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Abstract

Wind-induced stress is the primary mechanical cause of tree failures. Among different factors, the
branching mechanism plays a central role in the stress distribution and stability of trees in
windstorms. A recent study showed that Leonardo da Vinci’s original observation, stating that the
total cross section of branches conserved across branching nodes is the optimal configuration for
resisting wind-induced damage in rigid trees, is correct. However, the breaking risk and the optimal
branching pattern of trees are also a function of their reconfiguration capabilities and the processes
they employ to mitigate high wind-induced stress hotspots. In this study, using a numerical model
of rigid and flexible branched trees, we explore the role of flexibility and branching patterns of trees

in their reconfiguration and stress mitigation capabilities. We identify the robust optimal
branching mechanism for an extensive range of tree flexibility. Our results show that the
probability of a tree breaking at each branching level from the stem to terminal foliage strongly
depends on the cross section changes in the branching nodes, the overall tree geometry, and the
level of tree flexibility. Three response categories have been identified: the stress concentration in
the main trunk, the uniform stress level through the tree’s height, and substantial stress localization
in the terminal branches. The reconfigurability of the tree determines the dominant response
mode. The results suggest a very similar optimal branching law for both flexible and rigid trees
wherein uniform stress distribution occurs throughout the tree’s height. An exception is the very
flexible branched plants in which the optimal branching pattern deviates from this prediction and
is strongly affected by the reconfigurability of the tree.

1. Introduction

All plants need appropriate mechanical support to
withstand dynamic and static environmental loads
for their continual survival [1]. Plant movement can
be classified as either spontaneous or as a result of
a biological response to stimuli [2]. The latter will
be the focus of this study. Trees and winds form a
ubiquitous unit of the environment, in which the
motion of trees affects and is affected by surrounding
flow [3]. With the human effort to introduce trees
in urban communities and the importance of such
canopies for the ecosystem [4], it is crucial to assess
the continual survival of trees in different environ-
mental conditions.

The wind-induced motion of plants in normal
wind conditions has various effects. It is used to

measure wind magnitude [5] and plays a vital role
in dispersing seeds and pollen grains [6, 7]. The
thermal [8, 9] gaseous exchanges along with transport
[10, 11] of plants can also change when subjected
to winds. The canopy height plays a central role
in the light interception of plants [2, 12] whereby
the fast movement of canopy top layers in the wind
increases its light penetration and prompts an overall
increase in the rate of photosynthetic induction [2].
Also, the oscillation of branches and leaves due to
wind increases the carbon gain of canopies [13] and
helps the water regulation of leaves with subsequent
effects on the dynamics of pathogen development
in the canopy [14, 15]. The motion of foliage in
the wind also reduces arthropod herbivore infection
[16, 17] and could be crucial for the plant’s health.
The damage to forests and crops from the turbulent
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Figure 1. (a) The sample fractal model of a branched tree (b) top view, and (c) front view.

Z,
N
U
Uniform y

_, "l velocity

-
Z
DT—D |<— $LT y
- X

Figure 2. Schematic of the computational domain.

Figure 3. Tree branch connectivity. ], and J; are the joints
connecting the mother branch-1 of length L, to two
daughter branches with lengths of L, and L; respectively.
Here, ky and ¢y are the stiffness and damping of the joint,
respectively.

flows during windstorms are another significant con-
sequence of the interaction between wind and tree
structures as they could cost billions of dollars to the
US economy each year [18, 19].

There are four primary modes of tree damage due
to wind-induced stresses: (1) base damage: occurs
when the root of the tree breaks or there is soil
instability beneath the tree; (2) trunk breakage: cor-
responds to the breakage of the tree stem; (3) branch
breakage: occurs when any part of the upper elements
of the tree breaks; and (4) excessive removal of the

leaves: is related to a chronic modification of the tree
functionality [20, 21]. These damages occur because
of rare high wind conditions; however, the tree pos-
ture can also change when exposed to strong winds
for a long duration, tending to grow into a shape that
results in uniform stress along the tree, among other
factors. The growth pattern change in response to
such winds is known as thigmomorphogenesis [22].
Mechanics of wind-induced stresses in trees have been
extensively studied previously. Metzger [23] predicted
that wind-induced stresses are constant along the
length of tree branches and trunks. Mattheck [24]
also recognized this hypothesis, suggesting that trees
are optimized structures grown into perfect shape
over time in which no part within the tree height
is prone to more stress than other parts. However,
recent studies have shown that wind-induced stresses
vary by order of magnitude along the length of the
tree. Niklas and Spatz [25, 26] disputed the constant
stress hypothesis by calculating the wind-induced
stresses of five Prunus serotina trees of the same species
with different wind speed profiles and found that
wind-induced stress varies along the length of the
tree and depends on tree taper (geometry effect).
Lopez et al [20] also showed that the location of the
maximum stress in a fractal tree is dependent on its
branching parameter. Lawton [27] predicted that an
increase in trunk thickness helps withstand higher
wind-induced stresses, and Milne and Blackburn [28]
showed that the region associated with tree failure is
the region of maximum stress. While the maximum
stress level occurs in the trunk of some plant species,
other species might experience high stresses at the
top branches and foliage [20, 29]. In either case,
breakage occurs at a point when the wind-induced
stress exceeds the wood fracture strength [25].
Besides the uniform stress through the height,
another strategy exists for trees to mitigate failure
in high wind conditions. Tree species that lose their
leaves and terminal branches/foliage are more likely
to withstand severe hurricane storms [30, 31]. This
is prevalent in larger trees because of their reduced
flexibility and limited reconfiguration capabilities.
This process is called wind-induced pruning [1], in
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Figure4. (a) Linear deformation of a beam as a function of the lateral force at the tip, (b) normalized radius of curvature as a
function of normalized mass applied to the tip (y;’—l = 0.1—40> , and (c) deflection patterns of the multi-link system with the
attached mass of mﬂl = 0.2 and 10 with the seven-links model.
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Figure 5. (a) Comparing the current branch ratio
parameter, A5, and the Hausdorff fractal parameter, A,
used in Eloy [33], (b) total stress in different levels of the
tree with \e = 1.5-3.0,and Ca = 4 x 107°.

which the wind loads acting on the tree reduce, and
thereby, the tree maintains its upright stability.

