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ACCURATE ASSESSMENT VIA PROCESS DATA

Abstract

Accurate assessment of student’s ability is the key task of a test.

Assessments based on final responses are the standard. As the infrastructure

advances, substantially more information is observed. One of such instances is

process data that is collected by computer-based interactive items and contain a

student’s detailed interactive processes. In this paper, we show both theoretically

and empirically that appropriately including such information in assessment will

substantially improve relevant assessment precision. The precision is measured

empirically by out-of-sample test reliability.

Key words: Process data; ability estimation; automated scoring;

Rao-Blackwellization
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1. Introduction

The main task of educational assessment is to provide reliable and valid estimates of

students’ abilities based on their responses to test items. Much of the effort in the past

decades focused on the item response theory (IRT) models, the responses of which are

often dichotomous (correct/incorrect), polytomous (partial score), and generically discrete

(e.g. multiple choice item). The rapid advancement of information technology has enabled

the collection of various sorts of process data for assessments, ranging from reaction times

on multiple choice questions to the log of problem-solving behavior on computer-based

constructed-response items. In particular, the sequence of actions performed by test-takers

that document the processes of test-takers’ solving a problem contains valuable information

on top of final responses, that is, dichotomous or polytomous scores on how well the task

was completed. The analysis of process data has recently gained strong interest, with a

wide range of model- and data-driven methods proposed to understand the types of

strategies that contribute to successful/unsuccessful problem-solving, identify the

behavioral differences between observed and latent subgroups, and assess the proficiency on

the trait of interest, etc. (e.g., He & von Davier, 2016; LaMar, 2018; Liu, Liu, & Li, 2018;

Xu, Fang, Chen, Liu, & Ying, 2018).

The emergence of process data provides the psychometric community with

opportunities to develop cutting-edge research and, at the same time, brings forward

challenges. Process data indeed contain rich information about the students. Much of the

literature focuses on developing new research directions. In this paper, we take a different

angle and try to answer the question how existing research could benefit from the analysis.

In particular, we develop a method to incorporate information in process data to the

scoring formula. There are two key features to consider: reliability and validity. For

reliability, we show that the process-data-based assessment is significantly more accurate
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than that based on the IRT models. In particular, we demonstrate through a real data

analysis that the process-data-based scoring rule yields much higher reliability than that of

the IRT-model-based ability estimates. Score based on a single process data item could be

as accurate as that of three IRT-based scores. Furthermore, we also provide a theoretical

framework under which process-data-based scores are guaranteed to yield more accurate

estimates of students’ abilities, of course, under certain conditions. Reliability, on the other

hand, is a more complex problem. Process data record the entire problem-solving process

that reveals different aspects of a student. It is unclear which part of the process is related

to the particular ability of interest. It is conventionally up to the domain experts to identify

construct-relevant process features and derive scoring rules. Such an approach is costly and

cannot be scaled up. Our approach considers an automated scoring system of process data.

Features are extracted through an exploratory analysis that typically lacks interpretation.

We take advantage of the IRT scores that helps us to guide scoring rules to yield a valid

test score. The entire procedure does not require particular knowledge of the item design.

Process data are often in a format not easy to directly incorporate to analysis. We

preprocess the data by embedding each response process to a finite dimensional vector

space. There are multiple methods to fill this task, including n−gram language modelling

(He & von Davier, 2016), sequence-to-sequence autoencoders (Tang, Wang, Liu, & Ying,

2019), and multidimensional scaling (Tang, Wang, He, Liu, & Ying, 2019). In this paper,

we use feature extracted from multidimensional scaling.

To the authors’ best knowledge, this is the first piece of work to use process data to

improve measurement accuracy. A literature that is remotely related to the currently work

is the automated scoring systems for constructed responses, for example, automated

scoring of essays, which aims at producing essay scores comparable to human scores based

on examinees’ written text (e.g., Attali & Burstein, 2006; Foltz, Laham, & Landauer,

1999; Page, 1966). In the context of computer-based problem solving items, process
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features have been used to predict the final item response (e.g., Qiao & Jiao, 2018; Tang,

Wang, He, et al., 2019; Tang, Wang, Liu, & Ying, 2019). Many automated scoring

algorithms were shown to produce comparable scores to expert ratings.

The proposed approach differs from most automated scoring systems in its objective.

Whereas automated scoring systems are often designed to reproduce expert- or

rubric-derived scores in an automated and standardized manner, the purpose of the

proposed two-step conditional expectation approach is not to reproduce the final scores but

to refine the latent trait estimates based on original final scores with the additional

information from the problem-solving processes.

The rest of the paper is organized as follows. Section 2 describes the statistical

formulation and the two-step conditional expectation method for score refinement is

introduced. Theoretical results on mean squared error (MSE) reduction in latent trait

estimation, as well as illustrative example for practical use, are presented. Section 3

contains an empirical example on the problem-solving in technology-rich environments

(PSTRE) assessment in the 2012 Programme for the International Assessment of Adult

Competencies (PIAAC) survey that compares the proposed method to the original

response-based scoring in several aspects. A discussion of the implications and limitations

is provided in Section 4.

2. Latent Trait Estimation with Processes and Responses

We start with a generic framework for the proposed approach, followed by a more

specific illustrative example. Section 2.1 lays the statistical foundation upon which the

proposed approach is built. Section 2.2 describes the proposed two-step conditional

expectation approach for process-based latent trait measurement and presents some related

theoretical results. Section 2.3 contains a detailed illustrative example, which shows how

the generic approach is implemented in practice.
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2.1. Statistical Formulation

Consider a test of J items that is designed to measure a latent trait, θ. For an

examinee, on each item j, both the final item response and the action sequence for

problem-solving are recorded. Denote the item response by Yj, which can be a polytomous

score ranging between 0 and Cj representing different degrees of task completion. Further

denote the action sequence by Sj = (Sj1, . . . , SjLj
), where Lj is the total number of actions

performed on the item, and Sjl is the lth action.

