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The analysis of single particle trajectories plays an important role in elucidating dynamics within
complex environments such as those found in living cells. However, the characterization of in-
tracellular particle motion is often confounded by confinement of the particles within non-trivial
subcellular geometries. Here, we focus specifically on the case of particles undergoing Brownian
motion within a network of narrow tubules, as found in some cellular organelles. A computational
unraveling algorithm is developed to uncouple particle motion from the confining network structure,
allowing for an accurate extraction of the underlying one-dimensional diffusion coefficient, as well
as differentiating between Brownian and fractional Langevin motion. We validate the algorithm
with simulated trajectories and then highlight its application to an example system: analyzing the
motion of membrane proteins confined in the tubules of the peripheral endoplasmic reticulum in
mammalian cells. We show that these proteins undergo diffusive motion and provide a quantitative
estimate of their diffusion coefficient. Our algorithm provides a generally applicable approach for

disentangling geometric morphology and particle dynamics in networked architectures.

I. INTRODUCTION

Particle tracking experiments have a long history in
the field of soft matter physics, where they are used to
analyze the material properties of complex fluids and the
dynamic behavior of active media (reviewed in [1, 2]). In
recent years, tracking of particles inside living cells has
been extensively employed to elucidate the dynamics of
cellular components ranging from single molecules [3-5]
to vesicular organelles [6-9]. Quantification of in vivo
particle trajectories can be used to identify state tran-
sitions and organelle interactions [9-11], to explore the
rheology of intracellular fluids[7, 12], and to establish
the underlying physical forces that drive particle mo-
tion [6, 13, 14].

A classic analysis approach computes the mean square
displacement (MSD) of particle trajectories. In a purely
thermal homogeneous system, an MSD that scales lin-
early with time indicates diffusive motion through a vis-
cous fluid, with the prefactor establishing the particle dif-
fusivity. An MSD that scales subdiffusively (~ t%, a < 1)
can instead indicate a viscoelastic medium with charac-
teristic power-law scaling « [15], as well as other possible
mechanisms [16, 17]. This analysis has been employed in
a number of cellular systems, establishing diffusive be-
havior in the case of some protein-sized particles [18-20],
and subdiffusive dynamics for vesicles and similar-sized
exogenous probes in the cytoplasm [12, 15, 21, 22]. An
alternate recent approach focuses instead on the veloc-
ity auto-correlation function, with negative correlations
that decay as a power-law in time taken to be a sign of
viscoelastic rheology [16, 23, 24]. Still other studies an-
alyze the distribution of individual step sizes over short
time-intervals [7, 25, 26].
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All of these approaches are confounded by a number of
complications in the intracellular environment [27]. First
and foremost, the prevalence of active forces with many
different correlation timescales implies that individual
particle trajectories cannot be directly related to the rhe-
ology of the medium [6]. Furthermore, heterogeneity in
the intracellular medium indicates the existence of spa-
tially varying diffusivities [19, 28] and is thought to be re-
sponsible for the broad non-Gaussian distribution of step
sizes observed for many particles [25, 26, 29]. Neverthe-
less, extracting the effectively diffusive or subdiffusive be-
havior of intracellular particles, albeit over a finite range
of timescales, can give insight into functionally impor-
tant consequences such as particle search times, kinetics,
or interaction frequencies.

In certain cases it is possible to disentangle the under-
lying particle dynamics and the effects of forces, flows,
or confinement from the measured particle trajectories.
For example, when particles are driven by slowly-varying
fluid flows overlaid on top of diffusive behavior, the raw
MSD appears super-diffusive. However, the diffusive be-
havior can be extracted by subtracting out a smoothed
trajectory and analyzing the resulting MSD curves with
an appropriate rescaling [8]. In other cases, separate
measurement of the confounding factors is necessary. For
instance, active microrheology measurements of cytoplas-
mic material properties enable ‘passive’ particle trajec-
tories to then be used for extraction of the spectrum
of forces driving particle motion [6]. Mapping out the
underlying surface on which a particle is confined and
measuring distances along that surface has been shown
to enable accurate characterization of diffusing particle
dynamics [30].

Confinement effects are a common source of complica-
tion in analyzing the trajectories of intracellular particles.
Confinement in a finite region can result in apparently
subdiffusive MSD curves, on time scales up to an order



of magnitude shorter than the typical time to traverse
the confining region [31]. Similarly, velocity autocorre-
lation functions for particles in confinement exhibit neg-
ative peaks that increase when the velocity is measured
across longer time intervals [16]. In this manuscript, we
focus on how to decouple confinement from the under-
lying particle dynamics in the case of particles moving
along tubular networks.

Eukaryotic cells contain a number of structures that re-
sult in confinement of particles at different length scales.
The extent of the cell itself provides an upper limit for
confinement. Furthermore, many particles are embed-
ded in the membrane or interior of organelles that offer
confinement on a subcellular scale. One example of in-
terest is the reticulated mitochondrial network formed in
many cell types. These networks exhibit varying con-
nectivity that can be tuned by genetic perturbation of
the proteins responsible for mitochondrial fusion and fis-
sion [32]. Another organelle with a networked morphol-
ogy is the endoplasmic reticulum (ER), whose functional
roles include lipid distribution, calcium buffering, and
protein processing, sorting, and quality control [33, 34].
The ER forms an interconnected system of tubules and
stacked sheets, with a continuous lumen and membrane,
that spans throughout the cell [35, 36]. Away from the
cell nucleus, the ER can be approximated as a tubular
network with largely three-way junctions, through which
proteins destined for secretion must move in order to en-
counter the point-like ER exit sites [37-39].

Mathematical models of transport within the ER and
mitochondrial networks indicate that the network mor-
phology has the potential to alter search rates and ki-
netics for proteins to find each other and specific tar-
gets within the network [32, 40, 41]. However, examining
the interplay between network architecture and kinetics
requires an assumed physical model for particle motion
(eg: diffusive [32, 40], subdiffusive [42], or locally per-
sistent [5, 43]) and an accurate parameterization of that
model. Thus, precise empirical quantification of particle
dynamics within reticulated networks is of growing inter-
est for elucidating the structure-function relationship of
these critical cellular organelles.

Most prior studies on the movement of ER membrane
and luminal proteins have focused on bulk measurements
of protein spread, including FRAP analysis [44-46] and
the spatiotemporal quantification of spreading from a lo-
cally photoactivated region [5, 47]. However, it has re-
cently become possible to track the movement of indi-
vidual proteins through the ER tubules, enabling new
observations of dynamics within the ER. For example,
single particle trajectories of ER luminal proteins have
been found to exhibit unexpectedly fast motion along in-
dividual tubes, followed by trapping at junctions — an
effect that has been attributed to putative luminal flows
over short timescales [5]. ER membrane protein trajecto-
ries, however, do not appear subject to these rapid mo-
tions. Nevertheless, the analysis of such trajectories is
complicated by their confinement within the peripheral

ER network structure.

In this work we present a novel method for analysis of
diffusive particle trajectories that are confined within a
spatial network, consisting of tubules connected by nar-
row junctions. Namely, we describe how such trajectories
can be ‘unraveled’ to establish a properly sampled under-
lying trajectory that describes the motion of an identical
particle on an infinite line. This unraveling process allows
the accurate extraction of a diffusion coefficient for the
particle motion by removing the confounding effects of
the network structure itself. The procedure is generally
applicable to analysis of any locally one-dimensional tra-
jectories where the confining network architecture can be
separately imaged. Thus, for example, it can be applied
to particles moving along a single finite-length tube, or
along a spine-studded morphology such as that found in
neuronal dendrites [48, 49].

