v—u)= / u*(u— v)dx+/u*(u —0v)dx=0.
Q\Q, Q
To sum up, a function u* € r (Q) belongs to oI (u) iff u* =0 in Q,.
To compute 0E, (), we define
X9 i={z€ LXQRY) : divze L7 (Q)}.

Here, divz € L (Q) means that there exists f € L” (Q) such that

/f¢dx=—/z-V¢dx
Q Q

for all ¢ € Cy°(Q). Given any u € BV(Q) and z € X;;’, there exists a
Radon measure, denoted by z - Du, such that for any ¢ € Gy (), with a

little abuse of notation,
- / uzdivpdx — /u¢divz dx.

Q Q

(z- Du,¢) :=/¢(Z-Du)=
Q

The measure z - Du is absolutely continuous with respect to | Du|. By the
Radon-Nikodym Theorem, there is a | Du|-measurable function 6(z, Du)
s.t.

/z~Du=/6‘(z,Du)d|Du|
A A

for all Borel sets A C Q. Let

(5.3)

M= (o el”(Q: vt =

—divz for some z € X% with ||z||, <1}.
P

One can follow the idea of [39, Proposition 4.23(1)] and prove that

u* €dE (w) iff E;(w)=yu*, u), u*eM;,,

that is,

El(u)=—y/udivzdx=y/z-Du—y//(z~\/()Q)ud7-l2
Q Q oQ

for some z € X% with ||z||, <1, where v, is the outward unit normal
of Q. The last equality follows from [3, Theorem 1.9]. In addition, [3,
Corollary 1.6] shows that ||z||, = 1 whenever u # 0.

Next, Proposition B.1 implies that for any u € L?(Q),

(5.4)

OE,(u) = pPyuP™" — pp P~ UV,

Because of the lack of continuity of E, and Iy, in general, we can only
conclude that 0E,| (u)+ 01 (u) C 0(E, + I )(u). In order to compute d(E; +
I'x)(w), we will use Propositions B.3. It suffices to verify the closed linear
space condition. An easy computation shows that

dom(E,) — dom(Ig) = {v € L(Q) : vlg, uo, € BV(Q,UQ)},

which is obviously a linear subspace of L?(Q). We learn from Proposi-
tions A.3 and A.6 that dom(E,)—dom(/g) is closed. Now Proposition B.3
immediately implies that

O(E, + I)(u) = 0E, () + 01 (u).

We thus have

OE(u) = 0E, (u) + 0E,(u) + 0 (u0). (5.5)

From the definition of subdifferential and (5.5), we learn that

u € X minimizes (5.2) iff 0€0E(u)=0E,(u) + 0E,(u) + oI x(u).

More precisely, this means that there is some z € X;? with ||z]l, =1
satisfying (5.4) and w € L”'(Q) with w =0 in , such that
0=—ydivz + pufn_hl (Ph - pSUVdW) +w inQ, (5.6)

where z satisfies
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/z * Dupyyy = — / Upindivz dx = || Duy,p [| (€2).

Q Q

In particular, it holds that

. —1 dW .
0=—ydivz+pu’ (P, —p,U*™) inQ,.
5.2. Regularity of the minimizer u,,;,

As in the previous subsection, u,,;, is the minimizer of (5.2) in L?(Q).

‘min
Set
E, i={uy, >1t}, t€l0,1) 5.7)
to be the super-level sets of u,;,. Recall Q, = Q\ Q,.
Proposition 5.2. For all 1 € [0, 1), E, is a solution of
. . p—1 _ vdW
éréljr\l/l yPer(E; Q) + /pt (Ph p,U ) dx|, (5.8)

E

where the minimum is taken in the set

M = {E C Qs of finite perimeter : Q,, CECQ,}.
Proof. Take z as in (5.6). (5.3) and (5.4) show that

”Dumin”(Q):/z' Dumin :/9(2, Dumin)dlDuminl‘
Q Q

By [3, Corollary 1.6], it holds that [0(z, Dupin)ll Lo, Duyy, ) < 121l = 1.
We thus infer that 6(z, Duy,,) =1 |Duy,,|-a.e. For any a,b € [0,1) with
a < b, define

b if upin(x)>b
U(X) =] Upin (%) if a Swp (x) < b

a if upin (%) < a.
Given any ¢ € Cy(Q), by [3, Proposition 2.7(i) and Formula (2.15)], we
have

b

/¢d|DU|:/¢0(z,DU)d|DU|:<z~DU,¢)://(]B(Z-D;(El)dt.
Q Q a Q

On the other hand, by the coarea formula (A.3),

b
[oavoi= [ [ oaipzga
Q a Q

It shows that
b

[ [ ¢z Dayai=
a Q

Because a and b are arbitrary, (z- D xe)=|Dyg,|in the sense of measure
for a.a. t €[0,1). This implies that

b
//d)dlD;(Erldt, Vo € CX(Q).
Q

a

/z “Dyg, = Dy, 1) for a.a. t €0, 1). (5.9)
Q

Denote by D the set of all ¢ satisfying (5.9). If t € D, (5.9) and [3,
Corollary 1.6, Theorem 1.9] imply that

—/divz()(F—;(Et)dx=/z-D)(Fdx—/z-D)(Etdx

Q Q Q
=/z - Dypdx—Per(E;Q)
Q

< Per(F;Q) — Per(E,;Q)
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holds for all F € M. Combining with (5.6), we thus deduce that

yPer(F;Q) — yPer(E,;; Q)
p—1
2= /pumin

Q
>- / pt" (P, =, UMY (rp = x5, dx
Q

+/p(tp71 —

Q

(Ph—pxUVdW)(lF_IE,)dx_/w(/YF_;(Er)dx
Q

“p_l) (Ph _PsUVdW) (xF—xg)dx

min

Z-/prfl (Ph—PsUVdW) (xF—xg)dx
Q

by observing that

@ = Py = U)o — 2) 20

min

and

/w()(F—;(Er)dxzo.
Q

If t ¢ D, then take a decreasing sequence {t,}® C D such that ¢, -
r*. It is clear that | E, = E,. By the dominated convergence theorem,

n
g, = X, in L'(Q). Then Proposition A.3 shows that
Per(E,;; Q) < liminf Per(E, ;Q).
n—oo n

On the other hand, (5.9) and [3, Corollary 1.6 and Theorem 1.9] imply
that

Per(E,n;Q)=/z~D;(EI" =—/divzdx

E,

—>—/divzdx=/z-D;(EtsPer(E,;Q), as n — oo.

E, Q

Therefore, (5.9) holds for t. We thus deduce that the assertion holds for
any t€[0,1). [

Remark 5.3. The existence of a minimizer of (5.8) can be proved by
using the classical method of Calculus of Variation for every ¢ € [0, 1).
See [38] for a related problem.

Lemma 5.4. Let ' <t. If F, and F,; are minimizers of (5.8) with ¢ and ¢/,
respectively, then F, C F,.

