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Improving Ego-Velocity Estimation of Low-Cost
Doppler Radars for Vehicles

Aaron Kingery

Abstract—A low-cost automotive radar is often used in au-
tonomous driving and advanced driver-assistance systems. How-
ever, the low cost radar often assumes all detected objects to be on
the ground plane when estimating radar/vehicle ego-velocity, but
when there are elevated background objects present, such as build-
ings and tall trees, the ego-velocity estimation tends to be biased.
Here we analyze the source of estimation error and develop a new
algorithm to recognize three types of object reflections using the
discrepancy between the estimated ego-velocity and the measured
Doppler velocity. We propose an elevation and background aware
cost (EBAC) function to formulate an optimization framework
which can distinguish the object types to improve ego-velocity
estimation. We combine a robust estimation method with the opti-
mization framework to handle outliers in radar readings. We have
implemented the algorithm and tested it in both simulation and
physical experiments using our autonomous vehicle. The results
show that our estimation method significantly reduces ego-velocity
estimation error while maintaining a smaller error variance with-
out losing robustness. More specifically, it reduces the ego-velocity
estimation error by 49 % in the most common driving scenario.

Index Terms—Autonomous vehicle navigation, localization,
range sensing.

I. INTRODUCTION

N AUTONOMOUS driving or advanced driver-assistance
I systems (ADAS), Radio Detection and Ranging, colloquially
known as radar, is one of the most frequently used sensors
because they are insensitive to environmental conditions such
as weather or lighting. They are considered as one of most
important navigation sensors on-board a modern vehicle. Due to
cost considerations, an automotive radar can often only perform
horizontal scanning and cannot perceive target elevation. Such
automotive radars rely on the Doppler effect to detect objects
and estimate their relative velocities by assuming all objects are
co-planar. However, when a vehicle traverses in urban streets,
there are elevated background buildings reflecting radar signals
which causes velocity estimation to be deviated from its true
value (see Fig. 1). Such issues may not be a concern if the radars
are only used for obstacle/collision avoidance. However, those
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Fig. 1. The radar coordinate system and notations featuring two target detec-
tions one s; is elevated, and another s is on the horizontal plane (i.e. ¢; = 0).
Blue vectors indicate the velocity components. As can been seen from the
geometry, the elevation angle of the target affects the target Doppler velocity.

radars are an attractive option for autonomous driving, especially
for localization and mapping in all weather conditions. If we are
to use those radars to perform accurate localization and mapping,
the issues are not negligible.

Here we present a new, unsupervised ego-velocity estimation
method to allow a low-cost Doppler radar to obtain accurate
ego-velocity estimation. We analyze the Doppler radar working
principle and propose an Elevation and Background Aware
Doppler Cost (EBAC) to capture model discrepancy caused by
different types of objects. By making use of the EBAC function,
we can identify target types and recover the correct ego-velocity.
To handle the outliers, we combine the random sample consen-
sus (RANSAC) with Orthogonal Distance Regression (ODR)
techniques to obtain robust and accurate ego-velocity estimation.

We have implemented the proposed algorithm and tested in
both simulation and field experiments with an autonomous ve-
hicle. The experimental results have shown significant improve-
ments in ego-velocity estimation while maintaining a smaller
error variance without losing robustness. More specifically, the
results show that our estimation method can reduce ego-velocity
estimation error by 49% in the most common driving scenario.

II. RELATED WORK

Radar was first developed during the 1920 s and matured as
a technology during the period just before and during WWIIL.
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The use of radar as sensor in the automotive space has a much
shorter history. The modern 77 GHz automotive radar, like the
one used for this work, was proposed by Langer [1] in 1996.

Automotive radar has been used for vehicle navigation since
the earliest examples in the literature. Clark and Durrant-
Whyte [2] employ automotive radar as part of an Extended
Kalman Filter (EKF) fusion of steering encoder, wheel en-
coder, and radar target tracking for vehicle localization, wherein
predesigned, preplaced beacons were tracked from the radar
range and bearing measurements to estimate the vehicles relative
position. Clark and Dissanayake [3] develop a Simultaneous
Localization and Mapping (SLAM) algorithm using the auto-
motive radar to map naturally radar reflective features in the
environment and simultaneously localize within the map of
radar target detections and Dissanayake et al. [4] describe an
implementation of the SLAM algorithm using automotive radar
to provide relative map observations. Schuster et al. [5] employ
GraphSLAM [6] with radar detections as features to develop a
radar SLAM algorithm. Those radar SLAM algorithm depends
on accurate ego-velocity estimation which can be improved by
applying our method.

