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COVID-19 research risks
ignoring important host genes
due to pre-established research

patterns

Abstract It is known that research into human genes is heavily skewed towards genes that have been
widely studied for decades, including many genes that were being studied before the productive
phase of the Human Genome Project. This means that the genes most frequently investigated by the
research community tend to be only marginally more important to human physiology and disease
than a random selection of genes. Based on an analysis of 10,395 research publications about SARS-
CoV-2 that mention at least one human gene, we report here that the COVID-19 literature up to mid-
October 2020 follows a similar pattern. This means that a large number of host genes that have been
implicated in SARS-CoV-2 infection by four genome-wide studies remain unstudied. While quantifying
the consequences of this neglect is not possible, they could be significant.

THOMAS STOEGER* AND LUiS A NUNES AMARAL*

Introduction

Shortly after SARS-CoV-2, the coronavirus that
causes COVID-19, had emerged as a global
threat to human health in January 2020,
researchers had identified the host proteins
required for viral entry into cells
(Hoffmann et al., 2020; Monteil et al., 2020;
Wrapp et al., 2020), repurposed drugs for treat-
ing COVID-19 patients (Grein et al., 2020;
Recovery Collaborative Group, 2020), and ini-
tiated vaccine development (Folegatti et al.,
2020; Jackson et al., 2020). A common feature
of these advances was that they drew upon pre-
vious lines of research. A major question, how-
ever, is whether research into COVID-19 is
pursuing all important host genes implicated in
COVID-19.

To answer this question we used LitCOVID, a
literature hub curated by the National Library of
Medicine that tracks publications on COVID-19
(Chen et al., 2020). LitCOVID tags genes within
the publicly accessible text of individual publica-
tions through PubTator (Wei et al., 2019), which
first applies an ensemble of automated

approaches to tag genes, and then allows for a
revision of these tags through biocurators. We
consider genes tagged within the title, abstract
or results sections of individual publications, and
use MEDLINE to exclude reviews and other non-
research publications (see Methods). This yields
10,395 research publications featuring 3733
human protein-coding genes that have been
tagged at least once. This enables us to ask
whether the choices by scientists to investigate
these genes can be understood in terms of cur-
rent biological knowledge on COVID-19.

Results

The most prominently tagged genes up to this
point are: Angiotensin-converting enzyme 2,
which serves as receptor for SARS-CoV-2 to
enter cells (Hoffmann et al., 2020); C-reactive
protein, a serum marker for inflammation
(Sproston and Ashworth, 2018); and Interleukin
6, a mediator of systemic inflammatory
responses (Kang et al., 2019). They account for
10.8%, 9.7%, and 4.5% of the total research on
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human protein-coding genes within the COVID-
19 literature, respectively (see Methods). Gene
Ontology Enrichment analysis of the human pro-
tein-coding genes tagged in the COVID-19 liter-
ature finds them enriched for annotations on
immune response (false-discovery rate <107%9),
inflammatory response (false-discovery
rate <107°%), and defense response to virus
(false-discovery <1073
(Supplementary file 1). These two observations
would thus suggest that the choice of host
genes tagged in the COVID-19 literature is bio-
logically grounded and in accord with current
knowledge about respiratory viruses.

rate

Most host genes identified by genome-
wide studies have not been pursued
Genome-wide datasets provide another window
on SARS-CoV-2 As genome-wide
approaches circumvent research patterns that
may have been pre-established within the scien-
tific  literature (Haynes et al, 2018,
Nelson et al., 2015; Stoeger et al., 2018), they
might identify additional genes implicated in
COVID-19. RNA-sequencing (RNA-seq)
used recently to identify 1726 host genes that
change the expression of their transcripts in the
lungs of COVID-19 patients at an adjusted
p-value<0.05 (Blanco-Melo et al., 2020). Affin-
ity-purification mass spectrometry (Aff-MS) was
used to identify 293 host proteins following the
pulldown of exogenously expressed SARS-CoV-
2 proteins (Gordon et al., 2020). Using
genome-wide association studies (GWAS), the
Host Genetics Initiative identified 52 genes
through their association at a P-value of 107> or
lower in one of three comparisons: COVID-19 vs
lab or self-reported hospitalized
COVID-19 patients vs population; or very severe
respiratory COVID-19 vs population (COVID-
19 Host 2020a;
Ellinghaus et al., 2020). 15 genes were identi-
fied in two comparisons and one gene, Leucine
zipper  transcription protein 1
(LZTFL1), was identified in all three comparisons
(Supplementary file 2). Using a pooled CRISPR
screen to affect SARS-CoV-2 induced cell death
in African green monkey cells, Wei et al. identi-
fied 41 genes, which we mapped to their human
homologs using BioMart (Wei et al., 2020; see
Methods). 48 genes are identified in two of the
four different genome-wide datasets

