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Algorithm and System Development for Robotic
Micro-Volume Herbicide Spray Towards
Precision Weed Management
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Abstract—Weed competition is one of the most limiting factors
affecting crop yield and profitability. Robotic weeding systems have
demonstrated their potential to save herbicide usage and thereby
minimize costs and adverse impacts on the environment. We intro-
duce the software and hardware design of an automatic system for
micro-volume herbicide spray using a mobile robot for early-stage
weed control. The system is equipped with a stereo camera, one
inertial measurement unit, and multiple linearly actuating spray
nozzles. To enable the system, we propose a new scene representa-
tion from the perspective of spray operation. We represent the space
occupied by weeds as candidate line segments for spray and then
construct a directed acyclic graph (DAG) that embraces the feasible
nozzle paths among weeds. Based on the new scene representation,
we formulate an optimal K -nozzle assignment/motion planning
problem and develop a binary linear programming-based algo-
rithm to assign nozzles to the candidate line segments for optimal
coverage. We built the system and conducted both simulation and
field experiments. Evaluation on rough soil surfaces with artificial
targets has shown that the lateral errors of herbicide spray are
at sub-centimeter levels. Simulation results demonstrate that the
proposed assignment algorithm can provide good coverage within
the intra-row regions.

Index Terms—Agriculture automation, motion and path plann-
ing, precision agriculture, spray nozzle assignment, weeding robot.
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I. INTRODUCTION

EED competition is one of the most limiting factors
W affecting crop yield and profitability. Weeds cause the
highest crop yield loss (34%) among all agricultural pests when
not managed well [1]. Current challenges in weed management
due to high labor demand, over-application of herbicides, and
limited availability of alternative control methods can be po-
tentially alleviated by the introduction of autonomous weeding
robots [2]. Herbicide-based weed control remains the most
efficacious and economical approach, though with significant
environmental consequences and high risks for the evolution of
herbicide-resistant weeds [3], [4]. Traditionally, herbicides are
broadcasted across the entire production field, leading to more
herbicide use than necessary and frequent off-target movement
onto sensitive crops.

Designing an accurate, real-time, and economical au-
tonomous weeding system relies on three key components:
a perception system detecting and representing weeds, a
decision-making unit processing the perception output and
making actuation decisions, and a group of actuators per-
forming weed control actions accordingly [3]. However, com-
mon weed/crop descriptions used in plant detection cannot
be directly used for actuation planning. The raw output of
detection generally does not balance weed localization and
key information abstraction (e.g., geometrical shape) well [5].
Currently, a weed/crop scene representation that incorporates
both plant geometry and actuator feasibility constraint is ab-
sent. A lack of such scene representation prevents the design
of a good planning algorithm for efficient and precise weed
control.

The major contribution of our work is a real-time robotic
herbicide spray system with two novel algorithms and a com-
plete hardware platform. Firstly, we construct a tri-layer scene
representation by abstracting DAGs from plant occupancy
maps through intermediate line segments. Based on the new
scene representation, we formulate an optimal K-nozzle as-
signment/motion planning problem and develop a binary linear
programming-based algorithm to assign nozzles to the line
segments for windowed optimal coverage with the deadline
introduced by the robot motion. To achieve full herbicide spray
functionality, we implement the proposed algorithms on a low-
cost hardware platform equipped with linearly actuated nozzles.
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We have built the system and evaluated its performance.
Simulation and field experiments show that our system is able to
work in real-time, maximize spray coverage of weeds growing
within 10 cm of the crop plants, and achieve spray accuracy at
sub-centimeter levels. Compared to the existing system of [6],
our herbicide spray system uses a simpler hardware design
regarding the sensor suite, while allowing the system to travel
twice as fast owing to our efficient scene representation and
planning algorithms.

II. RELATED WORK

Agricultural robots: Extensive research has been performed
on various aspects of agricultural robot development, such as
scene perception [5], [7], [8], robot navigation [9], motion
planning [10], and deployability of aerial/ground platforms
[11]-[13]. Existing work has solved a great number of important
problems, providing foundations for the design of more capa-
ble agricultural robots. However, since most of the robots are
designed for large-field operations with coarse perception gran-
ularity, it is challenging to directly adopt them for applications
where centimeter-level accuracy is required.