We consider the case where the action sequences record problem-solving details and

thus contain at least as much information as the final outcomes. In this case, the final item

response can be derived from the action sequence through a deterministic scoring rule f

such that Yj = f(Sj). Further suppose that the final responses to the J items are

conditionally independent given θ and follow some item response function (e.g., Lord,

2012),

P (Yj = yj | θ, ζj),

where ζj is the parameter vector associated with item j.

For the present purpose of latent trait estimation, we assume that the item parameters

(ζjs) have been calibrated and only the latent trait θ is unknown. Denote the

pre-calibrated parameters of item j by ζ̂j. The latent trait θ for each individual can be

estimated based on the response from one or more items. Commonly used latent trait

estimators include the maximum likelihood estimator (MLE), where

θ̂MLE = argmax
θ

∑

j

log(P (Yj = yj | θ, ζ̂j)), (1)
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the Bayesian expected a posteriori (EAP) and Bayesian modal estimators (BME), i.e.,

θ̂EAP = E[θ | Y] and θ̂BME = argmax
θ

P (θ | Y), (2)

where P (θ | Y) ∝ p(θ)
∏

j P (Yj = yj | θ, ζ̂j) with p(θ) being the prior distribution (e.g.,

Kim & Nicewander, 1993).

We aim at refining the θ estimators with a procedure that makes use of process data.

Since action sequences are in a non-standard format, instead of working directly with Sj,

we work with the K−dimensional numerical features extracted from Sj, denoted by

Xj = (Xj1, . . . , Xjk) ∈ RK . There are no restrictions on the feature extraction method

except that the produced features Xj must preserve the full information on the final

response Yj, in other words, σ(Yj) ⊆ σ(Xj), where σ(·) denotes the σ−algebra generated

by the random variable. Intuitively, this requires the extracted features to preserve full

information about the final score so that they can perfectly predict them. Since final

outcomes are deterministically derived from response processes, they can always be added

into extracted features to guarantee σ(Yj) ⊆ σ(Xj). Feature extraction methods such as

n-gram language modelling (e.g., He & von Davier, 2016; Qiao & Jiao, 2018),

multidimensional scaling (MDS; Tang, Wang, He, et al., 2019), and recurrent neural

network-based sequence-to-sequence autoencoders (Tang, Wang, Liu, & Ying, 2019), which

have documented performance in terms of near-perfect final response prediction, can be

applied in practice.

2.2. Two-Step Conditional Expectation Procedure

For a subset of items, B ⊆ {1, . . . , J}, denote by XB and YB, the examinee’s vectors of

features extracted from their action sequences and of their final responses, respectively. Let

θ̂YB
be an estimator of latent trait θ based on YB using, e.g., Equation (1) or (2). This
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subsection proposes a new estimator of θ by developing a two-step conditional expectation

procedure for score refinement. The new estimator makes use of the information from the

action sequences and is shown to improve upon YB in terms of reducing the mean squared

error.

To construct the new estimator, consider two disjoint subsets of items, B1 and B2.

From the above definitions, we have XBi
, YBi

and θ̂YBi
, i = 1, 2. Below describes our

construction of a new estimator of θ, θ̂XB1
.

Procedure 1 (Construction of New Estimator). Given final score-based estimators θ̂YB1
,

θ̂YB2
and process features XB1

, we construct a new estimator θ̂XB1
through the following two

conditional expectations.

Step 1: Regress θ̂YB2
on XB1

to obtain TX = E[θ̂YB2
|XB1

].

Step 2: Regress θ̂YB1
on TX to obtain θ̂XB1

= E[θ̂YB1
|TX ].

The resulting estimator, θ̂XB1
, is the new estimator for latent trait θ based on both the

responses and the processes on items in set B1. Note that step 1 regresses the latent trait

estimate from final scores on B2 against the process features on B1 to obtain TX , while step

2 regresses the latent trait estimate based on B1 final scores against TX . Switching the

roles of B1 and B2, we can similarly obtain θ̂XB2
.

The proposed procedure improves estimation of the latent trait under some

assumptions, which are to be presented. The first assumption requires the conditional

expectation of θ̂B2
given θ to be monotone increasing in θ. This assumption is satisfied by

virtually all reasonable trait estimators.

A1: m(θ) = E
[

θ̂YB2
| θ

]

is monotone in θ and has a finite second moment.

Next we assume that the examinees’ responses to items in B2 are correlated with

behavioral patterns on B1 only through the measured trait θ, not through other latent or
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observed traits. Since process features can include rich information about respondents

other than the measured trait, this assumption requires YB2
to be “good” in the sense that

no differential item functioning (DIF) occurs. For example, the process features XB1
may

well predict an examinee’s age, but responses YB2
shall not differentiate young or old

people as long as they have the same level of θ. However, we do allow YB2
to be very

“rough” measurements, in other words, θ̂YB2
might be biased and have large variance, as

long as the monotonicity assumption A1 is required.

A2: Given latent trait θ, YB2
and XB1

are independent.

Finally, for technical development, an exponential family assumption is imposed on

process features. The natural parameter η(θ) is assumed to be monotone so that there is

no identifiability issue for θ.

A3: The probability density function for features XB1
takes the following form

f(XB1
|θ) = exp {η (θ)T (XB1

)− A(θ)}h(XB1
), (3)

where T (XB1
) is a sufficient statistic for θ and the natural parameter η (θ) is

monotone in θ with a finite second moment.

Theorem 1 shows that the first step of our proposed procedure can summarize

extracted features into sufficient statistics.

Theorem 1. Under Assumptions A1-A3, TX is a sufficient statistic of XB1
for θ.