Proof. We clearly have
yPer(F,;Q)+/pt”’1 (P, — p,U"W) dx
F
<yPer(F,nU;; Q)+ / (P, = p,UYWY) dx
FnFy
and
yPer(Fy; Q) + / p@ Y (P, = p, UMY dx
Fy

<yPer(F, U F,; Q)+ / &Y (P, = p,UYW) dx.
F,UF,
Because
Per(F, N F,;Q) + Per(F, U Fy; Q) < Per(F,; Q) + Per(Fy; Q),

we deduce that
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(t,)p71 / (Ph - pSUVdW) dx — / (Ph - pSUVdW) dx

Fy F,UF,

<! / (P, —p, UMW) dx—/(Ph—pSUVdW) dx|,

FinEy F,

ie.

("1 / (P, = p,UYW) dx > 177! / (P, = p,UYW) dx.
F\Fy F\Fy

But /' <. This implies that F, C F,. [

Proposition 5.5. For all but countably many ¢ € (0, 1], the minimizer of
(5.8) is unique, i.e. E,.

Proof. Fix e (0,1) and assume that F is a minimizer of (5.8). Take an
arbitrary increasing sequence {s,}® C(0,1) and an arbitrary decreas-
ing sequence { t}e2, €0, such that nlgg) s,=t= nlirgo Iy

It follows from Proposition 5.2 and Lemma 5.4 that

JE, cFcE,,
n n

Note that
()E, =Eulu=t) and |JE, =E,.
n n

However, there are only countably many ¢ such that £3({u =1t}) > 0.
This implies that

F=E, foraa.rel0,1).

This completes the proof. []

Proposition 5.6. For any t € [0, 1), the singular set of E, is contained in
ZoUZ; and 0E, \ (£ U X)) is of class C*.

Proof. For any x € 0E, N Q,, for sufficiently small r > 0, the ball B(x,r)
is contained in Q,. For any local perturbation of E, in B(x,r), i.e. a set
F of finite perimeter such that FAE, = (F \ E,) U(E, \ F) cC B(x,r), we
have

Per(E,; B(x,r)) <Per(F; B(x,r)) + C / P (B = p, UMY dx

B(x,r)
<Per(F; B(x,r)) + Cr**0

by Holder inequality for any 6 € (0, 1). Note that the constant C in the
above inequality is independent of the position of x. Hence E, N Q, is
almost minimal in Q, in the sense of [60, Definition 1.5]. Therefore, [60,
Theorem 1.9] implies that the singular set of E, is contained in X, U X,
and 0E, \ (£, UX,) is a C'-hypersurface. Then the assertion follows from
the standard regularity theorem of non-parametric minimizing surfaces,
see [35] for example. For the reader’s convenience, we will state a proof
here. For every x( € 0E, \ (¥y UX,), denote by H,  the tangent plane of
OE, at x,. Near x(, we can rewrite the coordinates in the form x = (y, z),
where y is the coordinates in H and z is the coordinate in the normal
direction of H. We use the convention z =y =0 at x,. For sufficiently
small r> 0, let U, = B(x,r)n H,, . Build a cylinder C, = U, X (—r,r) CC &,
in (y, z)-coordinates centered at x,. Inside C,, we can express dE, as the
graph of a C!-function v:

z=uv(y), yeU,.

See Fig. 2. Then
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Tangent plane: H,

)

Fig. 2. A coordinate system near x, € 0E, \ (£, UZ)).

yPer(E,;C,) + / P~ (P, = p, UMY dx
C.NE,

u(y)

=y/1/1+|VyU(y)|2dy+//(Ph—pSUVdW(y,z)) dzdy.
U, U 0

By the fundamental theorem of Calculus, v solves

A= f(y,v(y) in Uy
v=g on 0U,
for some g € C1(aU,). Here
A, w(y) (V,0)V3w(V 0"

Alv)w =

VIHIVe0PR  (f1+19,000P)

fo2) = (P, - oUW (3, 2)) /7.

By choosing r > 0 sufficiently small, one can infer from [34, Theo-
rems 16.10] that v € C?(U,). The remaining regularity follows from a
bootstrapping argument, cf. [34, Theorems 6.13 and 6.17]. []

Remark 5.7. If we assume, in addition, that X, € C"! for i =0, 1, then
following the argument in [60, Section 1.14(iv)], one can show that
the singular set of E, is empty and dE, € C"!. Since this fact will not
be used below, to keep the article in a reasonable length, we will not
provide a rigorous proof here.

Proposition 5.8. The jump set, J, , of uy,, is contained in £, U Z;.

Proof. The proof follows the idea in [13, Theorem 3.4]. By (A.4), it
suffices to show that for any ¢, <1, €[0,1) and 7,1, € Q, it holds

(0E;, NOE )\ (Zgu)) = @.

Assume that x, € (0E;, N0E,,)) \ (£, UX,). By Proposition 5.6, both dE,
and JE,, are regular in a neighbourhood of x,. From the fact E,, C E, ,
we deduce that the tangent space of E,, and E, at x, agrees. Denote the
tangent space by H, . We define the coordinates in the form x = (y,z)
and the cylinder C, = (-r,r) X U, as in the previous proof. Then we can
express E, with i=1,2 as graphs over U, as

z=v;(y) i=12

with v; € C®(U,). E,, C E, implies that v; > v, in U,. Similar to the
previous proof, we have
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V,00)

V1+IY,00)2

Since 1, > t;, v;(0) =0, V,v,(0) = 0, by choosing r > 0 small enough, we
have

3
P (P = 0,0 Y (0020) ({14190,
3
> o (By= 0,0V 00, 0) (1 1+19,0,002)

for all y € U,. This implies that

) 1
ydiv, =pt]" (P =0, U™ (r.0,()) -

(1+1V,0,1%) Ao, — VyUZViszyvz > (1+1V,0,1*) Ay, — VyUIVileyvl

in U,. In view of the boundary condition v, > v, on dU,, we infer from
[34, Theorem 10.1] that v, < v; in U,, which contradicts v, (xy) = v,(xp).
Therefore, (0E; NOE,) \GpuZp=0. O

Remark 5.9. In particular, Proposition 5.8 implies that u € C(,).

5.3. Necessary conditions for the formation of a sharp interface

In this section, we first consider the case that Q, is connected. In or-
der to state the main theorem of this section, we define the orientations
of X, in such a way that

+ the outer normal of X, points into Q,, and
« the outer normal of X, points into Q,.

With these conventions, a sphere of radius R > 0 has constant mean
curvature —1/R.

Theorem 5.10. Suppose that Q, is connected and %, for i =0, 1, are C?-
closed surfaces. Let k be the mean curvature of X,. If x(p) > 0 for some
p € X, then there is no sharp solute-solvent interface, that is, the minimizer
Umin Of (2.6) is not the characteristic function of a set E of finite perimeter
withQ, CECQ,.