We validate the method using simulations of parti-
cles diffusing on a network, and demonstrate that the
technique can differentiate between particles undergo-
ing Brownian versus fractional Langevin motion (a com-
mon model for subdiffusion due to viscoelastic rheol-
ogy [27, 50]). The technique is then applied to the anal-
ysis of membrane protein trajectories in the ER, showing
that these trajectories are indeed consistent with diffu-
sive motion and providing an estimate of their diffusion
coefficient.

Overall, the work presented here enables quantita-
tive analysis of particle trajectories confined on network
structures, allowing for mathematically accurate decou-
pling of confinement effects from the underlying particle
dynamics.

II. RESULTS
A. Simulating diffusive particles on a network

We begin by simulating the behavior of diffusive parti-
cles on a tubular network. Individual narrow tubules are
treated as effectively one-dimensional segments, joined
together at point-like junctions. The network structure
is thus idealized as a set of nodes connected by edges with
well-defined length: £, for the m*" edge. The edges are
not necessarily straight, so that ¢,, can be longer than
the spatial distance between two adjacent nodes.

Several algorithms are possible to simulate the trajec-
tory of a diffusive particle on such a network. In recent
work, we demonstrated an exact kinetic Monte Carlo al-
gorithm that employs analytical propagator functions ob-
tained by solving the diffusion equation in the neighbor-
hood of each node [41]. By sampling transition times
from these functions, the particle can be propagated be-
tween adjacent nodes as a continuous-time random walk,
with no discretization artifacts. Here, we take an al-
ternate approach, which starts from a diffusive particle
trajectory z(t) on an infinite line and maps it proba-
bilistically onto a corresponding trajectory (m(t),z(t))
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FIG. 1. Simulation of diffusive particle trajectories on a network. (a) Schematic of diffusion simulation and unraveling algorithm.
Top: example single-step trajectories starting at zp on an infinite line; Bottom: sample corresponding trajectories along the
network. Trajectories that pass the node can land on either the same or a different edge. (b) Simulations of particle trajectories
using the discrete time propagation algorithm (dots) reproduce exact analytic distributions (lines) on a triskelion network.
Densities are shown for a particle starting at the center node, propagating for a total time ¢ = 0.8¢°/D. (c) Diffusive particle
mean squared displacement depends on the structure of the confining network. Dimensionless MSD is shown for particles
on a triskelion geometry (blue), a honeycomb network of diameter 15¢ (yellow), a honeycomb with 30% of its edges removed
(purple), and a section of a peripheral ER network extracted from a COS7 cell (green). Dashed black line shows linear scaling.
Length units are scaled by the average network edge length (£) and time units by ¢2/D.

on the network (where m is a network edge index and
x is the position along the edge). In a subsequent sec-
tion, we demonstrate how this mapping can be reversed
to extract the underlying diffusive dynamics of a particle
whose motion is observed on a network of known struc-
ture.

Consider a discretized trajectory {z;} of a free Brow-
nian particle with diffusivity D, evaluated at discrete
times t; = 4At. The increments of such a trajec-
tory are distributed according to a normal distribution:
Az ~ N(0,v/2DAt). To map this trajectory onto an
equivalent particle diffusing over the network structure,
we use these increments Az for propagation on the net-
work. In particular, we assume that each time the diffus-
ing particle passes a network node, it selects uniformly
at random the next edge from the ones attached to that
node. Thus, a reversal in the trajectory z; on an infinite
line will always correspond to a reversal on the network,
but additional reversals at a network node may also oc-
cur that are not apparent on the infinite line (e.g.: green
path, Fig. 1a).

Our approach assumes that the discrete time step is
short enough that on any single step the particle can
pass only the network node that is closest to its starting
position (in terms of distance along the edge). Specifi-
cally, we assume that |Az| < £,,,/2 for the current edge
m on which the particle is located.

To map an unconstrained trajectory step Az onto the
network (Fig. 1a), consider a particle starting at position
xo along edge m, and assume that z¢ < £,,/2, so that the
particle is closer to the first node of the edge. We want to
find the next position x; for the particle, given its sam-

pled trajectory on the infinite line. If Az < —x( then
the particle trajectory must have passed the node during
this time step. We then place the particle at position
x1 = |xg + Az| on an edge selected uniformly at random
from among all the edges attached to that node (includ-
ing the original edge). If Az > —xg then the particle
may also have passed the node during that time step.
The probability that it has done so can be computed as

(o + Az)xo] ’
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(see Appendix A1 for derivation). If it passed the node,
then it can end the time step on any of the adjacent
edges with equal probability; if it did not pass the node
then it must still be on its original edge. The subsequent
position of the particle is then given by |z¢ + Az| with
probability 1 — ppass + Ppass/d of landing on its original
edge and probability ppass/d of landing on each of the
other adjacent edges, where d is the degree of the node.
The propagation of the particle is then repeated from
its new position. If the particle originates close to the
other end of the edge (zg > ¢,,/2) then an analogous
calculation is performed by considering the nearby node
on the far end of edge m.

It should be noted that this algorithm also handles re-
flections off of a dead-end node. Increments that would
lead an unconstrained particle to pass such a node simply
result in the particle being placed back upon the single
edge leading to the dead-end. Such explicit reflections
are typically implemented in Brownian and fractional
Brownian dynamics simulations with hard-wall bound-
aries [51].



The proposed algorithm accurately represents the be-
havior of a continuously diffusing particle over the time
step At so long as we can neglect any trajectories that
pass a node other than the most nearby one over the
course of a single time step. Therefore, unlike the ex-
act algorithm described in previous work [41] it requires
the constraint v2DAt < ¢,,. In Fig. 1b, we demon-
strate that for small At the agent-based simulations de-
scribed here accurately reproduce analytically computed
particle distributions in a simple triskelion network (see
Appendix A 2).

B. Network confinement modulates particle MSD

A traditional metric for analyzing particle trajectories
is to look at the mean squared displacement (MSD), de-
fined by

MSD() = (If(t) = F(O)I*). @)

where 7(t) gives the spatial position of the particle at time
t, and the average is taken both over time and over an
ensemble of many particles. Particles that diffuse unim-
peded on an infinite linear domain exhibit the relation-
ship MSD = 2Dt. Identical behavior is observed for par-
ticles diffusing on a network comprising an infinite lattice
of tubules. The effect of confinement in a finite domain
is a well-known complication of MSD analysis [31], with
the MSD beginning to flatten on time scales comparable
to v/ R?/2D for a domain of radius R (Fig. 1c).

When the connectivity of the network structure is re-
duced below that of the well-connected lattice, the time
dependence of the mean squared displacement flattens
still further. In Fig. 1c¢ (purple curve), we show the MSD
of particles on a diluted honeycomb network with 30% of
its edges removed in such a way as to maintain a single
connected component. The MSD shows an apparently
subdiffusive (sublinear) scaling with time, as missing con-
nectivity and an abundance of dead ends forces particles
to take much longer paths to get from one part of the
network to another.

Cellular organelle networks, such as the peripheral en-
doplasmic reticulum and mitochondrial network struc-
tures, also show reduced connectivity, with dead-end
nodes and heterogeneous pore sizes between connected
edges. In Fig. lc (inset) we show a section of network
extracted from an image of the peripheral ER in a mam-
malian cell. Simulating diffusive particle trajectories on
the extracted section of an ER network indicates that
the MSD is also expected to scale sublinearly with time
(Fig. lc, green curve).