Robotic weed control: Developing systems for weed control is
one of the major research fields in agricultural robotics. Much ef-
fort is focused on the development of crop/weed detection meth-
ods and control mechanisms. Actuation methods that have been
extensively evaluated include mechanical cultivation, thermal-
based actuation, abrasion, mowing, and herbicide spray [2].
Attempts have been made by several research groups to develop
robotic spray systems [14]-[16] utilizing nozzle arrays and 2D
spray maps generated from machine vision systems. However,
using an array of nozzles is not cost-effective, considering the
number of nozzles needed to provide enough resolution within
the narrow intra-row region. Recently, Wu et al. [6] deployed a
complicated non-overlapping multi-camera system to perform
weed detection and tracking for herbicide spray and stamping.
Weeds are represented as shapeless points, and a single pulse or
stamp is applied to a weed when it reaches the actuators.

Scene representation: Building a precise and efficient scene
representation for real-time systems has been a major challenge.
Recent developments in computer vision have made real-time
detection algorithms such as YOLOvVS [17] readily available.
The output of state-of-the-art plant detection algorithms is of-
ten in the form of a single point [6], bounding box [18], or
pixel/point cloud [11]. Pixel/point clouds provide rich geometric
information but require heavy computation, while single points
overly condense the information, giving up important geometric
properties for actuation planning. For this reason, many existing
agricultural robots convert the raw perception results into pri-
mary shapes for better scene understanding [11], [ 18]. For multi-
actuator planning, the constraints of actuators such as kinematic
limits also need to be considered. To achieve efficient planning
for real-time systems, a representation that preserves precise
weed/crop description and incorporates actuator constraints is
needed.

Constrained Planning & Assignment Problem: There is much
progress in the development of planning algorithms for painting
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(a) System overview and 3D coordinate systems. (b) Hardware

nozzles to achieve a complete and uniform coverage [19], [20].
In those tasks, trajectories are generated to achieve the exactness
and smoothness of painting. Although painting and spraying
weeds share many similarities, our application requires a good
assignment of multiple linearly-actuated nozzles to cover weeds
with different priority levels. Our work is closely related to job
scheduling and covering problems with temporal and spatial
constraints [21], [22]. Similar problems also include sorting
items on a moving conveyor belt using robotic arms [23] and
capacitated vehicle routing with geometric constraints [24].
Despite the similarity, those problems treat every target equally,
which differs from our application. Inspired by those planning
algorithms and facing new field challenges, we develop a new
assignment algorithm for multi-nozzle planning for herbicide
spray applications.

III. SyYSTEM DESIGN

The proposed spray system is mounted on a mobile agri-
cultural robot and performs perception-guided micro-volume
herbicide application using nozzles that can be independently
and linearly actuated to perform lateral motion (Fig. 1(a)). To
enable the hardware system, we design the software system
(Fig. 2) that efficiently represents the perceived weeds and
generates trajectories for the nozzles to follow. In this section,
we introduce the hardware and software design of the system
(see the video attachment for more details).

A. Hardware Design

The hardware system consists of three major components:
i) a sensing suite composed of a stereo camera pair and an IMU,

Authonzed licensed use limited to: Texas A M University. Downloaded on December 19,2022 at 20:55:14 UTC from IEEE Xplore. Restrictions apply.



HU et al.: ALGORITHM AND SYSTEM DEVELOPMENT FOR ROBOTIC MICRO-VOLUME HERBICIDE SPRAY

————————————— (R e e e |
Sensor Data | Plant Scene ! | Optimal K- |
Processing : Representation | : Nozzle :
: : l Assignment |
1! 1
ik DPlant |[BY L] 1) Update ! !
image— " detection and | BP -‘: occupancy of 1l Optimize spray | |
g tracking 1| tracked plants —:-o-p- coverage :
{ H using BLP !

|
! } | S—— I
Richt ®® 2)st Cipl [l | 2) Generate R [ S |
. o e ) ey : candidate line ': Nozzle !
image matching | h |
i segments L trajectory :
: l |: following |
! I I
| 1 - !
| I Generate real- !
: 3) VINS- ) 3}{391]1]5:??:1 L :: time position i
MU B Rusion  [Wo,ll | “hag” e—p— andomoff | |
reading : Zi :: commands :

