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Abstract— Cameras becomes more ubiquitous on mobile
devices which pave the way for Augment Reality (AR) applica-
tions. AR’s enabling technology is the underlying visual-inertial
Simultaneous Localization and Mapping (SLAM) package
which requires a precise camera model for mapping purpose.
Due to manufacturing inconsistency and device aging over time,
the preciseness is often hard to maintain over time. On the
other hand, those cameras are often equipped with optical
image stabilization (OIS) system. OIS changes camera intrinsic
parameters and being aware of its existence is important before
a high-order SLAM model is applied. Here we present a two-
step approach to detect if an image conforms to a given camera
model (distortion coefficient and intrinsic matrix) by developing
two statistical hypothesis testings. We have implemented the
algorithm and test it in physical experiments. Results show that
our algorithm successfully detects model inconsistency and the
existence of OIS system with 85.4% recall and 100% precision.

I. INTRODUCTION

Modern mobile phones and tablets are often equipped
with on-board cameras that support Augmented Reality (AR)
applications. AR Application Programming Interfaces (APIs)
such as ARKit™ from Apple™ or ARCore™ from Google™
are essentially visual-inertial Simultaneous Localization and
Mapping (SLAM) packages. All visual SLAM algorithms
require precise camera model to enable accurate environment
mapping. However, this is often compromised because 1)
camera parameters may change over time due to device aging
and 2) optical image stabilization system changes intrinsic
parameters when activated. To deal with the issue, we need
the ability to detect camera model inconsistency and the
existence of OIS before any high-order SLAM model is used.

OIS is a mechanism to improve image quality by moving
optical lens to compensate for the image blurring caused
by hand jittering motion. Since OIS shifts and/or rotates
camera lens to reduce image blurring (Fig. 1), it consequently
changes camera projection model. Due to its ubiquitous exis-
tence, OIS’s impact on the quality of mapping process cannot
be ignored. However, most devices ignore its existence by
using a low resolution image when applying AR APIs which
limits the AR mapping accuracy.

The purpose of this work is to pave the way to the
development of an adaptive camera model for OIS enabled
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Fig. 1. Illustration of OIS working principle. Left: the scenario without
camera movement. Center: The scenario under camera movement, but
without lens for OIS resulting in the image blurring. Right: The OIS
compensates the camera movement.

devices and also to provide understandings for camera model
accuracy for future high resolution AR applications. Here
we present a 2-step algorithm to detect model consistency
and the existence of OIS system. Using checkerboard grid
points as inputs, we compose a statistical hypothesis testing
to verify if collinearity property is preserved for collinear
grid points under the existing camera distortion removal
process. Then we formulate a second statistical hypothesis
testing to check if the camera intrinsic matrix matches the
image points. We have implemented our algorithm and tested
it in physical experiments. Results show that our algorithm
successfully detects model inconsistency and the existence
of OIS system with 85.4% recall and 100% precision.

II. RELATED WORK

To understand how OIS impacts the imaging process, let
us review projective geometry and recent OIS development.

Projective geometry in computer vision describes the
relation between 3D points in world coordinate system and
the imaged 2D points, and is the foundation of vision-
based robotic localization [1]–[3] and 3D reconstruction [4]–
[6], etc. Camera perspective projection model [4], [7], also
known as Pinhole model, is the most widely adopted geomet-
ric model since it employs a robust linear model to describe
the perspective mapping from 3D points to 2D image points.
The model parameters can be easily interpreted by using the
camera intrinsic (e.g. focal length, principle points, etc.) and
extrinsic parameters.

The projective geometric models in computer vision of-
ten assume no nonlinear distortion in the image. Namely,
points on a straight line must be imaged as points on a
straight line [4]. This conservation of collinearity is the
underlying assumption for projective geometric models. The
collinearity recovery usually can be achieved through the
camera calibration [8]–[11] by removing lens distortion.
Wang et al. [12] classify the lens distortion into radial
distortion, decentering (tangential) distortion, and thin prism
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distortion. The changing of camera parameters over time
or the actuation of OIS may destroy the property which
results in incomplete removal of lens distortion which leads
to incorrect application of the geometric model in parameter
estimation. Our work can detect if the lens distortion removal
is complete to ensure that the underlying assumption in
applying geometric model is still valid.