In addition to tracking the strongest radar signal returns
as target detections, image processing techniques have been
used on the radar power spectrogram rendered as an image,
especially for Frequency Modulated Continuous Wave (FMCW)
radars which rotate to capture a 360° image of the environment.
Checchin et al. [7] use the Fourier-Mellin Transform for image
registration in order to estimate the relative pose between scans.
Vivet et al. [8] analyze the relative distortion between pairs
of successive radar scans in order to estimate the velocity and
angular velocity of a ground based vehicles as well as a boat.
Cen and Newman [9], [10] extract radar targets and propose a
novel data association method for point set registration between
successive radar scans in order to estimate the vehicle motion.
Werber et al. [11] identify straight line segments, common in
man-made environments, and associate them between succes-
sive scans for use as landmarks in radar based localization.

More recent developments have made use of the target
Doppler velocity measurements provided by modern automotive
radars in order to estimate the sensor’s own ego-velocity. These
methods are referred to as “instantaneous,” because they esti-
mate the ego-velocity from a single radar scan. Kellner ez al. [12]
create a model of the relative Doppler velocity of static, planar
radar target detections and use the random sample consensus
(RANSAC) algorithm [13] in order to robustly identify the
static and dynamic targets, estimate the sensor’s ego-velocity,
and apply it to a single track vehicle model with Ackerman
steering properties in order to estimate the vehicle longitudinal
velocity and yaw rate. Subsequently, their approach has become
the standard technique for estimating radar ego-velocity upon
which our work improves by considering the effect of the target
elevations on the relative Doppler velocities of target detections.
Kellner et al. [14] further extend their approach to fuse the data
from multiple Doppler radars and employ Orthogonal Distance
Regression (ODR) [15] as a final re-optimization step to improve
the estimate of the sensor ego-velocity. Steiner et al. [16] use
many simpler single channel Doppler radars, which do not
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have the capability to measure target azimuth, to estimate the
radars’ ego-velocities. Cho et al. [17], [18] develop a novel
complex-valued neural network in order to estimate the radar
ego-velocity.

Joint methods of fusing the estimated ego-velocity estimation
from Doppler velocity analysis and analysis of target spatial dis-
tributions between successive frames have now become the state
of the art for radar ego-motion estimation. Barjenbruch et al.
propose the first such method fusing the ego-velocity estimation
algorithm of Kellner et al. [12] and a point set registration al-
gorithm to estimate the radar ego-velocity and subsequently the
vehicle motion. Monaco and Brennan [19] propose the RADAR-
ODO algorithm which uses the algorithm of Kellner et al. [12]
to estimate the radar’s translational motion and analysis of
successive radar power spectrograms in order to estimate the
radar’s rotational motion allowing the radar ego-motion infor-
mation to be used for vehicle motion estimation without the
Ackermann steering constraint. Our work can be applied in these
approaches to further improve the results by accounting for the
target elevations in the ego-velocity estimation step.

III. PROBLEM FORMULATION

Before we introduce our radar ego-velocity estimation prob-
lem, let us begin with the definition of coordinate systems, also
known as frames.

e {D} is the dynamic radar ego-coordinate system which
moves with the radar, it is aright-handed coordinate system
defined such that the X -axis is forward, Y -axis is to the
right, and the Z-axis is downward from the radar perspec-
tive.

e {W} is the static global inertial coordinate system, aligned
with {D} at its initial position.

A left superscript of the coordinate frame indicates the co-

ordinate perspective, e.g. Pz would be the variable x from the
coordinate perspective {D}.

A. Radar Inputs

Our sensor is a 77 GHz automotive Doppler radar which peri-
odically transmits a pulse and reports a set of the received reflec-
tions as estimated target detections. Weuse D = {s1,...,s,}to
denote the set of target detections received as a datagram from a
transmitted radar pulse. Each target detection is reported in polar
coordinates in the radar coordinate frame {D} and consists of
the measurements

si=[r: 0;v4]" €D, 6

where, i € {1,...,n} is target index, r; is the i-th target range,
0; € (—m, ] isthe i-th target azimuth where §; = 0 indicates the
forward direction (see Fig. 1), 8; < Oindicates a target to the left,
and #; > Oindicates a target to the right, and the Doppler velocity
v,; which is the radial component of the relative velocity of the
target where v, ; < 0 indicates a target moving radially towards
the radar and v,.; > 0 indicates a target moving radially away
from the radar. The sensor also provides estimated measurement
error variances, o7, ;, 0 ;, and o ; respectively.
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To facilitate our analysis, we additionally consider the target
elevation which is not directly observed by the low cost Doppler
radar, because it only does horizontal scanning. We define the
target elevation to be ¢; € [—Pmax, Pmax)> Which is the angle of
the target with respect to the radar horizontal plane where ¢; < 0
indicates a target below the horizontal plane, ¢; > 0 indicates a
target above the horizontal plane, and ¢y,.x is equal to half the
radar’s elevation beam width (see Fig. 1).