infection.

was

negative;
Initiative,

Genetics

factor-like

(Supplementary file 3), but no gene is identified
in more than two.

However, an analysis of the COVID-19 litera-
ture reveals that most (56%-71%) of the genes
identified in these four datasets have not yet
been tagged in the COVID-19 literature
(Figure 1A). Thus, the genes identified by the
four genome-wide datasets are 10-25% more
likely to have been tagged than a randomly cho-
sen gene because we also observe that 19% of
all human protein-coding genes have been
tagged at least once in the COVID-19 literature.
Similarly, the fraction of tagged genes only
increases by 0-7% if we include preprints (Fig-
ure 1—figure supplement 1). We conclude that
many genes identified by genome-wide datasets
on COVID-19 have not been investigated yet in
more detail in the context of COVID-19.

At the same time, we observe that genes,
which have been identified by multiple of the
four distinct genome-wide datasets (Figure 1B),
or multiple GWAS comparisons (Figure 1C), are
more likely to have been tagged in the COVID-
19 literature. This, reassuringly, demonstrates
that research into COVID-19 host genes enriches
for host genes identified by multiple different
lines of support — particularly if there exists sup-
port from human genome-wide association
studies.

Yet, overall, genes identified by multiple
genome-wide datasets remain only a minority of
all identified genes (2%), and many of them are
still ignored in the COVID-19 literature (52%)
(Supplementary file 2), suggesting that research
into SARS-CoV-2 host genes might be missing
important pieces of the puzzle.

Tagged host genes follow pre-established
research patterns

A possible explanation for the relative lack of
interest in the additional genes implicated in
SARS-CoV-2 infection by these genome-wide
datasets is that research on COVID-19 is con-
strained by pre-established research patterns
(Chu and Evans, 2018). Briefly, we know that
knowledge on human genes is heavily skewed
toward a subset of genes (Gans et al., 2008;
Gillis and Pavlidis, 2013; Hoffmann and Valen-
cia, 2003; Oprea et al., 2018; Su and Hoge-
nesch, 2007) that were being investigated prior
to the Human Genome Project (Edwards et al.,
2011; Grueneberg et al., 2008; Stoeger et al.,
2018). As a result, if assessing their importance
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Figure 1. Most host genes implicated in COVID-19 identified by genome-wide approaches are not being
investigated. (A) Share of identified genes, which are ignored (never tagged, blue) or tagged (at least once) within
the COVID-19 literature. (B) Share of tagged genes identified by a single (orange) or multiple (maroon) genome-
wide datasets. P-values are calculated via Fisher's exact test. n is the number of genes. (C) Share of tagged genes
identified by a single (orange) or multiple (maroon) GWAS comparisons. P-values are calculated via Fisher's exact
test. n is the number of genes. (D) Non-COVID-19 publications measured for any human protein-coding gene
(ocher, any) and those occurring in the COVID-19 literature (ocher, COV19) and genes identified in A (colors as in
A). Notches indicate 95% confidence interval of the median. P-values are calculated via Mann-Whitney U test.
Exceeded percentiles indicates percentiles of all genes exceeded by the median gene of the genes in an
individual boxplot. n.c. marks non-computable P-values that approximate 0. (E) As D, but for year of initial
publication on the gene. Dashed lines indicate limit of visualized values. Some genes had their first publication

before or afterwards.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Share of identified genes that are ignored or tagged.