We note that the dead-end nodes along the boundary
of the extracted ER network arise from a combination of
the cell boundary and the finite field of view captured
via high-resolution imaging. In Supplemental Material
Section S1, we show that the results shown here are un-
altered if simulated trajectories are truncated whenever

they touch the dead-ends at the edge of the imaging area,
analogous to the termination of experimental trajectories
whenever a particle leaves the field of view.

These simulations highlight the inherent difficulty of
quantifying particle diffusivity on a network by analyz-
ing the mean squared displacement of observed trajecto-
ries. Namely, the MSD convolves together two separate
effects: the underlying dynamics of the moving particles
and the morphology of the network within which they
are confined. We thus proceed to develop a method for
separating out these two effects and extracting particle
diffusivity from their behavior on a known network struc-
ture.

C. Unraveling diffusive trajectories on networks

To unravel the particle dynamics from the network ar-
chitecture, we proceed by inverting the algorithm used
to map the discrete trajectory of an unconfined particle
({z:}) onto a trajectory over the network (Fig. 1a). Given
a set of discrete 2D (or 3D) observations of the network-
confined particle ({7;}), we seek to find the trajectory
that particle would have taken if allowed to move over an
infinite line. To begin, we re-express the spatial trajec-
tory in terms of network coordinates {m;, z;} that list the
edge m; and position along that edge z; € (0,¢;) of the
particle at time point ¢;. We then consider the start and
end positions of the particle at each time-step, assum-
ing that there is an underlying free one-dimensional tra-
jectory such that z;, z;11 were mapped to network posi-
tions (m;, x;), (Mi41,x;+1) using the algorithm described
in the previous section.

For sufficiently small time-steps, we can again assume
that the particle could only have passed over the node
closest to z;. Without loss of generality, we take this
node to be the one located at position 0 on edge m;. For
simplicity of notation, we shift the unconstrained trajec-
tory such that z; = x;. The next observed position of
the unconstrained particle must then be z;11 = £x;41.
Bayes’ rule [52] allows calculation of the probability asso-
ciated with each choice, conditional on the observed par-
ticle positions. The probability that the unconstrained
trajectory ended at z; 11 = x;41 after the time-step, given
that the particle ended at (m;41,2;41) on the network is:

P+ = P(2it1 = Tiv1|Mig1, Tiy1) =
P(miﬂ,fciﬂ\ziﬂ = $i+1)73(21'+1 = $i+1) (3)
P(mi+1axi+1)

The free particle increments are sampled from a normal
distribution, so that
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If the particle moved on to a different edge (m;+1 #
m; ), then the unconstrained trajectory must have passed

P(ziy1 = £xi41) =
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FIG. 2. Unraveling simulated trajectories to estimate diffusivity. (a) Dimensionless MSD of particle trajectories on a triskelion
(blue), a decimated honeycomb network (purple), and a segment of peripheral ER (green). All simulations were run with
D = 1. Original MSD (from Fig. 1c¢) is shown with dashed lines, MSD after unraveling (with D = 1) shown with solid lines.
(b) MSD of trajectories on decimated honeycomb network, unraveled using different values of the diffusion coefficient D (thick
lines), compared to the expected 2Dt (thin lines). Dashed black line indicates values for the correct diffusion coefficient. All
units are non-dimensionalized by the edge length and the simulated diffusivity. (c) Residual function G(D) plotted for the
different diffusion coefficient values used in unraveling. Dashed line shows the correct D = 1 used in the simulation, which
matches well to the minimum of the residual function.

1.2 T T T

trajectory passed 0 (as in Eq. 1) before returning to the
positive side. The second line simply indicates that if

1 the unconstrained trajectory ends on the negative side,
a it must have passed zero and is thus equally likely to be
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At x D/¢? Plugging into Bayes’ rule (Eq. 3) results in the follow-
ing probabilities for the end-point of the unconstrained
FIG. 3. Diffusion coefficient estimates for different timesteps. trajectory:
Simulated trajectories on a diluted honeycomb network (pur-
ple) and a triskelion network (blue) are unraveled to obtain 1 Mip1 # m;
. .. . 2 i+1 4
an estimated D value. Each analysis involves 100 indepen- Py = { 1 (8)
dent trajectories of 100 time steps each. Error bars give 2—d+dexp(z;xi+1/DAL)’ Mit1 = M-
standard deviation from 20 replicate analyses. All values are
non-dimensionalized by the edge length ¢ and the simulated The conditional probability p_ that z;11 = —z;41 given
diffusivity D. the observed values of m;y1, ;11 can be computed as

p—=1—-pq.
For the network trajectory {m;, z;}, we obtain an ‘un-
zero and the conditional probabilities of the observed raveled’ trajectory {z;}, by sampling the next position

end-point on the network are: at each step according to Eq. 8, considering only the
—_— node closest to x; for potential passage by the uncon-
P(mit1, Tit1]zip1 = Tig1) = =€ DAL (5)  strained particle. The mean squared displacement and

velocity autocorrelation function for the unraveled tra-
(6) jectory can then be analyzed in the usual manner. As
shown in Fig. 2a, the unraveled trajectory mean squared
The first line gives the probability that the unconstrained displacement (MSD,,;) for simulated particles diffusing

Ul =

P(Mig1, Tip1]2ip1 = —Tiq1) =



on a network regains its linear time scaling, with the cor-
rect prefactor: MSD,, = 2Dt.

Computing the unraveled trajectories requires knowl-
edge of the particle diffusion coefficient D in order to
correctly sample the step direction from Eq. 8. Since one
of the primary goals of the unraveling procedure is to
gain an estimate of particle diffusion coefficient, D can-
not be assumed a priori. Instead, the unraveling process
is performed with a range of different diffusivities to find
a self-consistent value. Values of D that are too large or
too small result in an unraveled MSD that deviates from
the expected behavior (Fig. 2b). We estimate the under-
lying particle diffusion coefficient by finding the value of
D that minimizes the difference between the computed
MSD,,(t; D) and 2Dt.

We assess the goodness of fit on a log-log scale, as
plotted in Fig. 2b. Specifically, we perform a logarith-
mic transform of both axes and compute G = 1 — R?,
where R? is the coefficient of determination used to as-
sess the accuracy of the linear model [53]. This metric is
computed for each value of diffusivity D as:

G(D) = — 2 log” [MSDy (ti| D)/(2Dt;)]
", log? [MSD  (t:|D)/ (MSDy,), (D)]

9)

where the residuals are evaluated at logarithmically
spaced time points t; and (MSD,,), refers to the average
value over all time-points. The final diffusion coefficient
estimate is the value of D that minimizes G(D) (Fig. 2¢).
Obtaining an accurate estimate of the diffusion coeflicient
via this method requires a sufficient number and length
of trajectories input into the time- and ensemble-average
when calculating the unravelled MSD curves. The effect
of trajectory length and ensemble size on the estimated
diffusivity is shown in Supplemental Figure S2.

