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Abstract

Attention often requires maintaining a stable mental state over time while simultaneously improving perceptual
sensitivity. These requirements place conflicting demands on neural populations, as sensitivity implies robust response
to perturbation by incoming stimuli, which is antithetical to stability. Functional specialization of cortical areas provides
one potential mechanism to resolve this conflict. We reasoned that attention signals in executive control areas might
be highly-stable over time, reflecting maintenance of the cognitive state, thereby freeing up sensory areas to be more
sensitive to sensory input (i.e., unstable), which would be reflected by more dynamic attention signals in those areas. To
test these predictions, we simultaneously recorded neural populations in prefrontal cortex (PFC) and visual cortical area
V4 in rhesus macaque monkeys performing an endogenous spatial selective attention task. Using a decoding approach,
we found that the neural code for attention states in PFC was substantially more stable over time compared to the
attention code in V4 on a moment-by-moment basis, in line with our guiding thesis. Moreover, attention signals in PFC
predicted the future attention state of V4 better than vice-versa, consistent with a top-down role for PFC in attention.
These results suggest a functional specialization of attention mechanisms across cortical areas with a division of labor:
PFC signals the cognitive state, and maintains this state stably over time, while V4 responds to sensory input in a
manner dynamically modulated by that cognitive state.

Introduction

Nervous systems provide two critical functions: 1) the ability to respond to input, and 2) the ability to store information
in the absence of input. These two functions conflict with each other because information storage requires a stable repre-
sentation that is robust to outside perturbation, whereas sensitivity to perturbation is the essence of responsiveness. The
functional specialization of cortical areas reflects one means to resolve this apparent conflict. Areas that are synaptically
distant from the sensory periphery (such as frontal executive control areas) might function through highly stable activity
patterns in line with the need to maintain cognitive states across long time-scales, whereas activity patterns in sensory
areas closer to the periphery might be more volatile, reflecting their sensitivity to sudden environmental changes (Murray
et al. , 2014; Runyan et al. , 2017).

Indeed, there is substantial evidence for the dynamic nature of sensory responses within sensory cortical areas. For
example, although the earliest spikes in response to a visual input generally carry the most information about the stimulus
(Osborne et al. , 2004), feature selectivity in visual cortex continues to develop over time. Such dynamic sensory coding
has been observed in several contexts, including orientation selectivity (Ringach et al. , 1997; Shapley et al. , 2003; Müller
et al. , 2003) and contour integration (Chen et al. , 2014) in area V1, texture selectivity (Kim et al. , 2019) and object
occlusion (Fyall et al. , 2017) in area V4, and pattern motion sensitivity in area MT (Smith et al. , 2005; Pack & Born,
2001).

In contrast, stable representations have been hypothesized to be essential for executive functions involving maintenance
of information on long time-scales (several seconds and longer). One brain area implicated in such executive functions is
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the lateral prefrontal cortex (PFC), and indeed evidence for stable neural representations in PFC has been reported for
long time-scale behaviors including categorical reasoning (McKee et al. , 2014; Cromer et al. , 2011; Freedman et al. , 2003),
flexible rule-based decision-making (Siegel et al. , 2015; Bunge et al. , 2003), and working memory (Parthasarathy et al. ,
2019; Constantinidis et al. , 2018; Wasmuht et al. , 2018). It is important to emphasize that such stable representations
can exist at the population level despite considerable temporal instability at the level of individual neurons (Druckmann
& Chklovskii, 2012). The case of working memory provides an excellent illustration of this point: recent work employing
population-level analyses has found that although the activity of PFC neurons can be highly dynamic during memory
maintenance periods, a stable representation can persist in a subspace of the population activity that encodes the mnemonic
information (Murray et al. , 2017; Parthasarathy et al. , 2019).

One cognitive function that exemplifies the tension between stability and sensitivity is selective attention, which is the
ability to marshal limited processing resources preferentially for goal-relevant information, while suppressing the processing
of less-relevant or distracting information. For example, consider searching for a friend wearing a red shirt in a crowd. This
requires maintaining a stable representation that “red” is the relevant visual feature, while also endeavoring to improve
visual sensitivity to that feature. Correlates of attention have been found in the neural activity of multiple sensory areas
(for review: Maunsell, 2015; Hromádka & Zador, 2007; Gomez-Ramirez et al. , 2016), as well as parietal (Desimone &
Duncan, 1995) and frontal association cortex, including PFC (Paneri & Gregoriou, 2017). Previous work has suggested
that PFC and V4 directly interact in the service of attention (Squire et al. , 2013), but the functional specialization of
those areas has not been tested with respect to the relative stability of population activity. Moreover, while previous
researchers have speculated that diversity of intrinsic timescales across cortical areas reflects a computational division-of-
labor (Murray et al. , 2014), this type of interplay of stable and unstable processes has not been directly demonstrated
moment-to-moment with simultaneous recordings in multiple brain areas. Previous studies have focused on trial-averaged
activity rather than moment-to-moment signals from populations of neurons.