;[ Wg. I |
a! e e E I
Fig.2. Software diagram of the robotic system.

ii) an onboard computer, and iii) a herbicide spray subsystem.
The layout of each component is illustrated in Fig. 1(a) and (b).
Considering the challenging scenarios where small weeds need
to be precisely sprayed on uneven soil surfaces, we use stereo
vision to obtain reliable 3D positioning of weeds. The two
cameras (Blackfly™S BFS-U3-1984) form a stereo pair with a
baseline distance of 3.45 cm and face the ground perpendicularly
at the height of 0.6 m with a field of view (FoV) of
06 x 045 m? on flat ground. The IMU (Analog
DevicesTMADIS16460) has 6 degrees of freedom (DoFs)
and provides measurements of acceleration and angular
velocity at 256 Hz. The onboard computer (Nvidia™ Jetson
AGX Xavier) synchronizes the camera shutters and the IMU,
and performs onboard data processing. The herbicide spray
subsystem receives information from the onboard computer and
performs micro-volume herbicide application. It consists of a
microcontroller, a carbon dioxide (CO3) tank, a herbicide tank,
and several spray nozzles. Without loss of generality, we have
mounted two nozzles using two independent parallel prismatic
joints that move laterally with respect to the robot forward-
motion direction. Solenoid valves are employed to turn on/off
the nozzles. The height of the nozzles is 0.4 m, which allows
the herbicide droplets to sufficiently cover a seedling weed.

B. Software Design

The main components of the software are summarized in
Fig. 2. The key requirement for the software is that it localizes
weeds in the 3D space and generates nozzle actuation com-
mands. Naturally, there is a time delay between the observation
of weeds and the actuation of nozzles. This time delay allows
the computer to process the sensor inputs and generate optimal
trajectories for nozzles to follow, but meanwhile requires the
robot to rapidly estimate its state change so that nozzles are
triggered at the desired time and position.

The software consists of four major components, the first
one being the process of sensor data. Plants in the images are
detected using the YOLOVS5 framework [17]. An object tracking
framework SORT [25] is used to establish a frame-to-frame
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association of the detected plants. A point cloud is generated
from the disparity map calculated by the Semi-Global Matching
algorithm [26] from each stereo image pair. All these three algo-
rithms run at the imaging frequency. For robot state estimation,
we adopt the VINS-Fusion framework, a sliding window-based
state estimator [27], to generate state estimation at the IMU rate
of 256 Hz.

In the component for scene representation, the tracked plant
detection is combined with the point cloud to estimate the
space occupancy of each plant in the world frame. The space
occupied by weeds in the scene is abbreviated into candidate line
segments, upon which a DAG is constructed to represent nozzle
movement feasibility among weeds. It is often the case that the
number of weeds exceeds the spray capacity of nozzles. In such
cases, more emphasis is placed on the weeds that are close to
the crops. We develop an algorithm to optimize spray coverage
near crops using binary linear programming (BLP). The last
component of the software ensures that the nozzles follow the
assigned trajectory once the weeds have been assigned.

Besides the system development, our main algorithmic contri-
butions are the modeling of the weed scene and the algorithm for
nozzle assignment. In the following section, we will detail each
of them. The real-time approach for nozzle trajectory following
is also discussed briefly.

IV. NOTATION AND PROBLEM DEFINITION

The common notations in this paper are defined as follows.
Note that all coordinate systems are right-handed.

® Define ¢ as the robot decision index which is also the image
timestamp index. Define j as the index of IMU reading
timestamp.

* {W} and {C} denote the world and left camera coordinate
frames, respectively. For simplicity, we let {C} coincide
with the body frame. The Z-axis of {C} points to the front
of the robot and Y -axis points downward. {C; } denotes the
camera frame at timestamp .

® We let all nozzles share the same base link frame {M}.
Its Z-axis is parallel to the nozzle movable direction and
X-axis is parallel to the nozzle spray direction. We use
{M;} to denote the nozzle base frame at timestamp «.

® For a variable or vector a, a denotes the estimated state
of a. a denotes the homogeneous representation of a. a
denotes the derivative of a w.r.t. time.