The proof of Theorem 1 is provided in the Appendix. From the sufficiency of TX with

respect to θ, it could be shown that step 2 reduces the MSE of θ̂YB1
for estimating θ by

taking conditional expectation with respect to this sufficient statistic. This result follows

directly from the Rao-Blackwell theorem (Blackwell, 1947; Casella & Berger, 2002), and is

stated in Theorem 2.
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Theorem 2. Under assumptions A1-A3, we have

E[(θ̂XB1
− θ)2|θ] ≤ E[(θ̂YB1

− θ)2|θ] for every θ. (4)

Remark 1. It follows directly from Theorem 2 that the MSE of θ̂XB1
for estimating θ is

less than or equal to that of θ̂YB1
, uniformly across all examinees. This holds even when

θ̂YB2
has large bias and variance. If θ̂YB2

has some known nice properties such as

unbiasedness, then step 2 in Procedure 1 is optional. In that case, TX = E [θ|XB1
] is the

posterior mean of θ and has the smallest possible MSE.

Remark 2. In practice, the explicit distributions of θ̂YB2
| XB1

and θ̂YB1
| TX are unknown,

and thus the two conditional expectations, E[θ̂YB2
| XB1

] and E[θ̂YB1
| TX ] in Procedure 1

can be approximated on finite samples using pretest data, for example, using multiple

regression or regularized multiple regression models. Alternatively, deep neural networks

can be fitted to approximate the nonlinear relationships between θ̂YB2
and XB1

, and similarly

between θ̂YB1
and TX .

Putting Theorem 2 in the measurement context, the MSE reduction for θ estimation

intuitively translates to the reduction of the expected measurement error. In practice, the

proposed approach can be applied to derive new scoring rules based on the pretest data.

This process-based new scoring rule can replace the original response-based scoring rule to

produce more reliable proficiency estimates in subsequent operational testing. It is also

possible to administer only a subset of pretest items in operational testing under the

refined scoring rule, which can potentially achieve comparable measurement precision to

original final response-based scoring, but with fewer items.
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2.3. Illustration

We now illustrate the proposed method through a specific setting. Consider a test of J

items, administered to N (pretest) examinees. For examinee i on item j, let Sij and Yij

denote item-level process data and polytomous final responses, respectively. Suppose that

the polytomous final responses are locally independent given the unidimensional latent

trait θ and follow the Graded Response Model (GRM; Samejima, 2016)

1− P (Yij < c | θi) = P (Yij ≥ c | θi) =
1

1 + exp[−(ajθi + djc)]
, c = 1, . . . , Cj, (5)

where the jth item has levels 0, 1, . . . , Cj with parameters aj and dj = (dj1, . . . , djCj
).

The following steps provide a roadmap to implement Procedure 1 on the pretest data

to produce a new process-based scoring rule for estimating θ on the subset of items B1.

Specifically, let B2 = B̄1 = {1, . . . , J} \ B1.

(1) IRT parameter estimation: On the final responses,

Y = {Yij : i = 1, . . . , N, j = 1, . . . , J}, fit the GRM to obtain the item parameters for

each item j, (âj, d̂j), for example using marginal MLE (Bock & Aitkin, 1981).

(2) Process feature extraction: For item j = 1, . . . , J , extract K-dimensional process

features X1j, . . . ,XNj from the problem-solving processes S1j, . . . ,SNj for each

test-taker. For instance, if MDS (Tang, Wang, He, et al., 2019) is applied for process

feature extraction, this step obtains X1j, . . . ,XNj ∈ RK that minimizes

∑

i<i′

(dii′ − ‖Xij −Xi′j‖)
2, (6)

where ‖ · ‖ is the Euclidean distance, dii′ = d(Sij,Si′j) is the dissimilarity between

action sequences of test-takers i and i′, Sij and Si′j, based on the dissimilarity metric

d(·), for example, the order-based sequence similarity metric (OSS; Gómez-Alonso &
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Valls, 2008). Details on MDS feature extraction from process data can be found in

Tang, Wang, He, et al. (2019).

(3) Set B2 trait estimation: For each examinee i, using the estimated item parameters in

step (1), ζ̂B2
= {(âj, d̂j) : j ∈ B2}, estimate latent ability based on responses from all

items in set B2, Yi,B2
, for example using EAP in Equation (2). Denote this latent trait

estimate for examinee i by θ̂i,YB2
.

(4) First conditional expectation: With the process features on items in B1,

X1B1
, . . . ,XNB1

, where XiB1
is obtained by column-binding the features extracted from

each item in set B1 in step (2), and the latent trait estimates from set B2,

θ̂1,YB2
, . . . , θ̂N,YB2

, fit a regression model for θ̂YB2
∼ XB1

to approximate E[θ̂YB2
| XB1

],

for example, using ridge regression (Tikhonov & Arsenin, 1977). Denote the estimated

regression function by f1, then for i = 1, . . . , N, obtain

Ê[θ̂i,YB2
| XiB1

] = f1(XiB1
) = TiX .

(5) Set B1 trait estimation: For each examinee i, using the estimated item parameters in

step (1) and the responses on items in B1, Yi,B1
, estimate latent ability (e.g., using

EAP). Denote this estimate by θ̂i,YB1
.

(6) Second conditional expectation: With the output from the first conditional expectation

(step (4)), T1X , . . . , TNX , and the latent trait estimates from set B1 (step (5)),

θ̂1,YB1
, . . . , θ̂N,YB1

, fit a regression model for θ̂YB1
∼ TX to approximate E[θ̂YB1

| TX ], for

example, using simple linear regression. Denote the estimated regression function by

f2, then for i = 1, . . . , N, Ê(θ̂i,YB1
| TiX) = f2(TiX) = θ̂i,XB1

.

(7) θ̂i,XB1
is the estimate of θ based on the process data from items in B1.

Figure 1 illustrates the steps taken to construct the process-based latent trait

estimator on set B1, θ̂XB1
.
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Figure 1: Flowchart for the construction of process-based latent trait estimator θ̂XB1
.