We asked if the conflicting demands of selective attention to maintain stable task-set representations and to enhance
sensitivity to input might be distributed across nodes of this network, and if so, what is the nature of that areal special-
ization. Thus, for the present study, we sought to compare the temporal stability of –and interaction between –attention
signals in two key nodes of the attention network: V4 and PFC. We predicted that PFC population activity would more
stably represent the attention state compared to population activity in V4. This prediction is in line with the relative
stability of task-set representations previously found in PFC compared to the relative dynamism of sensory processes in
V4, but has not yet been explicitly tested with simultaneous measurement of population activity in the two brain areas.
Thus, we provide the first direct evidence for this division of labor for temporal stability across frontal and visual cortical
areas on a moment-by-moment basis on individual trials.

To test our prediction that PFC signals attention states stably whereas V4 attention states are more dynamic, we
simultaneously recorded neural populations in V4 and dorsolateral PFC of monkeys while they performed a visuospatial
selective attention task, and then used a decoding approach to assay the degree to which the population codes for attention
in each brain area were stable. We found neural codes for attention states remained highly stable in a subspace of prefrontal
population activity whereas corresponding codes in V4 were relatively dynamic. We also found that the estimated attention
state in PFC predicted the future attention state in V4 on a centisecond time-scale, in line with a top-down role of PFC in
endogenous attention processes. These results suggest attention relies on areal specialization for subfunctions of selective
attention processes: stable task-set representations are maintained over time in frontal cortex, freeing up visual cortex to
remain sensitive to external events.

Results

We recorded neural population activity from PFC and V4 simultaneously in the same hemisphere of two adult male
monkeys (Macaca mulatta; Figure 1a) while they performed a spatial selective attention task (Figure 1b). The animals
were more accurate (Figure 1c) and faster (Figure 1d) at discriminating orientation changes at a high-target-probability
location (“cue-valid” targets) than at a low-target-probability location (“cue-invalid”), confirming that they selectively
attended to the high-target-probability location during the task.