® x; € SE(3) denotes robot pose and contains the posi-
tion [z, s, 2], and the orientation of {C;} w.r.t. {W}.
Wy = [44,9i, 2]". Similarly, x; € SE(3) and Wv; =
[Z5, 95, zj]T. As a convention, left superscript of a notation
indicates the reference frame.

Due to the high diversity of agricultural environments, we

have the following assumptions:

a.0 The robot predominantly moves in one direction.

a.l Therobot operates in early-stage crops with alow density
of seedling weeds and there is no significant overlap
between plants.

After the " stereo image pair is captured by the stereo

camera, we use its left camera image for recognition by applying
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rently within the camera FoV. The cyan and purple lines represent the trajectory
line segments for different nozzles to spray. (b) Unassigned line segments shown
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Fig. 4. Illustration of the DAG constructed for nozzle assignment. Optimal
paths are in cyan and purple color. Decisions are made only for the weeds
reaching the decision horizon. For better visualization, the virtual destination is
illustrated as a rectangle instead of a point.

YOLOVvS5 and SORT. This results in two sets of classified 2D
bounding boxes: crop set BY and weed set BY. Stereo matching
produces a point cloud % P; for each stereo image pair. VINS-
Fusion produces the camera-rate X; and v, as well as the
IMU-rate X; and "W¥;.

Let [ denote a line segment defined by two points in {W}
indicating the start and end positions of herbicide spray for a
weed. Our problem is defined as:

Problem 1: Given sequences of BY, B, “ P, %;, and V¥;,
generate a trajectory defined by a line segment sequence S =
(ly,12,.. ) for each nozzle k to maximize weed coverage near
crops.

To solve this problem, we begin with the modeling of the
weed scene from the spray operation perspective.

V. ALGORITHMS

A. Scene Representation for Crops and Weeds in Field

An accurate and efficient understanding of a crop/weed scene
is the foundation of motion planning for weed control. We
represent the scene using three layers with increasing semantics:
1) geometrical occupancy of plants cumulatively constructed
from the point cloud of each image frame (Fig. 3(a)); 2) an
intermediate representation consisting of candidate trajectory
line segments for the nozzles to follow (Fig. 3(b)); and 3) a
high-level graph that represents the feasible nozzle paths taking
into consideration the nozzle kinematics and positions (Fig. 4).
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The tri-layer scene representation is constructed for each stereo
image pair at the imaging frequency.

1) Occupancy Map Generation: To handle the possible sway
of plants due to wind and the uncertainty involved in B, & P;
and X;, we employ the OctoMap, an octotree-based probabilistic
framework, to subdivide 3D space into voxels [28]. Each tree
node in the octomap has an associated probability indicating how
likely the represented voxel is occupied. In our implementation,
an individual octomap is created for each crop or weed plant in
{W?} and is updated for each image frame.

2) Candidate Line Segments for Spray Coverage: Droplets
sprayed from a narrow-angle nozzle on a moving robot tend
to form a line-shaped pattern parallel to the direction of robot
motion. It is thus natural to represent a weed occupancy map as
a line segment oriented the same as the robot moving direction.
For each weed octomap, we first create a discretized version by
applying an occupancy probability threshold (Fig. 3(a)) [28].
Voxels with an probability above the threshold is considered
occupied. The centers of occupied voxels form a set O, =
{04 :d=1...D} where oz € R? is the coordinate of the cen-
ter of an occupied voxel. We then generate one line segment
Iy = (Wpl,u;w p?,u),wpl,u € R? and sz,u € RS, from O,,.
Definec,, = % Zodeou 04 as the centroid. We let [,, go through
¢, to make it better represent the location of weed w. Wpl‘u and
Wps ., are calculated as the first and last projected points of O,
onto the direction of robot velocity:

W W
w . <(0_cu)' V:Z>} Vi
Pi,u = Cy + min = —2 (1)
Y eco, { V| (l4a'dl
W)\ WA
w <(0—cy)- v;)} Vi
P2u=C +maX{ . —, (2)
A RS ¥l V]|

where < A - B > is the dot product of vectors A and B. Ex-
amples of line segments generated from weed octomaps are
illustrated in Fig. 3(b).

The line segments from all currently tracked weeds form a
set L; = {l, : u € I'"} where I is the index set for weeds
contained in the i image. For each crop, the centroid of the
corresponding octomap is estimated the same way. The set of
all crop centroids C; = {c, : u € I’} is utilized to determine
the importance of each weed where I? is the index set of crops.