Da Vinci, in his notebook, mentioned a general
observation that ‘all the branches of a tree at every
stage of its height when put together are equal in
thickness to the trunk (below them)’ [32]. Da Vinci’s
observation that the summation of the surface area
of all the daughter branches at every point of the
tree equals the surface area of the mother branch was
later linked with the most effective damage resistance
in rigid branched trees [33]. Nonetheless, in reality,
the rigid assumption of trees is a good approxima-
tion at low wind speeds. Almost all trees have a
certain level of flexibility and undergo large deflection
and reconfiguration in storm-wind conditions. They
can reposition themselves with branches bending to
reduce the wind forces and extend their survival
range. Therefore, the stress level in the tree is also
highly dependent on their capabilities in mitigating
large wind forces and their ability to adopt a more
aerodynamic shape and proper deflection [34, 35].
Tree branching has been studied over many decades,
and although da Vinci’s prediction is associated
with uniform wind-induced stresses in rigid trees
[33], other objectives have been proposed for fractal

shape trees with different branching mechanisms. For
example, Murray, using the observed relation between
branches’ weight and circumference of nine trees,
found that the branching ratio of mother (M) to
daughter branches (D) is 2.49 for large trees and 3
for small trees [36, 37] (e.g., the diameters satisfy
D3 = D3P + D%3). Zhi et al [38] found it to be 3
for small hairyleaf Japanese cherry trees and 2 for large
ones. Minamino and Tateno [39] discussed that Fagus
crenata and Abies homolepis trees (subjected to small
wind forces) follow da Vinci’s branching rule when
the weight of the protruding lateral branch and the
angle between branches are small, but the branching
ratio decreases as these parameters increase. A similar
repetitive branching structure is also observed in tree
roots [40].

In this paper, we study how wind-induced stresses
in trees are affected by tree flexibility, in addition
to geometry effects, and examine if there is a par-
ticular branching sequence that results in uniform
stress distribution in moderately flexible trees. It is
motivated by observing that when plants are flexible,
they can reconfigure and experience lower drag [41].
Two main analytical models previously proposed to
study wind stress in trees are a discrete self-similar
branch structure through the tree [33] and the con-
tinuous tapered beam model [42]—an unbranched
beam with underlying dynamics similar to a branched
beam. Lopez et al [29], using a bundle of tapered
beams, found that the flow-induced drag reduction
of trees during reconfiguration either by bending
[43—46], pruning [20], or a combination of both is
comparable and such changes in the shape ensure
survival under harsh winds. On the other hand, a
self-similar fractal model of the trees has only been
applied to the rigid trees, and it is still unknown what
the combined role of reconfiguration and branch-
ing architecture is for excurrent and decurrent tree
species [47—-49]; and whether the previous predic-
tions about the optimal design of branched rigid trees
[33] applies to reconfigurable systems. We will later
show that there is a particular branching mechanism
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Figure 6. (a)—(c) Comparison of stress distribution in a tree with six, seven, and eight branching levels for Ay = 2.0 (a), 2.6 (b),
3.0(c). (d) Deflected shape of the tree with six and seven branching levels (left), seven and eight branching levels (right). The base
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case of seven branching levels is shown with the red color.
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Figure 7. Stress magnitude in different levels of the tree with Ay = 1.8-3.0, and Ca = 1.3 x 10~% (blue),0.5 (red), 0.66 (green).
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that promotes uniform stress at all levels across a wide
range of moderately flexible trees.

Three methods can be employed to solve the
dynamic response of tree structures relevant to this
study: (1) lumped-mass method: in this technique,
the branch mass is concentrated at a discrete point
(top of the branch) as it deforms [34, 50-53];
(2) generalized displacement method: this method
assumes a uniformly distributed mass for each branch
along its length [21, 54-56]; and (3) finite element
method (FEM): FEM is the generalization of both
lumped-mass and generalized displacements meth-
ods [57-60]. It divides a branch into an appropriate
number of elements, with each element becoming the
generalized coordinate. A tree is an inhomogeneous
structure, and its properties, such as its branch stift-
ness and branching shapes, are mostly anisotropic
and change across species. All these conditions have
to be considered in the model for a more accurate
representation, which is only possible with the FEM
method. FEM, however, is an expensive computa-
tional model for branched trees and requires accu-
rate measurements of many parameters and loading
conditions to reach accurate results [61]. This is a

significant challenge in using FEM for a comprehen-
sive study of tree branching effects and identifying
characteristic parameters that can quantify the recon-
figuration capabilities of the system. Therefore, cer-
tain simplifications should be made given the variety
of shapes and parameters that trees can attain. This
paper follows the previous works [33, 62, 63] and
assumes that the tree structure follows a fractal law.
Moreover, we model each tree branch as a rigid link
connected to neighboring branches at its end joints to
reach a simple representative model. This assumption
is consistent with previous research on dynamic tree
models [52, 53, 60]. We also neglect the dynamic
effect of leaves on the tree dynamics, assuming the
tree has a uniform number of branches in its crown,
and each branch is exposed to a constant uniform
wind speed without temporal changes. Moreover, it is
assumed that the lift and drag coefficients are similar
across different branches to efficiently identify the role
of flexibility on the branching mechanism’s scaling
laws.

The rest of the paper is organized as follows:
section 2 describes the problem description. Section 3
contains detailed descriptions of the mathematical
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model and its validation, followed by results and
discussions in section 4. Finally, the conclusion, along
with a discussion about the importance and signifi-
cance of our findings, is presented in section 5.