Figure 3 shows how the estimated diffusion coefficient
varies with the time-step of the trajectory. Our approach
is valid only if the time-step is small enough that indi-
vidual consecutive snapshots are very unlikely to involve
the particle trajectory passing any network node other
than the one nearest to the particle. During the anal-
ysis, any steps that involve the particle jumping onto a
non-adjacent edge result in breaking the trajectory up
into separate segments. For larger step-sizes (roughly,
At > 0.142/D), such large steps become increasingly
common. Breaking the trajectory then results in a sys-
tematic underestimate of the diffusion coefficient since
large steps are removed from the analysis. Thus, in or-
der to accurately assess particle dynamics on a network,
the particle positions must be visualized rapidly enough
that the particle passes no more than one node on each
step.

D. Fractional Langevin motion and velocity
autocorrelations

An important application of MSD analysis for single
particle trajectories is to elucidate the relevant dynamic

model that best describes their behavior[7]. In particu-
lar, particles that exhibit an MSD scaling linearly with
time are generally assumed to be moving in an effec-
tively diffusive manner. By contrast, subdiffusive scal-
ing (MSD ~ t* for 0 < a < 1) can be explained by
a number of underlying physical models, including con-
tinuous time random walks, confinement, and fractional
Langevin motion (fLM) [16, 17]. Fractional Langevin
motion is expected for particles subject to thermal fluc-
tuations in a viscoelastic medium, driven by fractional
Brownian forces with a power-law correlation over time
that scales as t~%[51, 54]. The fLM model, with sublin-
ear scaling exponent o« < 1, has been shown to be rele-
vant for a variety of cytoplasmic and intranuclear parti-
cles [23, 24, 26, 55]. For particles moving on a network,
it can be difficult to distinguish microscopic subdiffusion
arising from fLM dynamics versus effective subdiffusion
on longer scales due to the network confinement. We
here consider whether our analysis method can help ac-
curately determine whether one or the other of these com-
mon dynamic models is a better descriptor of the micro-
scopic dynamics of observed network-confined particles.

To simulate the dynamics of a particle undergoing
fLM on a network, we first generate fractional Brown-
ian forces in two dimensions (2D) using previously es-
tablished methods [50, 56]. Particle step increments in
2D are then computed by convolving the past history
of steps with the appropriate power-law memory kernel,
followed by zeroing out of the step component perpendic-
ular to the current edge axis (details in Appendix A 4).
The overall approach is analogous to that used for sim-
ulating the fractional Langevin equation in a confined
geometry [51], in the limit of no inertia and narrow edge
confinement.

As expected, the simulated trajectories exhibit an
MSD that scales as a power-law with time, MSD ~ t¢
(Supplemental Material, Fig. S3). These subdiffusive tra-
jectories can be unraveled as described in the previous
section, to remove the effect of network confinement. The
unraveling procedure assumes diffusive transport when
computing node passage probabilities, and attempts to
unravel with different values of the trial diffusivity D
until a self-consistent value is found. Because the under-
lying motion is in fact not diffusive in this example, the
resulting unraveled MSD curves are notably deformed
(Fig. 4a). Consequently, the residual metric (comparing
to a linear, diffusive scaling) is substantially higher for
these trajectories, serving as an indicator of non-diffusive
transport (Fig. 4a, inset).

An alternative approach for distinguishing fLM from
diffusive trajectories on a network involves analysis of
the velocity autocorrelation function for the unraveled
trajectories. For velocities computed over time-interval
d, the autocorrelation function is defined by [57]

CO1) = 55 (falt +8) — 2(0] - [w(6) ~x(O)}),  (10)

where the average is taken over both time and the particle
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FIG. 4. Distinguishing Brownian motion versus fLM from unraveled particle trajectories on a diluted honeycomb network. (a)
MSD of fLM trajectories unraveled with different trial values of D (thick lines). Thin lines show 2Dt for each trial value of D.
Inset shows residual function G(D), showing how no trial D gives a good correspondence with the expected diffusive scaling.
Simulations used scaling exponent a = 0.6, with prefactor set such that individual step sizes are comparable to the Brownian
simulations in Fig. 2, with 2D,At® = (0.1£)?. Length and time units are non-dimensionalized by ¢ and 7 = (£2/D,)",
respectively. (b) Normalized velocity autocorrelations for unraveled trajectories of simulated particles undergoing Brownian
motion (dashed lines) and fLM with a = 0.6 (solid lines). Red box indicates first negative peak, used to extract estimated
scaling exponent aest. (¢) Estimated scaling exponent for simulated fLM particles with different true values of «. Estimations
are shown based on the velocity autocorrelation of either raw 2D trajectories (solid) or unraveled 1D trajectories (dashed).
Simulations were carried out with two different root mean squared step sizes: 10% (blue) and 20% (purple) of the network
edge length. All simulations included 100 particles tracked for 100 time steps. Error bars are standard deviations from 50
independent replicates. Cyan region indicates the range of aest that should be taken to imply purely diffusive motion, obtained
as average + standard deviation for Brownian particle simulations. Right: zoomed-in section shows that network confinement
makes Brownian particles (aw = 1) appear to have a lowered estimated scaling (aest < 1), whereas unraveled trajectories show
the correct Brownian exponent cest = 1.

ensemble. This function exhibits a negative peak at t =
0, rising back towards zero in a polynomial fashion for

t > 6. The normalized negative peak Cz(,é)(é)/ngé)(O)
becomes deeper for more subdiffusive motion (lower «)
and, for fractional Langevin motion, is independent of the
choice of window size ¢ in defining the velocity[16, 23, 24].
The scaling exponent « can be extracted directly from
this value according to the expression [57]:

) (s)

=1-—2"1 11
o) (11)

We plot the normalized velocity autocorrelation for un-
raveled trajectories of Brownian particles and particles
undergoing fLM in Fig. 4a,b. For Brownian particles,
the velocity correlations are flat for ¢ > §, emphasizing
that the unraveling procedure removes the effect of con-
finement and dead-ends in the network, which would be
expected to yield negative peaks [16]. For particles un-
dergoing fLLM, the unraveling decreases the magnitude of
the negative peaks at larger step-sizes, consistent with
the turning upward of the MSD curves for these trajec-
tories. However, the form of the velocity autocorrelation
function is still clearly non-diffusive, demonstrating that
this metric can be used to diagnose fLM versus Brownian
motion on a network.

To generate an estimate of the fLM scaling exponent,
we use Eq. 11 at § = At (a single trajectory step).
As shown in Fig. 4c, unraveled trajectories of simulated
Brownian particles on a network give an accurate esti-