through genetic loss-of-function intolerance or
findings of GWAS (Haynes et al., 2018;
Stoeger et al., 2018), the most frequently inves-
tigated protein-coding genes tend to be only
marginally more important to human physiology
and disease than a random selection of genes.
To test the hypothesis that COVID-19
research is constrained by patterns similar to
those seen in non-COVID-19 research, we take
advantage of the ability of gene2pubmed (a ser-
vice provided by the National Center for Bio-
technology Information) to link human protein-
coding genes to individual publications, and
compare 465,770 non-COVID-19 papers pub-
lished until December 2015 with 10,395 COVID-
19 research publications indexed by LitCOVID

until October 16th, 2020. For the non-COVID-19
research we exclude publications that contain
any viral gene (irrespective of whether the virus
in question is a coronavirus) and publications
tagging 100 or more genes.

We find that genes that are tagged in the
COVID-19 literature are also frequently investi-
gated in the non-COVID-19 literature. To assess
how frequently individual genes have been
investigated in the non-COVID-19 literature rela-
tive to other genes, we rank all genes according
to the number of publications in the non-
COVID-19 literature. The median rank of genes
tagged in the COVID-19 literature exceeds the
rank of 80% of human protein-coding genes
(Figure 1D). This demonstrates that the majority
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Figure 2. What the future holds? Percentage of genes with indicated levels of support by the four genome-wide
studies which have been tagged at least once in the COVID-19 literature. (A) Analysis restricted to the 50% of
genes with highest number of publications in non-COVID-19 literature. (B) Analysis restricted to the 50% of genes
with the lowest number of publications in the non-COVID-19 literature. (C) Cumulative share of literature on
human protein-coding genes tagged in the COVID-19 literature. Top 20% indicates the 20% of genes that occur
the most in the non-COVID-19 literature. Gene rank refers to the order of human protein-coding genes. The gene
with the most publication equivalents would be have rank 1. Yellow area indicates share of literature accounted for
by the top 20% genes. (D) Share of COVID-19 literature accounted for by the 20% of genes that had occurred the
most in the COVID-19 literature by a given date. (E) Number of distinct human protein coding genes that have
been tagged in the literature by a given date. (F) Share of COVID-19 literature accounted for by first 100 genes to

be tagged in the COVID-19 literature by a given date.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Temporal trends in the diversity of COVID-19 research.

of protein-coding human genes tagged in the
COVID-19 literature was already heavily investi-
gated in the context of research unrelated to
COVID-19.

Next we return to our earlier observation on
the majority of the implicated host genes

reported by the four different genome-wide
datasets being ignored within the COVID-19 lit-
erature. As anticipated, we observe that for
each of the four distinct datasets investigated,
ignored genes also occur less in this non-
COVID-19 literature (Figure 1D). When we
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Figure 3. Availability of reagents. (A) Drugs studied in COVID-19 related clinical trials are frequently studied
within the non-COVID-19 literature. We compare non-COVID-19 publications measured for human protein-coding
genes that are not listed as pharmaceutical targets in DrugBank (ocher, No drug), against those that are listed as
pharmaceutical targets but have not occurred as an intervention in a clinical trial on COVID-19 (orange, Drug no
trial), and against those that are listed as pharmaceutical targets and have occurred as an intervention in a clinical

trial on COVID-19 (green, Drug and trial). Notches indicate 95% confidence interval of the median. P-values are
calculated via Mann-Whitney U test. (B) Fraction of genes with reported usage of an antibody to detect the
encoded protein as a prey in BioGRID. Bars are genes identified by the four different genome-wide studies that
have either been tagged in the COVID-19 literature (red) or ignored (blue). Error bars indicate 95% confidence

interval. P-values are calculated via Fisher's exact test.

compare the number of publications on impli-
cated but ignored host genes to the number of
publications on any protein-coding gene
encoded in the human genome, this difference
is modest, and only reaches statistical signifi-
cance for RNA-seq (RNA-Seq: p<10~%; Interac-
tomics: p=0.20; GWAS: p=0.93; CRISPR:
p=0.31), where ignored genes had occurred
slightly more in the non-COVID-19 literature
(median percentile: 52). In contrast, implicated
and tagged host genes have occurred signifi-
cantly more frequently in the non-COVID-19 lit-
erature (RNA-Seq: p<1077%; Interactomics:
p<10~'8; GWAS: p<10~%; CRISPR: p<107¢). We
conclude that implicated host genes that are
ignored in the COVID-19 literature have in the
past been studied as much as randomly chosen
human protein-coding genes, whereas impli-
cated host genes that are tagged in the COVID-
19 literature have in the past already been inves-
tigated much more frequently than randomly
chosen human protein-coding genes.