B. Assumptions

We make the following assumptions throughout the paper:

a.l The radar is mounted such that its horizontal plane is
parallel to the ground surface.

a.2 The ground surface can be reasonably approximated by
a plane. In an automotive application, this assumption
holds in most cases. In conjunction with a.1, we can say
that the radar’s vertical velocity is approximately zero,
ie. Pu, ~ 0.

a.3 Each component of s; is independently distributed and
therefore we can say that ¥,, = Diag(o?;, 05 ;, 05 ;).
We base this assumption on the fact that each measure-
ment is of an independent quality of the received signal
reflection, namely: time of flight for r;, relative signal
phase between radar receiver (RX) antennas for 6;, and
Doppler frequency shift for v, ;.

a.4 The radar datagram contains a majority of static (i.e. non-
moving) target detections. For the radar used in this work,
the horizontal field-of-view is £60°, the vertical field-of-
view is £10°, and the maximum range is 100 meters.
Given the average vehicle is between 1-3 meters tall and
the height of the field-of-view at the maximum range is
over 17 meters, it is unlikely that the radar field-of-view
will feature more dynamic targets than static targets when
it is not directly obstructed.

C. Problem Formulation

Given a radar datagram D, estimate the radar ego-velocity
along the planar ground surface, Dy = [Dux Dvy Do, ]T, where
Py, ~ 0 by assumption.

IV. EGO-VELOCITY ESTIMATION ALGORITHM
A. Modeling Doppler Velocity: Issues in Existing Methods

The Doppler velocity of a target is measured by the frequency
shift of the reflected signal returned to the radar relative to the
original signal. As the Doppler frequency shiftis only induced by
velocity in the direction of signal propagation, velocity tangent
to the signal propagation has no effect, and hence the Doppler
velocity of a target is the scalar projection of the target’s relative
velocity onto the radial vector to the target. The radial vector
to a target is calculated via a coordinate transformation from

the radar’s observed spherical coordinates into the Cartesian

7; cosB; cos ¢;

73 sin 0; cos ¢; ] . Note the negative
—7r;sin¢;

in the z-axis coordinate is included in order to preserve the

right-handedness of {D}. For a static target detection, i.e. a

coordinate frame {D}, r; =
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detection of a target with zero velocity of its own, the target’s
relative velocity is the negative of the radar ego-velocity, — v.
Projecting the ego-velocity into the radial direction, a complete
three dimensional model of the relative Doppler velocity of a
static target detection is,

Dy .

Vpi =
o [l

)

= —(Pu, cosb; + Dvy sin ;) cos ¢; — Pu,sing;,  (2)

where - denotes the standard vector dot product. This model can
be seen depicted in Fig. 1.

In the existing approach of Kellner et al. [12], targets are
either assumed to have no elevation, which may be reasonable
for radars with very narrow elevation beam width, or that the
elevation has no effect on the Doppler velocity of the target
detection, which may be reasonable if the radar has low Doppler
velocity measurement accuracy or resolution. This assumption
results in a straightforward linear model for the Doppler velocity
by setting ¢; = 0 in (2),

_ D
Urgs = —

Vg Ccos 0; — Dvy sin 6;, 3)
and one can estimate the radar ego-velocity using this model
by solving a system of linear equations using a weighted least
squares approach,

" (vy,; + [cosB; sinf; 0] Pv)?

argmino,, Z = . 4)

i=1

Ur, i

We improve upon the existing approach by considering the
target elevation as in (2), however, under our assumptions we
can say that Pv, = 0, resulting in a simplified model,

Uy = —(sz cos6; + Dvy sin 6;) cos ¢;. )

The primary difference between the existing model (3) and the
model presented here in (5) is that the existing model describes
the Doppler velocity as a function of azimuth angle 6; in two
dimensions, whereas our model describes the Doppler velocity
as a surface which is a function of both the azimuth angle 6;
and the elevation angle ¢; in three dimensions. However, due
to the sensor limitations, we are not able to directly observe the
target elevations, and hence we can only see the projection of
the model onto the target Doppler velocity-azimuth plane.