OIS has been widely adapted in cameras especially for
smartphones for better image quality under hand jittering.
OIS usually contains actuators such as voice coil motor [13],
[14], liquid lens [15], or piezoelectric motor [16], etc. OIS
compensates for camera movements by altering optical path
which is usually done by shifting or rotating camera lens
barrel after detecting vibration. The issues of variable camera
intrinsic parameters for cameras with OIS mechanism has not
gained much attention even though cameras with OIS have
become more and more common. As an early work, CIP-
VMobile [17] includes the camera intrinsic parameters into
the state variables to achieve robust pose estimation. How-
ever, CIP-VMobile assumes known servo actuator measure-
ments which may not be reliable in mobile phone cameras.
We do not assume known actuator measurements and only
rely on images taken by the camera.

III. PROBLEM DEFINITION

For a given camera, its intrinsic matrix K and distortion
coefficients (DCs) are often either provided by manufacturers
(e.g. intrinsic matrix is often embedded in AR APIs in mobile
phones) or obtained through pre-calibration at stationary
position to avoid triggering OIS. The camera images are
often pre-rectified to remove nonlinear lens distortion based
on K and DCs. However, we need to verify these parameters.
Placing a checkerboard pattern in a camera field of view
with sufficient resolution, we can use checkerboard points to
detect if camera model inconsistency in both lens distortion
removal and the camera intrinsic parameters.

A. Assumption and Nomenclature

We assume that the position noises of the checkerboard
points follow zero-mean Gaussian distribution with known
variance σ2 in each dimension and the noise in each di-
mension is independent. Common notations in this paper are
defined as follows.

K the prior intrinsic matrix of the camera obtained
from manufacturer or the pre-calibration.

I input image with its 2D coordinate system {I},
and it is a rectified image after the lens distortion
removal using the prior intrinsic parameters.

{W} 3D world coordinate system. {W} is defined on the
checkerboard with its origin located at the top-left
inner vertex, where its X-axis parallel to the top
edge, and its Y-axis parallel to the left edge.

{C} 3D camera coordinate system (CCS) for I where
its origin is at the camera center, and its X-axis and
Y-axis parallel to the horizontal and vertical axes
of {I}, respectively.

x is a homogeneous 3-vector describing a 2D point
position in {I}, x ∈ P2, 2D projective space.

X is a 3-vector describing a 3D point position.
C
WR rotation matrix from {W} to {C}, C

WR ∈ SO(3).
C
W t translation vector from {W} to {C}, C

W t ∈ R3.
All 3D coordinate systems are right-handed system. Symbol
˜ on a variable means that it is in inhomogeneous coordinate.

B. Camera Model Review

Since our goal is to detect the inconsistency of the camera
model [4], let us begin with a brief review of camera
model. Camera model describes how the camera images
the 3D world. Camera model is mainly composed by (1)
perspective projection and (2) lens (nonlinear) distortion.
Camera projection is often represented by a homogeneous
3 × 4 matrix which encapsulates the mapping from the 3D
points in the world space to the 2D image plane by using
the camera extrinsic and intrinsic parameters. The camera
extrinsic parameters are the perspective transformation from
the 3D world coordinates {W} to the 3D camera coordinates
{C}, and contain the rotation matrix C

WR and the translation
vector C

W t. The camera intrinsic parameters are related to
2D image projection from the 3D camera coordinates by the
focal lengths fx and fy , the principal point (px, py) and skew
s. We usually represent the camera intrinsic parameters by a

camera intrinsic matrix K =

fx s px
0 fy cy
0 0 1

. Therefore, the

camera projection of a 3D world corresponding point WX
to its corresponding 2D image point x can be written as

x = λ
(
K
[
C
WR C

W t
]) [WX

1

]
, (1)