Before the COVID-19 pandemic it had been
shown that the literature is skewed toward a
subset of genes that were being investigated
prior to the productive phase of the Human
Genome Project. These features include the frac-
tion of organs with detectable transcript

expression, the length of the genes, the hydro-
phobicity of the coded proteins, their loss-of-
function insensitivity, and studies on orthologous
genes in model organisms (Stoeger et al.,
2018). We decided to explore if the genes
tagged in the COVID-19 literature had been
studied before the pandemic, and found that
they had occurred earlier (Figure 1E), with many
also first being studied before the productive
phase of the Human Genome Project
(NHGRI, 2003). Similarly, the host genes identi-
fied by the four genome-wide datasets that are
ignored in the COVID-19 literature first
appeared in the non-COVID-19 literature after
the host genes that are tagged in the COVID-19
literature (Figure 1E).

Trends over time
The COVID-19 pandemic has ravaged for less
than a year, which is a short period of time com-
pared to most research projects. Thus, we might
not yet be observing research addressing
poorly-studied implicated host genes because
not sufficient time has passed for research to
catch up to the new information.

To anticipate the near future, we follow the
occurrence of genes in the COVID-19 literature
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over time. Based on our insight that ignored
host genes have not been studied more than
other genes in the non-COVID-19 literature
(Figure 1D), we separate genes into two classes:
genes that are among the 50% top-studied
human protein-coding genes in the non-COVID-
19 literature, and genes that are among the 50%
least-studied human protein-coding genes. The
second class holds 35% of the genes identified
by RNA-seq, 33% of the genes identified by Aff-
MS, 29% of the genes identified by GWAS, and
24% of the genes identified by CRISPR. If
research is catching up to the new knowledge,
we would expect to see the fraction of the
COVID-19 literature addressing the 50% least-
studied human protein-coding genes to increase
over time.

When focusing on the genes that are among
the 50% top-studied human protein-coding
genes, we observe their occurrence in the
COVID-19 literature to increase steadily. Extrap-
olating from the observed trends, we anticipate
that it will take around one year till nearly all
genes of this class will have been tagged at least
once within the COVID-19 literature (Figure 2A).
When focusing on the genes that are among the
50% least-studied human protein-coding genes,
we too observe their occurrence in the COVID-
19 literature to increase steadily over time
(Figure 2B). As for each of the four genome-
wide datasets the increase is, however, slower
than for the 50% most studied protein-coding
genes, we project that multiple years could pass
until each gene of the 50% least-studied human
protein-coding genes will have been tagged at
least once within the COVID-19 literature.

Pursuing this observation further, we turn to
the entire COVID-19 literature. Notably, 83% of
all human protein-coding genes tagged in the
COVID-19 literature have not been identified by
any of the four genome-wide datasets. Further,
the different genome-wide datasets together
only account for 26% of the COVID-19 literature
(RNA-seq: 11.7%, Aff-MS: 2.4%, GWAS: 0.5%,
CRISPR: 11.1%) (see Methods).

We ask whether the COVID-19
might become dominated by a few genes that
are tagged more commonly than other genes
that are also tagged in the COVID-19 literature.
If we consider the current literature, we do
indeed observe support for our hypothesis that
the COVID-19 literature is becoming dominated
by a few genes as currently the 20% top-tagged
human protein-coding genes (747 of 3,733) in
the COVID-19 literature account for 90% of the
literature (Figure 2C). This share exceeds the

literature

80% anticipated for scientific processes sub-
jected to anthropogenic biases (Jia et al.,
2019). We conclude that a surprisingly small
fraction of genes dominates the COVID-19
literature.