2. Problem description

2.1. Problem setup

The branched tree in this study is modelled as a
self-similar fractal structure [33, 53, 64] in which
each leading mother branch (at level k) connects to
two succeeding daughter branches (at level k 4 1).
The same branching mechanism is repeated at every
joint, resulting in N, total joints. A sample generated
model tree is shown in figure 1. To reach a tractable
computational model of the branched tree dynamics,
it is assumed that all the branches are rigid and
connect to their parents and daughters with rotational
joints, each joint with two degrees of freedom (DOF)
in bending, as shown later in the paper in figure 3.
This assumption considerably reduces the size of the
original problem to 2N, equations for the angular

pu— pu— 5
Ak Dy Ly

A De \? L
)\A kZ( k), )\L k Ca

Here Ay, Dy, and Lj are the cross sectional area,
diameter, and length of a mother branch of the joint
k — k+ 1, while Ay 1, Diy1, and Ly are the corre-
sponding quantities for one of the identical daughter
branches. p,;,. is the density of air, p,.q 15 the tree
density, here its chosen to be similar to an oak tree
species. We also assume uniform wind velocity U on
every branch, chosen to be in the order of a category
three hurricane, and Ly is the length of the trunk. Ca
is the Cauchy number comparing the dynamic flow
force to the rotational stiffness (EI) of the trunk. The
Froude number, Fr, represents the nondimensional
gravity (g) effect. Other parameters which define the
mechanical status of a branched tree are the branch-
ing number, ny,, defined as the number of daugh-
ter branches that originate from a mother branch
at each junction and the separation angle between
daughter branches (7). Here, we follow the previous
setup by Eloy [33] and choose n, = 2. In addition,
it is assumed that M* = 600 and we investigate the
effects of Ca and Ay on the plant reconfiguration
and wind load tolerance. The effect of Dy/Lr, Fr, v
and A\p on the observed trends are then discussed
subsequently. The range of geometrical parameters
considered here are consistent with what is observed
in naturally occurring trees. For example, the Ay
range covers hairy Japanese cherry, oak, A. homolepis,
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rotation (‘Iqu) of N, joints. The gravity and wind
forces acting on branches (hereafter are referred to as
links) are transferred to joints, and depending on the
joints’ stiffness, they lead to geometrical changes in
the tree. The torsional and axial deformations are not
considered as their effects on the tree reconfiguration
are found to be secondary compared to the bending
deflection of the branches. The tree is connected to the
ground through a joint with stiffness associated with
the trunk length and diameter. It is assumed that the
steady wind acts along the x-axis on each tree branch.
The schematic setup of the tree is shown in figure 2.

The tree geometry is constructed such that
the junctional change in cross sectional areas
(parametrized with As) and the branches’ length
(parametrized with \;) are constant through the tree
height, making the tree self-similar, as shown in
figure 2. The flexibility of the tree structure is
characterized by two parameters: the slenderness
ratio (Dr/Ly), defined as the ratio of the trunk
diameter to its height, and the bending flexibility of
the trunk. The nondimensional parameters used in
the simulation are

— LFUZL%, e Y M = Pwood (1)

2EI \/gTT ’ Pair

bitternut, E crenata [36, 38, 39] and A range covers
Salicornia europaea, fir, and pine [65, 66]. Table 1
summarizes the parameters considered in this study.
Unless otherwise mentioned, the simulation results
are for Fr = 11.3, AL = 0.7, v = 45° and Dr/Lr =
0.3. The sensitivity of the results to the variation of
each selected parameter is discussed in appendix A.

2.2. Multi-link model of a branched tree

An interconnecting multi-link model of a branched
tree is used here, wherein each link is connected to
its precedent mother link with two rotational DOF
at the interconnecting joint, as depicted in figure 3.
The first branch with length (L;) is connected to a
small segment with infinitesimal length attached to
the ground (the base branch-0) with joint (J;), and
then connected to its two succeeding branches with
lengths of L, and Ls at the joints J, and J5. Each inter-
connected joint has the same EI, and its rotational

. . 2EI
stiffness is calculated from kg = ———57———
P LAV (L /1)

following the scaling law of a cantilever beam with
a unit moment at its tip. The joints are assumed to
be viscoelastic with the damping of ¢y. The same geo-
metrical progression continues at other levels in the
tree (figure 2). The tree’s topology is represented with
a connectivity vector (C), which identifies the parent
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Table 1. Characteristic parameters and their ranges.

Parameter Range

Ca 6.7 x 107°-10
Aa 1.8-3.0

M 600

Fr 1-30

Dr/Ly 0.1-0.8

AL 0.4-1.0

vy 45-105°

sequence of each link. The number of connections in
the tree per level varies by a factor of two, resulting
in 21 connections from the stem to the branching
level.

3. Methodology

3.1. Mathematical model of the tree structure

The translational and rotational dynamics of the
tree are modeled using the Newton—Euler equations
[67—69] of rigid links. The equation of motion of each
link, for instance, Link-k, can be written as

£ = mis, (2)

Ty = Liwk + wi x (Trwp), (3)

where f, is the resultant force vector (includes exter-
nal loads and the forces exerted on the link by its
attached joints) acting on link k, my is the mass,
and vy is the linear velocity vector at the center of
mass (CoM) of link k. Ty is the resultant torque
acting on the CoM, while I and wy are the rotational
inertia matrix and angular velocity of the kth link,
respectively.

Equations (2) and (3) can be combined and
expressed as

fi =Mk + £, (4)

where the combined force f} = [f{, Ty] " is the
summation of the external (f)and the interaction
combined forces from the link-link coupling at
the joints of link k (f}), My = diag(mls.3, Ly),
Ek = [’U{, w,{]T and fz = [lea, (wk X Ikwk)T] T.
The combined velocity vector, &, is a combination of
the angular velocity wy and the linear velocity vy of
link k and is calculated using the forward recursion
technique from the fixed base [70]. The position
of the deformed tree, or equivalently the joints
rotations, g, are iteratively calculated from the joint
angles of preceding links. In particular, the velocity
of the branch k can be related to joints’ rotation with,

e = |:J'1;,k(q)