At the operational testing stage, for each new subject i∗ /∈ {1, . . . , N}, the following

steps can be applied to obtain a latent trait estimate based on his or her action sequences

on items in set B1:

(1) For each item j in B1, extract process features Xi∗j from action sequence Si∗j using the

same method as in step (2) above. When MDS is used for feature extraction, this

translates to finding

Xi∗j = argmin
X∈RK

N
∑

i=1

(dii∗ − ‖Xij −X‖)2. (7)

Column bind the extracted features Xi∗j’s across items to obtain Xi∗B1
.

(2) Let f2 ◦ f1 be the composition of the two conditional expectation functions obtained in

steps (4) and (6), that is f2 ◦ f1(X) = f2(f2(X)). Then the process-based latent trait

estimate of examinee i∗ on items in B1 is given by

θ̂i∗,XB1
= f2 ◦ f1(Xi∗B1

).

Remark 3. Under the proposed scoring rule, B1 $ {1, . . . , J} is a subset of the item pool,

and thus the produced latent trait estimate only exploits the process information of a subset
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of available items. Consider a partition of the item pool into M disjoint subsets,

{1, . . . , J} = ˙⋃M

m=1B
′
m, it is possible to implement the proposed scoring rule M times, each

time with B1 = B′
m and B2 = B̄′

m = {1, . . . , J} \ B′
m, and obtain M estimates of θ, i.e.,

{θ̂X
B′
m
: m = 1, . . . ,M}. Each θ̂X

B′
m

is the proficiency estimate based on the problem-solving

processes on items in subset B′
m. This way, the problem-solving processes of each item can

be used. The production of an overall proficiency estimate for a test-taker based on multiple

θ estimates, each from a different subset of tasks, is known as evidence accumulation under

the evidence centered design framework (Mislevy, Almond, & Lukas, 2003). One simple

way is to take the weighted sum of the individual estimators that minimizes the least

squares deviation from the original response-based latent trait estimator. We leave the

problem of best practices for evidence accumulation across tasks to future studies.

3. Empirical Example: PIAAC PSTRE

The proposed approach for score refinement is evaluated on the data collected from

the problem-solving in technology-rich environments (PSTRE) assessment from the 2012

Programme for International Assessment of Adult Competency (PIAAC) survey. The

empirical analyses are guided by two overarching objectives. First, the new process-based

scoring rule is compared to the original final response-based scoring rule on the recovery of

latent ability, so as to empirically validate the theoretical results on MSE reduction.

Second, because process-based scoring and final response-based scoring are expected to

produce different latent ability estimates of the same examinee, the current study further

examines the problem-solving patterns associated with largest discrepancies in process- and

response-based scores. In the following subsections, a description of the PIAAC PSTRE

data is first provided, followed by the methods and findings from the empirical analyses.
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3.1. The PIAAC PSTRE Data

Carried out by the Organization for Economic Co-operation and Development

(OECD), the PIAAC (e.g., Schleicher, 2008) is an international survey of the cognitive and

workplace skills of working-age individuals around the world. The first cycle of the PIAAC

survey in 2012 assessed three cognitive skills, namely literacy, numeracy, and PSTRE, on

participants from 24 countries and regions with age between 16 and 65 years. In addition

to the three cognitive assessments, the participants were further surveyed on their

demographic background and other information related to their occupation and education.

The current study focuses on the PIAAC 2012 PSTRE assessment, where individuals

were administered a series of computer-based interactive items. PSTRE ability refers to

the ability to use digital technology, communication tools, and internet to obtain and

evaluate information, communicate with others, and perform practical tasks (OECD,

2012). Successful completion of the PSTRE tasks thus requires both problem-solving skills

and familiarity with digital environments. The test environment of each item resembled

commonly seen informational and communicative technology (ICT) platforms, such as

e-mail client, web browser, and spreadsheet. Test-takers were prompted to complete

specific tasks in these interactive environments. Individuals’ entire log of interactions with

each item were recorded as log data. In addition, based on the extent of task completion,

polytomous scores were derived for each item.

A sample item that resembles PSTRE tasks is shown in Figure 2. Test-takers can read

the task instructions on the left side and work on the task in the simulated interactive

environment on the right. This item requires test-takers to identify, from the five web

pages presented on the screen, all pages that do not require registration or fees and

bookmark them. By clicking on each link, test-takers will be redirected to the

corresponding website, where they can learn more about the website. For example, clicking
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“Work Links” directs them to Figure 3, and further clicking on “Learn More” directs them

to the page on Figure 4. Once having finished working on the task, a test-taker can click

on the right arrow (“Next”) on the bottom-left. A pop-up window will ask them to confirm

their decision by clicking “OK” or to return to the question by clicking “Cancel”. A

test-taker who clicked on the aforementioned two links, bookmarked the page using the

toolbar icon, and moved on to the next question will have the recorded action sequence of

“Start, Click W2, Click Learn More, Toolbar Bookmark, Next, Next OK”.

Figure 2: Home page of the PSTRE sample item.
Reprinted from OECD Sample Questions and Questionnaire.

The computer-based version of the 2012 PIAAC survey assigned each test-taker with

two blocks of cognitive items, where each block consisted of fixed set items that assessed
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Figure 3: Web page returned from clicking the second link (i.e., “Work links”) on the home
page.

either literacy, numeracy, or PSTRE 1. The current study used the PSTRE response and

process data of individuals from five countries and regions, i.e., the United Kingdom

(England and Northern Ireland), Ireland, Japan, the Netherlands, and the United States of

America, and who were assigned to PSTRE for both blocks. Each PSTRE block consisted

of 7 items, and thus the two blocks total to 14 items. Note that a recorded action sequence

of “Start, Next, Next OK” indicates that the test-taker did not perform any actions on the

item and moved on to the next question 2. This type of behavior can be regarded as

1Approximately one-sixth of test-takers were assigned to PSTRE block 1 (PS1) as the first block and
PSTRE block 2 (PS2) as the second block.