mate of aest ~ 1.01 £0.01 (mean + standard deviation)
based on the first negative peak in the velocity autocor-
relation functions. When the same analysis is applied to
simulated fLM trajectories with a = 0.6, the unraveling
procedure gives a biased estimate of the scaling exponent
(qtest = 0.54 £ 0.025), but still clearly differentiates be-
tween fLM and Brownian motion. Simulations of fLM
with a range of different scaling exponents (Fig. 4c) indi-
cate that accurate estimates of the scaling exponent can
be obtained for o 2 0.75, when individual step sizes are
set to 10% of the network edge length. For larger step
sizes, this approach overestimates «, due to the bias to-
wards diffusive motion introduced in the unraveling pro-
cess whenever the particle passes a node. However, par-
ticles undergoing fLLM still yield an estimated ceg that
is significantly less than 1, allowing the trajectories to be
distinguished from those of Brownian particles. By con-
trast, if the velocity autocorrelation is analyzed for raw
trajectories confined on a network, then even Brownian
particles (aw = 1) are likely to yield an estimated scaling
value aeg that is below the expected range (shaded re-
gion in Fig. 4c). Thus, network confinement can make
Brownian motion appear as fLM, and the unraveling pro-
cedure removes this confounding effect. Notably, more
rapid high-resolution imaging that can yield even smaller
observed step sizes would allow for a more accurate es-
timate of the scaling exponent for particles undergoing
fLM.
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FIG. 5. Unraveling of membrane protein (Halo-TA) trajectories in the peripheral ER networks of an example COS7 cell.
(a) Extracted network structure (green) superimposed on a confocal image with fluorescently labeled ER marker. Trajectories
within 1 sec of this snapshot are shown as colored circles. Inset shows single trajectory, projected onto network edges (magenta).
(b) Ensemble-averaged MSD for raw trajectories (green), projected trajectories (blue), and unraveled trajectories (purple).
Dashed magenta line indicates apparent subdiffusion for particle trajectories due to confinement in network structure. Dashed
black line shows linear scaling with the estimated diffusion coefficient. Inset: residual function for unraveling with different
diffusivity values, with self-consistent estimate marked in red. (c) Normalized velocity autocorrelation for unraveled trajectories,
with estimated scaling exponent a.st is obtained from the first negative peak. Errors for Dest and cest are standard deviations
obtained from bootstrapping over individual unraveled trajectories.

E. Application to membrane proteins on ER
tubules

As a direct application of this methodology to exper-
imental data, we consider single particle trajectories of
a model ER transmembrane protein (a HaloTag fused
to the minimal targeting domain of Sec61b, Halo-TA),
moving along the peripheral ER tubules of COS7 cells.

The peripheral ER of COS7 cells provides a convenient
example system consisting of a pseudo-planar network of
narrow tubules. The diameter of ER tubules has pre-
viously been measured at approximately 100nm in this
cell type [58-60]. The average edge length between 3-
way junction nodes in our extracted network structures
is 1.2£0.76pum (see Supplemental Material, Section S4),
comparable to previous measures of ER edge length in
COS7 cells [41]. While the diameter of COS7 cells in
culture can be above 50um (e.g., [59, 60]), we focus on
smaller ~ 15um regions, where the peripheral network
morphology is well-resolved (Fig. 5a).

The effective diffusivity of the Halo-TA proteins is the
target quantity we aim to extract through the unravel-
ing algorithm. Prior bulk measurements of the spread-
ing of a photoactivated membrane marker in the pe-
ripheral ER network indicate an approximate value of
D ~ 1.8um?/s [47].

Widefield images of the ER network as well as individ-
ual fluorescently labeled Halo-TA proteins were collected
simultaneously with rapid time resolution (~ 100 Hz).
Because ER networks are dynamic, rearranging over tens
of seconds [61-64], peripheral network structures were ex-
tracted at 1 second intervals to serve as the underlying
domain geometry for the particle trajectories. Details on

imaging, image analysis, and particle tracking methods
are provided in the Methods section (Appendix A).

For each network structure, trajectory segments col-
lected within +1 sec of the corresponding image time
were mapped onto the network by projecting to the near-
est point along the edges (Fig. 5a). All projected tra-
jectories imaged within a given cell (corresponding to
approximately 1 minute total imaging time) were then
collected together for analysis. As seen in Fig. 2b, both
the raw and projected trajectories exhibited an appar-
ently subdiffusive MSD scaling with time, as expected
for simulated diffusive particles on a sample ER network
(Fig. 1c). The close correspondence between raw and
projected trajectories indicates that the proteins were in
fact largely confined to the visible ER tubules, with most
of their motion occuring along the tubule axis. In Sup-
plemental Material (Figure S6) we explore further the
effect of particles moving along the circumference of the
ER tubules rather than directly along the axis. We show,
using simulations, that the narrow 50 nm radius of ER
tubules [58] implies that these perpendicular particle dis-
placements will not significantly affect the analysis.

Projected trajectories were unraveled as described in
Section IIC to extract the underlying free-particle dy-
namics. The mean squared displacement MSD,, of
the unraveled trajectory closely matched the expected
2Dt behavior (Fig. 5b) with a diffusion coefficient of
Degy = 1.5440.1um? /s, where the standard deviation in
the estimate is obtained by bootstrapping over individual
particle trajectories. The velocity autocorrelation func-
tion of the unraveled trajectories is consistent with the
expected behavior for diffusive particles, showing very
little correlation for ¢t > ¢ (Fig. 5c). Estimating the scal-
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FIG. 6. Analysis of trajectories for Halo-TA ER membrane
proteins from multiple COS7 cells. (a) Estimated diffusion
coefficient Dest. (b) Estimated scaling exponent cest. N = 13
independent cells were analyzed.

ing exponent « from these velocity autocorrelations (as
described for simulated trajectories above) yields a value
of aesy = 1.02 £ 0.01, with standard deviation again ob-
tained by bootstrapping.

The analysis was repeated for particle trajectories
and network structures obtained from 11 different cells
(Fig. 6), with resulting diffusion coefficient estimates
(D) = 1.45 + 0.24pm? /s (mean + standard deviation).
The extracted diffusion coefficient is similar to values re-
cently estimated from bulk measurements of photoacti-
vated protein spreading in the ER [47]. The scaling esti-
mates from the velocity autocorrelation of unravelled tra-
jectories in each cell yielded (a) = 1.00 £ 0.02 (standard
deviation across cells), consistent with diffusive motion
of the Halo-TA ER membrane protein.

We note that, given our diffusion coefficient estimate
and average ER edge length (Supplemental Fig. S4), we
would expect the unraveling procedure to be accurate for
step sizes At < 0.07sec, a condition which is satisfied by
the 100Hz imaging rate.

III. DISCUSSION

Traditional approaches to quantifying single particle
trajectories involve using the mean squared displacement
or velocity autocorrelation function to characterize the
diffusive or subdiffusive motion of the particles. How-
ever, for particles trapped inside the complex spatial ge-
ometry of intracellular structures, these approaches are
confounded by the effects of confinement. Such effects
can make diffusive motion appear subdiffusive and lead
to underestimation of the particle motility. In this study,
we demonstrate a methodology for decoupling the under-
lying microscopic diffusion of particles from the effect of
spatial confinement using direct observation of the struc-
ture, in the specific case of particles confined within a

tubular network.

Our approach involves unraveling a particle trajectory
on a network by sampling the hypothetical path of that
particle if it were to undergo unconstrained diffusion on
an infinite line. In classic simulations of a Brownian par-
ticle, each step of the particle represents an ensemble of
possible paths leading from the starting position to the
next one. When all likely paths stay within a single edge
of the network, such a classically sampled step remains
accurate. However, if there is a non-trivial chance of
passing a network junction during that time-step, then
it becomes necessary to consider the excursions of the
particle to different edges surrounding that junction. We
develop an algorithm that makes use of the statistical
weighting of these excursions to ‘fold’” one-dimensional
diffusive paths onto the edges around a network junc-
tion. This serves as a mathematically accurate method
for discrete-time Brownian dynamics simulations of par-
ticles along a network of tubules.

We then take a Bayesian approach to inverting this al-
gorithm. Namely, starting with an observed trajectory
of discrete steps on a network, we sample the unconfined
one-dimensional trajectory that would lead to the ob-
served particle positions. The resulting ‘unraveled’ tra-
jectories of simulated Brownian particles exhibit all the
features of classic Brownian motion and can be analyzed
using the usual quantification of MSD and velocity auto-
correlations. This approach makes it possible to extract
the underlying diffusion coefficient of the particle, as well
as to differentiate between diffusive and subdiffusive mi-
croscopic motion.