Jw k(q):|q - Jc,k(q)q’ (5)

where J.;(q) is a 6 X 2N, matrix whose elements are,
in general, nonlinear functions of joint angles. It is

called the Jacobian matrix of the algebraic system
and is expressed in the same coordinate frame as the
spatial velocity e;. Here, g = [q1,. .. k> - - > qan, ] "
is the vector of joints’ rotations chosen as the gen-
eralized coordinates of the tree structure and q is its
time derivative. The connectivity vector is utilized to
calculate the non-zero components of J ., efficiently,
and to determine which joints alter the motion of
a particular link. If there is no such connection, the
corresponding column of J . is set to zero. The veloc-
ity and acceleration of all branches can be written
similarly as,

g = ch> (6)

¢ =Je+Jei, (7)
and equation (4) can be written as

=M q+J.q +f" (8)

ff=MJq4+f 9)

where f°=M]J.q+ f" is the summation of all
velocity-dependent inertial forces and torques acting
on the centers of mass of the branches. Furthermore,
by multiplying by J, we obtain

J7f° = 3T™MJ 4 + ITF, (10)

and with the definition of JTf¢ =r¢, J7f =7,
JIMJ, = H, and J'f° = ¢, equation (10) can be
compactly rewritten as

Hg+c=71+T, (11)

where 7¢ is the generalized external forces and torques
associated with the generalized coordinate system
q. In addition, the reaction forces from the joints
[68], 7 = [11,... ,Tk,...,TZNq]T, is defined as 7, =
ko xqr + coxqr to model the reactive force from the
flexibility of the joint k. Here, ¢y is the stiffness pro-
portional damping defined as ¢y = 0.1kg [47, 64].
However, the final steady-state reconfiguration shape
of the branches is independent of this parameter.
Renaming 7¢ + 7 = I, equation (11) is recast into a
generalized space-state form with the definition of the
angular velocity of joints p = ¢,

16 -6)
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and is discretized with the implicit Euler method as

Fn—i—l B At—l H(pn+1,qn+1) 0 anrl _pn
pn+1 0 I qn+1 _ qn

= (c""0). (12)

The resulting fully nonlinear equation is solved
with an inexact matrix-free Newton—Krylov tech-
nique, using an inexact Newton backtracking outer
nonlinear solver, along with the GMRES inner linear
solver [71, 72]. The convergence tolerance and the
maximum number of iterations are 1077 and 100
respectively. Both constants were sufficient for the
convergence of the current system with multiple tem-
poral and spatial scales.

3.2. Wind and gravity forces

Two types of external forces act on the tree, namely,
the downward gravity force (F,) and wind-induced
drag force (F, ), each scaling differently with the
branch sizes, |Fg| < D’L and |F,,| o< DL where D and
L are typical branch diameter and length, respectively.
The effect of gravitational forces is important for
moderately flexible and flexible trees where significant
bending deformation occurs [73—76] (section 4.4).
Without the wind action, the weight of branches
causes a prestressed configuration [1]. The combined
forces acting on each link are transferred to its nearest
joints which change the angles of these joints. The
process of combining these forces starts from the
topmost branches and continues to the trunk.

The aerodynamic drag force acting on a link per
unit length has two components: (1) normal to the
branch (f) and (2) tangential to the branch (f,)
according to

1
fn - Epaircn|VHV - (V : t)t]D)

1
f.= EpairCt|V|(V- t)twD, (13)

where D is the diameter of the branch. C, and C;
are normal and tangential drag coefficients of each
link, respectively, ¢ is the tangential direction, and V
is the apparent wind velocity approaching the con-
sidered branch segment. The exact values of C, and
C; depend on the surface roughness and orientation
of the branches and is modified with their flow-
induced motion and aerodynamic interaction with
each other. Here, we simplify the problem and instead
use C, = 1 and C, = 0.1 for a circular cross-section.
The actual value of C, (skin-friction drag) of a smooth
cylinder can be calculated from the shear frictional
stress on the surface of the cylinder, and with a
specific boundary layer approximation, can be related
to the orientation of the branch and approaching
Reynolds number [77, 78]. Overall, we observed that
the system’s response, as discussed in appendix B,
does not substantially change with the modification

O Ojo and K Shoele

of drag coefficients. It is also assumed that the aerody-
namic force from the truncated portion of the tree can
be represented with C,, = 1 for a disk with a radius of
the terminal branch. This contribution is imposed at
the tip of terminal branches.

The total force and torque on each branch are
calculated from the line integration of f_  and f,.
The joint forces, along with the nonlinear inertial
forces, ¢ in equation (11), are transmitted from the
top links of the tree to the first link (trunk) using the
backward recursion technique [70]. An entire loop
of the forward and backward recursions is employed
for the concurrent calculation of total linear forces
and moment acting on the joints and efficient setup
of the inertial matrix of the multi-link system, H
(equation (11)).

3.3. Model validation

Linear and nonlinear validation tests were done to
verify the accuracy of the tree model. The linear
validation is based on the calculation of the deflection
in an unbranched tree and comparing it with the

analytical deflection of a beam solution (6 = ‘;—g)

F is the applied transverse force, E is Young’s mod-
ulus of the tree, I is the moment of inertia of the
circular tree, and L is the total length of the beam.
Trees with two, five and ten unbranched tree levels
were considered here. A stiffness constant ky = f—i
[79, 80] is used for all the links, where Ly is the length
each link. Figure 4(a) shows the comparison between
the deflection results from the simulation and the
analytical method. It is observed that by increasing
the number of links, the numerical results approach
the analytical results. Overall, the results verify the
accuracy of the multi-link model used in this study.
As a second validation case for larger deflection
scenarios, the mass (m) is attached to the last link
of a horizontal beam as shown in figure 4(b), and
its magnitude increases gradually to test the model
for small (linear) to large (nonlinear) deformation
ranges, according to Virot et al [81]. The normalized
mass is 11/ me where my is characteristic mass defined
as me = EI/gL*. We compare R/L, the normalized
radius of maximum curvature along the length. When
a small attached mass is applied, the multi-link beam
is weakly bent (R/L > 1), but with the increase
of the attached mass, it shows large deformation
and localized small radius of curvature (R/L < 1).