Upon further comparison of the models from (3) and (5) it
becomes clear that the target’s elevation causes a shrinking effect
on the Doppler velocity since cos(¢;) < 1in (5). Ultimately this
produces a result from the least squares approach (4) which is
biased towards smaller absolute ego-velocities. By accounting
for the target elevations, we attempt to eliminate this source of
bias.

It is worth noting that our improved model (5) is still an
approximation of the complete Doppler velocity model (2) be-
cause we ignore the vertical velocity component, Pv, sin(¢;),
by assumption. For most driving scenarios this component is
insignificant relative to the component captured by (5), however,
on very hilly terrain or when there are bumpy road conditions
(e.g. speed bumps, construction sites), our model will still have
some error relative to the ground truth. This error exists in both
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our approach as well as the existing approach, so our approach
should still perform no worse, and generally better, under such
conditions.

B. Modeling Target Types to Improve Ego-Velocity Estimation

In order to estimate the ego-velocity of the radar, it is first
necessary to identify the static and dynamic targets. The static
targets are model inliers and will be used to estimate the ego-
velocity. The dynamic targets, in general, appear as outliers to
the model and must be accounted for in order to minimize their
effect on the solution.

We note that it is possible to recognize target types (e.g.
static vs dynamic, elevated vs not elevated) by observing the
values of radial velocity. Let us begin by making use of the
zero-elevation model from (3) and then we will observe the
discrepancy between the model and the observation to identify
target types. Given the estimated radar ego-velocity v, we have
the estimated zero-elevation Doppler velocity function which
maps to the estimated Doppler velocity of a static, non-elevated
target from a target’s azimuth angle 6;

0,(0; | Pv) = =P, cos(0;) — Po, sin(6;), (6)

where P4, and P9, are the components of v and (-|-) is the
conditional statement of the random variable with condition on
the right side of |. We note that the residual Doppler velocity of
a target detection relative to this function is,

— (0 | T¥). (7

€ = Ur;

In our design, we can take account for the target type and
elevation by applying a nonlinear cost function to this residual
which approximates the Doppler velocity residual of the target
relative to the improved model in (5). Note that (5) cannot be
directly used because we do not have reading ¢; due to the fact
that the radar can only perform horizontal scanning. The cost
function can be adopted in an optimal parameter estimation later
to recover the value of the ego-velocity.

Let us assume for now that ©,.(6; | P¥) < 0 for a given target
s;, which is generally the case when the radar is moving in
the forward direction. We model three different cases which are
visualized in Fig. 2:

Type I: If a dynamic target is moving towards the radar in
the radial direction, then it will appear to be moving towards
the radar at higher (i.e. more negative) speed than a static target
would. Therefore, correspondingly, if the target’s Doppler ve-
locity is less than the estimated zero-elevation Doppler velocity
profile function i.e.

Ur,i < /07‘(97, | D‘A’)a (8)

then it is safe to assume the target to be a dynamic target moving
towards the radar in the radial direction and its cost is simply
the residual ¢;.

Type II: If a target is static but elevated, then its Doppler
velocity will be a product of the zero-elevation Doppler velocity
profile function and the elevation effect of the target,

br(0; | %) cos(¢i). )
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Type III Targets

_ Typell Targets/ _

Type I Targets

9,(0i |2 ¥) cos(Pmax) s Prmax = 20°
-1 F — — —0,(8; |? ¥) cos(Pmax)s Pmax = 10° )
0,(0: | %)
11.5 2 - - . - L -
-30 -20 -10 o 10 20 30
0:(°)

Fig. 2.  Visualization of the EBAC function cases and modeling for Pv, =
10 m/s and Pv, = 0 m/s. The solid curve, 9, (6; | P¥) is the zero-elevation
Doppler velocity profile function and the dashed curve (¢max = 10°) and dotted
curve (¢max = 20°) correspond to the maximum elevation effect. A target is
Type 1 if it is in the region below the zero-elevation Doppler velocity curve.
A target is Type II if it is located in the region between the zero-elevation
Doppler velocity profile function curve and the maximum elevation effect curve
corresponding to ¢max. A target is Type IIT if it is located in the region above
the maximum elevation effect curve corresponding to ¢pmax-

Due to the fact that we know beam width and radar resolution, we
know the maximum vertical spanning angle ¢,,,x of the radar.
Further, we know that 0 < cos(¢;) < 1for ¢; € [—Pmaxs Pmax)s
therefore, we can say that if the Doppler velocity of a target is
between the zero-elevation Doppler velocity profile function and
its product with maximum elevation effect defined in (9) i.e.