2For the currently, we did not consider the time spent on the item by the test-takers and only look at the
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Figure 4: Web page returned from clicking “Learn More” on the “Work links” website.

omission and is distinguished from either credited or uncredited responses. The current

study excluded individuals who omitted any of the 14 items, resulting in a total of 2304

test-takers who responded to all 14 PSTRE items. For each item, the action sequences of

each test-taker were recorded, and a polytomous final score calculated based on predefined

scoring rubrics was available. These final scores (together with other demographic

covariates) were used to estimate individuals’ proficiency on PSTRE in the PIAAC survey.

Table 1 presents descriptive information of the 14 PSTRE items, including the task names

and the descriptive statistics of the final scores and action sequences.

action sequences for differentiating individuals with or without omission.
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Table 1: Descriptives information of the 14 PIAAC PSTRE items.

Final Score Sequence Length
Item ID Task name Score levels Median Action types Min Max Median
U01a Party Invitations 4 3 40 4 90 17
U01b Party Invitations 2 1 47 4 132 29
U02 Meeting Room 4 1 95 4 153 35
U03a CD Tally 2 1 67 4 51 9
U04a Class Attendance 4 0 615 4 304 49
U06a Sprained Ankle 2 0 30 4 57 10
U06b Sprained Ankle 2 1 26 4 51 18
U07 Book Order 2 1 40 4 79 24
U11b Locate Email 4 2 122 4 256 22
U16 Reply All 2 1 359 4 267 34
U19a Club Membership 2 1 75 4 356 19
U19b Club Membership 3 2 244 4 396 18
U21 Tickets 2 1 124 4 77 22
U23 Lamp Return 4 3 133 4 139 25

Note. Descriptive statistics calculated based on the 2304 participants without omission;
Score levels: number of ordinal response categories; Action types: the number of possible
actions in the log data; Sequence length: the number of actions performed by a subject.

3.2. Comparison of Process- and Score-based Estimators of Latent Proficiency

Ideally, one would want to compare the process- and response-based proficiency

estimators in terms of their recovery of true latent ability. However, with empirical data,

test-takers’ true θs were unknown. The two proficiency estimators were instead compared

on their agreement with performance on an external set of items that were designed to

measure the same trait. Specifically, the 14 PSTRE items were randomly split into two sets

of 7 items. The first set of 7 items, denoted by the scoring set Bs, were used to implement

response- or the process-based scoring rules and obtain the respective latent trait estimates

θ̂(s). A separate latent trait estimates, θ̂
(r)
Y , were obtained from the polytomous responses

on the second set of 7 items, denoted by the reference set Br. Any θ̂(s) obtained from the

scoring set does not use reference set response information, and θ̂
(r)
Y serves as an external

criteria for evaluating different θ̂(s)s. A particular θ̂(s) obtained from the scoring set was

evaluated with two evaluation indices, namely the mean-squared deviation (MSE) from
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θ̂
(r)
Y , i.e.,

MSE(θ̂) =
1

N

N
∑

i=1

(θ̂ − θ̂
(r)
Y )2, (8)

and its Kendall’s rank correlation (τ ; Kendall, 1938) with θ̂
(r)
Y . Note that, unlike the true θ,

θ̂
(r)
Y was estimated based on final responses to only 7 items and was expected to contain

significant measurement error. The correlation between θ̂(s) and θ̂
(r)
Y is hence attenuated by

the reliability of θ̂
(r)
Y , and the MSE of θ̂(s) with respect to θ̂

(r)
Y is expected to deviate from

the MSE of θ̂(s) with respect to true θ. Rather than interpreting the two evaluation metrics

as the recovery of true proficiency, they can instead be regarded as the split-half (Bs and

Br) agreement of latent trait estimates, or, alternatively, as the strength of association

between θ̂(s) and performance on similar tasks (θ̂
(r)
Y ). Lower MSE and higher Kendall’s τ

hence indicate higher reliability.

Throughout the study, the EAP estimator (Equation (2)) was adopted for all

response-based latent trait estimation, not only because it can handle all-correct or

all-incorrect responses but also because the posterior mean (EAP) minimizes the posterior

MSE. The prior distribution for θ was chosen to be the standard normal distribution,

which was also used as the latent trait distribution in the marginal MLE item parameter

estimation. Process features (Xs) were extracted from the action sequences using the

ProcData R package (Tang, Zhang, Wang, Liu, & Ying, 2020). The OSS was chosen as the

dissimilarity function, and the dimension of the MDS features for each item was set to

K = 30.

The relationship between test length and agreement with θ̂
(r)
Y was also examined.

Using response-based scoring, test lengths of t = 1 to 7 items on the scoring set (Bs) were

considered. For a particular test length t, a response-based latent trait estimate (θ̂YB1
) was

obtained on every possible combination (B1) of items of size t in Bs. Because the proposed

process-based scoring procedures require setting aside a set of items (B2) for the first
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conditional expectation, only test lengths of t = 1 to 6 were considered for process-based

scoring. For each t, every possible combination of t items was set as B1, the remaining 7− t

items in the scoring set (Bs \ B1) were set as B2, and a process-based latent trait estimate

(θ̂XB1
) was obtained using the two-step conditional expectation procedures for each of the

(

7
t

)

B1s. Linear models were adopted for both conditional expectations in the procedure.

For the first conditional expectation, E[θ̂YB2
| XB1

], a ridge regression on MDS features was

fitted to reduce overfitting using the glmnet (Friedman, Hastie, & Tibshirani, 2009) R

package. The shrinkage parameter was tuned to minimize the 10-fold cross-validation error

(deviance). The second conditional expectation, E[θ̂YB1
| TX ], where TX is the

one-dimensional output of the first conditional expectation, was approximated using

ordinary least squares regression.