Finally, we inspect whether the extent to
which the COVID-19 literature tags each tagged
gene is becoming more or less expansive over
time. We observe that the COVID-19 has
become less expansive, whether we quantify
expansiveness through the share of the literature
that is accounted for by the 20% top-tagged
genes or the Gini coefficient over the share of
the COVID-19 literature attributable to individ-
ual genes (Gini, 1912, Figure 2D, Figure 2—fig-
ure supplement 1A,B). However, if assessing
expansiveness by the total number of genes that
have been tagged at least once, then this litera-
ture did become more expansive after the first
months (Figure 2E).

Interestingly, we also observe that the share
of the COVID-19 literature, which is accounted
for by the 100 genes that were tagged first
within the COVID-19 literature has been
decreasing (Figure 2F, Figure 2—figure supple-
ment 1C) - though stabilizing at an astonishingly
high share of roughly 45% since June
(Figure 2F, Figure 2—figure supplement 1C).
We conclude that, overall, the literature on
COVID-19 became less expansive during the
first months of the pandemic and has since
stayed focused on a restricted subset of genes.

One possible reason for why some genes are
tagged more than others in the COVID-19 litera-
ture could be that compared to other genes
they are more important in the context of
COVID-19. To probe this hypothesis, we con-
sider groups of genes and the four different
genome-wide datasets. When contrasting the
100 initially tagged genes against the other
genes tagged in the COVID-19 literature, we
reassuringly find that the 100 initially tagged
genes are 29% more likely to have been identi-

fied by one of these four datasets
(Supplementary file 4). However, they are on
average tagged 2993% more

(Supplementary file 4). If we contrast the 20%
top-tagged genes against the other tagged
genes, we find them to be 3% less likely to have
been identified by one of the four genome-wide
datasets, while they on average are tagged
3512% more (Supplementary file 4). Cumula-
tively, this suggests that the present focus of the
COVID-19 literature on a restricted subset of
genes cannot be explained by those genes hav-
ing been identified by genome-wide datasets
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reporting on transcriptomic changes, protein
interactions, genetic associations and loss-of-
function perturbations.

Study limitations

Our study has several important limitations.
First, we cannot say whether a gene tagged in
the COVID-19 literature is truly investigated for
its potential role in COVID-19. Second, we can-
not yet assess how important individual genes
are in COVID-19. Third, and despite our projec-
tions, it remains formally unclear, whether the
findings reported in this manuscript will hold in
the upcoming months as more genome-wide
datasets will become available and researchers
will have had sufficient time for follow-up stud-
instance, there might already be
research initiatives specifically targeted toward
the ignored COVID-19 host genes.

Nonetheless, in the past, genome-wide
experiments have rarely guided subsequent
studies in  the non-COVID-19 literature
(Haynes et al., 2018; Stoeger et al., 2018).
Thus, there is a significant risk that the COVID-
19 literature will continue to ignore host genes
that have not already been extensively studied
independently of COVID-19.

ies. For

Discussion
Our study reiterates prior observations that
research into human protein-coding genes is dis-
proportionately skewed towards a comparably
small set of genes (Haynes et al., 2018;
Nelson et al., 2015; Stoeger et al., 2018). Like-
wise, our current analysis on COVID-19 already
allows us to conclude that genes that are identi-
fied by genome-wide datasets, and hence are
likely to have biological significance in the con-
text of COVID-19, have hitherto remained
ignored if they had not already been investi-
gated more than other genes prior COVID-19.
We realize that there is an exploration-exploi-
tation trade-off at play and that focusing
research on genes that have already been
heavily investigated yields significant advantages
to investigators: applicability of existing research
tools, the ability to place findings in a broader
context, and the identification of drugs and
other reagents that could be repurposed. Sup-
porting a focus on exploitation, we find that:
interventions in clinical trials on COVID-19 are
biased toward pharmaceutical targets that
occurred frequently in the non-COVID-19 litera-
ture (Figure 3A); and that antibodies - a class of
reagent that cannot be produced for arbitrary

genes within a few days — are less available for
those genes identified by RNA-seq or Aff-MS or
GWAS which have been ignored in the COVID-
19 literature (Figure 3B).