Single-neuron attention signals

The firing rate of individual neurons differed depending on whether or not the receptive field (RF) location had a high
target-probability (i.e., was likely attended). As we previously reported (Snyder et al. , 2018), most V4 neurons fired more
vigorously in response to an attended stimulus than an unattended stimulus (Figure 2a. We did not observe a difference
in the average spontaneous firing rate in V4 between attention conditions. In PFC, the average firing rate was slightly
more vigorous towards the end of the stimulus interval when attention was directed ipsilaterally compared to when it was
directed contralaterally (Figure 2b). As in V4, average spontaneous firing rates in PFC did not differ between attention
conditions.
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Figure 1: Dual V4 and PFC recordings during a spatial attention task. (a) Approximate location of Utah array implanta-
tions in V4 (green) and PFC (purple). (b) Animals fixated a central dot while stimuli were repeatedly flashed bilaterally.
Reinforcement was given if the animal made a saccade to a stimulus that changed orientation from the previous presenta-
tion (the “target”). In a blocked fashion, the target was more likely to occur in one hemifield (the “valid” location). Cue
trials, in which only one stimulus appeared at the high-probability location, signaled the start of each block. (c) Animals
were more accurate at detecting ∆3◦ targets at the valid location than at the invalid location, confirming that they selec-
tively attended to the valid location (Monkey P: cue-valid d′ = 1.76 ± 0.20 [mean ± SEM], cue-invalid d′ = 0.47 ± 0.20,
t23 = 4.64, p = 1.13 ·10−4; Monkey W: cue-valid d′ = 0.46±0.18, cue-invalid d′ = −0.75±0.18, t22 = 5.22, p = 3.12 ·10−5).
Results for Monkey P are shown, results for Monkey W were similar (cf. Snyder et al. , 2018). (d) Animals were also faster
at detecting targets at the valid location than at the invalid location (Monkey P: reaction time (RT) benefit for cue-valid
compared to cue-invalid targets ∆RT = −29.2± 1.6 ms, t23 = −17.90, p = 5.32 · 10−15 Monkey W: ∆RT = −42.3± 4.8
ms, t22 = −8.79, p = 1.19 · 10−8). Results for Monkey P are shown, results for Monkey W were similar.
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Figure 2: Peristimulus spike time histograms (PSTHs). (a) Population average for V4 (top: raw firing rate; bottom:
normalized firing rate). Neurons in V4 generally responded more vigorously in response to an attended stimulus than
an unattended stimulus, particularly during the late, sustained portion of the response. Baseline modulations were
not observed on average. Black bars over data indicate time points with significant differences between cue-in-RF and
cue-away conditions (independent samples t-test, p < 0.05). (b) Population average for PFC. On average, neurons in
PFC responded slightly more vigorously near the end of the stimulus interval when attention was directed ipsilaterally
compared to when it was directed contralaterally (bottom). (c) PSTHs for example individual neurons in V4 illustrating
diversity of attention modulations. Unlike the population average (panel ‘a), some individual neurons showed baseline
modulations (top), and/or more vigorous responses to unattended stimuli (middle). Other neurons more closely resembled
the population average (bottom). The time-course of attention modulation varied across neurons in the population, and
changed magnitude or sign over time for individual neurons. These observations suggest a dynamic code for attention
in V4. (d) PSTHs for example individual neurons in PFC. In PFC, the effect of contralaterally-directed attention on
firing rates was much more consistent across time than in V4, suggesting a more stable code for attention. Responses to
non-target stimuli to which animals correctly withheld responding are shown. Shading represents ±1 standard error of
the mean (SEM).
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Figure 3: Extracting latent factors from the V4 and PFC population activity. (a) Schematic of dimensionality reduc-
tion with Gaussian process factor analysis (GPFA). A low-dimensional subspace of the neural population activity space
was identified that captured shared variability of activity among neurons within each brain area (left), resulting in a
lower-dimensional set of latent factor scores (right). (b) Average factor scores for one factor for each brain area from
a representative session. At each time point (e.g., the dashed line at -10 ms relative to stimulus onset; insets show dis-
tributions across trials of factor scores at the indicated time), we trained a logistic regression decoder to classify trials
as cue-in-RF or cue-away using the factor scores. One factor is shown for illustrative purposes; in actuality ten factors
were used for decoding. The gray rectangle indicates the time when the stimulus was present (400 ms duration). Shading
represents ±1 SEM.

The patterns of attention modulations observed for individual neurons diverged greatly from the population averages,
however. For example, in V4 some neurons that had greater stimulus-related firing rates with attention were in contrast
suppressed by attention in the absence of a stimulus (Figure 2c, top). Other V4 neurons fired comparatively less in
response to an attended stimulus than an unattended stimulus (Figure 2c, middle). Specifically, we found that for 19%
of neurons in our sample that had a significant attention effect both before and during the stimulus, the direction of that
effect changed between the two time periods of interest (Snyder et al. , 2018). This pattern of results suggests that the
population code for attention in V4 is dynamic and depends on the stimulus context. For PFC, while the average firing
rate was similar between attention conditions, individual neurons showed strong and stable attention effects in different
directions (Figure 2d). Some PFC neurons showed fairly constant firing rates over time (i.e., not stimulus-dependent) that
differed between attention conditions (Figure 2d, top). Other PFC neurons’ firing was suppressed (Figure 2d, middle) or
facilitated (2d, bottom) by stimuli, but nonetheless showed consistent differences between attention conditions over time.
For example, the proportion of PFC neurons with significant attention effects both before and during the stimulus that
changed the direction of their effect between the two time periods was significantly smaller than for V4 (PFC: 59/1027
[5.4%], V4: 96/404 [19.2%]; χ2 = 73.59, p = 9.61 · 10−18).