Five-fold cross-validation was implemented to evaluate the behavior of different latent

trait estimators on an independent sample, i.e., a group of new test-takers that were not

used to develop the scoring rule. Specifically, the 2304 participants were randomly split

into 5 equal-sized groups. In each fold, one group was set aside as the test set for

evaluations, and the rest of the participants were used as the pretest sample to (1) estimate

the GRM item parameters of the 14 items, (2) train the MDS for action sequences

(Equation (6)), and (3) fit the two conditional expectation models for process-based

scoring. On the test set, each test-taker’s MDS process features were obtained based on

their sequence dissimilarities with the pretest samples (Equation (7)), response-based

latent trait estimates were obtained with item parameters calibrated from the pretest

sample, and the two regression models obtained from pretest data were used to produce

process-based latent trait estimates.

There are
(

14
7

)

ways to partition 14 items into scoring and reference sets (Bs,Br), each

containing a different combination of items that vary in process and response

informativeness. In the current study, 30 out of the
(

14
7

)

partitions were randomly sampled
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to obtain an approximate distribution of MSE and τ under each test length (up to 7 items)

using response-based and process-based scoring. For instance, with process-based scoring

using t items, the average MSE on a given partition, (Bs,Br), is

¯MSEt =
1
(

7
t

)

∑

∀B1⊂Bs:
|B1|=t

[

1

5

5
∑

f=1

MSEf (θ̂XB1
)

]

,

where MSEf (θ̂XB1
) is the MSE evaluated on the fth fold in the cross-validation, given by

MSEf (θ̂XB1
) =

1

|Nf |

∑

i∈Nf

(θ̂i,XB1
− θ̂

(r)
i,Y )

2.

Here, Nf is the set of participants in the fth fold, θ̂i,XB1
is individual i’s latent trait

estimate based on the processes on B1, and θ̂
(r)
i,Y is individual i’s latent trait estimate based

on the 7 polytomous responses on the reference set Br. Similar to the calculation of MSE,

we can also evaluate by the average Kendall’s τ for different test lengths. The MSE and τ

for response-based estimators can be obtained in the same manner.

Figure 5 displays the box plots the average MSEs for each partition of scoring and

reference sets, using different number of items (t) for scoring (x-axis, number of items in

Set 1) and different estimators. The green boxes correspond to the response-based θ

estimates with respect to reference set proficiency, and the red boxes correspond to that of

the process-based θ estimates. Each box plot represents the distribution of the ¯MSEs of

the 30 partitions for a particular test length and estimator. The horizontal dashed line

gives the averaged MSE of the response-based latent estimate using all 7 items across all 30

partitions. One can observe that for all test lengths between 1 and 6 items, the

process-based latent trait estimates consistently demonstrated smaller MSE, indicating

higher agreement with the performance on an external set of similar tasks (i.e., the

reference set response-based latent trait estimate). The advantage of the process-based
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estimator was more salient for shorter tests and diminished as the test length increased. In

particular, with one item (t = 1), the process-based θ̂XB1
achieved similar median MSE

with final response-based θ̂YB1
using 3 items (t = 3), and with t = 2, the median MSE of

θ̂XB1
was comparable to that with 6 items using final responses. With 3 or more items, the

process-based θ̂XB1
s consistently achieved similar or lower MSE than the response-based

estimators using all 7 items in the scoring set on all 30 partitions. Although the MSEs were

calculated with respect to the estimated θ̂s on the reference sets, the lower MSEs using

process-based scoring appeared to be consistent with the theoretical results on the MSE

reduction using the proposed two-step conditional expectation approach.
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Figure 5: Distribution of mean-squared deviation (MSE) between reference set θ estimate
and Set B1 θ estimate across different splits of scoring and reference sets, based on different
number of Set B1 items.

The box plots for Kendall’s rank correlations (τs) between reference set performance
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and different estimates from the scoring set are presented in Figure 6. Unlike the MSE,

which reflects absolute deviations, τ reflects the strength of associations of the two θ

estimates in the relative ranking of test-takers. It could be observed that the correlations

with reference set performance were consistently larger using process-based scoring for all

test lengths, suggesting that the rankings of latent ability estimates generated based on the

problem-solving processes were more similar to the rankings on reference set performance.

In addition, scores based on processes required less items to achieve a given level of

agreement. For instance, Kendall’s τ based on θ̂XB1
with two items was similar to that of

θ̂YB1
with 4 items.
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Figure 6: Distribution of Kendall’s rank correlations between reference set θ estimate and
Set B1 θ estimate across different splits of scoring and reference sets, based on different
number of Set B1 items.

The above evaluations focused on the agreement between reference set performance
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and process- vs. response-based θ estimates across all examinees. One may also be

interested in how the two θ estimation methods perform for different types of examinees.

In particular, it is worth evaluating the relative performance of the two estimators when

they disagree on an examinee’s latent proficiency ranking. Using the same 30 partitions of

scoring and references sets from above, we compared the θ̂YB1
s and θ̂XB1

s produced using 6

items3. On a test set, for each pair of response- and process-based estimators, θ̂YB1
and

θ̂XB1
, we regressed θ̂YB1

on θ̂XB1
using ordinal least squares regression and calculated each

individual’s Studentized residual for the regression. Individuals were then binned into 10

groups based on their deciles of the Studentized residuals. The deciles of the Studentized

residuals to some extent reflect the relative difference in performance rankings based on

θ̂YB1
and θ̂XB1

. The two ends of the deciles contain individuals whose process- and

response-based latent trait estimates disagree the most in terms of rankings: For

individuals in the first decile, their performance rankings based on responses were expected

to be much lower than that based on their problem-solving processes. Individuals in the

10th decile were ranked higher based on final responses than based on processes.

Individuals closer to the middle (4th - 6th decile) were expected to have relatively similar

rankings based on processes and responses.