Figure 4(b) shows that R/L, scales with (m/ mel)fl

when the deformation is small and (m/mel)_l/ ’

at large deformations when % = 0.1-40 while the
beam deflection patterns for mﬁd =0.2, and 10 are
shown in figure 4(c). The simulation results with
seven and ten levels show a good match with the
experimental results by Virot et al [81]. Each tree
branch is modeled as a single link to form a simple but
representative model of dynamic fractal trees. How-

ever, the sensitivity of the overall tree deflection and
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stress profile based on this assumption is discussed in
appendix C.

Also, we validated our model with the frac-
tal diameter relation used previously by Eloy [33]:
D _
Dyt
ny, is the number of protruding daughter branches

at each joint (it is two here), and . is the fractal
(Hausdorff) dimension of the thickness of the tree
skeleton. Equating the diameter relation of our model
(section 2.1) with that of Eloy and comparing the
branching ratios (A\s, Ae) as seen in figure 5(a), we
found that they are inversely proportional, with an
exponential decay of \. occurring when A increases.
Also, in our simulation for a rigid tree case (approxi-
mated as a very stiff tree with Ca = 4 x 107°), it was
found that the total stress (0) experienced by the tree
is more uniform at \. = 2. At lower ). values, the
tree experiences maximum stress at the top branch
while at higher A, values, the highest stress appears at
the tree’s trunk, as shown in figure 5(b). This result
is consistent with the previous prediction by Eloy
[33] that A\, = 2 results in uniform stress and offers
the best resistance to wind-induced fracture in fractal
rigid trees.

= ane , from the stem to the top branch where

3.4. Model setup

In figures 6(a)—(c), we compare the average nondi-
mensional stress versus the branching level of three
model trees with the truncation level of six, seven and
eight. The average stress is computed from the ensem-
ble averaging of branches at a particular branching
level and three A\, values 0f2.2,2.6, 3.0. Other param-
eters are fixed at their characteristic values given in
section 2.1. While the stress distribution along a tree
modifies with more levels, the stress variations with
seven and eight levels are very similar. It is found
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that the forces exerted on small terminal branches in
levels larger than seven do not change the deflected
shape of the trees, as can be seen in figure 6(d). This
suggests that seven levels of branching are sufficient to
capture all the dominant wind-induced dynamics of
a tree model, and the inclusion of smaller branches
at higher levels only marginally alters the results,
including the maximum stress distribution. Our tree
model is then truncated at the seventh level to limit
the computational expenses.

Seven initial random realizations of each setup are
tested to account for the random orientations of the
tree and the incoming wind, and the average stress
values of the group are reported. This number of
realizations is found sufficient in capturing the mean
statistics. Each simulation is started with no wind
and gravity forces. Gravity is first introduced over
20 Lt/U, and then the wind and gravity gradually
increase to their nominal values. The results are cal-
culated when the transient responses pass and the tree
reaches its equilibrium configuration.

4. Results

There are two types of forces that contribute to the
total stress in the tree: (1) gravity and (2) aerodynamic
forces [73, 75, 82]. Wind-induced stress from the
aerodynamic force is the more critical component in
predicting the structural stability of trees in storms.
When trees grow, their growth rate reduces, causing
the primary branches to thicken and smaller branches
to become curved to minimize the gravity effect [60,
83, 84]. However, gravitational-induced loads, which
are almost negligible for stiff trees, could induce
a considerable increase in stress for more flexible
branches when they are subjected to high wind speeds
[73, 74] (section 4.4). Since the focus of this study
is to explore how the tree reconfiguration affects the
stress distribution, we do not differentiate between
the gravity and wind forces, and both environmental
forces are considered simultaneously.

4.1. Effect of branching ratio \a

Three different flexibility levels are considered here
with Ca = 1.3 x 1073 (stiff tree), 0.5, and 0.66 (mod-
erately flexible). At a lower branching ratio (A =
1.8-2.2), the tree experiences a steep reduction of o
from the trunk (level 1) to the top branch (level 7),
as shown in figure 7. This is associated with a reduc-
tion in the cross section with the branching level.
An overstress hotspot, i.e., an isolated location with
maximum stress is consistently found at level 1. As Ca
increases, the tree becomes more flexible, and similar
stress distribution is observed. This suggests that the
flexibility has a secondary effect on the stress distri-
bution in the tree compared to the branching ratio.
The maximum stress, however, constantly increases
at the trunk with an increase in Ca. The change is
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Figure9. Lateral deflection through the height of the tree for Ay = 1.8-3.0 and Ca = 0.2 (a), 1 (b), and 2 (c).
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Figure 10. (a)—(c) Stress magnitude through the height of the tree as a function of Ca, when A\, = 2.0 (a), 2.6 (b), 3.0 (¢),
(b)—(f) the stress distribution and tree deflection for Ca = 1.0,2.0 at Ay, = 2.0 (d),2.6 (e) and 3.0 (f).

attributed to competing effects of wind and gravity in
the deformable branches.

Based on our previous definition of \s, an
increase in Ay means each protruding branch has
a smaller cross section as the tree level increases,
according to Dy4; = D—/\"A. Therefore, as the branch-

ing ratio increases (Ay = 2.4-2.6), top branches have a
smaller diameter and undergo more significant recon-
figuration to keep the o almost constant for all Ca. For
higher Ay, Ay = 2.8-3.0, the position of maximum
o shift toward the top branches. This is due to the
large deformation of the more slender top branches
and the contribution of their weights. In these cases,
the trees’ failure mode is shifted to higher branches. As
shown in figure 7, Ay = 2.6 is the optimal branching
ratio because it yields the most uniform stress through
the tree height. The optimal branching parameter is
consistent with previously observed values in trees

[36, 38], suggesting that the branching pattern is not
significantly modified with variations in the wind
speed and other initial conditions.