where λ is a scalar.
The perspective project, in fact, is a linear model. Thus,

it assumes that the 3D world points and the projected
2D points have a linear relationship. The 3D world lines
must be imaged as lines. Unfortunately, a camera in reality
often introduces lens (nonlinear) distortion, where the linear
assumption cannot hold. To remove nonlinear distortion,
we use the lens distortion models to describe the mapping
between the distorted points and the undistorted points.
Radial distortion model is the most common lens distortion
model, and it utilizes a polynomial function to capture the
effect that a light ray bends more when it passes through
camera lens further away from the optical center. Let (xd, yd)
and (xu, yu) be the distorted and undistorted points under
normalized image coordinates, respectively, where the origin
of its image coordinate system is translated to the principal
point where the optical axis intercepts image plane. The
radial distortion between (xd, yd) and (xu, yu) can be written
as

xd = xu(1 + κ1r
2 + κ2r

4 + κ3r
6 + · · · )

yd = yu(1 + κ1r
2 + κ2r

4 + κ3r
6 + · · · ),

(2)

where κi is the i-th radial distortion coefficients, and r is
the radial distance from the center of the radial distortion.
The first, second and third radial distortion coefficients are
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usually predominant. Therefore, the other orders are usually
negligible.

C. Inputs

The first input is the prior camera model obtained from
either pre-calibration or its manufacturer. It includes K and
DCs as lens distortion model. Input image I has been
rectified by using K and DCs.

We then preprocess the rectified image I to obtain the
2D and 3D checkerboard inner vertex correspondences (i.e.
checkerboard point correspondences). Denote the i-th 3D
checkerboard vertex as WXi ∈ R3, where

(
WXi

)
3
= 0

since the checkerboard vertices are residing on the X-Y
plane.

(
WXi

)
j

is denoted as the j-th element of WXi. We
perform the checkerboard point detection [18] to obtain the
2D checkerboard points. Denote the i-th 2D checkerboard
point as xi. The 2D and 3D checkerboard point correspon-
dence set is defined as {xi ↔ WXi : i = 1, · · · , n}, where
n is the number of the checkerboard points.

D. Problem Definition

Our problem is defined as,
Definition 1: Given the prior camera intrinsic matrix K

and n checkerboard point correspondences {xi ↔ WXi}ni=1,
first determine if the camera model inconsistency in lens
distortion removal exists in I . If the lens distortion removal is
consistent, then determine if the camera model inconsistency
in the camera intrinsic parameters exists in I .

IV. ALGORITHM

1(a). 2D grid line estimation 1(b). Collinearity exist?

2(a). Camera pose estimation 2(c). Consistent K exists?

Camera Intrinsic Parameter Consistency Test

Lens Distortion Removal Consistency Test

False

False

True

True

Lens distortion removal 

inconsistent

(Model inconsistent/OIS exists)

Camera intrinsic parameters 

inconsistent

(Model inconsistent/OIS exists)

Camera model consistent

 W

i i
x X

Fig. 2. Detection algorithm flow diagram.

As shown in Fig. 2, our algorithm consists of two main
blocks: (1) lens distortion removal consistency test and (2)
camera intrinsic parameter consistency test. If the inconsis-
tency of either lens distortion removal or camera intrinsic
parameters exists in the rectified image I , we then determine
that OIS has been actuated during the image capturing since
the OIS is the only factor able to change the geometric
relationship between the lens and the image sensors when
altering the optical path.

A. Lens Distortion Removal Consistency Test

First, we want to verify if the lens distortion is removed
completely from the rectified image I . It is crucial since
projective geometry is defined by assuming the conservancy
of collinearity in projection. If so, it also means the image has
no lens distortion. The projective geometric model estimation
can be corrupted and failed if the lens distortion removal is

inconsistent in I . We want to check if lens distortion removal
is complete in the rectified image I by using the collinearity
test.

1) 2D Grid Line Estimation: We use the lines from the 2D
grid which is formed by the checkerboard points to check
the collinearity. Let I be the point index set, where I :=
{1, · · · , n}. The point index set of the j-th line in the 2D
grid is defined as Ij := {k : k ∈ I}. The point index set of
lines satisfies

⋃
j

|Ij | = 2n, where | · | is the set cardinality.

Denote the j-th estimated line of the 2D grid as a 3-vector
lj ∈ R3 with unit norm ∥lj∥22 = 1. ∥ · ∥2 is the L2 norm.
The estimated line lj can be calculated by

min
lj

∑
k∈Ij

d⊥(xk, lj)
2, (3)

where d⊥(xk, lj) is the perpendicular distance function be-
tween the point xk and the line lj .