Simulations of particles undergoing fractional
Langevin motion on network structures indicate
that applying our unraveling algorithm can accurately
differentiate such dynamics from Brownian diffusion.
For sufficiently small step-sizes, analysis of the velocity
autocorrelation function for unraveled trajectories
yields an approximate estimate of the fractional scaling
exponent «.  Furthermore, although raw Brownian
trajectories may be effectively subdiffusive at large
scales due to confinement within the network, unraveling
the trajectories allows for accurate identification of
Brownian scaling behavior (o = 1) from the velocity
autocorrelation function. Hence, the unraveling tech-
nique can be used to distinguish large-scale subdiffusion
arising from microscopic causes (as in fLM) from the
apparent subdiffusion caused by network confinement.

Our proposed approach for uncoupling diffusive trans-
port from network confinement is subject to certain in-
herent limitations. It is applicable specifically to par-
ticles moving on a network of narrow tubules, so that
motion along individual edges can be approximated as
one-dimensional. It also requires sufficiently frequent ob-
servations of the particle position so that each particle
can be assumed to pass at most one node junction dur-
ing each time-step. This is equivalent to requiring that
the particle steps be shorter than the typical edge length.
Expanding the proposed algorithm to find the correct sta-



tistical weighting for paths that pass multiple nodes over
the course of a time-step serves as a promising avenue for
future work.

As an example application of the unraveling algorithm,
we analyze the trajectories of membrane-bound proteins
in the endoplasmic reticulum (ER). The peripheral ER
in many cell types forms a tubular network structure,
which hosts a variety of proteins that diffuse within its
lumen and membrane. Among its many biologically cru-
cial functions, it is thought to serve as an intracellular
network for the sorting and delivery of ions, lipids, and
secreted proteins. Currently, the mechanism and spatial
dynamics of these phenomena are challenging to observe,
since the complex structure masks the interpretation of
dynamic data collected within the organelle. Quantify-
ing particle motion in the ER is crucial to elucidating the
impact of its reticulated structure on the kinetics of bio-
chemical pathways embedded within this organelle. Such
studies constitute a first step towards generating a mech-
anistic understanding of ER-localized biological processes
and their regulation.

Trajectories of single transmembrane proteins on mam-
malian ER networks were collected at a sampling rate of
approximately 100Hz, sufficiently rapid to ensure multi-
ple steps of each protein between junction passage events.
Traditional analysis of the MSD for raw particle trajec-
tories was confounded by confinement within the net-
work, as indicated by an apparent subdiffusive scaling
estimate. However, application of the unraveling algo-
rithm demonstrated that the dynamics of these particles
is consistent with classic Brownian motion, with a diffu-
sion coefficient of D ~ 1.5um?/s. This estimate is com-
patible with bulk measurements of protein diffusivity in
the ER membrane [47].

Our analysis demonstrates that the specific ER, mem-
brane protein studied here does not show signs of frac-
tional Langevin motion on a microscopic scale. Although
no proteins exhibiting such dynamics in the ER are
known to date, the method described here will make it
possible to accurately classify the underlying dynamics
as Brownian versus fLM as new data on protein motion
in the ER becomes available. Furthermore, we empha-
size that the measurements here were limited to a protein
embedded in the ER membrane. Past studies have indi-
cated that aqueous proteins in the ER lumen may exhibit
non-diffusive motion dominated by rapid processive runs
along the tubules [5]. Unraveling the dynamics underly-
ing luminal protein trajectories is left as a topic for future
work.

The algorithm proposed here is not specific to protein
motion in the ER, but rather is a general mathematical

10

tool for analyzing ensembles of diffusive trajectories on
networks embedded in physical space. Such spatial net-
works have been analyzed in the context of roads, power
grids, and venation patterns as well as intracellular struc-
tures [65]. In cell biology, mitochondrial networks [32]
and the dendritic trees of neurons [49] provide additional
examples of network structures where diffusion can play
an important role in protein transport. Our focus here is
specifically on diffusive dynamics over the network, but
the unraveling method also provides a potential tool for
diagnosing when particle motion is non-diffusive at the
microscopic scale. We show that the method can accu-
rately distinguish whether particle motion is most con-
sistent with fLM or Brownian motion. Future work will
pursue the possibility of distinguishing other dynamic
behaviors, such as directed flow along edges [5, 43|, or
continuous-time random walks associated with sporadic
binding [66], as well as exploring combinations of these
dynamic processes.

Because the unraveling approach provides a quantita-
tive estimate of particle diffusion coefficient, it has poten-
tial applications in distinguishing the effect of external
perturbations on either network structure or the dynam-
ics of the particles themselves. For example, mutations
in ER morphogen proteins can alter the radius of ER
tubules [47], or the density of tubule junctions [67]. How-
ever, the consequences of these morphological changes on
protein diffusivity in the ER remain unclear, and could
be approached by unraveling membrane and luminal pro-
tein trajectories according to the methods proposed here.
Overall, the ability to quantify trajectories by removing
the complicating effects of confinement is critical to un-
derstanding the behavior of particles trapped in complex
reticulated geometries, in cell biology and beyond.
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Appendix A: Methods

All code used in this work was written in Mat-
lab [68]. A software package for carrying out simu-
lations on networks and for analyzing particle trajec-
tories is provided at https://github.com/lenafabr/
unravelNetworkTraj.

1. Algorithm for Brownian motion simulations on
networks

We develop an algorithm for discrete time-step sim-
ulations of Brownian particles on a network of one-
dimensional edges connected by point-like junctions, as
discussed in Sec. ITA.

At each step, for each individual particle, we consider
the particle’s position along its current edge. Without
loss of generality, we can assume that the nearest bound-
ary (node) of that edge is at position 0 and the particle
itself is at position zy along the edge. We sample the
net displacement of an unconstrained Brownian particle
over time interval At from the Gaussian propagator func-
tion of such particles (namely, Az ~ N(0,vV2DAt)). We
note that this normally-distributed displacement over the
time-interval incorporates an infinite number of particle
paths, as in the classic path-integral formulation of Brow-
nian motion [69]. We consider, of all possible paths that
start at x¢p and end at xg + Az, what is the probability
that the particle’s path crossed 0 during that timestep.
This probability ppass is derived as follows.

We start with the Green’s function for unconstrained
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diffusion:

1 —(—20)?/aD20
VAr DAt ’

which gives the spatial probability density of a particle
ending its path at position x after time At, given that it
started at position zg at time 0. The distribution of first
passage times for a particle starting at xg to hit 0 for the
first time at time ¢ is given by

G(z|xo, At) = (A1)

Jt:20) = D - Glalas ) (A2)

z=0
Because diffusion is Markovian (memory-less), if the
particle first hits 0 at time ¢, we know the probability
density of ending up at position x is simply given by
G(z|0, At — t). From there, we can calculate the condi-
tional probability that a particle hit 0 at some point in
the path, given that it ended at x, by a simple application

of Bayes’ rule:
[20 T (4 20)G ([0, At — t)dt

Ppass = L . (A?))
G(x|zo, At)

Here, the numerator is the joint probability density of
hitting 0 at some point during the time-step and then
ending the path at x and the denominator is the overall
probability density of ending at x. Plugging in Eq. Al
and A2 gives the formula for pp,e stated in the main text
(Eq. 1).

