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The bistable fluttering response of heavy inverted flags with different aspect ratios (AR)
is investigated to determine how the vortical structures affect the intermittent vibration
response of the flag. A heavy inverted flag in a uniform flow may exhibit several response
modes; amongst them are three major modes that occur over an extended velocity range:
stationary, large-scale periodic oscillation and one-sided deflected modes. Significant
hysteretic bistability is observed at the transition between these modes for all AR, which
is notably different from the conventional flag vibration with a fixed leading edge and
free trailing edge where no hysteresis is observed at the lower AR limit (AR < 1). The
difference is associated with the distinct roles of vortices around the flag. Experiments
with flags made of spring steel are conducted in a wind tunnel, where the flow speed
is steadily increased and later decreased to obtain different oscillatory modes of the
heavy inverted flags. The experimental results are used to validate the numerical model
of the same problem. It is found that different critical velocities exist for increasing and
decreasing flow velocities, and there is a sustained hysteresis for all AR controlled by the
initiation threshold and growth of the leading-edge and side-edge vortices. The effect of
the vortices in the bistable oscillation regime is quantified by formulating a modal force
partitioning approach. It is shown that AR can significantly alter the static and dynamic
vortex interaction with the flexible plate, thereby changing the flag’s hysteresis behaviour
and bistable response.

Key words: flow-structure interactions, bifurcation

1. Introduction

The flow-induced motion of flexible bodies is an everyday observation, from moving
leaves in the wind to animals flying and swimming. Flag flapping is a canonical example
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of such interaction that has drawn much interest over the past decades for its aerodynamic
and energy harvesting applications (Shelley & Zhang 2011; Yu, Liu & Amandolese 2019).
Another similar canonical configuration is the inverted flag in which the leading edge
is free to interact with incoming flow, and the trailing edge is fixed. The inverted flag
problem was first studied experimentally by Kim et al. (2013). They identified three distinct
response modes of the structure due to its interaction with the flow: a stationary mode
at low flow velocities, a two-sided flapping mode at intermediate flow velocities and a
one-sided flapping or deflected mode at high flow velocities (Kim et al. 2013; Sader et al.
2016a; Gurugubelli & Jaiman 2019; Ojo et al. 2019, 2021; Park, Ryu & Sung 2019). These
modes emerge from the balance between vortex-generated forces and the elastic restoring
force in the flag (Yu et al. 2019), resulting in self-sustained vibrations at relatively low
flow speeds. Later, three additional response modes, the buckled mode, small-amplitude
asymmetric flapping mode and chaotic mode, were also identified (Goza, Colonius &
Sader 2018; Tavallaeinejad et al. 2020c). The first two modes exist between the stationary
and flapping modes, while the chaotic mode can occur between the flapping and deflected
modes. The inverted flag configuration requires much lower critical flow velocity to reach
a large amplitude vibration compared with the regular flag configuration, and this is key
for its better performance in energy harvesting applications (Shoele & Mittal 2016; Orrego
et al. 2017).

Previous studies have shown that, although heavy inverted flags with a low mass ratio
(M∗ � 1) exhibit a self-sustained two-sided fluttering response, they are not necessarily
governed by vortex-induced vibration because the resonant frequency of the flag is
less than its vortex shedding frequency (Sader, Huertas-Cerdeira & Gharib 2016b;
Tavallaeinejad et al. 2020b). Instead, they are driven by self-excitation through a fluid
elastic instability. This phenomenon was also observed in the experimental study of
Tavallaeinejad et al. (2020c), which suggests that momentum-induced aerodynamic forces
govern the periodic fluttering motion. Also, it has been shown that inverted flags undergo
self-sustained periodic fluttering for a wide range of AR, defined here as the width to
length ratio (Sader et al. 2016a). The large-amplitude periodic fluttering only disappears
at minimal aspect ratios (AR � 0.1) (Tavallaeinejad et al. 2021).

Regular and inverted flag configurations can undergo different bifurcation paths during
the increase and decrease of flow velocity, hereafter referred to as upsweep and downsweep
conditions, respectively. Eloy, Kofman & Schouveiler (2012) studied the origin of
hysteresis in regular flags and showed that, during downsweep, below the critical flapping
velocity, the hysteresis loop continuously decreases from wide to narrow flags to the
extent that, for AR less than unity, there is no hysteresis. The heavy inverted flag,
instead, exhibits hysteresis (subcritical Hopf and pitchfork bifurcations for AR > 0.1 and
AR < 0.1, respectively) over a wide range of parameters (Tavallaeinejad et al. 2021). Kim
et al. (2013), in their experiments over a wide range of width-to-length ratios, observed a
consistent bistable behaviour (hysteresis loop) which only disappears when the initial flag
angle to flow becomes large. Tavallaeinejad et al. (2021) observed that flags with small
AR have a larger hysteresis loop, distinguishing them from the regular flag case. Tang, Liu
& Lu (2015) also observed a bistable response from the stationary to flapping modes in a
computational study of three-dimensional flags with different aspect ratios, although the
mechanism of bistability and the extension of the hysteresis loop were not explored. It is
still unknown why the hysteresis loop always exists in heavy inverted flags across different
AR and what the role of leading- and side-edge vortices would be in the flag bistability.

