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The impact of regional-scale neutral atmospheric waves has been
demonstrated to have profound effects on the ionosphere, but the
circumstances under which they generate ionospheric disturbances and
seed plasma instabilities are not well understood. Neutral atmospheric waves
vary from infrasonic waves of <20 Hz to gravity waves with periods on the order
of 10 min, for simplicity, hereafter they are combined under the common term
Acoustic and Gravity Waves (AGWs). There are other longer period waves like
planetary waves from the lower and middle atmosphere, whose effects are
important globally, but they are not considered here. The most ubiquitous and
frequently observed impact of AGWs on the ionosphere are Traveling
lonospheric  Disturbances (TIDs), but AGWs also affect the global
ionosphere/thermosphere circulation and can trigger ionospheric instabilities
(e.g., Perkins, Equatorial Spread F). The purpose of this white paper is to outline
additional studies and observations that are required in the coming decade to
improve our understanding of the impact of AGWs on the ionosphere.
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Introduction

One of the main impacts of Acoustic and Gravity Waves
(AGWs) on the thermosphere is the formation and development
of Traveling Ionospheric Disturbances (TIDs) in the coexisting
ionosphere, which has long been a challenging science question
because of their immediate implications for communications,
navigation and geolocation as well as the fact that they are an
of the the
thermosphere and the are wave-like

example dynamics and coupling between

TIDs
propagating ionospheric density disturbances with horizontal

ionosphere.

scales sizes of 10-1,000 km. Some early observations of these
structures were made in the 1950s (Munro, 1950; Munro and
19564, 1956b), but the
undetermined nature of their occurrence and lack of global

Heisler, Munro and Heisler,

measurements have complicated efforts to obtain a
comprehensive understanding of how and why these features
form and evolve.

The basic source of AGW driven TIDs is thought to be fairly
well understood qualitatively: the TID is simply a signature of the
wave disturbance in the neutral atmosphere. However, the
evolution of the AGW from its source to thermospheric
altitudes and the overall impact of the AGW properties on
the jonosphere has not been properly quantified. Atmospheric
waves have many natural and anthropogenic causes including:
natural disasters (e.g., earthquakes, tsunamis, thunderstorms),
nuclear detonation and other explosions, Joule heating from
geomagnetic storms, and ocean sources (Djuth et al, 2010;
Zabotin et al., 2016; Azeem and Barlage, 2018). In the case of
AGW s driven from the Earth’s surface or troposphere, the waves
are typically characterized as primary or higher order (e.g.,
secondary)  depending how they propagate to

thermospheric altitudes. Primary AGWs propagate directly

on

through the thermosphere and can be modeled using linear
ray propagation theory. Higher order AGWs are created when
primary AGWs break in the upper atmosphere; nonlinear
propagation theory is required to simulate them (Vadas and
Crowley, 2010). While there are documented cases of TIDs
generated by primary gravity waves (Azeem et al., 2015; Huba
et al., 2015; Chou et al., 2017a; Azeem and Barlage, 2018), recent
studies have indicated that secondary and higher order gravity
waves may be largely responsible for TIDs in the ionosphere (e.g.,
Vadas and Crowley, 2010; Fritts et al., 2018).

Another potential impact of AGWs on the ionosphere is the
seeding of instabilities. While many TIDs are the direct result of
AGW forcing, there is another type of medium scale TID that
occurs at mid-latitudes, which is believed to be caused by the
Perkins instability. One hypothesis is that AGWs provide the
trigger for the Perkins instability, providing the necessary
increase to the growth rates to generate TIDs (Chou et al,
2017b). AGWs have also been identified as a potential trigger
for Equatorial Spread F (ESF) Bubbles, which are the result of a
Rayleigh Taylor instability at equatorial latitudes (Krall et al,
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2013; Aa et al., 2019). It is not known how frequently or under
what conditions AGWs can trigger these instabilities in the
ionosphere. Observational evidence of these connections has
been limited thus far due to a lack of sufficient measurements.

While many of the effects of AGWs on the ionosphere are
regional in nature, these local effects also contribute to the global
redistribution of mass and energy in the thermosphere/
ionosphere system. For example, Large Scale AGWs, which
are driven by Joule heating from geomagnetic storms, are
believed to be an important mechanism by which high
latitude forcing modifies the low-latitude thermospheric
density (Lu et al, 2016). In addition, since the resolution of
many global thermosphere/whole-atmosphere models is not
AGWs, their effect
thermospheric circulation is typically taken into account with

sufficient to resolve overall on
parameterizations (Hines, 1960). As these parameterizations do
not typically reflect the actual gravity wave spectrum for any
given time, there are generally large uncertainties associated with
them. Thus, the gravity wave parameterizations have been unable
to fully quantify the effects of AGWs on the global ionosphere/
system.