Every path of an unconstrained particle can be mapped
to a set of ‘folded’ paths for the equivalent particle on
the network. Each passage of the node at 0 involves se-
lecting which of the adjacent network edges will serve
as the axis along which the network-bound particle con-
tinues to move. For a memory-less Brownian particle
that hits the node, each of the edges (including the one
from whence it came) are equally likely to be selected.
We know the unconstrained particle ends its timestep at
distance |zg + Az| from 0. Hence, the network-confined
particle is placed at this distance from the node along
the randomly selected edge, completing its time-step.

2. Distribution of diffusing particles on a triskelion

We compute explicitly the solution to the diffusion
equation on a triskelion structure (Fig. 1b) with reflect-
ing boundaries at the tips and continuity of the concen-
trations at the degree-3 node. The initial condition is
assumed to be a delta function at the junction. The
approach taken is analogous to the equivalent problem
with absorbing boundaries, described in more detail in
Ref. [41]. Specifically, after a Laplace transform in time
(t — s), the concentration profile é(z,s) on edge k is
given by

-1
1 coshax (A4)

Ck(z,8) = Da cosh aly,

Z tanh ol
j=1



where D is the particle diffusion coefficient, o =
and ¢; is the length of the j*" edge.

The Laplace transform is then inverted using a
Bromwich integral evaluated with the Cauchy residue

theorem, yielding the time-dependent concentration pro-
file

s/D,

c(x,t) = Z rpe” Pt (A5)
P

where the poles s, = —Dui can be found by taking the
roots of the following equation:

cos Ly Ztanfjup =0,
J

(A6)

and 7, are the residues of Eq. A4 at those poles.

The resulting expressions are plotted in Fig. 1b and
compared to the distribution of 107 simulated particles
at time t = 0.8¢2/D (after starting at the three-fold junc-
tion) where £ is the length of the shortest edge.

3. Parameters for simulations and analysis
a. Brownian motion on networks

The simulations are tested on synthetic networks, as
well as network structures extracted from images of the
ER. For comparing particle distributions on the triske-
lion network (Fig. 1b), 107 particles were simulated with
timesteps of AtD/¢? = 0.01, for 80 steps. All particles
were started on the central node.

The synthetic honeycomb network in Fig. 1c was cre-
ated by cropping a standard honeycomb lattice with
N = 15 cells in each dimension to a circle of radius 1.
All reported length units for simulations on synthetic net-
works are normalized by the single edge length ¢ in the
network. The diluted honeycomb structure was obtained
by removing 30% of all network edges, randomly selected
in such a way that the network maintains a single con-
nected component. While all the example networks used
in this study are two-dimensional, the simulations and
unraveling code also applies to 3D networks.

Brownian simulations for the MSD comparison were
run with 100 particles, using dimensionless timesteps of
AtD/? = 0.01, for up to N; = 3 x 10* time steps.
The mean squared dispacement (MSD) is computed as
MSD = (|Z(t) — Z(0)|?), where the average is done over
non-overlapping time-windows of a single trajectory and
over all particle trajectories.

b. Trajectory unraveling analysis

The algorithm for unraveling observed trajectories on
a network to sample the corresponding trajectories on an
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infinite line is described in Sec. II C. We perform the un-
raveling procedure with 20 values of diffusion coefficient
in the range 0.2 — 2 (compared to the simulated value of
D =1). Residuals are calculated by interpolating each
unravelled MSD curve onto 100 logarithmically spaced
time-points and then applying Eq. 9. The self-consistent
diffusion coefficient is then found by estimating the value
of D that yields a local minimum in the normalized resid-
uals curve (eg: Fig. 2¢) via a cubic spline interpolation.

4. Simulation of fractional Langevin motion on
networks

The long-tailed memory kernel of fractional Langevin
motion implies that individual steps of such particles are
not Markovian, necessitating an alternate approach to
the simulation. We take the approach of assuming that
individual particles are undergoing fLM in two dimen-
sions, but that rapid reflections from the walls of a nar-
row tubule prevent their perpendicular motion and force
them to always land on the tubule axis. Our overall ap-
proach is analogous to that described previously [51] for
simulating the fractional Langevin equation under con-
finement, in the limit of no inertia (as appropriate for
highly viscous intracellular fluids). The particles main-
tain a memory of their past displacements in the 2D
imaging plane as they move throughout the network.

Specifically, we consider the power-law memory ker-
nel [57]

2-a)(l—a)

Kt—t)= PR

(A7)

and generate 2D stochastic forces FQEB% FZSB) as fractional
Gaussian noise [56] with time correlations in accordance
with the fluctuation dissipation theorem:
B B
<Fi( (1) F! )(t')> = Yk TE (t — )65,

where v is the friction coefficient and kT the thermal
energy of the particles. We note that this approach is
also applicable in 3D, although we have focused on planar
networks here to match the two-dimensional trajectories
extracted from experimental data.

The particle motion obeys the overdamped Langevin
equation:

0=—y /0 t K(t—t)a{t")dt' + F® (t) (A8)

where ¢(t’) is the instantaneous particle velocity. In the
absence of confinement, the MSD for such particles is
described by the following power law [57]:

(%) = 2D,t°,
ko T/ (A9)

e = @ e —)la+ I —a)




To propagate forward the particles via discrete time-
steps, we take the approach described in Ref. [50].
Namely, we discretize the integral in Eq. A8 and solve

for the next trial spatial step AZ,; based on all prior

steps AZ,+1 and the fractional Brownian force ﬁéi

The trial step AZ is then projected along the direction
of the current edge containing the particle (removing the
perpendicular component). If the remaining step takes
the particle past a degree-1 node (dead end), it is re-
flected off the node, back along the same edge. If it steps
past a degree-3 node, then it is placed randomly on one
of the adjacent edges (including the one it came from).
For our simulated networks, edges are evenly distributed
around each such junction, so that multiple reflections
in the tight junctional space are expected to be equally
likely to bounce the particle to any edge. Application
of this algorithm to more complex structures, including
bent degree-2 nodes and degree-3 nodes with uneven edge
distribution would require further refinement of this al-
gorithm (left to future work) to account for biased prob-
abilities of entering subsequent edges.

The final saved step AZ is then computed as the two-
dimensional difference between the final particle position
and its prior position at the start of the step. This saved
step is used in the computation of all future particle dis-
placements, allowing the particle to maintain a memory
of its prior speed and direction of motion.

We note that this simulation approach gives the ex-
pected mean squared displacement of 2D,t* when par-
ticles are placed along a single long edge or along a fully
connected honeycomb lattice (Supplemental Fig. S3).

5. Experimental methods
a. Cell culture, plating, and transfection

COS7 cells were purchased from ATCC and main-
tained in phenol red-free Dulbeccos modified Eagle
medium supplemented with 10% (v/v) FBS, 2mM L-
glutamine, 100U/ml penicillin and 100pg/ml strepto-
mycin at 37°C and 5% CO,. All experiments were per-
formed within 40 passages of the initial thaw, and passag-
ing was performed using phenol red-free trypsin (Corn-
ing).

High tolerance, 25mm Number 1.5 coverslips were pur-
chased from Warner scientific and precleaned with a
modified version of a previously described protocol [70].
Briefly, the coverslips were sonicated for 12 hours in 0.1%
Hellmenex (Sigma), followed by five washes in 300ml of
distilled water, followed by an additional 12 hour soni-
cation in distilled water and an additional round of five
washes. Coverslips were then ethanol sterilized in 200
proof ethanol and allowed to air dry in a clean tissue cul-
ture hood. After cleaning, coverslips were stored in an
airtight container until ready for use.