Given the unsteady nature of wind in energy harvesting and other ubiquitous
applications, the study of inverted flag bistability is essential for accurate prediction of
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the flow velocity range wherein the flag flaps continuously irrespective of wind gusts and
other changes in the wind speed. This paper explores the bistable vibration of a heavy
inverted flag for a wide range of AR(AR = 0.25–2) and the interconnection between its
hysteresis behaviour and the surrounding flow field.

2. Numerical formulation and experimental validation

The structural dynamics of the inverted flag, as depicted in the inset of
figure 1(a), is governed by the force-balance momentum equation written in the flag
curvilinear coordinate system (0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ W/L). It can be expressed in its
non-dimensional form (Shoele & Mittal 2016; Vahab, Sussman & Shoele 2021) as

∂2X

∂t2
=

2∑
i,j=1

[
∂

∂si

(
σij

∂X
∂sj

)
− ∂2

∂si∂sj

(
M∗

U∗2
∂2X
∂si∂sj

)]
− M∗F , (2.1)

M∗ = ρL
ms

, U∗ = UL

√
ρL
κb

, (2.2a,b)

where ρ is the density of the fluid, U is the flow velocity, L is the length of the flag and ms is
excessive mass of the flag per unit area (ρs − ρ)hs, with hs and ρs being the cross-sectional
thickness and material density of the flag, respectively. Here, κb is the flexural rigidity of
the plate and is related to Young’s modulus, E, and Poisson’s ratio, ν, of the flag material
as kb = Eh3

s /[12(1 − ν2)]. In (2.1), σij are the in-plane stresses of the flag defined as

σ11 =φ11

(
∂X
∂s1

· ∂X
∂s1

− 1
)

, σ22 =φ22

(
∂X
∂s2

· ∂X
∂s2

− 1
)

, σ12 = σ21 = φ12
∂X
∂s1

· ∂X
∂s2

,

(2.3a–c)

φ11 = φ22 = Ehs

1 − ν2 = 103, φ12 = Ehs

1 − ν2
1 − ν

2
= 100. (2.4a,b)

Here, the quantities U∗ and M∗ are non-dimensional parameters quantifying the relative
importance of the flexibility and inertia of the inverted flag, respectively. The interaction
force F (Goldstein, Handler & Sirovich 1993; Vahab et al. 2021) is modelled as the
feedback forcing term of

F = −α

∫ t

0
(U f − U s) dτ − β(U f − U s), (2.5)

where U f is the interpolated fluid velocity at the surface of the flag and U s = dX/dt is the
flag velocity. The parameters α and β are carefully selected as 104 and 200, respectively,
to satisfy the stability criterion, αΔt2/Δs = 0.4 and β = αΔt reported in Vahab et al.
(2021). A regularized delta kernel function is then used to interpolate the Lagrangian fluid
velocity at the flag surface from the Eulerian fluid velocity in the bulk region (Peskin 2002)

U f (s, t) =
∫

Vf

u(x, t)δ(X (s, t) − x) dx, (2.6)

and the Eulerian fluid body force (feedback force density for the fluid–structure
interaction) is then calculated from the flag’s Lagrangian force as

f (x, t) =
∫

S
F (s, t)δ(X (s, t) − x) ds. (2.7)

942 A4-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

33
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.339


O. Ojo, Y.-C. Wang, A. Erturk and K. Shoele

AAAA

W

(b)

(c)

(a)

3L
3L

2L
3L

8.8L

L
x

y
z

A

Wind tunnel

High speed

camera

 Light

source 

Airfoil shaped

clamp

3L

3L

3L

3L

W

Wind

z/
L

tU/L

0

50 60 70

�x = 0.025

80 90

1

−1

�x = 0.1 �x = 0.05

Figure 1. (a) The computational domain and the region with a refined mesh. The inset shows the flag
dimensions such as width (W), length (L) and peak-to-peak displacement amplitude (A), (b) fluttering time
history of the flag (M∗ = 0.1, U∗ = 2.24) for different grid sizes of Δx = 0.1, 0.05 and 0.025 and (c) the
wind tunnel experiment and a close-up view of the flag attached to an airfoil-shaped clamp at the trailing edge.

The non-dimensional Navier–Stokes momentum and continuity equations for
incompressible fluids are the governing equations for the fluid flow[

∂u
∂t

+ u · ∇u
]

= −∇p + 1
Re

∇2u + f , (2.8)

∇ · u = 0, (2.9)

where u is the non-dimensional flow velocity, p is the dynamic pressure and Re = ρUL/μ

is the Reynolds number.
Figure 1(a) shows the computational domain. The Reynolds number used for the

current simulations is 400, and M∗ is fixed at 0.1. The flow is modelled by discretizing
equations (2.8) and (2.9) on a non-staggered Cartesian grid using the finite-volume
method. The face-centre velocities are computed and updated separately to guarantee
strong coupling between velocity and pressure to impose the incompressibility constraint.
A Crank–Nicolson scheme is used for implicitly advancing the diffusion and advection
terms, while an explicit Euler scheme is used for the fluid–structure coupling force (Mittal
et al. 2008; Shoele & Mittal 2016). A uniform velocity is assumed at the inlet, the slip
boundary condition is used for the side boundaries and a convective outflow boundary
condition is assumed at the outlet. Also, a Neumann boundary condition is employed for
pressure on all boundaries. Numerical simulations are performed for flags with constant
length L and different width-to-length ratio (AR = W/L) ranging from a slender flag
(AR = 0.25) to a relatively wide flag (AR = 2). The mesh refinement study is done to
check the accuracy of our simulation (figure 1b). Different grid sizes (here, we show
Δx = 0.1, 0.05, 0.025), are simulated for U∗ = 2.24, where Δs = 0.8Δx is kept constant,
Δs and Δx are the structural grid and fluid grid spacing following Vahab et al. (2021). A
fluid grid spacing of 0.025 is found to be sufficient for this study.