From the results, we can say that three sur-
vival mechanisms might be adopted in different tree
species based on the branching mechanism, here \4.
For a small branching ratio, the tree requires stronger
material near its base and a robust anchoring mech-
anism near to the ground to survive harsh wind con-
ditions. For a moderate A5 range, the tree leverages
its well-balanced geometrical characteristics to redis-
tribute environmental forces through its height opti-
mally and, therefore, eliminates the localized stress
hotspots. In this case, the whole structure contributes
to the survival envelope through reconfiguration,
and if the tree eventually undergoes failure, it could
break at any random position in its height. For larger
Aa or equivalently faster tapering towards the top
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tree’s height for Dy /Ly = 0.1-0.8 and A, = 2.0 (a), 2.6 (b),
2.0 (d),2.6 (e) and 3.0 (f). Here, we assumed a fixed Ca = 0.66.

branches, most deformation and stress concentration
is located at the top levels due to large deflection
and secondary gravity actions. Such tree shapes might
be an alternative natural survival mechanism where
the potential breakage is encoded in the terminal
branches to effectively reduce the wind actions on the
rest of the tree.

For further analysis of the stress state, three dis-
tinct stress distributions with Ay = 2.0,2.6,3.0, are
selected. The deformation pattern of the tree can be
seen in figure 8. More localized reconfiguration states
are associated with larger Ca and larger As. These
two factors are found to play complementary roles
in regulating the deflection mode of the tree. It is
found that although the tree flexibility induces an
asymmetric shape with a potential increase in gravity-

induced stress, the overall stress still decreases due to
the reconfigurability of flexible trees.

To further explain how the deformation pattern
of a tree changes with tree branching, the Euclidean
distance (d/Lp of the CoM of all the members
of each branching level in the deformed tree from
the corresponding point in the undeformed tree is
shown in figure 9. For stiff trees (Ca = 0.2) shown
in figure 9(a), the tree experiences an approximately
linear increase in deformation at each tree level. A
different trend is seen for more flexible cases. For
Ca > 1 (figures 9(b) and (c)), we observe that the
rapid increase in branch deformation depends on the
branching level and Ca. For example, at Ay = 3.0 and
Ca = 2, deformation increases rapidly at levels >
while it occurs for levels > 4 for Ca = 1. Per51stently,
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Figure 13. Total stress (o) in different tree levels when Ay = 2.6 and with Ca = 0.66 for (a) Ay = 0.4-1.0, and (b) v = 45-105°.
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a stiff tree with Ca = 1.3 x 107*%, and subplots (b) are for a flexible tree with Ca = 0.66.
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Figure 15. Total stress (o) in different tree levels when A,
= 2.6 and Ca = 0.66 for Fr = 1-30.

the deflection pattern becomes local with an increase
of Ay while the deflection magnitude is similarly
affected by Ca for all branching ratios.

4.2. Effect of Cauchy number

Different Ca values, 1.3 x 1072 < Ca < 20, were
examined to investigate the effect of stiffness on the
stress distribution of the tree for Ay = 2.0,2.6, and
3.0 while keeping all other parameters constant at
their nominal values. When A\, = 2.0, a consistent
reduction of maximum stress is found from level
1 to 7, as shown in figure 10(a). This is associated
with a faster reduction of the cross sections with
the branching level. Only for very flexible trees with

Ca 2 10 is the stress distribution majorly affected by
the flexibility. In this case, the tree has improved
reconfiguration capability and is able to achieve a
lower stress distribution inside all branches. On the
other hand, for stiff cases with Ca < 2, the location
of the maximum stress is always at the stem. This
reiterates our previous finding that natural selection
might drive tree species with such branching patterns
to become more flexible with a good reconfiguration
capability or have a stronger trunk for maximum
survival.

The case with Ay = 2.6,asseenin figure 10(b), has
a different stress distribution, and over an extensive
range of Ca, the tree attains similar stress levels in
most of its height. When 0.25 < Ca < 1, the stress
level remains constant in the lower half of the tree
while it shows a slight decrease toward the terminal
branches in the upper half. On the other hand, the
reconfiguration-dominant response is now shifted to
Ca 2, 2, wherein higher branches deform while the
lower part of the tree, including the trunk, preserves
its initial configuration. Such a geometrical recon-
figuration pattern prompts a uniform stress condi-
tion in mid-height while there is a localized stress
increase in the trunk and a lower stress level in the
terminal branches. Also, by increasing Ay to 3, the
reconfiguration is the critical mechanism. Here for
Ca < 1, the stress hotspot is placed in the middle
of the tree at level 4, with no elevated stress at
the trunk as the cross-sectional area of protruding
branches decreases fast, and the branches undergo
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large deflection through the height. Moreover, as
previously explained, in this case, the stress level in the
top branches remains high, making the pruning of the
top branches the likely damage modes in harsh storms
[20]. The deformation pattern of large Ca is shown in
figures 10(d)—(f). Large Ca cases show more global
deformation from the stem to top branches while
the increase of A4 results in anisotropic deformability
with the deflection of upper branches being the dom-
inant feature. The global and local reconfiguration
modes of each Ca and Ay combination regulate the
stress distribution in two ways: A modifies the stress
distribution through the height and Ca changes the
stress magnitude of all branches.

To better study which branching and Cauchy
number combinations result in uniform stress
through the tree height, we calculate the ratio of
over-stress (stress hotspot) magnitude to the mean
stress for a range of A\, and Ca (figure 11). When
the lower branching levels of 1-4 are considered,
the minimum variation occurs for A\, = 2.4-2.8 at
small Ca and only increases to slightly higher values
at higher Ca, as shown in figure 11(a). This confirms
that the stress distribution of lower branches is not
substantially affected by tree flexibility. With the
inclusion of more levels, higher sensitivity of the
stress variation to Ca is observed. In figure 11(b),
for the whole tree length (level 1-7), the minimum
stress variation is similar to the first four levels when
Ca < 0.5, but it differs for more flexible cases where
the optimal conditions switch to higher As. The
optimal condition corresponds to a balanced local
and global deflection of the tree. Surprisingly, the
flexibility and branching ratio marginally affect the
stress distribution in the top branches (as shown
for levels 5-7 in figure 11(c)), suggesting that the
terminal branches themselves do not benefit from
adjusting their flexibility and the branching ratio and
instead their configuration and their deformability
will affect the stress distribution of lower
branches.