’[}r(ez | D‘A’) COS(¢max) 2 Uri Z @7’(61 | D‘A’)u (10)

then it is likely to be a static target (i.e. background object). For
such targets, we set their cost to be O since these target’s are
within the tolerable range of our improved model (5).

Type III: For the rest, the target is assumed to be a dynamic
target moving away from the radar in the radial direction and the
cost is the residual plus a correction factor which maintains the
continuity of the cost function across all three target detection
types by accounting for the elevation effect tolerance for the
Type II target detections, i.e.

€i 4+ (1 — cos(dmax))0r (6 | V). (11)

Bringing this all together, we have a piecewise cost function
which we will refer to as the Elevation and Background Aware
Doppler Cost (EBAC) function,

f(€i7 Ur. iy 0; | D‘A’)

€, if Ur,i < ’lA}T(Gl)
= 07 if /&’I‘ (ez) COS(QSmaX) > Ur,q > ﬁr (ez)
€ + (1 — cos(Pmax))0r(6;), otherwise,

12)

where ©,.(6;) is used in place of 9,.(6; | V) in order to conserve
space. Itis worth noting that EBAC function in (12) only depends
on a known prior ¢,,x instead of the unknown target elevation
reading.

The EBAC function can be easily extended to the case where
9-(0; | P¥) > 0 by mirroring the direction of the described
inequalities in (12), however, we omit the full derivation in
favor of deriving the most common case for brevity. While
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the three described cases are generally sufficient for the most
common situation of the radar moving in the forward direction,
ultimately, the full EBAC function should have six cases, the
three described here for 9,.(6; | ) < 0 and three more with
mirrored inequalities for ©,.(6; | P¥) > 0.

As the first step in our algorithm, we employ the RANSAC
algorithm to find the largest inlier set to our improved model
(5), where the absolute value of the EBAC function serves as the
error metric indicating the distance of a given target detection
from this model. In each RANSAC iteration we select two
random targets from D and find an exact solution to (4). We
use this solution as the estimated ego-velocity ¥ to construct
the zero-elevation Doppler velocity function (6) and thereby
instantiate our model. For each target in D, we consider it an
inlier if the absolute value of the EBAC function is less than
some threshold which we empirically choose to be 2.5, ;. This
serves as a probability threshold for admitting target detections
which are on the borderline between static and dynamic target
detections as inliers. After some number of iterations, we take
the solution with the largest number of inliers and consider it to
be the RANSAC solution.

Following the completion of the RANSAC algorithm itera-
tions, we construct a set of radar detections D g which is a subset
of the original radar datagram D consisting of the static inlier
target detections to the RANSAC solution. We will use Dp in
the subsequent optimal parameter estimation to determine the
radar ego-velocity. One may also construct a set consisting of
the dynamic outlier targets, D = D\ Dp, which is not utilized
in this work but may be useful for other radar works related to
dynamic target identification and tracking.

C. Estimating the Radar Ego-Velocity

Given the set of static, background target detections Dp we
can finally estimate the radar ego-velocity by performing an
optimal parameter estimation for our improved model (5).

In order to account for the noise which is present in both the
independent variable 0; as well as the dependent variable v, ;
we make use of Orthogonal Distance Regression (ODR) [15],

n
C6(0: +6. 1D s ;)2 52

argminpv)a)d, E (’UT,’L UT( 1 +2 1 | V) Ccos d)l) + 21
Uvr,i 0-0,1'

i=1

(@T(Gl + 61 | DV)(I — COS ¢i>)2
2 )

Ur,i

0§¢i§¢maxa i=1,...,n,

+ A

subject to (13)
where J; is the estimated error of the target azimuth observation.
We additionally add A and its associated component as a regu-
larization upon ¢; which controls for the amount of variance in
vy ; explained by the elevation. As A — oo, ¢; will be forced
to zero and the model will not make account for elevation. As
) — 0%, the model will increasingly explain the variance in
vy ; by the elevation effects. This orthogonal distance regression
also provides a potentially useful side-product, resulting from
the use of the target elevation in the optimization, in the form
the estimated absolute values of the target elevations.
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V. EXPERIMENTS

The presented algorithms have been tested and validated using
simulated data as well as real-world data collected from our
Continental ARS430 Doppler radar which is mounted to front
of a 2017 Chevy Bolt EV designed for autonomous driving.
All of the algorithms have been developed as a set of Robotic
Operating System (ROS) [20] modules in C++ using Ceres
Solver [21] for solving the regressions and Eigen [22] for matrix
computations. We compare the results of our algorithm to that
of Kellner et al. [12].