The box plots of the average MSEs with respect to reference set performance θ̂
(r)
Y

across the 30 partitions, separated by test-set individual’s residual deciles, are shown in

Figure 7. It can be observed that, when the two scores mostly agree on individuals’

rankings, the MSEs of θ̂YB1
and θ̂XB1

with respect to reference set performance were very

similar. However, when the two scores disagreed the most (i.e., 1st, 2nd, 9th, and 10th

deciles), the MSEs of process-based θ estimates were much lower than that of

response-based estimates. Intuitively, the process- and response-based estimators can be

3There were again
(

7

6

)

possibilities to select 6 items for B1 from the 7 scoring set items. Similar to the
earlier evaluations, the reported performance results averaged across all possible combinations.
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thought of as two judges, one judging individuals’ performance based on the

problem-solving processes, and the other judging solely based on the final outcome. The

advantage of the process-based scores on the two extremes of residual deciles suggest that,

when the two judges disagree the most, the process-based judge’s estimate of an examinee’s

proficiency consistently predicted performance on other similar tasks better.

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

llllllllll

llllllllll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

llllllllll

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

Decile of Studentized Residuals in Polytomous Score ~ Process Score

M
S

E

Score

Process

Response

Figure 7: Distribution of MSE with reference set latent trait estimate in each residual decile.

3.3. Empirical Interpretations of Process-based Scores

The evaluation results suggested that the proposed process-based latent trait estimate

procedures led to an increase in consistency with performance on an external set of items,

and that the improvement appeared most significant for individuals whose process-based

and response-based latent trait estimates disagreed most. One question worth asking is
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how the process-based approach scores individuals differently from the response-based

approach. We explored this question by looking at the sequences of individuals whose

process- and response-based latent trait estimates disagree the most, i.e., have the highest

or lowest Studentized residuals for θ̂YB1
∼ θ̂XB1

.

Since the purpose of this subsection is interpretation rather than performance

evaluation, we tried to include as many items and participants as possible. Only a single

item U06a was chosen as B2, due to its shorter sequence lengths and lower sequence

diversity. All the other 13 items constitute the set B1. In addition, all 2304 participants

were included to obtain the process- or response-based latent trait estimates without

setting aside a testing set. For the individuals in the bottom and top 10 in the Studentized

residuals, we visually examined their action sequences on the 13 items.

Figure 8 shows the scatterplot of the latent trait estimates produced using processes

(x-axis) and using responses (y-axis). Crosses and squares correspond to individuals with

the lowest and highest Studentized residuals, respectively. The ten individuals with the

lowest Studentized residuals, i.e., those who received higher ranking based on processes,

were mostly at the bottom of the response-based proficiency continuum. In other words,

their final responses to the questions were mostly incorrect. However, based on the

problem-solving processes, they were placed in the middle/mid-low region of the

proficiency continuum. Below are some patterns that were identified from these

individuals’ action sequences. (Note: Examinees 1 - 10 represent persons with lowest to

10th lowest Studentized residuals.)

• Give-up/partial response: The examinees performed some of the key steps for one or

more questions but clicked “Next, Next OK” before reaching a credited response. For

example, on U16, which requires sending an email to a list of recipients containing

some key information, examinee 1 copied down the key information, opened the

“reply to all” window for sending emails, but decided to proceed to next question
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without sending out the email. On the same question, examinees 5 and 6 both typed

the key email content and recipients, but proceeded to the next question without

sending the email.

• Partial mastery: The examinees performed most of the key steps for one or more

questions but missed the credited response. For example, on item U04a which

requires creating a spreadsheet, examinee 2 managed to make a spreadsheet with the

key elements (column and row names, numerical entries) but was incorrect on some

numerical entries. On U23 (making a request to return a lamp), examinee 2 managed

to submit the return but selected the wrong reason for the return. On U16, examinee

4 sent out the correct email to one recipient but did not cc the rest. On item U21

that requires making ticket reservations in the browser, examinee 7 successfully

reserved tickets, but the tickets do not meet the requirements by the question. On

question U02 that requires making room reservations, examinees 9 and 10 made a few

room reservations but with incorrect starting or ending times.

• Careless mistakes: The examinees demonstrated the required skills for completing the

task but slipped due to careless mistakes. For example, on item U11b, which requires

sorting emails in a particular folder, examinees 3 and 8 sorted the emails in the Inbox

(default, wrong folder).

On the other side, the ten individuals with the highest Studentized residuals, i.e.,

those who received lower ranking based on processes, were mostly at the top of the

response-based proficiency spectrum. Their proficiencies based problem-solving processes,

however, were in the middle/mid-high range. For most of these individuals, there were

questions that they successfully completed but with less efficient methods. For example, on

item U16, individuals could send the email to the correct group recipients using “reply to

all” and copy/paste the key information to the email contents. Several examinees typed
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the recipients and the email content themselves instead. Another example is U19a, where

examinees were required to identify one row in a long spreadsheet and extract relevant

information. While they can directly locate the row using “search”, some examinees

visually inspected the entire spreadsheet to find the row. Aside from inefficient strategies, a

few examinees also performed large number of redundant steps on some questions that

were not required for successful task completion.

4. Discussions

Problem-solving processes contain rich information on individuals characteristics,

including the measured construct. The current study introduces a method to refine final

response-based latent trait estimates using the additional information from problem-solving

processes. A two-step conditional expectation approach was proposed for the score

refinement. Aside from choosing an appropriate IRT model for the final responses, the

proposed approach is completely data-driven and does not require prior specification of a

latent trait model for the problem-solving processes. Therefore, its implementation can be

mostly automated and will not require excessive expert input.

The main theorem states that, under some regularity conditions, the proposed

approach can lead to MSE reduction in latent trait estimation compared to the original

response-based estimation. An empirical study using the PIAAC PSTRE data further

showed that the process-based latent trait estimates tended to have higher agreement with

performance on similar tasks, thus higher reliability, compared to the response-based

estimates. In addition, in order to achieve a particular level of reliability (i.e., MSE or τ

with the external set of items), far fewer items would be required if the additional

information from the problem-solving processes is exploited for scoring.

The current study demonstrated that the proposed process-based score refinement

approach could consistently improve test reliability (i.e., achieving lower MSE and higher
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Kendall’s τ with the other half). However, there are a few caveats for its implementations,

especially for exams with higher stakes. First, the current study evaluated the performance

of the process-based and response-based latent trait estimators using up to 7 items for

scoring. The choice of up to 7 items was due to the limited number of total items available

(14) and the need to set aside a large enough reference set of items used for evaluations.