Understanding and predicting the physical mechanisms that
drive regional ionospheric perturbations, such as TIDs, is a key
challenge for the development of future space weather forecast
systems. There have been recent efforts to mitigate the effects of
TIDs on HF geolocation (Keller, 2012), but in order to predict
TID occurrence, their generation mechanisms must be
understood. The sparse nature of measurements in the
ionosphere makes it unlikely that these questions can be
answered via observational methods alone. Comprehensive
modeling studies combined with new, multi-instrument
observations will be required to obtain closure on these

science questions.

Outstanding science questions

What are the observable properties of TIDs driven from
atmospheric waves? TIDs generated from different types of
sources may exhibit similar or very different characteristics in
their spatial and temporal scales, periodicities, propagation
speeds and directions. Meanwhile, TIDs generated from the
same type of sources may exhibit different characteristics
depending on the local atmospheric or ionospheric conditions.
Therefore, it remains a challenge to distinguish the generation
mechanism of TIDs from ionospheric observations alone.
Additional measurements and modeling studies are required
to make progress on this issue.

What background conditions favor the generation and
propagation of TIDs? Emerging model capabilities are
demonstrating new techniques to understand the propagation
of AGWs to the upper atmosphere. Early results indicate that the
background thermosphere and ionosphere conditions contribute
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to the propagation of the AGWs and TIDs given that the
amplitude of TIDs may in cases be directly proportional to
the background electron density (Hunsucker, 1982). Future
research should seek to better understand these conditions in
order to evaluate the fidelity of different modeling techniques for
atmospheric wave propagation.

How do the smaller scale atmospheric waves affect the
global scale ionosphere/thermosphere density distribution? It
is well known that AGWs can affect the overall thermospheric
circulation. To account for these effects, neutral atmosphere or
whole atmosphere models typically utilize a gravity wave
parameterization (e.g., Liu et al, 2018). There are large
uncertainties with this parameterization, however, and an
obvious limitation is that they use a generic spectrum of
gravity waves, rather than an AGW spectrum specific to a
particular event (like thunderstorm convection), location (like
orography) and season. Without realistic driving forces, only
qualitative comparisons to the waves are possible.

When do AGW driven TIDs have electric fields and/or
conjugate effects associated with them? Recent work has
demonstrated that AGW driven TIDs can potentially induce a
signature in the conjugate ionosphere (Huba et al., 2015; Jonah
et al,, 2017; Zettergren and Snively, 2019; Chou et al., 2022; Lin
et al,, 2022), similar to TIDs that are generated from the Perkins
instability and E-F coupling. These AGW-related fluctuating
polarization electric fields were also measured recently in the
morning hours using the Millstone Hill incoherent scatter radar
(Zhang et al., 2021). It is not understood how frequently these
electrodynamic effects are observable and if they differ
significantly from the electric fields associated with Perkins-
In addition,
polarization electric fields may contribute to the TID

instability type TIDs. gravity wave-driven
generation, but these effects are not well understood (Abdu
et al., 2015).

How do the geopace storm magnetosphere-ionosphere-
thermosphere (M-I-T) coupling process excite and impact the
propagation of various TIDs? Although it is well established
that the solar wind-magnetospheric energy, momentum, and
particle depositions at high latitudes can excite AGWs and cause
global propagation of large scale TIDs. Strong M-I-T coupling
occurs at subauroral and midlatitude regions as well. Recent
studies suggested that some of those midlatitude TIDs, in
particular, MSTIDs, were highly correlated to subauroral
electrodynamics and its potential impact on the ionospheric
(Zhang et 2019). The
electrodynamics is also connected to neutral atmospheric

instabilities al., subauroral
disturbances in winds and the associated dynamo action. This
kind of storm-related MSTID studies have recently emerged, and
many questions remain to be answered by observations and
modeling regarding unique roles of storm-time electric fields and
disturbance winds for the MSTID excitation and propagation.

How do AGWs contribute to the development of other
ionospheric instabilities (e.g., Perkins instability, Equatorial
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Spread F)? AGWs are believed to provide triggering
of different
For example (Kelley and Makela,

for a number ionospheric
2001),

suggested that small-amplitude gravity waves with a phase

mechanisms
instabilities.

velocity component in a particular direction can enhance the
growth of the Perkins instability. While the Perkins instability
coupled with sporadic E-region instabilities cause the
electrified MSTIDs in midlatitude regions (Yokoyama,
et al., 2009; Narayanan et al,, 2018), the initial seed for
such coupled instabilities is believed to be provided by
AGWs. addition, AGWs the
development of Equatorial Spread F, as well as high-

In may contribute to
latitude instabilities associated with polar cap patches and
cusp irregularities. The circumstances and frequency with
which these developments occur is currently unknown.
the
occurrence rate between atmospheric and
instabilities (Takahashi et al., 2018; Takahashi et al., 2020),
but additional observations and modeling is required to fully

Some studies have demonstrated similarities in

waves

elucidate how and when AGWs seed ionospheric instabilities.