Proof. Assume, to the contrary, that there exists a set E of finite
perimeter such that Q, C E CQ,, and y; minimizes (2.6).

(1) By the De Giorgi Theorem, cf. [1, Theorem 3.59 and Example
3.68], we have

PECJT, CIHUL,.

For every x € Q, n E, (A.1) implies that Per(E; B(x,r)) =0 for all r >0
so small that B(x,r) C Q,. Thus the isoperimeteric inequality, cf. [30,
Theorem 5.6.2], implies that

min{£3(B(x,r) N E), L3(B(x,r) \ E)}*/* < CPer(E; B(x,r)) =0.

If £3(ENnQ,) >0, assume that there exist two distinct points x,,x, €
Q, such that £3(B(x,,r)n E) =0 and £3(B(x,,r)\ E) = 0. Since Q, is
connected, we can find a continuous path y : [0, 1] - €, such that

7(0) = x4,

Further assume that r > 0 is so small that B(x,r) C Q, for all x € y([0, 1]).
Then for any x € y([0, 1]) n B(x,,r), we have £3(B(x,r) n E) = 0. Repeat-
ing this argument for finitely many times shows that £3(B(x,,r)nE) =0.
A contradiction. Therefore, £3(B(x,r)\ E) =0 for all x € Q, and all >0
so small that B(x,r) C ,. We immediately infer that

y(1) =x,.

L3Q\E)=0

and thus y = xo  a.e. To sum up, we have either E=Q,, or E=Q,,.

(2) Consider the case that E =Q,,, or equivalently u;, = y5. Define
E, as in (5.7). Then for each 1 € [0, 1), E, = Q,,. Therefore, yq is the
unique minimizer of (5.8) for every t € [0, 1).
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Since X, is C?, it has a tubular neighborhood B,(Z,) of width a > 0,
cf. [34, Exercise 2.11] and [41, Remark 3.1]. Given any p € C'(Z,) with
0<p<1, the map

¥, (—a,a)XZ; > R (e,p) = p+ep(p)vy, ()

is a C!-diffeomorphism onto its image, where vs, is the outward unit
normal of %, pointing into Q,. Put I', :="¥,(e,X) and Q, as the region
enclosed by I',. Observe that Q, =Q,, and

Q,CcQ cQ,

for all £ € [0, a) with sufficiently small a. Define a functional

F(e) = yPer(T,; Q) + / = (P, = p,UYW) dx, e€[0,0).
QE

Note that F,(¢) > F,(0). By [38, Equation (21)],

li F,(E)—FI(O)
im — =

=01 £

/p (—2;/1( +ptp_1Ph - ptp_lpsUVdW) dz,,
Z

where dX; is the volume element on X;. Thus
/p (—2;/1( +ptp’1Ph - ptp’IpSUVdW) dZ,; >0
Z

for all p € C1(Z,) with p > 0. This implies that

piP~! P, - ptp_lpsU"dw > 2yk

for all 7 € [0, 1). Taking 7 =0 above yields

0>k onZX.

This is a necessary condition for E = Q,,. Therefore, if x(p) > 0 for some
peX,, then E£Q, .

(3) Let & be the mean curvature of ¥,. If E =Q,, then following the
above argument, we conclude that

/p (-2r& +pt"7'p, —pt”_lpSUVdW) dZ, >0

Zy

for all p € C'(Z,) with p <0 and ¢ € [0, 1). Here d%, is the volume ele-
ment on X,. Pushing r — 1~ implies that

p Ph - pps UvdW
2y
is a necessary condition for E = Q,, However, it is well known that there

is no closed hypersurface with everywhere positive mean curvature in
R3. Therefore, E #Q,, [

> >0

Remark 5.11. The mean curvature condition «(p) > 0 for some p € X,
is very common for real-world biomolecules. This explains why diffuse
interfaces are indeed more realistic in real-world solvation processes.
It is equally important to point out that the mean curvature condition
is in some sense “stable”. Recall that the Hausdorff metric on compact
subsets K C R", n €N, is defined by

Given a closed surface T in R?, its second normal bundle is given by

sup d(x, K,), sup d(x,K;)

x€K; x€K,

dy (K, K;) = max {

N2Z={(p,ve(p), Vsvs(p) : pEZ} CR3XR3xR®,

where Vs is the surface gradient defined by

Vsi(p) = Po(p)Vi(p), € C'(B(2),R?)

for some r > 0. Here Py(p) =1 — vz(p) ® vs(p). Denote by M the set
of all connected closed surfaces in R®. Equipped with the metric d;,,
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u=0

Q.

Solvent

O<u<1i

Fig. 3. Illustration of a solute with one cavity inside.

M is a Banach manifold, cf. [51,52]. If a connected component, M,
of X, satisfies the condition in Theorem 5.10, then any X € M that is
sufficiently close to M, with respect to the metric d;, satisfies the same
condition.

Remark 5.12. The connectedness condition of ©, was used in the proof
of Theorem 5.10. It is well-known that cavities may appear inside
macromolecules, which corresponds to the situation of disconnected
Q,,. In the case of N cavities inside Q,,, Q, consists of N + 1 connected
components. More precisely,

N
z, =T,
J=0

where I'; are C?-closed and connected hypersurfaces and L, j=

1,--, N, are the boundary of the j-th cavity. Correspondingly,

N
o=Je,
j=0

where Q, ; are the connected components of Q, and Q, ;, j=1,--, N, is
the j-th cavity bounded by I'; and ﬁ,yo NQ, # . See Fig. 3 for a picture
illustration of a solute molecule with one cavity inside. To make the
convention of the mean curvature consistent, we define the orientation
of I'; in the following way:

+ the outer normal of I'; points into Q;
* for j=1,--, N, the outer normal of T'; points into Q,,.

Under these conventions, we can follow the proof of Theorem 5.10 and
show that ryG=1-,N)isa sharp interface iff T has everywhere
positive mean curvature, which is impossible. Therefore, none of the
cavities can be purely occupied by the solvent.

6. Numerical simulations

The non-differentiable structure of (2.6) and the Constraints (2.2)
and (2.3) generate an essential difficulty in the numerical simulations of
(2.6). These motive us to study a sequence of approximation problems.

6.1. An approximation problem
Recall the definition of {g; }*

o, from Section 3. We introduce a fam-
ily of perturbed solvation free energy functionals

/ [Pt + p,(1 - u")UVdW] dx

I (u) =y/ |Vul% dx +
Q Q

+ [ o= Se@iVul? - @ -8 dx, ©61)

Q

where y € A satisfies (3.2). We will seek a minimizer of I, (-) in Y, cf.
(3.1). For notational brevity, we term the second line of (6.1) Ly, y).