2) Collinearity Test: The collinearity of points on the
lines from the 2D grid is measured by the average distance
between the points to the estimated lines. When the collinear-
ity is preserved in the image, the average distance between
the points and the estimated lines must be small. However,
if the lens distortion is not removed completely from the
image, the lines are bent, which results in the enlarging
distance between the points and the estimated lines. Define
the distance set between the points and the estimated lines
of the 2D grid as

D := {dk,j = d⊥(xk, lj) : ∀lj and ∀k ∈ Ij} . (4)

Given the distance set D, the average distance and the
standard deviation are defined as follow:

µ =
1

nd

∑
dk,j∈D

dk,j and s =

√√√√ 1

nd − 1

∑
dk,j∈D

(dk,j − µ)
2
,

(5)
where nd = |D| is the number of distance in D.

To detect the collinearity, we design the following hypoth-
esis testing based on the Z-test:

H0 : µ > µd,

H1 : Otherwise.
(6)

µd is the distance threshold determined by the experiments.
The test statistic can be calculated by

Z =
µ− µd

s/
√
nd

. (7)

Define Φ(x) as the cumulative distribution function of the
standard normal distribution at value x. By setting the
significance level α, the p-value is obtained by Φ−1(1−α).
We consider that the collinearity exists in the lines of the 2D
grid by rejecting H0 when

Z ≤ Φ−1(1− α). (8)

Otherwise, we consider that the lens distortion removal is
not complete in the rectified image I .
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B. Camera Intrinsic Parameters Consistency Test

Next, we want to examine if the prior camera intrinsic
parameters K is consistent with the rectified image I . We
begin with the camera pose estimation.

1) Camera Pose Estimation: Given the 2D and 3D
checkerboard point correspondences {xi ↔ WXi}, we
estimate the initial camera pose C

WR and C
W t by using using

PnP method [19]. We then employ the MLE [4] to refine the
camera pose C

WR and C
W t. Define the measurement vector as

e :=

e1...
en

 ∈ R2n and ei = (̃x̂i)− x̃i ∈ R2, (9)

where ei is the reprojection error vector, x̂i is the reprojected
point using (1) and ˜[x, y, z]T = [x/z, y/z]T is vector de-
homogenizing. The MLE solves camera pose C

WR and C
W t

by minimizing
min

C
WR,CW t

eTΣ−1
e e. (10)

Σe ∈ R2n×2n is the covariance matrix of e, where Σe =
Diag(· · · ,Σx, · · · ). Σx ∈ R2×2 is the covariance matrix of
x̃i, and is determined by the experiments.

2) Camera Intrinsic Parameters Consistency Test: We use
the reprojection error of the checkerboard point to measure
if K is consistent with I . We model the reprojection error
vector ei ∈ R2 in (9) as the zero-mean Gaussian distribution
with the covariance Σx. For each checkerboard point and
its reprojected point xi and x̂i, we design the following
hypothesis testing:

H0 : xi and x̂i do not fit K,

H1 : Otherwise.
(11)

The test statistic can be calculated by

eTi Σ
−1
x ei (12)

Since we approximate ei as the normal distribution with zero
mean vector and the covariance Σx, (12) is a χ2 distribution
with 2 DoFs. We use the distance threshold F−1

2 (1− α) by
setting the significance level α to determine if H0 is rejected.
We consider xi and x̂i agree with the prior camera intrinsic
matrix K by rejecting H0 when

eTi Σ
−1
x ei ≤ F−1

2 (1− α). (13)

We evaluate the camera intrinsic parameters consistency
by checking the ratio of the checkerboard points and its
reprojected points which agrees with the prior camera intrin-
sic matrix K by using (11). Let 1k(xi, x̂i) be an indicator
function to determine if xi and x̂i agree with the K

1k(xi, x̂i) :=

{
1, when eTi Σ

−1
x ei ≤ F−1

2 (1− α)

0, otherwise.
(14)

The ratio of the checkerboard points and its reprojected
points which agree with the prior camera intrinsic matrix

K can be calculated by

1

n

n∑
i=1

1k(xi, x̂i), (15)

We consider the camera intrinsic parameters of I is consistent
with the prior camera intrinsic matrix K if

1

n

n∑
i=1

1k(xi, x̂i) > γk, (16)

where γk is a ratio threshold determined by the experiments.
Otherwise, we claim that OIS actuated when image I is
captured.