A. Simulation

Due to the wide array of parameters affecting the algorithm,
we make use of simulation in order to provide as much coverage
of these parameters as possible. We create a simulated radar
module in ROS which emulates the performance and charac-
teristics of a real world Doppler radar by generating simulated
radar datagrams. For each simulation, we generate 10000 sim-
ulated radar datagrams with 150 targets. We send the simulated
radar datagrams as input into each algorithm identically, and
compute the mean and standard deviation of the magnitude of
the ego-velocity estimation error

ey = ||Pv = Pv|.

(14)

For the mean errors smaller values are preferred as they indicate
a lower bias of the algorithm’s estimations and smaller standard
deviations are preferred as they indicate superior stability of the
algorithm’s estimations.

To generate a static target s;, we generate the target range,
azimuth, and elevation as random variables such that r; ~
U(5m,100 m), 0; ~ U(—60°,60°), and ¢; ~ U(—10°,10°),
where U (-, -) is the continuous uniform distribution. We com-
pute v, ; for each target as in (2).

To generate a dynamic target s;, recall that the fixed global
coordinate system {W} is aligned with the radar coordinate
system {D} at its initial position. The distribution of dynamic
target positions and velocities will be defined in the global
coordinate system {WW} on a case-by-case basis for a given
simulation scenario. The dynamic target positions and velocities
are transformed from {W} into {D} in order to populate the
simulated radar datagram. The target range and azimuth are
computed by converting the target positions in {D} into the polar
coordinate representation. We set the target elevation ¢; = 0
since we assume that dynamic targets will be moving along
the same planar surface as the vehicle and their height will
generally be insignificant compared to their range. As previously
discussed, the Doppler velocity of a target is the scalar projection
of the target’s relative velocity onto the radial vector to the target.
Let Pv; = [Pv,; Puy,; 0 |7 be the velocity of the target s; from
the radar perspective, then the relative velocity of the target is
Py; — Pv. Therefore the Doppler velocity of the dynamic target
is computed to be

Do Do) . .
vm:(vz v)-r;

[z

= ((Dvm —Pu,)cosb; + (Dvy,i - Dvy) sin 6;) cos ¢;,

5)
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Fig.3. A comparison between simulated radar datagram and real radar data-
gram featuring both static and dynamic targets. (a) Simulated datagram: target
Doppler velocity vs. azimuth plot. (b) Real datagram: target Doppler velocity
vs. azimuth plot. Both static and dynamic targets are collected from the physical
experiments. (c) The camera image corresponding to the real radar datagram.
(a) and (b) are cropped to align with the image bounds, blue os indicate the static
inlier detections, red xs indicate dynamic or outlier detections, and the dashed
black line is the zero-elevation Doppler function.

() (b)

Fig. 4. Diagrams of simulated scenarios where the blue arrows represent the
flow of traffic in a given group of lanes. (a) The solid black line represents
the radar trajectory for Scenario 1. (b) The solid black line represents the
radar trajectory for Scenario 2, and the dashed black line represents the radar
trajectory for Scenario 3. Note that the figures are for visual reference and are
not necessarily drawn to scale.

For all the targets in our simulated radar datagram, we sim-
ulate the observation noise of the measurements. For a given
target s; in the radar datagram we let the azimuth observation
noise be a random variable §; ~ N (0, 0g ;) where 0g ; = 1° and
the Doppler velocity observation noise be a random variable
€; ~ N(0, 0, ,) where o, , = 0.1m/s. N(u,0) is the normal
distribution with mean g and standard deviation o. §; and ¢; are
added to 6; and v, ; respectively. Note that we do not define
the noise in r; as it is not used in our estimation process nor
do we define the elevation noise as it is not considered to be an
observation and is used only exactly to compute the ground truth
target Doppler velocity.