Let up,;, be a minimizer of (2.6) in ¥ and y,, = w, . be the solution
of (2.5) with u=u,.
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To prepare for the main result of this section, we introduce

Q= {xeQ i disx, Q) <1/k}, jE{ms)

and

X i={u€eY:u=1inQ,, and u=0inQ,}, keN,

and quote the following two lemmas from [55].

Lemma 6.1. (ES, Lemma 2.6]) For every f € X,, there exists a sequence
{fa}2, € C*(Q) satisfying Constraints (2.2) and (2.3) such that

@ f,- fin LY(Q), and
@@ ||Df, () = IDSfI() as n — co.

Lemma 6.2. ([55, Lemma 2.7]) For every f € ¥, we define { f;}

k=1 C
BV (Q) by

1, XEQ,
fi(x)=10, x€Q
f(x), elsewhere.

If 3, € C? with i € {0, 1}, then

@@ fi— fin LY(Q) and
@) IDfilI(€) = IDfII(L) as k — co.

The theoretic basis of the numerical simulation is the following the-
orem.

Theorem 6.3. For each k = 1,2, -, there exists a unique u;, , € ¥, N Y
such that I, (U, ) = mi)gl I (w). If, in addition, ¥, € C?, i € {0,1},
’ UEYy

kllglo Ik(umin,k) = I(umin)’
and as k — oo

in L"(Q)

Umin,k = Upin

for all r €1, 00) and

Wmin,k = Ymin in HI(Q)’

where yyin i = w, ., i the solution to (3.2) with u = up; .

Proof. (i) The existence and uniqueness of a minimizer u,,;, , € Y, of
I,.(-) for each k can be proved in the same manner as in Theorem 4.1.

(ii) We will show that u,;,, is a global minimizer of I, () iff
(Umin k> Wmink) 1S @ saddle point of

Li(u,w) :=/ [yququ + Pu? + py(1 —u")UVdW] dx
Q

+ / [ = Se@Vul - @ - ) Bw)| dx ©6.2)
Q

in Y, x o/, where

A :={veA:|lvly <Cyand |[v]l, < Cpl.

Here C, is the constant in (3.3). Proposition 3.1 shows that Winink € .
Denote by S, the set of all saddle points of L,. Recall that (uy, y) € Sy,
iff

(6.3)

Ly(up,w) < Ly (ug, o) < Li(u, ), V(u,w) €Y X dA.

It follows from Proposition 3.1 and Theorem 4.1 that

T (uin ) =2 My = g&ﬁygé%(“, w).
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Note that Y, and & are closed and convex in W9 (Q) and H(Q),
respectively. Moreover,

[u L (u,w)] is strictly convex and lower semi-continuous Vy € o/,

and

[y > L (u,y)] is strictly concave and upper semi-continuous Vu € Y,.

Since ¢ is bounded in H'(Q), [29, Remark VI.2.3] implies that

inf L (u,w)=mi L,(u,w)=M,.
g f, LaCeow) = g ) = M
It follows from the direct method of Calculus of Variation that the infi-
mum is achieved. Therefore,

(6.4)

maxmin L, (u,w)=minmaxL, (u,w) =L, (U : 1, Wi 1)
WEAUEY), k( V/) weV,yed k( W) k( min,k Wmln,k)

By [29, Proposition VI.1.2], (#yin k> Wmin k) € Sk~ Conversely, if (uy, y) €
Sy, then (6.3) and Proposition 3.1 show that y, is the solution of (3.2)
with u = u,. What is more, since (6.4) still holds true if we replace
(Ummin k> Wiink) DY (o, o), we infer that uy = w4

If £3{uping > 11U {upin s <0}) > 0, define

L if umin,k(x) > 1,
lin () =1 0, if tpyi0 1 (%) <0,
upink(x), elsewhere.

Then direct computations show that

Lk(ﬁmin,lm Wmin,k) < Lk(ukﬂ lVmin,k)-

A contradiction. Hence, u, , € Y.
(iii) Fix v € Y, Then, by (3.5), Gk(y,) < C,, where y, is the solution
to (3.2) with u = v. Then

- / 2. UMY dx + Cyll pyull oo VOI(R,,)

1)< y/ |Vo|% dx + 2P, Vol(Q)
Q Q\Q

<Gy,

where C, is the constant in Proposition 3.1 and C, is independent of k
and v. This yields that

CZZIk(umin,k)Zy/|Vumin,k|qk dx+Ph”umin,k”Z+C3 _C]
Q

2 7| Vit 1§ (VOL(Q)' ™% + Py lttin i ]I2 + C5 = C, (6.5)

where C; = fQ\Q p,UY™ dx. We thus infer from (6.5) that

“umin,k”WH = ”umin,k“BV <G

for some C, independent of k. Proposition A.2 implies that there exists
a subsequence of {up,},, not relabelled, converging to some u, €
Y in L'(Q). The Riesz-Thorin interpolation theorem then implies that
Unink = Up in L"(Q) for all r € [1, 00) as k — co. Note that

/ |Vumin,k|qk dx > ”Vumin,k”‘llk (VOI(Q))I_qk .
Q

Then it follows from Propositions A.3 and 3.2 that
T(ug) <Timinf I, (upin ).

On the other hand, we define

1, X€EQ,,
w,(x) =40, xX€EQ,
uy(x), elsewhere.

We will show that
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likm sup Iy (Upmin i) < 1(w0,). (6.6)
—00

Lemma 6.1 implies that we can find a sequence {w,,;}*, such that w,; €
C°°(§) nY, for all k and

w,; > w, in L'(Q) and || Dw,;(Q) - [|Dw,|I(Q) asi- c.

Since uy;, , minimizes I, (-) in Y, we have

I (Ui ) < Ty (wy, ).

Pushing k — oo, the dominated convergence theorem and Proposi-
tion 3.2 imply that

lim sup Iy (upyin ) < 1(w0,,;)-
k—co

Then Lemma 6.1 and Proposition 3.2 immediately yield (6.6). Now
Lemma 6.2 and Proposition 3.2 give that

lim sup I (s 1) < 1 ().
k—o0

Finally, the convergence of y,,;,, is a direct consequence of Proposi-
tion 3.2.

(iv) Denote by v, the solution of (3.2) with u = u,,;,. Then by Propo-
sition 3.1,

I(umin) > Inp(”min) + Ip(uminv V’k) b Inp(umin) + Ip,k(umin’ Wk) > Ik(umin,k)'

This yields

T(upiy) > Hm 1 Qg o) = 1(ug).
k—o0

By the uniqueness of a global minimizer of I(-), we conclude that u, =

|

Umin-

6.2. Variation of solvation free energy

Motivated by Theorem 6.3, we will study the numerical simulations
of the approximating functional (6.1). As the first step, we will derive
the variational formulas of (6.1) at u;, .. Recall that u;, , minimizes
(6.1) in Y, iff (uyin 4> Wining) is @ saddle point of (6.2) in Y, x of, where
Wininx Solves (3.2) with u = u;, .. This means that

L (min o> Winin k) = 10 Ly, Wi 1)-
u€Yy

Given any ¢ € C;°(Q)), as upjpx € Y, for sufficiently small 6 > 0,

umin,k+5¢€ykv le| < 6.