4.3. Effect of geometrical parameters

The simulations described in section 4.1 and 4.2 have
all been conducted at fixed geometrical parameters.
This section describes the effect of these parameters
on the tree deflection and stress distribution. Here, we
alter only one parameter while all other parameters
are assumed to be similar to their original values.
Overall, as will be discussed, it is found that the
other parameters are less important compared to Ay
and Ca.

Trunkslendernessratio (Dr/Lt). The trunk’s
slenderness can affect the response of the tree
structure when subjected to gravity and aerodynamic
forces. Figure 12 shows how the total maximum
stress of branches changes with 0.1 < Dy/Lt < 0.8
for three representative Ay values. Overall, a similar
decreasing trend in maximum stress with level is
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observed for all Ay cases. The reduction rate of
stress, however, is more significant for lower A,. It
is observed that there is a certain Dr/Lr threshold
for higher A\, cases (e.g., 0.2 for Ay = 2.6 and 0.3 for
A = 3) below which the stress remains very uniform
in all branches due to the tree reconfiguration. For
all A\a cases, when Dr/Lt > 0.5, even though o is
small, large deflection of the top branches results in
a fast stress reduction towards the terminal branches.
Comparing the deformation pattern of the tree for
these cases (figures 12(d)—(f)), it is evident that
Dr /Ly only modifies the magnitude of the deflection
while the reconfiguration pattern remains similar.
Opverall, for biological relevant slenderness ratio of
Dr/Ly < 0.5, we found that the optimal branching
does not change.

Branchinglengthratio (A\r). The length ratio of
the tree is another fractal parameter that could influ-
ence the stress distribution. With all other parameters
constantand Dy /Ly = 0.3, Ca = 0.66, the tree length
is varied from 0.4 < Ap < 1.0. Here, for example,
AL = 0.5 means the length of the mother branch is
twice that of a protruding daughter branch, and this
relation holds throughout the self-similar tree struc-
ture. At the optimal branching ratio of Ay = 2.6, as
seen in figure 13(a), the tree experiences similar stress
characteristics for a wide range of AL (AL > 0.5).
This region is associated with the optimal reconfig-
urability of the tree structure and the elimination of
localized hot stress-bearing spots. This also includes
the range of observed A, in nature. However, a mod-
ified response is observed at small A\ in which the
tree hardly reconfigures and a potential wind-driven
breakage is more probable at the trunk.

Branchingangle (v). Another parameter that
influences the geometry pattern of a branched tree
is the self-similar branching angle between daughter
branches at each joint. Here, the angle between two
daughter branches is varied between 45° < v < 105°,
while all other parameters are kept constant. This
parameter has a much weaker effect on the stress
distribution than other geometrical parameters dis-
cussed above. When Ay = 2.6, there is only a small
local dependency of o at the trunk to y (figure 13(b)),
and the stress distribution in the tree is almost inde-
pendent of .

4.4. Effect of gravity

Previous studies [42, 84—86] have shown that trees’
growth patterns mitigate gravity-induced stresses,
enabling them to remain upright and prevent buck-
ling. Other studies, however, suggest that during large
bending deflection, when the natural tree posture has
been significantly altered, additional gravity-induced
stresses contribute to the total stress distribution in
trees [73—76, 82]. Here, we show the importance of
gravity-induced stresses with tree deflection under
extreme wind conditions. It is also discussed that the
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prestress stress due to weight (static loading) is neg-
ligible compared to wind-induced stresses for rigid
and flexible trees and the gravity load only becomes
critical for highly reconfigurable trees.

Figure 14 shows the effect of gravity in trees with
large deformation for different Ca and As. All other
parameters are kept at their nominal values. Here,
three types of stress are shown through the tree height:
(1) total stress, including both gravity and wind forces
(0); (2) total stress without static loading (o) i.e.,
only the changes of the gravity stress during the
tree deformation are considered (no prestress gravity
force); (3) wind-induced stress with zero gravity effect
(0w). When Ca = 0.000 13 (stiff case), o and oy
have similar values suggesting that gravity effects are
negligible for stiff trees (figure 14(a)). For all Ca, and
Aa, 0 follows the same trend as o, with a slight
decrease in value, this implies that the static loading
of the tree due to its weight plays a minimal role in the
total stress distribution. Also, when only aerodynamic
force is considered and the tree is flexible, o is
considerably lower but follows the same trend as o
as shown in figure 14(b). The difference in ¢ and o,
is due to gravity stresses and primarily the gravity
load changes during tree deflection o,,. At lower
Aa, a global deformation occurs through the tree
height, which results in high o, at all tree levels.
As A\ increases, more local deformation occurs at
the top branches and consequently higher o, at top
levels. This gravity action results in 0 becoming more
uniform when Ay = 2.6, and exhibiting higher local
o at top branches when Ay = 3.0.

The effect of gravity is shown in figure 15 for vary-
ing Fr between 1 and 30 and the optimal branching
of Ay = 2.6. It is found that for all Fr cases, the tree
experiences its lowest o at levels 1 and 2, followed by
an increase in level 3, where the branching starts. After
level 3, the deformation of top branches and the redis-
tribution of gravity forces induce larger moments on
the joints and as a result ¢ remains approximately
constant or only showing a minor increase after level
3. As Fr increases, the tree experiences less gravity
force, and the overall gravity-induced stress linearly
reduces with an increase in Fr (figure 15). We find that
Fr does not significantly impact the stress distribution
trend in the tree with the optimal branching ratio.

5. Conclusions

This study examines trees subjected to wind-induced
stresses for different branching ratios, Cauchy num-
bers, and slenderness ratios. The tree is modeled
as a self-similar fractal geometry with flexible joints
and rigid links exposed to a uniform incoming wind
velocity of a magnitude similar to a category three
hurricane. We also assume constant stiffness within
the tree structure and neglect the effect of leaves
on the tree dynamics. The nonlinear equation of
motion of the tree is solved to find the modeled tree’s
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reconfigured shape under combined wind and gravity
forces.