Further, additional factors might affect the
exploration of studies on ignored host genes.
First, the number of laboratories working on
ignored genes was quite small prior COVID-19
(Supplementary file 5), and plausibly only a
small fraction of the laboratories studied host
responses toward respiratory viruses. Second,
the risk of being outcompeted by other labora-
tories might discourage individual laboratories
from pursuing publicly acknowledged research
targets (Bergstrom et al., 2016). Third, scien-
tists rarely switch topics (Zeng et al., 2019).
Likewise, laboratories already working on
COVID-19 might have little incentive to move
toward distinct host genes as it is possible to
contribute to the COVID-19 literature irrespec-
tively of whether the genes had been identified
by genome-wide datasets (Figure 2A,B and
Supplementary file 4). Moreover, it might be
beneficial overall if research into COVID-19 is
mainly driven by researchers with a background
on pathogens (Kwon, 2020). Lastly, concerns
have been expressed about the possibility that
fraudulent gene knockdown studies that target
under-studied human genes may be corrupting
the literature and impeding research into bio-
markers (Byrne et al., 2019).

We believe that a more complete under-
standing of host biology could open novel direc-
tions for interventions against SARS-CoV-2 and
other viruses. However, the challenge remains of
how to promote research on ignored host
genes. For example, we cannot speculate
whether researchers that turn their attention
toward ignored genes in the context of COVID-
19, will face a similar disadvantage to their
career as did those that studied less studied
genes prior to COVID-19 (Stoeger et al., 2018).

In the hopes of prompting greater investiga-
tion into implicated host genes, we list genes
occurring in multiple of the four datasets
described earlier in the supplemental material of
this manuscript (Supplementary file 3). Most of
the genes identified by multiple datasets appear
multiple times because of the large volume of
genes identified by the RNA-seq dataset. For
this reason, we highlight four genes that were
identified by multiple smaller datasets: (1) Mito-
chondrial import inner membrane translocase
subunit Timm10 (TIMM10) has been identified
through Aff-MS and CRISPR, and (2) FYVE And
Coiled-Coil Domain Autophagy Adaptor 1
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(FYCO1) and (3) Procollagen-Lysine,2-Oxogluta-
rate 5-Dioxygenase 2 (PLOD2) and (4) Ras
GTPase-activating protein-binding protein 2
(G3BP2) have been identified through Aff-MS
and GWAS. Of these four genes only G3BP2 has
been tagged in the COVID-19 literature; and
TIMM10 and FYCO1 have both occurred in nine
publications in the non-COVID-19 literature,
matching the expectation for a randomly
selected gene. Of additional interest in the con-
text of COVID-19, FYCO1 is associated with the
levels of the monocyte chemoattractant protein-
1 (Ahola-Olli et al., 2017; Buniello et al., 2019),
which contributes to COVID-19 through hyperin-
flammation (Mehta et al., 2020).

Methods

COVID-19 literature

We downloaded LitCOVID from https://ftp.ncbi.
nlm.nih.gov/pub/lu/LitCovid/ on 2020-10-16 and
parsed the contained json file for the presence
of concepts annotated as genes. For studies
annotated with proteins, we used their PubMed
identifiers, to query MEDLINE on 2020-10-16 via
their efetch API. Subsequently we parsed the
MEDLINE pubmed_parser 2.2
(https://github.com/titipata/pubmed_parser;
Achakulvisut et al., 2020). We then excluded
publications carrying at least one of the follow-
ing publication types: Review, Comment, Edito-
rial, Meta-Analysis, Systematic Review, News,
Published Erratum, Historical Article, Interview,
Retracted Publication, Retraction of Publication,
Webcast, Expression of Concern or Portrait. Fur-
ther we excluded publications whose abstract
contain either the phrase ‘this review' or the
phrase ‘this perspective’. We considered genes
tagged within LitCOVID in the annotated TITLE,
INTRO, ABSTRACT or RESULTS sections.

entries via

Research intensity within COVID-19
literature

We measured the research intensity directed
toward individual implicated host genes in units
of publication equivalents. Each gene tagged
within a publication accrues the publication
equivalent of number of tags to the gene in that
publication divided by total number of tags to
any gene in that publication. For example, if a
study tags two different genes, and the first
gene is tagged three times, whereas the second
gene is only tagged once, the first gene would
accrue 0.75 publication equivalents, and the sec-
ond gene would accrue 0.25 publication

equivalents. We expressed the share of literature
covered by an individual human protein-coding
gene as the sum of its publication equivalents
over the sum of all publication equivalents of
human protein-coding genes. We excluded the
studies of Blanco-Melo et al., 2020 and
Gordon et al., 2020 which report the RNA-seq
and Aff-MS datasets, respectively.