3) Feasibility Graph Construction: We further abstract a
local DAG G = (V, E) from the current FoV by embracing
the feasible nozzle paths among weeds. The vertex set V' =
Vo UV, UVy is constructed in such a way that the nozzle
positions form the graph’s starting vertex set V,, L; forms the
intermediate vertex set V,,, and an additional unit vertex set
V4 of the virtual nozzle destination that can be any point in
the 3D space (Fig. 4). For the edge set F, an edge (u,v) € E
between two vertices u, v € V' indicates that the nozzle linear
acceleration and peak speed allow timely movement from u to
v at the current body speed. The virtual destination vertex has
edges from all the other vertices, reflecting that not taking actions
is an allowed choice for nozzles.

Each position in V, is either the current nozzle position or the
furthest position that has been planned for a nozzle, whichever is
further down the robot’s moving direction. It is thus updated in
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Algorithm 1: K-Nozzle Assignment Algorithm.

Inputs:

L; = {lq = (wpl,q:'w P2g)ig=1...a};
C: = {e4:9=1.:.0};
Line segment sequences {Sx : k=1...K};

Decision horizon C;p, = [0,0,1,d]";
Graph G; = (V, UV, UV, E);
Va=1{"pl:.k=1.. K}
Outputs:

Updated V,, and {S; : k=1...K};

1: for each u € V,,;: O(a)
2: Calculate reward r,, using (4); O(b)
3: for each (u,v) € E: O(a?)
4: Calculate cost cyy using (5); o(1)
5: Formulate BLP using (6a)—(6e); 0O(a?)
6: Apply optimization solver [29]; O(fere(a))
T:fork=1to K: O(K)
8: Traverse the optimal path for nozzle k;  O(a)
9: if weed [, in the path reaches “h :

12 S & (Sp,ly)s 0(1)

1 Yl Vpg o(1)

two ways. If the robot has passed the furthest planned position,
the algorithm needs to update the position to reflect the current
nozzle state. We denote the position of nozzle k as WpP € R3.
It is updated as follows,

- {Wf:;; if <[0,1,0,0]T- 3 T-1Wp7 >>

Py = 3)

LviT[Ik: Yks Zks 1]T otherwise

where Lvi'i' € SE(3) is the estimated 4 x 4 transformation ma-
trix from M; to W, ;. and y;, are the fixed positions of nozzle
k along the X-axis and Y -axis of { M}, z, is the latest position
of nozzle k along the Z-axis. Nozzle positions are also updated
when new line segments are added to the trajectory sequences
of each nozzle, which is detailed in the following section.

B. Optimal K-Nozzle Assignment

More emphasis should be placed on weeds that are close to
crops, since those weeds compete strongly with crops and are
difficult to manage with imprecise approaches. In addition, the
extensive motion of nozzles needs to be reduced as it increases
wear on the robot mechanism. It should be noted that a globally
optimized assignment is infeasible without a global map that
contains all the weed locations. Instead, we design a greedy
algorithm utilizing the optimal paths of local DAGs to approach
the solution obtained with a global DAG. The information avail-
able for local solutions is bounded by the observation horizon
(i.e. the front of camera FoV) and a decision horizon (i.e. a plane
in {C; })(Figs. 3 and 4). Decisions made at the decision horizon
ensure that nozzles have time to execute the decisions. If a weed
reaching the decision horizon with index = is in the optimal
paths, the line segment [,, € L; representing the weed will be
assigned to the respective nozzle. We wait for more information
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before making decisions for weeds not reaching the decision
horizon. The decision horizon % h is defined as [0, 0, 1, d] " where
d is the distance of the plane to the origin of {C;}. The system
performs nozzle assignment at the imaging frequency.

We define the objective function to have two components: the
sum of rewards of sprayed weeds and the total distance the noz-
zles travel on the rails. The reward r,, of [, = (wp1,u,w P2.u) €
L; is defined as the inverse of the distance from the midpoint of
1, to the closet crop center,

1
e . 4)
B n {[prl u +wp2,u . ”}
cq€C; 2 .