For an operational test, however, 7 items’ final responses are far from sufficient for reliable

measurement, and the measurement error in the final response-based latent trait estimates

can propagate to the process-based scores through the conditional expectations. Test

developers are advised to have a sufficiently large scoring set, so that relatively reliable

response-based latent trait estimates can be obtained. Second, the proposed process-based

scoring approach only aimed at improving the measurement precision, or reliability, of the

assessment through MSE reduction. The validity of the scoring rule, however, is a separate

critical issue to be addressed. Looking at the empirical interpretations of the process-based

scores, it appeared that individuals were scored higher based on processes when they gave

up on the track to a correct response, demonstrated partially correct responses, or slipped

on the final response due to careless mistakes. In these cases, increasing the individuals’

latent trait estimates may be reasonable, because each of these patterns demonstrated

partial or full mastery of the required skills for completing the tasks. On the other hand,

individuals who reached correct responses but with less efficient problem-solving behavior

received lower process-based proficiency estimate. Although the adjusted scores were closer

to the performance on similar tasks (Figure 7), penalizing test-takers based on inefficient

test-taking strategies may be more controversial. Evaluation of measurement validity

would require both substantive knowledge and expert input. We leave the question of how

to best assist experts with the validation of data-driven latent proficiency estimators to

future research.

The methods for data-driven score refinement based on problem-solving processes can
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be extended in several ways. Because the proposed process-based scoring approach requires

setting aside one or more items for the first conditional expectation, there will be at least

one item whose information is not used for process-based scoring. To fully exploit the

information from all items, the process-based scoring approach can be applied iteratively to

different subsets of items to produce multiple latent trait estimators. One key question to

be addressed is how multiple latent trait estimators based on different sets of tasks can be

efficiently combined to produce an overall latent ability estimate. Another potential

extension of the process-based scoring method is to diagnostic assessments (e.g., Templin,

Henson, et al., 2010), where, instead of measuring individuals on the continuous proficiency

continuum, the goal is to classify individuals into latent classes based on their mastery

status of discrete skills.

The proposed approach for process-based scoring can be particularly useful for

low-stakes computer-based assessment scenarios, when the administration of long tests is

unrealistic or burdensome. In such cases, with the additional information from

problem-solving processes, the tests can be significantly shortened without sacrificing

measurement reliability. An example is interim formative assessments during the learning

process, where, after every one or a few classes, the educators may want to learn how well

the students have mastered the recently taught contents. Administration of a long test

after each several classes can be very burdensome for the students and may interrupt the

learning process. In such cases, a relatively reliable latent ability estimate can be obtained

if the problem-solving processes to a few constructed response items are available.

Although computerized adaptive testing (CAT; e.g., Wainer, Dorans, Flaugher, Green, &

Mislevy, 2000) can also reduce required test length through the adaptive selection of test

items tailored to individuals real-time proficiency estimates, the construction of a CAT

usually requires a large pre-calibrated item pool with hundreds of items, which may be

overly costly and hard to achieve for many smaller-scale and low-stakes assessments. The
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production of a process-based scoring rule, on the other hand, only requires sufficient items

for reliable measurement of latent proficiency and a sample size that is sufficient for item

parameter calibration, process feature extraction, and training the two conditional

expectation models. With a pretest sample size of approximately 1843 examiness (80% of

2304 samples), the empirical studies based on the PIAAC PSTRE data demonstrated

improvement in reliability for new subjects’ proficiency estimates.
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Appendix: Proofs of Theorems 1 and 2

To prove Theorem 1, we need the following lemma.

Lemma 1. Let X be a nonconstant random variable, and f(·) and g(·) be strictly

increasing functions. Suppose that f(X) and g(X) have finite second moments. Then

Cov (f(X), g(X)) > 0 .

Proof of lemma 1. Let Y be an independent and identically distributed (i.i.d.) copy of X.

It is easy to verify the following identity

Cov (f(X), g(X)) =
1

2
E [(f(X)− f(Y )) (g(X)− g(Y ))] . (9)

Clearly, for any x and y, (f(x)− f(y))(g(x)− g(y)) ≥ 0, and “ =′′ holds if and only if

x = y. Since P (X 6= Y ) > 0, the right-hand side of equation (9) must be positive.

Proof of Theorem 1. By Assumption A2 (conditional independence),

TX = E
[

θ̂YB2
|XB1

]

= E
[

E
[

θ̂YB2
|XB1

, θ
]

|XB1

]

= E
[

E
[

θ̂YB2
|θ
]

|XB1

]

= E [m(θ)|XB1
] .

Due to Assumption A3 (exponential family), the posterior distribution of θ given XB1

depends on XB1
only through the sufficient statistic T (XB1

). In fact,

TX = E [m(θ)|XB1
] = G(T (XB1

)),

where G(t) = E [m(θ)|T (XB1
) = t]. Furthermore, by making use of the exponential family

form in Assumption A3 and the simple exchange of order of differentiation and integration,

we can show that

G′(t) = Cov [m(θ), η(θ)|T (XB1
) = t] .
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Since both m and η are strictly monotone, Lemma 1 implies that G′(t) is strictly positive

or negative for all t and, therefore, G is strictly monotone. In other words, there is a

one-to-one mapping between TX and T (XB1
).

Proof of Theorem 2. From Theorem 1, we know that TX is a sufficient statistic. Since θ̂YB1

is σ(XB1
) measurable, we have E

[

θ̂YB1
|TX , θ

]

= E
[

θ̂YB1
|TX

]

= θ̂XB1
. Theorem 2 then

follows from the well-known Rao-Blackwell Theorem (Casella & Berger, 2002), noting that

θ̂XB1
and θ̂YB1

have the same bias.
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Figure 8: Scatterplot of process- and response-based θ estimates with 13 items (excl. U06a).
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