Therefore, we can verify that u,, , satisfies

1

Y / qklvumin,quk_zvumin,k : V¢dx +/ [pufn_in,k (Ph - p.vUVdW) ¢:| dx

Q Q
1 e, —¢
+/ [Pufnin,k (B(Wmin,k)+ > ) - |Vlllmin,k|2)¢] dx=0
Q

for all ¢ € C{°(,). Therefore, uy, ; solves

yadiv (IVul%2Vu) — pu? ™'V (Wpin ) =0 in Q
in the weak sense, where

€s —€m
2
In view of (3.2), Uiy k> Wmin k) SOlves the following elliptic system

V)= P, —p,U"Y + By) + [Vy*.
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N,
div(e@)Vy) + (g5 —uP) ) Xge i =—p, in @
j=1
Y=y, on 0Q;
(6.7)
74, div (|Vu|q‘<’2Vu) —puP WV (p)=0 in Qg
u=1 on X;
u=0 on X

Remark 6.4. The approach in this section actually gives a solution to
the variational analysis of (1.1) with Constraints (2.2) and (2.3), which
provides a complete answer to a question in our previous work [55].

6.3. Computational methods

This section presents the computational methods and algorithms for
the solution of the coupled system (6.7) and its associated parameteriza-
tion process. The solution of (6.7) provides a physically sound “diffuse
solute-solvent interface profile” u and the electrostatic potential y, and
thereby the calculation of the total solvation free energy.

While solving for u and y, the surface evolution equation and the
perturbed PB equation cannot be decoupled and thus need to be solved
simultaneously. In the following, we first describe in more detail about
the solution methods for each equation and their discretized formula-
tions. Then the scheme for the convergence of two coupled equations
is presented as well as a simple parameterization approach for optimal
parameter values.

6.3.1. The perturbed Poisson-Boltzmann equation

For the solution of perturbed PB (PPB) equation, we adopted the fi-
nite difference scheme. Thanks to the continuous dielectric function, an
accurate solution can be achieved with a standard second-order cen-
ter difference scheme. Specifically, for a solvent without salt, the PPB
equation can be simplified to a perturbed Poisson equation. If the po-
sition (x;, y;,24) is represented by the pixel (i, j, k), its discretized form
becomes

i+ 3.0 R+ 1,70 =y (i,

L =170 — w0l

—6(1—2

JE | .. .
+€(1,1+5,k)[w(l,1+l,k)—w(l,J,k)]

— (i) = 3 Ry — 1K) .. K]
Feling k4 DGk + D =G, 0]

— eli, ok = DI k= D =K = =40,k

where the uniform grid spacing 4 is applied at x, y and z directions,
and e(i + %,j,k) = e(u(x; + %h,yj,zk)), q(i,j,k) is used to describe the
fractional charge at grid point (x;, y;, z;). The fractional charge is calcu-
lated by the second-order interpolation (trilinear) of the charge density
pm- Then a standard linear algebraic equation system is resulted from
the discretized perturbed Poisson equation in the form of AX = B, in
which X is the targeted solution. Matrix A is the discretization matrix
and B is the source term according to the discrete charges.

The boundary condition of PPB equation is computed via the
summation of electrostatic potential contributions of individual atom
charges [33]. The resulted linear system can be solved by various
linear solvers (like biconjugate gradient in this study) together with
pre-conditioners for potential acceleration. 0 can be used for the initial
guess of the solution and convergence tolerance is set as a small number
such as 1070, It has been shown that the designed PB solver is capable
of delivering second-order accuracy [17].
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6.3.2. The surface evolution equation
The solution of the surface evolution equation can be attained via
the following parabolic PDE as done in earlier work [7,17].

. Vu —1
div —_— |+ V|,
[ (”"Wuwk) " ]

As a result, the steady state solution of Equation (6.8) can be directly
taken as the solution of the original elliptic equation.

Computationally, the equation (6.8) can be expanded into a form as
follows.

du = |Vu|*> %

5 (6.8)

a_u =y (u)z‘+u§+(qk—1)14%)un+(u>2‘+(qk—l)u§+u%)u}.y+((t]k—l)ui+ui+u§)um
ot k w2+l
2yt Uy +2u izt o +2u Uyl
=72 = q)ax

ug +u§.+u%

2—qy
+(1/u)25+u§+u§) puP~V.

In particular, the time-dependent derivative is carried out by explicit
Euler scheme. Note that other implicit schemes can be designed to
improve the solution efficiency and will be pursued later. The first
and second order spatial derivatives are handled by finite difference
schemes [17]. To impose the domain decomposition in (6.7), we let u
be fixed as one in the pure solute area Q,, and as zero in the pure sol-
vent region Q. Here the pure solute area is numerically defined to be
enclosed by a smoothed Van Der Waals surface (vdW) and the pure sol-
vent region is the area outside a smoothed solvent accessible surface
(SAS). The initial value of u in between Q,, and Q, can be set between
0and 1.

6.3.3. Coupling of the perturbed Poisson Boltzmann and surface evolution
equations

In principle, the surface evolution equation needs to be solved si-
multaneously with the perturbed PB equation until the solution process
reaches a self-consistency. To speed up the whole iterative process, elec-
trostatic potential y is updated after a number of time steps (i.e., 10 to
100 steps) evolution of the parabolic surface equation [17].

Moreover, a simple relaxation algorithm is adopted to guarantee the
convergence of the iterative process as follows [17]:

U=y, + (1 —uyy, 0<a<l,

v=a W+ (1 =gy, 0<a <1,

where u,,,, and u,,, are the new and old u profile values from current
and previous steps, respectively. y 4 and y,.,, denote previous and new
electrostatic potentials, respectively. « = 0.5 and a’ = 0.5 are set in our
calculation.

In addition, a simple cutoff strategy is conducted to apply Constraint
(2.2) and to avoid possible numerical errors:

u(x) uel0,1]
u=40 u<0
1 u>1.

The cutoff checkup is carried out every time step or several steps during
the solution of surface evolution equation.

Finally, to reduces the total iteration number and save the computa-
tional time significantly, first of all, one may start the iterative process
with an initial u from solving Eq. (6.8) without the electrostatic poten-
tial term. Second, one may take the prior potential y as a good guess
for the next resulted linear system in the PPB solution. That will make
the PPB solver converges faster.