The cost ¢y, of an edge starting from I, = (Wp1 4" p2.u) to
ly = ("p1,v,” Pa,v) is defined as the nozzle movement needed
along the Z-axis of { M},

Cyy = |< [0: 0: ]-]T '%R(Wpﬂ,u W pl,'v) >| (5)

where ‘t{,"ft is the estimated 3 x 3 rotation matrix from {W} to

{M;} and | - | denotes the absolute value.

Denote K as the total number of nozzles on the robot. Let
us construct a DAG G; = (V,, UV, U Vg, E) from the current
observations and robot state estimation as described in Sec-
tion V-A3, with |V, | = K. Each edge (u,v) € E is associated
with a cost ¢,,,, and each vertex u = V,,, has an associated reward
. The objective for the current window is to select K optimal
paths with each starting from one of the vertices in V,, and
finishing at V;; to maximize the objective function.

We formulate the K-nozzle assignment problem using BLP.
Define 6 (u) and §~ (u) as the sets of outgoing and incoming
edges of vertex u, respectively, and decision variables e, €
{0, 1} indicate whether the edge from u to v is selected or not in
the planned path. The objective of BLP is to optimize over ey,,:

T‘i?gfg,l%f Z TyC€uy — Z Cyp€uy (6a)
veVy veEVY
subject to Z euww € {0,1},Vv €V, (6b)
(u,v)ed(v)
Z Eyy = Z evk,V’U € Vu (6¢)
(u,v)ed(v) (v,k)ed+(v)
Y ew=1YueV, (6d)
{u,v)edt{u)
Y ew=K¥WeVy (6e)

(u,v)ed(v)

Constraints in (6b) and (6¢) ensure that each weed is visited at
most once and the number of incoming paths is equal to that of
outgoing paths. The constraint in (6d) enforces that each nozzle
must pick a path, while the last constraint in (6€) ensures that
each nozzle must arrive at the virtual destination.

The optimization result {ey, : (u,v) € E} defines K paths.
Our algorithm then follows each path starting from the nozzle
vertices and checks if weeds represented by line segments on the
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path have reached the decision horizon. If so, the line segments
are assigned to the respective nozzles, and V;, is adjusted to
reflect the furthest planned positions. Algorithm 1 shows the
pseudocode describing this process.

The BLP is an NP-complete problem, and many algorithms
have been developed to solve it. The SCIP framework [29] is
employed to solve our problem. If the cardinality of L; is a, the
time complexity to solve the BLP problem can be denoted as
fere(a). The complexity of our nozzle assignment algorithm is
then bounded by O( fgrp(a)) as the graph construction, and path
traversal can be completed in polynomial time.

C. Trajectory Following

The system performs trajectory following at the IMU’s fre-
quency. As soon as the newest %; and V¥ ; are available, the
system checks the first line segment of S; to determine if the
robot has reached the position to spray. If not, the system will let
the nozzle move to and stay at a ready position for the upcoming
weed. Once the robot is in the proper position, the nozzle will
be triggered. If the first line segment has already passed the
nozzle, it will be removed from Sy, and the system will repeat
the same operation on the next line segment. It is critical to take
into consideration the system latency and mitigate its effect.
The system latency affecting herbicide spray can be mainly
attributed to two aspects: the time it takes to compute X; from
IMU readings and the time it takes for the nozzle valve to respond
to the actuation signal. Thus, the system predicts the future
position of nozzles based on the past robot state and velocity.
The position offset that compensates the system latency can be
trivially calculated, so the detailed steps are not elaborated.

VI. EXPERIMENT

Experiments have been conducted both in simulation and field
conditions to validate the proposed system. We first show the
percentage of weeds that can be sprayed with various numbers
of nozzles, body speeds, and weed densities. We then show the
spray accuracy using both artificial targets and real plants.