Gene ontology enrichment analysis
We used the Database for Annotation, Visualiza-

tion and Integrated Discovery, version 6.8
(Huang et al., 2009).

Data processing and filtering
For CRISPR we considered the African green
monkey genes reported in Figure 1D of Jin Wei
et al., 2020. To map African green monkey to
human genes, we used BioMart's (Haider et al.,
2009) April 2020 release. We used the genetic
polymorphisms reported in the 2020-09-30
release of the Host Genetics Initiative (COVID-
19 Host Genetics 2020b)
mapped them to human genes through the
Ensembl Variant Effect Predictor
(McLaren et al., 2016), using the Ensembl
release 101. For RNA-seq we only considered
comparisons flagged with ‘ok’ by the authors
(Blanco-Melo et al., 2020). For Aff-MS we used
the data as provided by BioGRID (Chatr-
Aryamontri et al., 2017), version
3.5.186 (https://downloads.thebiogrid.org/
BioGRID).

We obtained the list of human protein-coding
genes from https://ftp.ncbi.nlm.nih.gov/gene/
DATA/gene_info.gz in June 2020.

Initiative, and

Occurrence of genes in preprints

We obtained manuscripts abstracts from dimen-
sion.ai's collection of COVID-19 related publica-
tions, release 34 (https://dimensions.figshare.
com/articles/dataset/Dimensions_ COVID-19_
publications_datasets_and_clinical_trials/
11961063/34; dimension.ai, 2020), and subse-
quently select manuscripts listing medRxiv or
bioRxiv or arXiv as their source. Next, we
matched each word against the gene symbols as
downloaded from https://ftp.ncbi.nlm.nih.gov/
gene/DATA/gene_info.gz in June 2020.

We excluded the following gene symbols as
within the abstracts they would match abbrevia-
tions that did not refer to genes: AFM, AIR, AN,
APC, APP, AR, ARC, ATM, BCR, BED, BID,
CCNC, CFD, CHM, COPD, COPE, CP, CPE, CS,
DBI, DCT, ENG, GAN, GC, HP, HPA, HPD, HPO,
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HR, IDS, IMPACT, IV, KIT, MCC, MET, MICE,
MMD, MS, MS2, NHS, NM, NPS, NSF, NTS, PIP,
POLL, REST, SEA, SET, SHE, SI, SPR, STS, TAT,
TRAP, WAS.

Non-COVID-19 literature

We downloaded gene2pubmed from https://ftp.
ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz
in early 2017. MEDLINE, containing publication
dates and publication types was downloaded
from https://www.nlm.nih.gov/databases/down-
load/pubmed_medline.html, and maintained in a
local copy of their database in early 2017. We
restricted the analysis to research publications
published prior 2016.

Temporal profiles

We obtained publication dates from dimension.
ai's collection of COVID-19 publications, release
34 (https://dimensions.figshare.com/articles/
dataset/Dimensions_COVID-19_publications_
datasets_and_clinical_trials/11961063/34). We
excluded publications dating to January 1%,
2020 - the day linked to the most publications.
Manual inspection revealed that the date of Jan-
uary 1°2020 was assigned to publications lack-
ing a concrete 2020 publication date.

Occurrence within clinical trials

We obtained interventions within clinical trials
from dimension.ai's collection of COVID-19
related clinical trials, release 34 (https://dimen-
sions.figshare.com/articles/dataset/Dimensions_
COVID-19_publications_datasets_and_clinical _
trials/11961063/34; dimension.ai, 2020). We
performed a case-insensitive match against drug
names and drug synonyms contained within
DrugBank, version 5.1.5 (https://www.drugbank.
ca). Next we used DrugBank’s mapping between
drugs and the targets of their pharmaceutical
action and used the accompanying gene symbol
to identify genes.

Identification of research laboratories

We used disambiguated authorship identifiers
from Web of Science and considered the last
author of each publication as the laboratory.
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