The model is compared and validated with an experiment of a heavy spring steel
inverted flag (with AR = 1, M∗ = 0.1 and Re = 60 000), conducted in the wind tunnel
(figure 1c) under increasing and decreasing wind velocities. An airfoil-shaped (NACA
0010) aluminium clamped the inverted flag sample. Two threaded rods were used in the
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airfoil to make sure the flag was consistently aligned with the direction of the wind. A
high-speed camera (Photron Mini AX) was set up above the test section, and a LED
lighting source was used, enhancing the reflective light from the top edge of the flag to
the high-speed camera for capturing the fluttering motion. The experiment on the inverted
flag started from zero wind speed before being increased by increments of 0.447 m s−1

through the different response modes. The peak-to-peak displacement and the frequency
of the flag were obtained by processing the videos.

2.1. Modal force partitioning method
To quantify the role of vortices in the bistable oscillation region, we extend the force
partitioning method proposed by Menon & Mittal (2021a,b) to deformable surfaces.
The method then is used to study the correlation between the vortex structures and the
hysteretic behaviour of heavy inverted flags in the bistable regime. As an outcome of
this process, an auxiliary time-varying function φi is formed for the dominant mode of
vibration to express the pressure force of the ith mode as a volumetric integral of the flow
quantities around the flag. The procedure is summarized below.

Since the flag is approximately inextensible and its vibration predominantly in the x − z
plane, to perform the modal force partitioning of the aerodynamic force acting on the flag,
we re-write the flag’s equation of motion in terms of its rotational angle and dominant
mode shapes (Tavallaeinejad, Legrand & Paidoussis 2020a; Tavallaeinejad et al. 2020b).
This allows the use of only one scalar variable, the flag’s rotational angle (Θ), to express
the vector momentum equation of the flag presented in (2.1). The dominant rotational
mode shapes of the flag are identified from the computational results by expressing the
rotational angle of the flag mid-surface as

Θ(s1, s2, t) =
M∑

i=1

Ψi(s1, s2)qi(t), (2.10)

where qi(t) is the time-dependent generalized coordinate of mode i and Ψi(s) is the
corresponding angular mode shape. Here, s1 is the streamwise Lagrangian coordinate
along the flag, being zero at the fixed end and one at the leading edge. Similarly, s2 is the
spanwise Lagrangian coordinate along the flag with 0 ≤ s2 ≤ W/L. In vector notation, the
expression can be written as, Θ(s, t) = Ψ T(s)q(t). The dynamics of the flag is projected
on the dominant modes following Tavallaeinejad et al. (2020b) to derive a nonlinear modal
equation of motion of the flag

q̈(t) +
∫

S
Ψ (s) sin

cos (Θ(s, t))I(s, t) ds −
(∫

S
Ψ (s)Ψ

′′T(s) ds
)

q(t) + f F = 0, (2.11)

where I(s, t) is the nonlinear inertial force presented in Tavallaeinejad et al. (2020b) and
f F is the modal external fluid force term. These components are defined as

I(s, t) =
∫∫ s1,η

1,0
{Ψ (ξ, s2)

T q̈ sin
cos (Θ(ξ,s2, t)) + (Ψ (ξ ,s2)

T q̇)
2 cos

sin (Θ(ξ, s2, t))} dξ dη,

(2.12)

f F =
∫

S
Ψ (s)

[
sin
cos (Θ(s, t))

∫ s1

1
[p](η, s2, t) sin

cos (Θ(η, s2, t)) dη

]
ds + f V . (2.13)

Here, the notation sin
cos implies that both harmonic components are included in the

formulation. The term [p] = p+ − p− is the pressure jump over the flag thickness and
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f V is the much smaller viscous force. The equation of f F can be symbolically written as
a kernel relation of

∫
S Hi(s, t)[p](s, t) ds for the ith mode.

In the next step, the pressure jump over the flag, [p], is related to the volumetric flow
features. The procedure is similar to what is formulated in Quartapelle & Napolitano
(1983) and Menon & Mittal (2021b), which essentially involves using an arbitrary
divergence-free vector w with ∇ · w = 0 and the boundary condition of n · w = Hi(s, t)|S
to yield

−
∫

S
Hi(s, t)[p](s, t) ds =

∫
Vf

w ·
(

a + 1
Re

∇ × ω

)
dV. (2.14)

Here, a is the fluid material acceleration and ω is the vorticity. We assume n is the
outward normal associated with the + face of the flag. The divergence-free condition of
w permits the definition of an auxiliary time-varying potential function φi (w = ∇ · φi)
which satisfies the following equations in the body of the fluid and on the surface of the
flag:

∇2φi = 0 and
∂φi

∂n

∣∣∣∣
S

= Hi(s, t). (2.15a,b)

The boundary element technique is employed to calculate φi around the flag. Here, the
flag is represented with a thin ‘dipole’ element, and the following hypersingular boundary
integral equation associated with (2.15a,b) is solved to calculate the jump of φi over the
surface S (Martin & Risso 1993; Krishnasamy, Rizzo & Liu 1994):∫∫