Fig. 3 demonstrates a sample comparison of our real world
data versus our simulated data in the target azimuth vs target
Doppler velocity space. It is clear that our simulation is very
faithful and covers the key characteristics of the radar datagram.
In order to validate the robustness of our algorithm to dynamic
target detections we construct three representative scenarios (see
Fig. 4) to emulate real world driving situations.
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Scenario 1: we simulate the case of driving straight along
a bidirectional five-lane roadway with two lanes in each direc-
tion and a bidirectional center turning lane. We set the radar
ego-velocity to be such that Pv, = 15 m/s and Dvy = O m/s and
we vary the ratio of dynamic to static targets. We generate a
given dynamic target s; to be positioned in the two right-most
lanes (the radar’s lane and the lane to the right) with probability
47.5%, the two left-lanes with probability 47.5%, or the cen-
ter turning lane with probability 5%. Given a dynamic target
si, we set its velocity from the global coordinate perspective
to be such that va,i = 0m/s and Vv, ; ~ U(14 m/s, 16 m/s)
for a dynamic target in the two right-most lanes, Vv, ; ~
U(—16 m/s, —14 m/s) for a dynamic target in the two left-most
lanes, and Vv, ; ~ U(—16 m/s, 16 m/s) for a dynamic target in
the center turning lane. In fact, the example in Fig. 3(c) is similar
to Scenario 1 without opposite traffic.

Scenario 2: we simulate the case of approaching a stop at
a four lane intersection with cross traffic. We set the radar
ego-velocity to be such that Pv,, = 5 m/s and v, = 0 m/s and
we vary the ratio of dynamic to static targets. We generate a
given dynamic target s; to be positioned in either the two nearest
crossing lanes or the two furthest crossing lanes with equal prob-
ability of 50%. Given a dynamic target s;, we setits velocity from
the fixed global coordinate perspective such that Vv, ; = 0 m/s
and v, ; ~ U(14 m/s, 16 m/s) for a dynamic target in the two
nearest crossing lanes and Vv, ; ~ U(—14 m/s, —16 m/s) for a
dynamic target in the two furthest crossing lanes.

Scenario 3: we simulate the case making a right turn at a
four lane intersection with cross traffic. We set the radar ego-
velocity to be such that |[Pv|| = 5 m/s and we vary the ratio
of dynamic to static targets. The radar begins facing the cross
traffic and makes a right turn with a radius 10 meters and ends
parallel with the cross traffic in the rightmost lane. To execute
the turn we provide a steering angle of 20° which corresponds to
alongitudinal velocity of Pv, ~ 4.7 m/s and a lateral velocity of
Dvy ~ 1.7 m/s. The dynamic targets are generated as previously
described in Scenario 2.

The results of the simulations of Scenarios 1, 2, and 3 are
detailed in Fig. 5. The results show that our algorithm offers
an improvement to the existing approach for situations where
there are elevated target detections. Our algorithm reduces the
magnitude of the velocity estimation error by an average of
49%, 34%, and 33% on average for radar datagrams contain-
ing up to 50% dynamic targets for Scenario 1, Scenario 2,
and Scenario 3 respectively. Further, our algorithm reduces the
standard deviation of the magnitude of the velocity estimation
errors by approximately 12%, 12%, and 11% for up to 50%
outliers in Scenario 1, Scenario 2, and Scenario 3 respectively.
Our algorithm offers similar robustness to the existing approach,
working reliably for up to 50% dynamic targets. Beyond 50%
dynamic targets, both the existing approach and our approach
begin to breakdown and select incorrect static inlier sets in the
RANSAC segmentation step.

The three scenarios represent three extreme cases in radar
applications. Due to the fact that the ego-vehicle and other
vehicles are either co-directional or in the opposite direction,
Scenario 1’s relative velocity to other vehicles is very close
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Fig. 5. Ratio of dynamic targets versus (a) the mean and (b) the standard
deviation of the velocity error magnitude e,, for simulation Scenario 1, (c) the
mean and (d) the standard deviation of the velocity error magnitude e, for
simulation Scenario 2, (e) the mean and (f) standard deviation of of the velocity
error magnitude e,, for simulation Scenario 3.

to Doppler velocity. In fact, Scenario 1 is arguably the most
common driving scenario. The fact that our estimation method
reduces the magnitude of the velocity estimation error by an
average of 49% is very encouraging. In Scenario 2, the ego-
vehicle is perpendicular to other vehicles when the Doppler
velocity is much less affected by the relative velocity to other
vehicles. All other driving scenarios can be considered as the
intermediate scenarios between the two representative extreme
scenarios here. Scenario 3 demonstrates that the performance is
not degraded by lateral motions of the radar. The right turn into
cross traffic generally requires the largest steering angle under
normal driving conditions, therefore all other turning scenarios
fall between the linear trajectory in Scenario 2 and the sharp
turning trajectory in Scenario 3.