Coverslips were pre-coated with 500ug/ml phenol red-
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free matrigel (Corning). Cells were seeded to achieve
60% confluency at the time of imaging. Transfections
were performed after letting the cells adhere to the coated
glass for at least 12 hours, using Fugene6 (Promega) ac-
cording to the manufacturer’s protocol. Each coverslip
was transfected with 750 ng of PrSS-mEmerald-KDEL
to label the ER structure in the 488nm channel, and
with 250ng of HaloTag-Sec61b-TA for tracking on the
second camera. PrSS-mEmerald-KDEL uses the signal
sequence of bovine prolactin to target the fluorescent pro-
tein mEmerald to the ER lumen, where it is retained
through the use of a KDEL retention signal at the C-
terminus, as performed in [71]. The HaloTag construct
is a minimal targeting domain from Sec61b fused with
a flexible linker and the HaloTag [72, 73], as this con-
struct has been shown to be biochemically inert within
the ER[74].

b. Labeling conditions

Immediately before imaging, each sample was labeled
with 10nM PA-JF646 [75] in OptiMEM (ThermoFisher)
for 1 minute. PA-JF646 is a diazoketone-caged version
of the azetidine-containing Si-rhodamine JF-646, which
shows high signal to noise and low background at the
single molecule level when uncaged with 405 nm light
[75]. Following staining, cells were immediately washed
at least 5 times with 10 ml of PBS under continuous
aspiration, taking care not to let the cells contact the
air. This was followed by an additional wash in 10 ml of
pre-warmed, complete medium. Samples were then left
10 minutes in an incubator to let the cells recover before
moving immediately to the microscope.

c. Microscope and imaging conditions

Dual-color imaging was performed using a customized
inverted Nikon Ti-E microscope outfitted with a live
imaging stage to maintain temperature, CO5 level, and
relative humidity during imaging (Tokai Hit). The sam-
ple was illuminated with two fiber-coupled 488nm and
642nm lasers (Agilent Technologies) introduced into the
system with a conventional rear-mount TIRF illumina-
tor. Imaging was performed with the angle of incidence
of excitation light manually adjusted beneath the criti-
cal angle as needed to produce the most even illumina-
tion possible in the ER. If necessary, a small amount of
405nm light was introduced to increase the rate of pho-
toconversion in sparsely labeled cells, but in practice this
was rarely needed. The 488 illumination power was kept
beneath 100 W total in the back aperture, in order to
avoid undesirable activation of the photoconvertible dye.

Fluorescence emission light was collected with 100x a-
Plan-Apochromat 1.49 NA oil objective (Nikon Instru-
ments). Emission light was split into dual paths us-
ing a 565LP or 585LP dichroic mirror in a MultiCam



optical splitter (Cairn Research), and the two channels
were cleaned up by passing the light through 525/50
and 647LP filters (Chroma) placed before the camera.
Final signal was focused back onto synchronized dual
iXon3 electron mutliplying charged coupled device cam-
eras (EM-CCD, DU-897; Andor Technology). In this set
up, the raw image has pixels of 160nm x 160nm, and the
depth of focus has a full width half maximum of approx-
imately 700nm. Total image size was limited to 128x128
pixels (20.48um x 20.48um) in order to keep camera read-
out time from becoming rate limiting. Imaging was per-
formed with 5ms exposure times for 60-90 seconds at a
time, and the timing of each frame was monitored using
an oscilloscope directly coupled into the system (mean
frame rate ~ 95Hz).

6. Image analysis for experimental data
a. Image preparation and preprocessing

The ER is relatively stable at the level of diffraction-
limited imaging over the time scale of a second [61].
Thus, we performed 10 frame (110 msec) median filter on
the channel for the ER structure to increase the signal to
noise and minimize the necessary 488 radiation. Filter-
ing was performed for every frame, but for segmentation
and downstream analysis, the structure was analyzed ap-
proximately every second (100 frames).

b. Segmentation

Segmentation and analysis of the tubular ER structure
was performed using a two-step process. First, the inten-
sity in the filtered image was made uniform through time
with a simple ratio bleach correction. The location of the
ER within the image was identified using an interactive
pixel classification workflow in Tlastik [76]. Once the pre-
dictions for the ER label were judged to be of sufficiently
good quality, the image was made binary using a simple
threshold on the label probability exported from ilastik.

c. Eaxtracting network structure

For each binary segmented image of the ER structure,
we skeletonize using the bwmorph subroutine in MAT-
LAB, which also identifies junction pixels. Neighboring
junction pixels are grouped into a single node located at
their center of mass. We then use the bwtraceboundary
subroutine to trace out the skeletonized edges starting
from each node, until a neighboring node is reached. This
is repeated until the full skeleton has been categorized
into nodes and edges connecting specific node pairs. The
path of the edge between each pair of connected node is
smoothed using cubic splines. Network construction and
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manipulations is carried out using Matlab code provided
at: https://github.com/lenafabr/networktools.

d. Particle trajectories

Single molecule localization and tracking was per-
formed using the TrackMate plugin in Fiji [77, 78]. Single
molecules visible in each frame are quality filtered such
that the mean localization precision of retained molecules
is in the range of 25nm, as estimated using the Cramér-
Rao lower bound of an MLE fit [79]. Linking param-
eters were experimentally selected for each data set to
minimize visible linkage artifacts as determined by eye.
Datasets were then projected onto the simultaneously
collected structure of the ER and manually curated to
remove trajectory linkages that were close in 2D but far
from one another in the underlying organelle.

In Supplemental Fig. S6, we show (using simulated tra-
jectories) that localization errors below ~ 50nm are not
expected to significantly alter our estimates of the diffu-
sion coefficient.

For each network structure, obtained at =~ 1.08 sec (100
frame) intervals, we identify particle trajectory segments
that fall within £100 frames of the timepoint correspond-
ing to that structure. Those trajectories are then pro-
jected onto the network structure by finding the nearest
point along the edge paths to each particle position. Be-
cause the time intervals surrounding each network struc-
ture overlap with each other, each trajectory segment en-
ters the analysis twice by projection onto the structure
before and after its time-point.

Whenever the original particle position is more than
2px (~ 0.3um) away from the nearest network edge, the
projected point is removed and the trajectory is bro-
ken into separate segments. The trajectories are also
broken whenever a particle appears to step onto a non-
adjacent edge (bypassing more than one node) within a
single time-step. Furthermore, trajectories are truncated
when a particle disappears in a given frame, including
instances where the particle steps outside of the field of
view.

The projection step allows us to re-express a particle
trajectory in terms of the edge index and position along
the edge contour at each time step. Projected trajecto-
ries of length at least 10 time-steps were kept for analysis
and unravelled using the same algorithm as for simulated
data. An average of 380 projected trajectories per cell,
with average length 48 timesteps (0.51 sec) were ana-
lyzed.

We note that the structure of ER tubule junctions is
not well established, and it is possible that the tubule
intersections are substantially larger than the point-like
junctions considered in our model, or that particles could
be preferentially trapped at junctions. However, by ex-
amining the distribution of projected particle trajectories
(Supplemental Material, Figure S5), we see no evidence
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of junction trapping or unusually large junction regions both of which would result in preferential localization
for the HaloTag-Sec61b-TA proteins tracked in our study, near the network nodes.