V. EXPERIMENTS
We have implemented our system in Matlab. We evaluate

the camera model consistency detection accuracy. We clas-
sify datasets into two categories: (1) OIS set which represents
the image is affected by OIS actuation, and (2) OIS set
which represents images without OIS effect, and evaluate
the camera pose accuracy between them.

Camera

Desktop Mount Stand

Checkerboard

Remote

Fig. 3. Experiment setup for OIS image collection.

A. Experiment Setup

We deploy a printed checkerboard on a planar glass surface
to ensure flatness (See the checkerboard in Fig. 3). The
checkerboard contains 8 × 16 inner vertices, a sufficient
number of checkerboard points for OIS detection. Since most
current AR applications are desktop applications or close
range indoor applications, our experiment setup also chose
the close range working distance. The cell side length of
the checkerboard is chosen to be 8 mm to ensure sufficient
resolution under the working distance.

In experiments, we use the iPhone 12 Pro camera (see
Fig. 3), and we resize the image to a resolution of 1440 ×
1080 pixels to maintain the good image quality since the
image quality in the original image resolution 4032× 3024
is poor due to low signal-to-noise ratio and aggressive com-
pression in hardware. We calibrate the camera, and collect
two datasets: OIS dataset and OIS dataset. We have turned
off the autofocus function when collecting both dataset. The
OIS dataset is collected by hand-holding the camera with
different pose.
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Since OIS is a built-in mechanism in the iPhone camera
and cannot be turned off beforehand, it is necessary to avoid
in triggering OIS when collecting for the OIS dataset. Fig. 3
shows the experiment setup for collecting OIS images. To
avoid triggering the OIS, we fix the camera on a rigid desktop
mount stand to maintain the same camera pose, and move the
checkerboard to collect images under different relative poses.
Besides, we use a remote control to capture the images to
avoid the hand jittering motion that may trigger OIS during
the image capturing. To validate OIS is not triggered under
our setup, we perform a camera calibration using the method
for collecting OIS dataset. The calibration result shows that
the average reprojection error is about 0.13 pixels, which
indicates constant camera intrinsic parameters and OIS is
not actuated under the setup.

B. Camera Model Consistency Detection Tests

In the tests, we first want to verify if our lens distortion
removal consistency test is able to detect the incomplete lens
distortion removal from images (Sec. V-B.2). We are also
interested in whether our method is able to detect OIS using
the two-step camera model consistency tests (Sec. V-B.3).

1) Evaluation Metrics: We use the standard classification
results (true positive, true negative, false positive and false
negative), and measure the detection accuracy by precision,
recall and true negative rate (TNR).

2) Lens Distortion Removal Consistency Tests: We want
to verify if our lens distortion removal consistency test is
able to detect if lens distortion is not removed completely
from images. We collect two image datasets: DC dataset
which represents the images with incomplete lens distortion
removal by setting κ1 = 0 in (2) when we rectify the
images since the first order κ1 dominates the radial distortion
coefficient, and DC dataset which represents the images with
complete lens distortion removal.

a) Experimental Results: Tab. I(a) shows the confusion
matrix of lens distortion removal consistency tests. The
precision, recall and TNR all can achieve 100%, which
means that our lens distortion removal consistency test can
successfully detect if the collinearity of images is maintained.
It is expected since the collinearity can be easily violated if
there is incomplete lens distortion removal, and the corrupted
collinearity can be directly reflected on the distance between
the points and the lines.

TABLE I
CONFUSION MATRICES OF CAMERA MODEL CONSISTENCY DETECTION

TESTS.