For all parameters examined, we find that the
branching ratio is the most important factor in deter-
mining the stress orientation in rigid and moder-
ately flexible trees. When A < 2.2, the tree does
not reconfigure to redistribute its stresses among
all branches; instead, the maximum stress hotspot
is always located at the tree trunk. As A increases
and the diameter of protruding branches from the
mother branch further reduces, there is substantial
stress redistribution between branches. Progressive
deflection in the tree causes the stress to become uni-
form through the height; thereby, the tree preserves
its structural integrity without having localized stress
hotspots that could lead to localized breakage. It is
observed that trees attain uniform stress distribution
at an optimal branching ratio, Ay = 2.6. At higher
Aa, there is a large deflection in the top branches.
As a result, the weight of deflected branches induces
significant bending moment, modifying the overall
tree stress distribution. This consequently results in
an overstress at the top branches.

At the optimal branching, Ay = 2.6, flexibility
only becomes a determining factor in the stress dis-
tribution for very flexible trees (Ca > 2). Here, the
tree deflection is significant at the trunk, and excessive
global deflection from the trunk to the top branches
creates localized overstressed regions. The changes
of the branches’ length through the height is the
second factor in determining the stress distribution
in the tree. It is observed that at A\; > 0.5, the tree
experiences optimal reconfiguration and eliminates
localized stress hotspots, while at A\p < 0.5, the tree
loses its reconfiguration ability, and a region of over-
stress is always located at the trunk. The angle between
two emerging daughter branches at a junction is also
weakly tied to the overall stress distribution of the
tree, with the stress independent of y for most cases.
Finally, the role of gravity force is investigated, and it
is shown that the gravity effects are negligible for trees
with limited reconfigurability. Moreover, the static
gravity prestress condition of a tree without wind
action does not alter the stress patterns in branches
for all flexibility levels and branching ratios. However,
the change of gravity forces and moments with tree
deflection can substantially contribute to the tree’s
overstressed condition, especially when the tree has
large lateral deflection.

The As and Ap ranges simulated here are consis-
tent with what is observed in natural trees. However,
these results can only approximate the resiliency of
plant canopies in harsh storms. The optimal param-
eters may vary slightly for naturally occurring trees
(with leaves, anisotropic branch stiffness, and other
variations in the tree geometry) subjected to the tur-
bulent atmospheric boundary layer. When the right
type of trees are planted next to buildings or added
to the natural forests as a mitigation plan, they could
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Figure Al. Stress magnitude in different levels of the tree for random variations in the tree’s geometrical (a) Dy /Ly, (b) Lx /Ly,
and (c) 7, and structural (d) Ca, and (e) C, parameters from the tree trunk to foliage branch when A, = 2.6.
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Figure B1. Effect of drag coefficients on the total stress (o)
in different tree levels when Ay, = 2.6 and Ca = 0.66 for (a)
C, =0.1,0.3,0.5,and C, = 1,and (b) C, = 0.5,1,1.5, and
C,=0.1.

act as a shield, preventing excessive damage, just like
mangrove forests protect the coast from wave erosion.
The selection of optimal shape and flexibility in trees
through their long evolution is a multifaceted and
complex problem. However, our study suggests that
there could be a connection between the shape of
trees, their flexibility, and the solution they adopt to
survive harsh wind forces. This study can be further
broadened to discern tree effects on the flow field
and how the tree shapes and flexibility influence the
wind-induced damage propagation inside canopies.
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Appendix A. Sensitivity to the variations
in geometrical and structural parameters

Here we explore how random changes in the geomet-
rical and structural parameters influence the overall
stress distribution in the tree. Each parameter is
randomly varied within 15% of the original value
from the tree trunk to the foliage branch, while other
parameters are kept fixed at their nominal values.
In this discussion, we assume Ay = 2.6 for all cases.
Forty different random realizations are simulated for
each case and their mean values are reported. It is
observed that random changes in the branch diameter
significantly affect the stress distribution in lower
branches and have no effect on higher branches, as
shown in figure Al(a). Also, the maximum stress
hotspots vary from the tree trunk to the mid-section
of the tree, which can influence the location of tree
breakage. Random changes in the branch length,
Cauchy number, the angle between branches, and
drag coefficient do not change the stress distribution
in the tree, as shown in figures A1(b)—(e). However,
such random variations influence the stress magni-
tude from the trunk to the foliage branch. A more
significant variation in stress magnitude is observed
for random variation of branch lengths, while the
stress changes are minimal for other parameters. It is
also observed that the average stress (uniform from
levels 1—4) is almost the same for all cases. Overall,
random changes in most geometrical and structural
parameters have little effect on the overall stress ori-
entation in the tree.
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Figure C1. Effect of discretization of the tree trunk with four links on the total stress (o) in different tree levels when (a)
Ca = 0.1 and (b) Ca = 1 and deflection shape when (¢) Ca = 0.1 and (d) Ca = 1 for Ay = 2.0.

Appendix B. Effect of drag coefficients

Here, the normal and tangential drag coefficients
are varied while other parameters are kept at
their nominal values. Also, Dr/Lt = 0.3, Ca = 0.66,
and Ay = 2.6. It is observed that changes in the
drag coefficients do not significantly modify the
overall stress distribution in the tree, as shown in
figures B1(a) and (b). However, the overall magnitude
of stress increases with increasing drag coefficients
(figure Al (a) and (b)).

Appendix C. Effect of discretization
of tree branches with multiple links

This appendix investigates the use of multiple links
in the tree trunk to study the deformation pattern
and stress profile of discretized tree branches. The
tree model discussed before is modified to include
four links in the tree trunk. It is observed that the
total stress and overall tree deflection of the four-link
trunk match that of the single link in the small defor-
mation limit (e.g., Ca = 0.1, \y = 2.0) as shown in
figures Cl(a) and (c). However, for flexible trees
(e.g., Ca=0.1,A\n =2.0), the tree deflection and
total stress vary slightly in the tree trunk as the single-
link model deflects more than the four-link trunk, as
shown in figures C1(b) and (d). This is consistent with
our validation of the multi-link system (section 3.3),
where adding more links yields less deflection and
a slightly more accurate system. A single-link model
is used in this study as it is found that with only
one link per branch, it would be possible to closely
capture the large-scale deformation pattern of the tree
and identify the stress profile trend through the tree
height.
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