B. Physical Experiments With an Autonomous Vehicle

In order to verify the algorithm performance beyond the ide-
alized simulation environment and under real-world conditions,
we mount Continental ARS430 radar to the front bumper of a
2017 Chevrolet Bolt EV (see Fig. 1) and perform physical exper-
iments. We drive our vehicle in a typical urban scene featuring
elevated natural targets such as tall trees and elevated infras-
tructure such as multi-story buildings and street lights which is
depicted in Fig. 6. We first record a one minute dataset with
the vehicle parked and thus the radar stationary. For subsequent
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Fig.6. A sample of camera image data captured simultaneously with the radar
data by our autonomous vehicle platform during the physical experiments. The
colored points are the radar target detections projected into the image coordi-
nates. Note that the target elevations are the absolute elevations as estimated by
(13). The point color coding indicates the target’s height in meters relative to
the horizontal plane. Projected images are generated by RViz.
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Fig. 7. The vehicle speed in meters per second versus (a) the mean distance
integration error per radar datagram and (b) the mean angular integration error
per radar datagram.

trials we repeat a linear trajectory approximately 150 meters long
through the scene varying the vehicle speed using the vehicle
cruise control, and therefore the radar’s longitudinal velocity,
for each trial. We apply the radar ego-velocity estimations to the
same single-track kinematic vehicle model with the Ackermann
steering condition as Kellner et al. [12] and integrate over the
trajectory. Due to the compounding effects of integration of even
slight errors in the lateral velocity to the overall displacement of
the estimated trajectory, we separately estimate the integrated
trajectory distance and the integrated trajectory rotation. We
compute the error of the estimated trajectory distance and ro-
tation by comparison to GPS/INS data collected simultaneously
from our Novatel PwrPak7 GNSS/INS. In order to normalize
the errors we divide the errors by the total number of radar
datagrams processed for the trajectory. Results for these physical
experiments are presented in Fig. 7. Again, our RANSAC+ODR
method has significantly outperformed its counterparts. It con-
sistently has the smallest distance error and angular error across
a variety of vehicle speeds. Whereas the existing approach will
accumulate distance error proportional with the vehicle speed
due to its inherent bias, our approach is not significantly affected
as the vehicle speed increases.

We additionally present a sample output of our algorithm’s
elevation estimation and target type separation for real-world
data collected on our autonomous vehicle platform. In Figs. 6
and 8 we show the projected radar target detections into the
camera image coordinates and validate that the target elevation
estimations as determined by (13) appear visually reasonable.
As shown in Fig. 8, our algorithm has successfully identified the
three types of targets described in Section I'V-B.
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Fig. 8. An example of our target type identification on real data collected at
a four-way intersection. White points are static, Type II target detections. Red
points are dynamic, Type I (moving towards the radar) detections. Blue points are
dynamic, Type III (moving away from the radar) detections. Target coordinates
are rendered in {D} with the underlying grid-squares having 5 m spacing. (a)
Birds-eye view of the radar coordinate system. (b) A sample of camera image
data captured simultaneously with the radar data by our autonomous vehicle
platform. The colored points are the radar target detections projected into the
image coordinates. Note that the target elevations are the absolute elevations as
estimated by (13). Images are generated by RViz.

VI. CONCLUSION AND FUTURE WORKS

We reported our algorithm design to improve ego-velocity
estimation for a low-cost Doppler automotive radar which is
widely used in autonomous driving and ADAS. The existing
state-of-the-art assumed that all objects are located close to the
ground and hence treat them as co-planar objects. However,
elevated objects such as buildings and tall trees commonly exist
along the roadside which inevitably cause radar ego-velocity
estimation to be deviated from its true value. We modeled and
analyzed the issue and proposed a cost function to capture the
discrepancy which results in an optimization framework that
can recognize object types and allow us to obtain accurate
ego-vehicle estimation. Combining the new framework with
RANSAC, our method reduced ego-velocity estimation error
while improving in robustness and reducing error variance. Our
simulation and physical experiment on our autonomous vehicle
validated our analysis and design.

In the future, we will further develop feature recognition
algorithms to recognize other ground features such as vertical
building facades or curb corners based on raw radar datagrams.
This will allow us to build high-level landmarks in radar-based
SLAM approaches. In addition, we will design cross-modality
sensor fusion with LIDAR and other sensors.
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