6.3.4. Parameterization

There are some parameter values that need to be determined for
real numerical simulations of solvation free energy. They include sol-
vent density p,, the solvent radius o, y, P, and so on. Since most of
the parameters are involved in nonpolar solvation energy, a previous
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simple parameter fitting strategy is adopted here [19,55]. In particu-
lar, on the one side, some parameter values are fixed or given such as:
p, = 0.03341/A3; solvent radius o, = 0.65 A; radii of solute atoms like
6, = 1.87 A. On the other side, some are considered as fitting parame-
ters like y, P,, and well depth parameters ¢;, where i denotes different
atom types. The following iterative procedure is used to obtain the op-
timal fitting parameter values:

Step 0: An initial guess of fitting parameters and a trial set of
molecules are determined with their existing information such as
atomic coordinates, radii, and experimental data of solvation free en-
ergies.

Step 1: For individual j-th molecule, j =1,--- N,, where N,, is the
total number of molecules in the trial set, the coupled system (6.7) is
solved until self-consistency is reached to find the quasi-steady state
solution of u; and y; with latest parameter values. Note that if the trial
set is nonpolar, one only needs to solve the surface evolution equation
without a driven potential from the electrostatic field. Then the fitting
process is exactly the same as our previous paper [55].

Step 2: Electrostatic solvation energy Iziqk is calculated for each
molecule using the profile of y;.

Step 3: A non-negative least squares algorithm is used to update all
non-negative parameters P, y, and ¢;; with a minimization problem

Nm .
> (T

J=1

J
+ [Pﬂk

T= min - I;;ew)z,
(p7-€i5)
where T, ;}f"p is the existing experimental data of solvation free energies
in the literature.
Step 4: The iterative loop from Step 1 to Step 3 is repeated until all
fitting parameters converge to a certain set of values within a pre-set

tolerance.
6.4. Simulation results

In this section, both nonpolar and polar molecules are taken for the
numerical simulation and model validation. Nonpolar molecules are
simulated first to justify the usage of u” which represents the volume
ratio of solute. That may minimize modeling uncertainties from solvent-
solute electrostatic interactions. It is followed by the calculation of polar
molecules to demonstrate the potential of current proposed model for
the prediction of polar solvation energies.

6.4.1. Nonpolar molecules

To validate the current constrained variational model, we start with
a set of 11 alkanes as a calibration set for numerical implementation of
model solution and the associated parameterization process. First of all,
two parameters N and g, need to be pre-determined for each simula-
tion. It turns out that optimal fitting parameters are uniquely computed
for a set of arbitrary N > 1 and ¢,, where p= %, and ¢, — 1*. For in-
stance, when N =40 and g, = 1.00001, the calculated optimal fitting
parameters are the following: y = 0.0746 kcal/(mol Az), P, =0.0090
kcal/(mol A%) and e, = 0.486 kcal/mol, and ¢, = 0.00 kcal/mol. Note
that ¢, and ¢, are well depth parameters of the hydrogen and car-
bon, respectively. Moreover, it is shown that the current model is able
to reproduce the total solvation free energies of 11 alkanes very well
(see Table 1). The root mean square (RMS) error of 11 alkenes is 0.109
kcal/mol. For the nonpolar solvation free energy, the repulsive and at-
tractive parts of solvation free energy are also calculated for detailed
comparisons with others in the literature. Note that the first two terms
of (2.1) are considered as the repulsive part of solvation free energy.

Next, it is interesting to see whether the model parameter N or
equivalently p = %, which is introduced in the volume ratio of solute
u?, plays an important role in the solvation free energy calculation and
prediction. For this purpose, different N values are chosen for the set
of 11 alkanes while fixing all other simulation setting. It is evident that
almost identical simulation results are obtained for large enough N (See
Table 2).
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Table 1

Computed total solvation free energies of the trial set of 11 alkane compounds
and their repulsive and attractive decomposition when g, = 1.00001. y = 0.0746
keal/(mol A2), P, =0.0090 kecal/(mol A%) and ¢,, = 0.486 kcal/mol, and e,
0.00 kcal/mol.

Compound Rep. part  Att. part ~ Numerical Experimental [11]
(kcal/mol)

methane 4.21 -2.21 2.00 2.00
ethane 5.90 -3.95 1.95 1.83
propane 9.00 -6.89 2.12 1.96
butane 7.45 -5.42 2.03 2.08
pentane 10.58 -8.27 2.30 2.33
hexane 12.13 -9.75 2.38 2.49
isobutane 8.90 -6.64 2.26 2.52
2-methylbutane 10.20 -7.80 2.40 2.38
neopentane 10.21 -7.61 2.60 2.50
cyclopentane 9.21 -8.04 1.17 1.20
cyclohexane 10.45 -9.08 1.37 1.23
RMS of calibration set 0.109

Table 2
Different optimized parameters and RMS errors for various N values when ¢, =
1.00001.

q value Y P, €y RMS
(keal/(molA2)) (keal/(molA3)) (kcal/mol) (kcal/mol)
1 0.0758 0.0078 0.493 0.105
2 0.0749 0.0085 0.487 0.108
5 0.0746 0.009 0.486 0.109
10 0.0746 0.009 0.486 0.109
20 0.0746 0.009 0.486 0.109
40 0.0746 0.009 0.486 0.109
Table 3

Computed total solvation free energies of 11 alkene compounds when ¢ =
1.00001 and N =40.

Compound Rep. part  Att. part ~ Numerical Experimental [53]
(kcal/mol)

3-methyl-1- butene 10.15 -8.32 1.84 1.82
1-butene 8.68 -7.04 1.64 1.38
ethene 5.51 -4.12 1.49 1.27
1-heptene 13.42 -11.58 1.84 1.66
1-hexene 11.83 -10.05 1.78 1.68
1-nonene 16.64 -14.59 1.95 2.06
2-methyl-2-butene 10.08 -8.33 1.74 1.31
1-octene 14.99 -13.01 1.98 217
1-pentene 10.22 -8.58 1.65 1.66
1-propene 7.12 -5.59 1.53 1.27
trans-2-heptene 13.45 -11.62 1.83 1.66
RMS of prediction set 0.209

Moreover, with ¢ =1.00001 and N = 40, a predictive study is con-
ducted for a set of 11 alkene compounds which was also used before
[19,53,55]. The assumed similar solvent environment allows one to
apply the above-obtained optimized parameters of 11 alkanes here be-
cause of the fact that both nonpolar sets only possess two types of atoms
(C and H). It turns out that the numerical prediction of the current
model matches the experimental data well as shown in Table 3. The
RMS error of 11 alkenes is 0.21 kcal/mol.

Furthermore, we have theoretically proved that total solvation ener-
gies converge to the case of ¢, =1 when ¢, —» 1*. Numerically, the con-
vergence can be demonstrated as follows: choosing a set of molecules
like the above alkene compounds and fixing all other numerical set-
tings, one allows the value of g, to approach 1 by creating a sequence
of ¢, (¢, =1.01,1.001,1.0001,1.00001, 1.000001). Then the total solvation
free energy of each molecule is computed. Table 4 illustrates the con-
vergence of total solvation free energies for all eleven alkenes.
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Table 4
Convergence of total solvation free energies of eleven alkene molecules when
g — 17 with other parameter values fixed.