S
[φ]iGnξ nη dsξ= −4π

∂φi

∂nη

, (2.16)

where G(η;ξ) = 1/|η − ξ | is the three-dimensional free-space Green’s function and
[φ]i = φi+ − φi−. The auxiliary potential at any internal point of the flow domain (x)
can then be calculated with Green’s second identity using the jump of [φ]i over the flag as

4πφi(x) = −
∫∫

S
[φ]i(s)Gnξ dsξ . (2.17)

Applying the auxiliary potential in the whole domain, we follow Menon & Mittal
(2021a) and write the material acceleration in (2.14) in Lamb–Gromeka form as a =
∂u/∂t + ω × u + ∇(1

2 |u|2). We then expand (2.14) as∫
S

Hi(s, t)[p](s, t) ds = −
∫

S
n ·

(
du
dt

[φi]
)

ds −
∫

S

1
2
|u|2Hi(s, t) ds

+
∫

Vf

[∇ · (ω × u)]φi dV +
∫

Vf

1
2
∇ · [∇(|u|2)φi] dV

+
∫

Vf

1
Re

(∇ × ω)·∇φi dV. (2.18)

The left-hand term in the equation is the pressure force contribution to mode i. The first
two terms on the right-hand side constitute the corresponding kinematic forces, the fourth
and fifth terms are the modal vortex-induced force of mode i (VIF) and the last term is the
modal force due to viscous effects.
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Figure 2. (a) Peak-to-peak displacement amplitude of the flag for increasing and decreasing U∗. The inset
shows the numerical simulations hysteresis loop for different Reynolds numbers (Re = 300, 400 and 500).
(b) Strouhal number of the flag against non-dimensional free-stream velocity (U∗) (Num – numerical
simulation, Exp – experiment). (c) Effect of aspect ratio on the flag hysteresis.

3. Results

Three distinct response modes were observed experimentally and numerically for the
heavy inverted flag of AR = 1. For low non-dimensional velocity values of U∗ ≤ 1.8
(numerical simulation) and U∗ ≤ 2.1 (experiments) during upsweep (when velocity
increases), the flag remains stationary (figure 2a). When U∗ increases, a two-sided,
self-sustained fluttering mode is obtained; this is the second response mode. It is observed
both numerically and experimentally at intermediate velocity values of 1.82 ≤ U∗ ≤ 3
and 2.3 ≤ U∗ ≤ 3.5, respectively. The last response mode is a one-sided fluttering mode,
which is observed at high-velocity values around U∗ > 3 numerically and U∗ > 3.5
experimentally. These modes are consistent with previous numerical and experimental
observations (Kim et al. 2013; Sader et al. 2016a). The variation in the critical fluttering
velocity between the experimental and the numerical results is associated with the
Reynolds number differences. When the same simulations are performed with Re = 300
and 500, we find that the upsweep critical velocity approaches the experimental result with
an increase in Reynolds number, as shown in figure 2(a).

When U∗ is reduced (downsweep), during the transition from the one-sided mode to
the fluttering mode, no hysteresis is observed numerically (3 ≤ U∗ ≤ 3.2); while a minor
hysteresis is found in the experiments. As U∗ is reduced further, the flag continues to flutter
at a lower U∗ than the upsweep result, thereby extending the fluttering region and creating
a sustained subcritical bifurcation loop at 1.3 ≤ U∗ ≤ 1.8 numerically. A similar response
is observed in experiments over a slightly larger range of 1.45 ≤ U∗ ≤ 2.15. After that,
the flag reverts to its stationary mode when U∗ is further reduced, as shown in figure 2(a).
The downsweep threshold shows a much lower dependency on Re as the flag switches
from the fluttering to stationary mode at a similar U∗ range for all tested Re. It is, however,
observed that, for the range of tested Re cases, the hysteresis loop (U∗

U − U∗
D) increases

with Re (inset figure in figure 2a). This trend changes for much higher Re flows as the
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upsweep critical U∗ approaches the same asymptotic value, wherein the hysteresis loop
will be independent of Re.

As shown in figure 2(b), during upsweep, in both the numerical simulation and
experiment, Strouhal number (St = fA/U) decreases linearly with U∗ when the flag is
in its fluttering state. The highest St is observed at the onset of stationary to fluttering
mode transition. During downsweep, St increases in the hysteresis band until it attains
its maximum value at the lowest U∗ associated with the transition from the fluttering to
stationary mode.

3.1. Effect of aspect ratio
To study the role of AR on the hysteresis response of the flag between stationary and
fluttering modes, different AR (AR = 0.25–2) are tested numerically. It is observed that
a persistent hysteresis loop exists for all AR, as shown in figure 2(c). Three primary
response regimes are marked in the figure. It is found that, during upsweep, when
AR = 0.25–0.5, the critical velocity at the initiation of fluttering motion remains constant.
Here, the flag is slender, and the flag dynamics is mainly controlled by the appearance
and strengthening of the side-edge vortices (SEVs). In the slender flags, SEVs are much
stronger than the leading-edge vortex (LEV), similar to what was previously observed
by Bollay (1939) and subsequently shown in the theoretical study of slender inverted
flags by Sader et al. (2016b), and Tavallaeinejad et al. (2020a). At large aspect ratios of
AR = 0.75–1.25, the critical velocity shows non-monotonic changes with AR. The largest
bistable region/hysteresis loop is found in this range at AR = 0.75. Over AR = 0.75–1, the
critical velocity threshold rapidly decreases, while for larger AR (1.25–2), the upsweep
critical velocity shows a gradual linear reduction with AR, with a slope of s = −2.85. The
stability of the plate and role of aspect ratio on the LEV and SEVs at the onset of fluttering
motion will be discussed later in § 3.3.