How predictable are AGWs and their effects on the
ionosphere? While the potential sources of AGWs are fairly well
known, the predictability of these sources and their impacts on the
thermosphere and jonosphere have not yet been evaluated. For
example, the spatial and temporal scales that are associated with
predictable features are yet to be quantified. The effect of varying
geomagnetic field orientations in constraining the interactions of
AGWs and the ionosphere is not well understood. In addition, the
conditions under which MSTIDs can propagate to different latitude
regions needs further study.

Developing tools and metrics to evaluate model fidelity. It
is imperative that the above science questions are accompanied
by a definition of community tools that will be used to evaluate
the fidelity of the models. The upper atmosphere community
needs tools and metrics that can be used by different models, as in
the numerical weather prediction communities. Many of the
model validation studies thus far have been more qualitative. The
community needs quantitative metrics that are connected with
wave characteristics and potential operational requirements.

Summary and recommendations

Significantly more observations are required to resolve
these questions about how atmospheric waves affect the
the
observations of TIDs are from Global Navigation Satellite

ionosphere. Many of currently available direct
System (GNSS) signal measurements, which provide Total
Electron Content (TEC) or scintillation (e.g., S4, ROTI
indices) and airglow imaging observations of OI 630 nm
emission during nighttimes. Since these measurements are
integrated over the path between the receiver and satellite in

the case of TEC and column integrated emissions in the case of
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airglow, they do not provide information on the vertical
structure of the ionosphere or the TIDs. Existing studies
indicate that there may be significant differences between
TEC data and bottomside ionosphere electron density data,
but significantly more measurements are needed. In addition,
different measurement techniques have observed different
aspects of the waves (Belehaki et al, 2020). In the
ionosphere, additional measurements of electron density as
a function of latitude, longitude and altitude; ion drifts and
electric fields are required to make progress on this issue. This
requirement can be supported by the operation of a dense
network of ionosondes capable of performing soundings with
a cadence less than 5min. Another possibility is the
Dynasonde technique, which provides more information
about wave activity than standard ionosondes (Zabotin
et al, 2017). Topside electron density observations from
LEO
measurements, can offer new possibilities in setting up a

satellites coincident with bottomside ionosonde
nowcasting system for the occurrence of ionospheric
instabilities in the topside ionosphere based on the
bottomside stratification (Belehaki et al., 2022).

In the neutral atmosphere, measurements of the winds,
composition and temperature are crucial to resolve many of the
science questions. So far, the only reasonable neutral parameters
available with relative ease are the wind information around
250km from the Fabry-Perot Interferometers, which provide
information from column integrated airglow emissions. To
properly understand the generation of TIDs, however, altitude-
resolved measurements of neutral densities, temperature and winds
are likely required. The Geospace Dynamics Constellation (Jaynes
et al, 2019) will provide new in situ measurements from a series of
distributed spacecraft near 400 km. During the initial phases, the
spacecraft will be separated by hundreds of kilometers in similar
high-latitude orbits. This will reveal new insight into the structure and
propagation of TIDs. However, lower altitude measurements
(100-200 km) are also required to capture the interplay between
AGWs and TIDs where ion-neutral coupling is the strongest.
Future missions with remote sensing of the winds and composition
in this region (such as DYNAMIC) or low-altitude in situ
measurements (such as ENLOTIS) can open up this new Frontier.
Additionally, CubeSat missions can also play a role in exploring this
region (Klenzing et al., 2020; Verkhoglyadova et al., 2021).

In the past decade, a number of high-resolution neutral models
have been developed that can help answer these science questions.
A partial list of these models includes MAGIC (Snively, 2017),
HIAMCM (Becker and Vadas, 2020) and WACCM-X (Liu et al.,
2018). These models have varying assumptions and techniques to
model the evolution of the neutral atmospheric waves, but would
allow for direct comparisons with observations, which is required
to better understand the underlying physics. They can all be used
to drive ionospheric models, which also allows direct comparisons
with ionospheric quantities such as TEC and electron density
(Inchin et al, 2021). By combining model studies with multi-
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instrument observations, significant progress can be made in
resolving these questions in the next decade.
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