Compound 1.01 1.001 1.0001 1.00001 1.000001
(kcal/mol)

3-methyl-1- butene 2.567 1.908 1.844 1.837 1.837
1-butene 2.268 1.701 1.647 1.641 1.641
ethene 1.888 1.524 1.489 1.485 1.485
1-heptene 2.797 1.930 1.846 1.837 1.837
1-hexene 2.625 1.857 1.784 1.776 1.775
1-nonene 3.126 2.060 1.957 1.946 1.946
2-methyl-2-butene 2.468 1.751 1.744 1.745 1.745
1-octene 3.049 2.083 1.990 1.980 1.980
1-pentene 2.381 1.716 1.653 1.646 1.645
1-propene 2.043 1.575 1.530 1.525 1.525
trans-2-heptene 2.789 1.918 1.835 1.826 1.826

Table 5

Comparison of total free energies (kcal/mol) for 17 compounds.
Compound AG Exptl Error
glycerol triacetate -10.10 -8.84 -1.26
benzyl bromide -2.38 -2.38 0.00
benzyl chloride -3.95 -1.93 -2.02
m-bis(trifluoromethyl)benzene 1.07 1.07 0.00
N,N-dimethyl-p-methoxybenzamide -8.74 -11.01 2.27
N,N-4-trimethylbenzamide -8.60 -9.76 1.16
bis-2-chloroethyl ether -3.26 -4.23 0.97
1,1-diacetoxyethane -5.49 -4.97 -0.52
1,1-diethoxyethane -4.51 -3.28 -1.23
1,4-dioxane -4.84 -5.05 0.21
diethyl propanedioate -5.10 -6.00 -0.90
dimethoxymethane -1.28 -2.93 1.65
ethylene glycol diacetate -6.48 -6.34 -0.14
1,2-diethoxyethane -4.64 -3.54 -1.10
diethyl sulfide -1.43 -1.43 0.00
phenyl formate -4.35 -4.08 -0.27
imidazole -10.83 -9.81 -1.02
RMS of 17 polar molecules 1.107

Remark that regarding the numerical calculation of solvation free
energy for nonpolar molecules, the currently computed results are al-
most the same as the previous constrained solvation model [55] when
N is large enough. The similarity can be explained by the fact that
! s 1forO<u<1 whenp:%—» 1 with N = 0.

6.4.2. Polar molecules

The introduction of u” as solute volume ratio enables us to de-
rive the system (6.7) from proposed constrained total solvation energy
model (2.6). It has been a theoretical advance from our previous con-
strained model in which a PDE was derived only for nonpolar energy
functional due to the complex two-obstacle problem [55].

In this section, the model potential and validation are demonstrated
numerically for polar molecules. To the end, a challenging set of 17
compounds is chosen. The challenge arises partially due to strong
solvent-solute interactions caused by polyfunctional or interacting polar
groups. Actually, its challenge can be seen quantitatively. For instance,
using an explicit solvent model, Nicholls et al. obtained the root mean
square error (RMS) as 1.71 + 0.05 kcal/mol via [50]. With an improved
multiscale model equipped with self-consistent quantum charge density
by Chen et al. [18], RMS was still around 1.50 kcal/mol.

For the current simulation, the structure data of the set of 17
molecules is taken from the supporting information of the paper of
Nicholls et al. [50] as we did before. The dielectric constants are slightly
adjusted. In the solute region ¢,, ~ 1, while ¢, < 80 for the solvent region.
For this 17 set, different well-depth parameters ¢;, need to be opti-
mized based on the above-described simple parameterization scheme.
It is shown that the computed solvation free energy is quite comparable
with the experimental data. The root mean square error can be im-
proved to 1.107 kcal/mol (See Table 5) when ¢,, = 1.15 and ¢, =70. In
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Table 6
Some optimized parameters and RMS errors from various N values when g, =
1.00001.

q value Y P, €, RMS
(keal/(molA?)) (keal/(molA3)) (kcal/mol) (kcal/mol)

4 0.314 0.000 1.105 1.107
0.314 0.000 1.105 1.107

16 0.314 0.000 1.105 1.107

32 0.314 0.000 1.105 1.107

addition, it is found that almost identical simulation results are obtained
for large enough N. In other words, model parameter value N does
not play an important role for the solvation energy prediction while it
obviously benefits the theoretical derivation and the proof for current
constrained variational model. The minor effect of different N values
can be found in Table 6.

7. Conclusions

Variational implicit solvation models (VISM) with diffuse solvent-
solute interface definition have been considered as a successful ap-
proach to compute the disposition of an interface separating the solute
and the solvent. It has been shown numerically that variational diffuse-
interface solvation models can significantly improve the accuracy and
efficiency of solvation energy computation. However, there are several
open questions concerning those models at a theoretic level. In partic-
ular, all existing VISMs in literature lack the uniqueness of an energy
minimizing solute-solvent interface and thus prevent us from studying
many important properties of the interface profile.

Therefore, by introducing a new volume ratio function «”, in this
work, we have developed a novel constrained VISM based on a promis-
ing previously-proposed total variation based model (TVBVISM). Ex-
istence, uniqueness and regularity of the energy minimizing solute-
solvent interface have been studied. Moreover, with the assistance of
the precise depiction of the interface profile, this work provides a partial
answer to the question why the solvation free energy is not minimized
by a sharp solute-solvent interface. It turns out that when the mean cur-
vature of ¥, is positive at some point, the energy minimizing state is
never achieved by a sharp interface.

In addition, for the variational analysis of the new model and for
the numerical computation of the solvation energy, a novel approach
has been proposed to overcome the essential difficulty generated by
the involved constraints in the model. Specifically, the variational for-
mulas of the new energy functional can be rigorously derived via the
introduction of the new volume ratio function u” together with an ap-
proximation technique by a sequence of g-energy type functionals. This
is another advance from our previous work in which only the numeri-
cal study of nonpolar energy can be conducted for a constrained VISM.
Model validation and numerical implementation have been demon-
strated by using several common biomolecular modeling tasks. Numer-
ical simulations show that the solvation energies calculated from our
new model match the experimental data very well.

For the future work, we will provide a complete proof for the con-
tinuous dependence of the solvation free energy on the surfaces Q,, and
Q, in a suitable topology. Numerically, based on the derived elliptic
system, we intend to further improve the accuracy and efficiency of
the solvation energy prediction via refined parameterization schemes.
Moreover, analysis of the current and potential numerical schemes like
convergence will be a topic for future study.
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Appendix A. BV-functions

In Appendix A, we will introduce some notations and preliminaries
of BV -functions. The main reference is [1,30]. Let Q c RN be open.