A. Simulation

Monte Carlo simulation has been conducted to determine the
percentage of weeds the proposed system can spray in a single
pass, given perfect plant detection at different body speeds and
weed densities (Fig. 5). Line segments representing weeds with
a 5-cm diameter are randomly generated with a uniform distri-
bution on a 20-m long virtual field. Crop plants are uniformly
distributed within a 10-cm stripe. The camera FoV is 0.60 x
0.45 m2, and the decision horizon is 0.375 m behind the front of
the camera FoV. The nozzle peak speed is set at 0.80 m/s. The
algorithm proposed in Section V-B is used to assign nozzles
to line segments. The robot moves at a constant speed in one
direction following the crop row with the camera FoV centered
at the crop row. The averaged results of 500 simulation runs
are shown in Table 1. Here, we report weed coverage within the
10 cm of crop centers as it is the most challenging region for
precision weed management [30]. A system with two nozzles
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Fig. 5. A section of the virtual field used for simulation. The green dots
represent crops with a 5-cm diameter, and the red line segments represent weeds
of the same size. The percentage of weeds sprayed by the robot within the gray
area (10 cm within the crops) relative to the total weeds within the same area is
reported. (a) Results of the K-nozzle assignment algorithm. (b) Solution with a
global map.

TABLE1
SIMULATION RESULT OF % WEEDS SPRAYED WITHIN 10 CM OF CROP PLANTS
AT DIFFERENT ROBOT SPEEDS AND WEED DENSITIES

Nozzle ; Weed Density (number/m”)
Number | SPeed (W/s) — 10 20
02 96 03 86 75
1 0.4 096 91 82 71
0.6 92 88 79 68
0.8 91 87 T 63
0.2 99 99 99 96
2 0.4 09 99 98 93
0.6 99 99 97 9]
0.8 99 08 96 EE
0.2 100 100 99 99
3 04 100 99 99 99
0.6 100 99 99 98
0.8 99 99 99 96
0.2 100 99 100 99
4 0.4 99 100 99 99
0.6 100 99 99 99
0.8 99 09 99 99
0.2 100 100 99 99
5 04 100 99 99 99
0.6 99 99 99 99
0.8 100 99 99 99

is able to spray more than 95% of weeds in a single pass when
the weed density is 20/m?. Increasing the nozzle number to 3 on
the system can achieve close to 100% coverage of weeds whose
distance is less than 10 cm to the crops at a speed of 0.60 m/s.
‘We perform another Monte Carlo simulation to evaluate the
performance of the proposed K-nozzle assignment algorithm in
comparison with a naive solution without optimization and the
global optimal solution (Fig. 6). The global optimal solution
is obtained using the same K-nozzle assignment algorithm as-
suming the global map is available, while the naive algorithm
assigns the nozzles to the nearest reachable weeds when weeds
reach the decision horizon. The total reward of sprayed weeds
minus the total lateral movement of nozzles for the whole
virtual field is used to compare the optimality and is calculated
similarly to (6a). The simulation settings are the same as in
the previous simulation experiment. A total of 500 iterations
were conducted. The comparison results show that the proposed
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Fig. 6. Results of Monte Carlo simulation to compare the total rewards

of sprayed weeds minus the total lateral movement of nozzles among three
approaches: assignment based on a global map, K-nozzle assignment, and
assignment by a naive algorithm. The percentage is relative to the values of
the global assignment.

(d)

Fig. 7. (a) The paper target used for accuracy evaluation. (b} The field
condition used in the accuracy experiment. (c) A sprayed paper target and the
error metrics used for evaluation. (d) Examples of sprayed paper targets with
IoU of 0.26, 0.37, and 0.51 from left to right.

K-nozzle assignment algorithm can closely approach the global
solution while the performance of the naive algorithm decreases
as the weed density increases. Other combinations of nozzle
number and robot speed show a similar pattern, so the results
are not explicitly presented.

B. Spray Accuracy Physical Experiments

To test the accuracy of the proposed system, we design a paper
target, which has a circle with a dot at the center representing the
weed (Fig. 7(a)). The circle has a diameter of 5 cm, a typical size
of weeds in an early growth stage. Paper targets are placed in
the real field to recreate real field surface conditions (Fig. 7(b)).
During each trial, ten paper targets were placed randomly on
a 0.6x 10 m? path, and the robot was manually controlled to
follow the path. The time for the system to travel from the start
point of the path to the end was recorded, and the average speed
was reported. A total of 10 trials were conducted, with average
speeds ranging from 0.28 m/s to 0.73 m/s. Blue dye was added
to the liquid to better visualize the region sprayed. After each
trial, the paper targets were scanned for evaluation.