During downsweep, the critical fluttering velocity linearly decreases as AR increases
with a slope of = −6.06, smaller than what is observed during upsweep response for
higher AR cases, as shown in figure 2(c). Heavy inverted flags show consistent subcritical
bifurcation for small to wide aspect ratios, similar to what is observed by Tavallaeinejad
et al. (2021), as opposed to the results of the regular flag configuration in which the
hysteresis is only present for AR greater than unity (Eloy et al. 2012).

The motion of heavy flags with strong inertial forces compared with fluid dynamic
forces is governed by fluid elastic instability (Tavallaeinejad et al. 2020c), wherein the
changes in the geometry and the flow forces are in a dynamically balanced state to promote
continuous fluttering motion. We discuss the connection between the deformation-induced
vortical structures and fluttering dynamics in the bistable response range by visualizing the
Q-criterion (Q), at Q = 2 and 4, as shown in figure 3.

Top images of figure 3(a–c) show the snapshots of the flow field of the first fluttering
cycle in the upsweep phase at the critical U∗. As the flag diverges from the stationary
mode, vortical structures first develop at the leading edge (accompanied by low pressure
behind the flag), followed by the strengthening of SEVs as the flag deflects more. When the
flag reaches its maximum deflected position, the combination of vortices breaks up, and
the pressure force is reduced, as the vortices shed into the wake as shown in figure 3(a–c)
(upsweep). The bending stiffness of the flag then becomes dominant and restores the flag
toward its undeflected state. The sequence of vortex separation and bending restoration
effects enable symmetric fluttering motion (Gurugubelli & Jaiman 2019; Park et al. 2019;
Yu et al. 2019). In figure 3(a), for a slender flag (AR = 0.25), during upsweep at initial
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Figure 3. Upsweep (initial fluttering cycle) and downsweep vortex structures for (a) AR = 0.25 at critical
velocities U∗ = 2 and U∗ = 1.69 for upsweep and downsweep, respectively, (b) AR = 0.75 at U∗ = 2.09 and
1.49 and (c) AR = 1.50 at U∗ = 1.83 and 1.35. The iso-contours are for Q-criterion of 2 (grey) and 4 (brown).

t/T < 1/16, only a small strip of LEV is formed due to the small numerical perturbation
of the initial configuration of the flag. The LEV then initiates the incremental deflection
due to the leading-edge suction force (Polhamus 1966; Eldredge & Jones 2019). The tip
vortices from the side edges grow as the flag deflects while staying attached to the edges.
The steady growth of SEVs and further flow separation at the side of the plate induces
a more significant lift force on the flag and increases the deflection angle (Gurugubelli
& Jaiman 2019). At the larger deflected stage, there is a secondary spanwise flow on the
leeward surface of the flag from strong attached SEVs, which interacts with primary side
vortices and results in their separation over approximately the first half of the flag, as
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Figure 4. Velocity vectors coloured by the vorticity magnitude at t/T = 1/8, and t/T = 1/4 for AR = 0.25,
AR = 0.75 and AR = 1.50 at the initial upsweep flapping cycle and at position x = L/2.

shown in figure 4. The LEV plays a minimal role in this AR, and the SEVs mainly govern
the fluttering dynamics. This mechanism is similar to what is observed in low-aspect-ratio
wings. A similar vortex interaction pattern is also found during the downsweep condition
(the bottom images in figure 3a). However, the inertia of the moving flag compensates
for the lower LEV suction force at smaller flow velocities to induce small deflection and
initiate the SEVs formation that the flag requires to sustain its fluttering response. This
mechanism is absent for the upsweep response in the bistable range; therefore, the flag
remains in its stable undeflected position.

For moderate AR cases (e.g. AR = 0.75), the LEV and SEVs are comparable and have
almost equal impact on the fluttering dynamics of the flag. During the upsweep phase at
t/T < 1/16, the LEV becomes stronger with an increase in flag width and exerts a suction
force on the flag. At a slightly larger deflection position, tip vortices start to form due
to a larger angle of attack. SEVs subsequently cause a downward-induced velocity that
limits the growth of the LEV, similar to the mechanism discussed in Taira & Colonius
(2009), and therefore limits the growth rate and detachment of the LEV. This pattern
continues till t/T = 1/4 when the flag reverses its motion, and the entire vortex is shed
to the wake as shown in figure 4. During downsweep, the wake vortices behind the flag
are stronger, elongated and attached to the trailing edge, as shown in figure 3(b). The tip
vortices from the previous half-response period are lifted off by the trailing-edge vortex
and recently formed SEVs. As a result of this vorticity field, the new SEVs are pushed
inside the leeward side of the flag and become stronger. The more significant interaction
between the flag and vortices is responsible for its fluttering at a lower U∗, similar to the
trend observed for lower AR.