Definition A.1. The space of functions of bounded variations on Q, de-
noted by BV (Q), is the collections of all L!(Q)-functions whose gradient
Df in the sense of distributions is a (vector-valued) Radon measure with
finite total variation in Q. The total variation of f in Q is defined by

sup /fdivzdx D ZECP@RN), |zl <1
Q

and is denoted by ||Df||(Q) or fg d|Df|. BV (Q) is a Banach space en-
dowed with the norm

1A sy =171 + IDAI).

By the structure theorem of BV -functions, for every f € BV (Q),
there exist Radon measure y and a u-measurable function ¢ : Q - RN
such that

s lo(x)| =1 a.e. and
* Jofdivzdx=— [, z-odpu for all ze CP(Q;RN).

We write | Df| for the measure u.
Sobolev embedding also holds for functions of bounded variations:

BV(Q) < LP(Q),

N-1
The embedding is compact when 1 < p < 1*.

forall1<p<1*

Proposition A.2. Let Q be bounded and with Lipschitz boundary. Assume
that {fulye, CBV(Q) satisfies

sup ||/l gy < o0.
n
Then there exists a subsequence, not relabelled, such that

fo—f inLY(Q) forsome f € BV(Q).

Proposition A.3. Suppose that { fali, CBV(Q) and f, — fin L} (Q).

loc
Then

IDFI(@) <liminf | D7, ).

An Lebesgue measurable set E c RV is said to have finite perimeter
in Q if

1E € BV(Q).
Per(E; Q) :=||Dyg|l(Q) is called the perimeter of E in Q.

Definition A.4. Let E be of finite perimeter in Q. We call the reduced
boundary oE* the collection of all points x € supp|D x| N Q such that
the limit

Vo) = — lim —DXEBD)
B 1m0 ID g I(B(x, 1))

exists in RV and satisfies |vg|(x) =1 a.e.. The function v : dE* — SN-!
is called the generalized outer normal to E. 0 E\ 0E* is called the singular
set of E. In particular, we have
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Per(E;RN \ 0E*)=0. (A.1)

Proposition A.5. Let Q be bounded and with Lipschitz boundary. There is
a bounded linear map

Tr : BV(Q) —» L'(0Q)

such that

/fdivqbdx:—/¢-Df+/(¢4v)TrdeN_1,
Q Q 0Q

where v is the outer unit normal on 0Q. It is understood that the measure on
0Q is HN-1. The function Tr f, which is uniquely defined H"~! a.e. on 0Q,
is called the trace of f on 0Q.

Proposition A.6. LetQ be bounded and Lipschitz. Assume that f, € BV (Q)
and f, € BV(RN \ Q). Define

_ f1(x) x€Q
f(X)_{fz(x) xeRV\ Q.

Then f € BV (RYN). Moreover,

IIDfII(RN)=IIDf1||(Q)+|IszII(RN\§)+/ITrfl—TrledHN_l-

0Q

Given f € L}OC(Q), we say that f has an approximate limit at x € Q if
there exists z € R such that

. 1

lim —— —z|dy=0.

r—1>r(1)1+|B(x,r)| / lu(y) =zl dy
B(x.,r)

(A.2)

The set of points where this does not hold is called the approximate
discontinuity set of f, and it is denoted by S;. By Lebesgue differenti-
ation theorem, LN (S ) =0.zis uniquely determined via (A.2) and is
denoted by f(x). f is said to be approximately continuous at x if x & S r
and f(x) = f(x).

We say f € L}OC(Q) has an approximate jump point at x € Q if there
exist a£be R and y € SV! such that a # b and

. 1
r&%{fm / [f(») —aldy=0 and

B} (x,r)
. 1
lim ——— —bldy=0.
tim e [ 7w - blay

By (x.r)

Here

{

The set of all approximate jump points of f is denoted by J,. When
f € BV(Q), S, is countably HN~!-rectifiable and J, is a Borel subset of
S . Further HN=1(S,\ J;)=0.

If f € BV(Q), we define the super-level sets of f by

Br(x,r) :=

B (x,r) 1=

{yeB(x,r): v-(y—x)>0}
{ye B(x,r): v-(y—x)<0}.

E :={f>t}, teR.

Then for £!-a.a. t, E, is of finite perimeter and the function
[t = Per(E,;; Q)]

is £!-measurable. Moreover, the coarea formula holds:

o)
/ v(x)d| Du| = / / v(x)d| Dy, | dt (A.3)
Q -0 Q
for all | Du|-integrable function v : Q — R. In addition,
JI;= |J 9E, naE, (A.4)
1,1, EQ, 1<ty
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If E c RV is measurable, we can define the upper and lower density
of E at x by

|E N B(x,r)|
| B(x,r)|

|E N B(x,r)]|

B(E,x) =limsup 1B

and D(E,x)=liminf
r—0+ - r—0t

respectively. If u € BV (Q), we define

u*(x)=inf{s : D{u>s},x)=0} and u,(x)=sup{s: D({u<s},x)=0}.

Then u is approximately continuous at x € Q iff u*(x) = u,(x).
Appendix B. Tools from convex analysis

In Appendix B, we will state some useful tools from Convex Analysis.
Interested readers may refer to the books [29,58] for more details.

Let X be a Banach space with norm || - ||. Throughout, we assume that
f 1 X - RuU{+oo} is convex and lower semicontinuous (l.s.c.) function.
Its effective domain is defined by is

dom(f)={u€ X : f(u)<+oo}.
f is said to be proper if it nowhere takes value —co and is not identically

equal to +oo0 on X.
Given any subset U C X, its indicator function I, is defined by

0
Iy(x)= {
o

We denote by X* the topological dual of X and (-,-) the duality
pairing. When f is proper, the subdifferential of f at u € dom(f) is the
set of all u* € X* such that

when x e U
when xe X\ U.

W v—u)< f(0) = fw,

and is denoted by df (u). Each element of 0 f(u) is called a subdifferential
of f at u. When o f(u) # ¥, we say that f is subdifferentiable at u.

The relationship between subdifferentiability and Gateaux-
differentiability is described by the following proposition.

Yve X,

Proposition B.1. Let f : X - R U {+o0} be convex and proper. If f is
Gdteaux-differentiable at u € int(dom(f)), then df (u) = f'(u), where f'(u)
is the Gdteaux-derivative of f at u.

By the definition of the subdifferential, it is obvious that

0f1() +9f5(v) Co(f1 + f2) (V).

However, the converse is not always true. We list below several cases
where the converse holds.

Proposition B.2. Suppose that f, f, : X > R U {400} is convex and Ls.c.
and u € dom(F)) ndom(F,). If f, is continuous at u, then

ofi(v)+0f,(v)=0(f1 + fL)(v) YveEX.

Proposition B.3. Let f,g : X —» Ru{oo} be proper, Ls.c. and convex func-
tions such that

U pu(dom(f) — dom(g)) is a closed linear subspace of X,
u>0

then

o(f +g)u)=0f(u)+0dg(u) Yue dom(f)ndom(g).

Proof. This is [4, Corollary 2.1]. See also [62] for an easy proof. []
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