(a)
DC

DC DC

Class DC 184 0

DC 0 184

(b)
OIS

OIS OIS

Class OIS 134 23

OIS 0 144

3) OIS Detection Accuracy Tests: We are interested in
whether our method is able to detect the OIS using our two-

step camera model consistency tests. We test our method on
both the OIS dataset and the OIS dataset.

a) Experimental Results: Tab. I(b) shows the confusion
matrix of OIS detection tests. There are 144 images in the
OIS dataset, and 157 image in the OIS dataset. It is worth
noting that 134 images in OIS set (the number of true
positive in Tab. I(b)) are all detected by the camera intrinsic
parameter consistency test. All the images in both OIS and
OIS datasets pass the lens distortion removal consistency
test, which is possible that the distortion coefficients still
can match the image even with OIS actuating since our
camera originally does not contain severe lens distortion. The
number of false positive nFP in Tab. I(b) is equal to 0, which
indicates that our OIS detection method can always correctly
identify the images from the OIS dataset. It is expected since
the geometric relationship between the lens and the image
sensor does not change without OIS effect. Besides, nFP = 0
in Tab. I(b) results in 100% for both precision and TNR.
The result of Precision = 100% and TNR = 100% indicate
that our OIS detection method only classify the images from
the OIS dataset into the OIS set, and it does not misidentify
the images from the OIS dataset into the OIS set. Recall
in Tab. I(b) can achieve about 85.4%, and it shows that
our OIS detection method has been very effective. Besides,
85.4% recall is a not negligible rate, and it means that we
are highly likely to face the images with inconsistent camera
model when the camera is hand-held which is common in
such AR applications. It is worth noting that the number of
false negative in Tab. I(b) is not equal to 0, and it, in fact,
means that images with OIS actuating still sometimes can
be consistent with the prior camera model. This is expected
because OIS effect may/may not introduces a noticeable
change in camera model.

C. Camera Pose Estimation Tests

We are also interested in whether the camera pose accu-
racy is different between OIS set and OIS set according to
the OIS detection result in Sec. V-B.3. Besides, we want
to verify if the inconsistency of camera intrinsic parameters
result from OIS. Therefore, we include the camera intrinsic
matrix K into the parameter vector of MLE for the images
in OIS set

min
K,CWR,CW t

eTΣ−1
e e. (17)

Let “OIS + K∗” represent the set of images from OIS and
estimate both camera pose and camera intrinsic matrix using
(17).

1) Evaluation Metrics: To measure the camera pose accu-
racy, we use the standard reprojection error [4] in computer
vision e for checkerboard corners using the estimated camera
pose (with estimate camera intrinsic matrix for OIS+K∗ set).

2) Experimental Results: Tab. II shows the experimental
results of camera pose accuracy. The average reprojection
error of OIS set is about 0.13 pixels, and is close to our
calibration accuracy. It is expected since the images from
the OIS set are consistent with the prior camera intrinsic
matrix K. The average reprojection error of the OIS set,
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on the other hand, is about 0.45 pixels. The significant
difference of the average reprojection errors between the OIS
set and OIS set show that our OIS detection method using
the camera model consistency tests has been very effective.
In addition to the average reprojection error, the standard
deviation of reprojection error for OIS is the minimum
with 0.07, which again proves that the OIS set contain
the consistent camera model with the calibration. For the
OIS + K∗ set, both the average reprojection error and the
standard deviation reduce significantly compared with the
OIS set, where the average reprojection error is reduced
from 0.45 to 0.23 pixels. It again confirms that the camera
intrinsic parameters vary when OIS is actuating. Besides, the
large average reprojection error and high standard deviation
for OIS set indicate that the camera model inconsistency
introduced by OIS is not negligible.

TABLE II
EXPERIMENTAL RESULTS OF CAMERA POSE ESTIMATION TESTS. BEST

RESULTS ARE HIGHLIGHTED IN BOLDFACE.

OIS OIS OIS +K∗

Avg(e) 0.13 0.45 0.23
Std(e) 0.07 0.56 0.35

VI. CONCLUSION AND FUTURE WORK

We reported an algorithm in detecting the camera model
consistency and the existence of OIS systems. Combining
two statistical hypothesis testings in detecting the camera
model (distortion coefficient and intrinsic matrix) inconsis-
tency, we are able to successfully detect the model inconsis-
tency and the existence of OIS as shown in the experimental
results.

In the future, we will look deep into the relationship
between the camera model and the OIS system, and develop
a camera model tracking algorithm to further improve the
robustness of AR applications.
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