Comparing the flow field during upsweep and the observed delay in the transition from
the stationary to fluttering mode suggests that the exact mechanism (limitation of the
growth of the LEV by SEVs) would be present near the critical velocity of moderate aspect
ratios. In particular, the results suggest that at AR = 0.75, there is a nonlinear relation
between the initiating and strengthening of the LEV and SEVs that reduces the fluid
dynamic force on the plate upon its initial perturbation. As a result, moderate aspect ratio
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Figure 5. Magnitude of vortex-induced modal forces per unit width of the flag in the bistable region vs
non-dimensional free-stream velocity U∗ for (a)AR = 0.25, (b) 0.75 and (c) 1.5.

cases have larger critical velocities. The exploration of this aspect with derived theories is
the focus of § 3.3.

For wider flags (e.g. AR = 1.5), the LEV is the dominant vortical structure through
the entire fluttering cycle and is less affected by the downward velocity caused by SEVs,
as shown in figure 4. The stronger LEV at the onset of fluttering results in a smaller
critical U∗. The trend continues linearly with an increase of AR till the flag reaches a
two-dimensional limit where the side effects are absent. During downsweep, the wake
vortices become more elongated in the spanwise direction (figure 3c), thereby making the
flag continuously flutter at a lower U∗. Also, a faster growth rate of the LEV due to the
inertial momentum of the flag causes it to flutter at a lower U∗ continuously.

3.2. Fluid modal forces
As shown in the previous section, the hysteresis behaviour of the flag in the bistable region
is highly dependent on the vortical structures. Here, we explore the role of different vortical
structures using the modal force partitioning approach of § 2.1. It is found that VIF is
always the most dominant fluid force (more than 90 % contribution) and is, therefore, the
subject of our next analysis. The VIF can further be split into the contribution from the
LEV and SEVs. We normalize the force with the flag width to compare VIF between
flags of different AR. Furthermore, since the flag has harmonic motion with frequency
ω in its fluttering response mode, the contribution of VIF can be expressed as VIF(t) =
ṼIFeiωt. Subsequently, we denote the amplitude of the total VIF as VIFTotal = |ṼIF| while
the contributions from the LEV and SEVs are denoted as VIFLEV and VIFSEV respectively.

Figure 5 shows how the different VIF contribution changes with U∗ in the bistable
region. For AR = 0.25, VIFTotal increases gradually from the upsweep point, i.e. U∗ = 2,
through the bistable region, and only suddenly reduces before the downsweep transition
point (U∗ = 1.69). In this case, the modal vortex force is mainly generated from the side
edge of the flag, as VIFSEV > VIFLEV and the strength of SEVs are adjusted to balance
with its bending restoring force, and as a result, the flag oscillation is quasi-static. When
AR = 0.75, the flag experiences the largest hysteresis region/loop as shown in figure 2(c).
Here, VIFLEV becomes larger, and its influence is now similar to the action from SEVs.

The reduction of VIF at smaller U∗ is associated with a smaller oscillation amplitude
and its role on the LEV creation and strengthening. The initial increase and subsequent
plateau portion of the curve during downsweep are associated with the flag inertia,
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strengthening the LEV as the flag passes the mid-deflection position. For smaller U∗,
however, this effect is not sufficient to balance the loss of aerodynamic forces. For wide
flags (AR = 1.50), the VIFTotal initially show a gradual change with U∗ from the upsweep
point (U∗ = 1.83) to the downsweep point (U∗ = 1.35) as shown in figure 5(c). Here,
VIFLEV is clearly the most dominant force at this AR. In this case, small modifications in
the oscillation amplitude or frequency translates into a large change in the LEV creation
and strengthening, and therefore, there is a continuous feedback between the flag motion
and VIF. This higher sensitivity of the aerodynamic force to the flag’s dynamics reduces
the bistable extent.

In order to illustrate the modal force from the vortical structure, the integrand of VIFLEV
and VIFSEV are shown when they are projected on Q-criterion iso-surfaces. Here, the
iso-surface is kept constant at Q = 15, 17 and 20 for AR = 0.25, 0.75 and 1.5, respectively,
as shown in figure 6 to visualize the VIF effect on the flag. Also, for better visualization,
we separated VIFLEV from VIFSEV based on the width of the flag. Only the contribution
from VIFLEV is projected on the right half of the flag’s vortical structure while that of
VIFSEV is projected on the left half of the flag’s vortical structure. At AR = 0.25, a very
small strip of VIFLEV and no VIFSEV keeps the flag at the zero deflection state (t/T = 0).
As the flag deflects (t/T = 1/8), VIFSEV starts to grow, inducing lift on the flag, also
the VIFLEV is more attached to the flag as it starts to deflect. During upward motion,
VIFSEV mostly originates from the large moment generated by side vortices near the
leading edge. The side vortices remain attached and gradually shifts toward the leading
edge as the angle of attack increase. During upsweep and downsweep, VIFSEV is the
most dominant force acting on the quasi-static flag. When AR = 0.75, the same trend
occurs through the fluttering cycle, but VIFLEV (almost equal to VIFSEV ) plays a bigger
role in its fluttering dynamics due to an increase in the flag’s width. On the other hand,
there is a clear change in the distribution of VIFSEV . In this case, the midsection side
vortices are most effective in producing modal aerodynamic forces, but their effective force
becomes smaller. More energetic VIFLEV is also observed during downsweep motion, as
shown in figure 6. When AR = 1.5. the most dominant force in the fluttering cycle is
VIFLEV , especially far from the side edges. During the downsweep response, the intensity
of VIFLEV reduces as the fluttering amplitude, and the frequency gets smaller, to the
extent that the LEV is insufficient to keep the flag fluttering and the flag reverts to the
stationary mode. The changes of fluttering amplitude and Strouhal number within the
bistable region of slender (AR = 0.25), moderate (AR = 0.75) and wide (AR = 1.5) flags
are shown in figure 7. For all AR, the fluttering amplitude slightly increases from the
upsweep point (A) to the initiation of downsweep (B) in the bistable region, which is
followed by a plateau (B–C range in the figure) and a subsequent rapid decrease. The
reduction of amplitude with U∗ is steeper for wider flags (e.g. AR = 0.75 and 1.50), which
is associated with how the aerodynamic forces from LEV and SEVs change with the
reduction of U∗ as previously discussed. The fluttering frequency, St (figure 7b), is much
smaller for AR = 0.25 compared with higher AR. It follows the same trend as the flutter
amplitude, implying that the fluid–structure interaction, in this case, is purely quasi-static.
For the wider flag, at AR = 0.75, the growth and separation of LEV are affected by two
mechanisms: the flag deflection through attached SEVs and vortex-induced flow fields.
The later action is unsteady and is influenced by the vortex structures around the flag. It is
observed that the flutter frequency increases with the decrease of U∗ for all moderate and
large AR. The exception occurs at the transition from the flutter mode to stationary mode.
In addition, for moderate AR cases, the amplitude stays constant over a wide range of U∗
in the bistable band. Since a combination of high amplitude and frequency is important
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Figure 7. (a) Peak-to-peak amplitude and (b) Strouhal number against U∗ for AR = 0.25, 0.75, and 1.5.
Critical fluttering upsweep velocity is marked as A (b), the intermediate downsweep cases with B–D and
downsweep critical limit as E.