Examples of the sprayed paper targets are shown in Fig. 7(d).
Two metrics are used: lateral offset £;, and Intersection over
Union (IoU). £, measures how accurately the system can per-
ceive the location of weeds to guide herbicide spray, while IoU
measures how well the system can cover each weed without
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TABLE Il
EVALUATION OF SPRAY ACCURACY AT VARIOUS SPEEDS

: er (cm Toll
Trial ID | Speed (m/s) |—yrtt étd. Mean | Sid.
i 028 062 | 030 | 040 | 005
) 032 074 | 013 | 040 | 004
3 036 073 | 024 | 035 | 004
3 037 043 | 023 | 042 | 006
5 044 025 | 011 | 045 | 005
6 0.46 068 | 033 | 040 | 007
7 050 046 | 035 | 035 | 005
g 035 040 | 023 | 033 | 002
9 066 056 | 030 | 026 | 006
10 0.73 045 | 037 [ 025 | 001

Fig. 8. Photos of a section of the test field with real plants. Top row: overview
of the section with pea plants growing in a row and mustard plants (weeds)
around them; second and third rows: close-up photos of the sprayed mustard
plants with blue dye indicating the sprayed area.

wasting herbicides. The minimum-area bounding rectangles of
the sprayed regions are calculated, and their axes are used to
estimate the trajectories the nozzles have followed. £y, is then
calculated as the distance from the center of the circle pattern to
the rectangle axis (Fig. 7(c)). IoU is calculated between the circle
pattern and the sprayed pattern. The average £, and IoU of each
trial and their standard deviation are reported in Table I. Average
cr, at all speeds remained below 1 cm, which is sufficiently
accurate considering the uneven soil surface. However, the IoU
tends to decrease as the speed goes beyond 0.5 m/s, mainly due
to the reduced amount of liquid delivered onto a unit area and
the increased error of the starting and ending positions for each
spray pulse.

Since it is difficult to quantitatively measure the spray ac-
curacy on real plants, we instead qualitatively demonstrate the
system in field conditions. Winter pea (Pisum sativum) was
planted as the crop, and mustard (Brassica juncea) was planted
as the weed in the same field as that of the spray accuracy
experiment. The average diameter was around 7 cm for the pea
plants and 4 cm for the mustard plants. Weed density is roughly
10/m? and the crop spacing is 20 cm. The plant size, weed
distribution, and soil surface condition are similar to a common
crop production field with early-stage crops and low-density
weeds. The proposed system traveled at 0.4 m/s during testing.
The quality of herbicide spray is shown in Fig. 8. It can be seen
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from the close-up photos that the lateral accuracy and the leaf
coverage by the herbicide droplets are satisfactory in challenging
field conditions.

C. Comparison Study

The herbicide spray system most similar to ours in the lit-
erature is the system designed by Wu et al. [6]. For the field
experiment, Wu et al. only tested their system up to 0.4 m/s, as
shown in Table 5 of their paper. Our algorithm and hardware
designs allow the proposed system to travel almost twice as
fast (0.73 m/s as shown in Table II) while maintaining a high
accuracy and droplet coverage on weeds. For spray accuracy,
since there is no quantitative experiment conducted by Wu et
al., direct comparison between their system and ours is difficult.
We instead qualitatively compare our spray accuracy in Fig. 8
to theirs. It is not difficult to notice that our system has better
positional accuracy and finer resolution. Therefore, our system
achieves higher efficiency and accuracy for robotic herbicide
application.

VII. CONCLUSION AND FUTURE WORK

We developed a robotic system that sprays micro-volume
herbicide for weed control on a mobile robot. To facilitate
decision-making, the crop/weed scene is represented by candi-
date spray line segments. We further abstract a DAG embracing
the information of feasible paths among weeds from the scene.
We propose a K-nozzle assignment/motion planning problem
in algorithm development. We present an algorithm based on
BLP that maximizes spray coverage within the adjacent areas
of crops. Tests on artificial targets in field conditions at various
speeds showed sub-centimeter lateral error. Field evaluation on
real plants demonstrated high spray quality. In the future, we
will investigate multi-actuator assignments and even multi-robot
coordination to improve system performance. We will develop
better scene representation methods for different types of weeds.
We will combine robot motion planning and nozzle planning
problems together to fully optimize the system performance.
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