for high energy harvesting (Shoele & Mittal 2016), intermediate-aspect-ratio flags appear
to be ideal for such high energy capture as they show superior fluttering response and are
energetic over an extended range of bistable flow velocity.

3.3. Stability of equilibrium states
The numerical results show three distinct regimes of transition from a stationary to a
fluttering state based on the aspect ratio of the plate. To understand the dominant factors
affecting the transition threshold for different aspect ratios, we explore the analytical
fluid force models for the limit of small deflection and explore the system’s stability in
asymptotic regimes of small and large aspect ratios. For slender flags, previous studies
show that the dominant fluid force could be mathematically expressed for high Reynolds
number flows using a uniform distribution of bound vortices along the chord of the
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plate and vortex sheet separation around the side edges of the plate. Sader et al. (2016b)
used this mathematical description to analytically identify the critical velocity of slender
flags as U∗

c = 3.03 when the flag bifurcates from the undeflected position to a deflected
static shape. For more information about this model, we refer to the original study by
Sader et al. (2016b). A slightly lower but still comparable critical velocity range was also
observed in their experiment, and it was shown that even for flags with slightly larger
AR, for the transition from undeflected to flapping state, there is a minimal change in U∗

c
compared with the theoretical model predictions. This limit is marked in figure 8(a) with
the red dashed line. Our computational results similarly suggest that the SEVs separation
mechanism is the crucial instability mechanism for the slender flag cases tested here.

On the other hand, for large AR, the inviscid mechanisms control U∗
c . To mathematically

describe this range, two types of inviscid forces are modelled: (i) the inviscid pressure
force using the modified Lighthill’s slender body model for moderate aspect ratios (Yu
& Eloy 2018) and (ii) the vortex lift force model proposed by Polhamus (1966) based on
Bollay’s nonlinear wing theory (Bollay 1939). Here, we assume that the midpoint of the
trailing edge of the flag is at (0, 0, 0). Moreover, only deflection perpendicular to the flag is
considered based on the computational results. In (2.1), the limit of small lateral deflection
near the undeflected position can be linearized as

∂2y

∂t2
+ M∗

U∗2
∂4y

∂x4 + M∗[p] = 0, (3.1)

where [p] is the pressure jump across the plate and is decomposed as [p] = preac + pvor.
Here, preac is the reactive pressure which in the limit of small lateral deflection can be
calculated from the modified Lighthill’s model for moderate aspect ratios (Yu & Eloy
2018)

preac = 2β(x)
√

z(AR − z)
(

∂

∂t
+ ∂

∂x

)2

y, (3.2)

where β(x) is the approximate function to achieve the correct Kutta condition near the
trailing edge

β(x) = 2

1 + √
1 − κ2

, κ = AR
4(1 − x)

. (3.3a,b)

The second component, pvor, in the limit of small deflection can be approximated as
(Polhamus 1966; Tavallaeinejad et al. 2020a)

pvor = Kp(AR)

2

(
∂

∂t
+ ∂

∂x

)
y, (3.4)

where Kp(AR) is an increasing coefficient with respect to AR, representing the
cross-sectional circulation of the flags with different aspect ratios. The mathematical
description is provided in Tavallaeinejad et al. (2020a) and is skipped here.

In order to perform the linear stability analysis, we expand y based on Galerkin modes
chosen to be the plate mode shapes in a vacuum. In addition, a complex angular frequency
ω is assumed, and the eigenvalue problem of (3.1) is solved to obtain the global modes
and their frequencies for different values of U∗. If one of these eigenvalues has a negative
imaginary component, the plate is unstable. The blue line in figure 8(a) represents the
linear prediction of critical velocity for different aspect ratios. The analytical prediction
shows a similar trend to fluid–structure interaction (FSI) calculations.
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Figure 8. (a) Critical flow velocity U∗
c as a function of aspect ratio AR for an inverted flag with M∗ = 0.1.

The red dashed line is the limit of slender flag, the blue line is derived from the modified slender body
theory and vortex force. The green lines represent how the critical velocity changes for different values of
the feedback parameter γ , (γ = 10−2 − 10−1). (b) Modal vortex-induced force at the initiation of upsweep
fluttering motion (t/T = 1/8) for AR = 0.25, 0.75 and 1.5. (c) Integrand of vortex-induced modal force from
the LEV (VIFLEV ) and SEVs (VIFSEV ) for AR = 0.25, 0.75 and 1.5 at the initiation of upsweep fluttering
motion (U∗ = 2, 2.09, 1.83 at t/T = 1/8).

For flags with a moderate aspect ratio, there is an inward-induced velocity near the
leading edge that affects the strength of the leading-edge suction force. This has not been
taken into account in the current analytical models. Here, to test for the potential role of
this effect, we use a phenomenological model and assume an aerodynamic feedback force
(ff ) to account for the changes of the suction force at the leading edge based on the effective
angle of attack of the plate. The feedback coefficient is related to the induced velocity at
the centre of the leading edge from the tip vortex filament and represented as ff ∝ 1/AR.
The phenomenological model is expressed as

ff = − γ

AR

(
∂

∂t
+ ∂

∂x

)
y
∣∣∣∣
x=−1

, (3.5)

where γ is the feedback parameter that roughly quantifies the strength of the interaction.
This forcing term is added to the right-hand side of (3.1) and Uc is calculated from the
phenomenological model. The results are shown in figure 8(a) for different values of γ ,
where it is observed that the critical velocity of moderate AR are more affected than large
AR. We hypothesize that this trend continues before the critical velocity switches to a lower
U∗

c condition associated with slender flags, as observed from the computational model.
The roles of SEV and LEV are better noticeable by looking at VIFSEV and VIFLEV from

the FSI simulations at the initiation of upsweep fluttering motion for different aspect ratios
(figures 8b and 8c). It is seen that the contribution of the side vortices is more significant
than the LEV for the small AR of 0.25, and the trend is reversed for the large AR of 1.5.
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There is a balanced role of SEVs and LEV at the intermediate AR of 0.75, the case with
larger U∗

c . The results suggest that there should be a nonlinear interaction between LEV
and SEVs in this case that results in a more stable system. While the phenomenological
model could partially represent this relation, a more refined analytical model, if possible,
is needed to capture this effect thoroughly.

4. Conclusion

This paper discusses the nonlinear dynamics and hysteresis behaviour of a heavy inverted
flag, which is found to be strongly correlated with the flag’s aspect ratio (AR). Also, the
inverted flags show a consistent subcritical bifurcation at all aspect ratios fundamentally
different from what is observed in regular flags, where hysteresis does not occur for
slender flags with AR < 1. The reason is associated with the lift-induced force from
SEVs at small deflection positions. It is found that the actions of the side vortices are
quasi-static and most dominant for slender flags. In this case, the LEV only plays a
triggering role for the transition from stationary to small amplitude deflected state while
the instantaneous balance between the force from the SEVs and restoring bending moment
of the flag determines the oscillation state of the system. The maximum bistable range is
observed for AR = 0.75, wherein vortices from leading and side edges are comparable.
The downward induced flow from the side vortices plays a stabilizing role in reducing the
LEV’s action and pushing the transition onset between the stationary and the fluttering
modes to high reduced velocities. With the reduction of U∗, the dynamic inertial forces of
the flag compensate for a smaller suction force from the LEV to effectively keep the flag
in fluttering mode. For larger AR, there is dynamic feedback between the LEV creation
and flag oscillation. The rate of LEV creation and its strengthening is the driving factor.

To understand the reason for the bifurcation observed in heavy inverted flags, we project
the fluid dynamic forces into the nonlinear modal equation of the plate. Furthermore,
the modal force partitioning method is introduced to study the role of dominant vortical
structures in the bistable response of the flag. For slender flags, the fluttering behaviour
is quasi-static and is primarily governed by VIFSEV . As the flag width increases to
intermediate AR, the relatively equal contribution of VIFSEV and VIFLEV enables the flag
to flutter in the bistable range. For wider flags, the VIFLEV governs its fluttering dynamics.
It is found that with an increase in AR, the most force-producing part of side vortices moves
toward the trailing edge, and their force production capacity is reduced.

These observations suggest that an energy harvesting flag can sustain its fluttering
response even with large wind velocity fluctuations. A reduction in the wind velocity could
bring the heavy inverted flag to the bistable region, and if the bistable range is sufficiently
extended, the flag does not lose its energetic fluttering response and continues to flutter at
large amplitude. The study also suggests that for AR ≈ 1, a delay in bifurcation occurs due
to the dual actions of SEVs and LEV. This exact mechanism allows the flag to undergo a
more energetic response in its hysteresis loop. The use of the flag’s hysteresis to increase
the energy harvesting of a piezoelectric wind energy harvester will be explored in future
works. In addition, while the phenomenological analytical model presented here could
explain the observed delayed transition to flutter for moderate aspect ratios, a more refined
theoretical model rooted in flow physics is needed to quantify the interaction between the
leading edge and tip vortices and explain the transition of inverted flags with moderate
aspect ratios.
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