Population-level attention coding

Population-level analyses can reveal dynamics or stability of neural codes hidden at the single-neuron level (Snyder et al. ,
2018; Murray et al. , 2017), so we tested for this possibility. We first reduced the dimensionality of the activity from each
population using Gaussian process factor analysis (GPFA) (Yu et al. , 2009, Figure 3a). This allowed us to focus subsequent
decoding analyses on variance that was shared among neurons within each population, as well as to avoid overfitting when
decoding (the qualitative pattern of results was similar if performed on the full population data, although with worse
performance due to overfitting). It is important to note that we performed dimensionality reduction after subtracting
the trial-averaged response of each neuron from each trial. That is, we were not interested in dynamics due simply
to the average stimulus response, but rather sought to emphasize non-stimulus related activity. In our case, the fitted
Gaussian processes for the latent factors that best explained the V4 population activity typically had faster characteristic
time-scales than the latent factors that best explained the PFC population activity (e.g., Figure 3b), indicating that V4
activity changed more quickly than did PFC activity (V4 time-scale: τ = 94.63± 46.14 ms [mean±SD]; PFC time-scale:
τ = 201.82± 125.80 ms; independent samples t-test: t938 = −17.24, p = 1.18 · 10−58, N = 940 [470 factors (i.e., 10 factors
for each session) x 2 brain areas]). This suggests that V4 and PFC have different intrinsic time-scales, in line with our
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Figure 4: Decoding attention state. (a) At each time point (t), we found the optimal coefficients (~βt) for the logistic
regression equation shown, where ~xt is a vector of GPFA scores. We then estimated the attention state, P (cueRF ), in
a cross-validated manner. (b) Using the same representative session and time point indicated in Fig. 3b, we estimated
the probability that each trial came from the cue-in-RF condition, P (cueRF ) (inset: distributions of P (cueRF ) values for
that time point). By varying the classification threshold, we constructed receiver operating characteristic curves to assess
how separated were the cue-in-RF and cue-away distributons. Both brain areas carried predictive information about the
cue condition. (c) Decoder performance (cross-validated area under the receiver operating characteristic curve). Logistic
regression models trained on population activity from each brain area performed significantly better than chance (0.5)
at predicting which location was cued during the task at all time points (t-test, p < 0.05, Bonferroni-corrected). This
indicates that population activity in both brain areas encoded information about the attention state at all times. Shading
represents ±1 SEM. N = 47 sessions across two subjects.
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Figure 5: The population code for cue condition is more dynamic in V4 than in PFC. (a) Average probability that the
RF was cued (P (cueRF )), estimated from cue-in-RF trials. The average prediction was more dynamic over time in V4
(green) than in PFC (purple). The gray rectangle indicates the time the stimulus was present. Shading represents ±1
SEM. N = 47 sessions across two subjects. (b) Same conventions as in panel ‘a’, but for the average probability that the
cue was away from the RF (P (cueaway)) using population activity on the cue-away trials. (c) Decoding stability. In V4,
decoded P (cueRF ) values were highly correlated only when using decoders trained at nearby time points, which indicates
a dynamic code for attention. (d) In PFC, decoded P (cueRF ) values were highly correlated when using decoders trained
across a much wider range of time points, indicating a stable code. (e) Statistical comparison of ‘c’ and ‘d’. For each
observed P (cueRF ) correlation value, we tested whether the correlation was significantly different between the two brain
areas (dependent-samples t-test, N = 47 sessions, α = 0.05, Bonferroni-corrected for the number of time-point pairs).
P (cueRF ) values are significantly more correlated across a wider range of time points in PFC than in V4. The black
contour indicates the significant p-value threshold of p = 0.05.



guiding thesis as well as previous findings (Murray et al. , 2014; Runyan et al. , 2017).
Although the latent factors for V4 varied more quickly than those for PFC, this does not necessarily mean that the

population code for attention in V4 is less stable than in PFC, as previous research has shown encoded information can
remain stable despite highly dynamic population activity (Murray et al. , 2017; Parthasarathy et al. , 2019). Thus, we next
applied a decoding approach to the latent factors to assay and compare the time courses of encoded attention information
in the two brain areas. We used logistic regression to decode whether the RF (or the opposite hemifield) had been cued
from the neural population activity in each brain area (Figure 4). Since the question of code stability is only interesting
if the code carries predictive value, we confirmed our decoders performed significantly better than chance in both brain
areas at all time points during a trial (Figure 4c; t-test, p < 0.05 at all time points, Bonferroni-corrected). Importantly,
we were able to decode attention states even during pre-stimulus periods during which population average firing rates were
quiescent and similar between attention conditions (Figure 2a). Having established that both V4 and PFC encoded the
attention state throughout the experiments, we next asked if we could establish the comparative dynamics of those codes.

Dynamics of population attention codes

In subsequent analyses, rather than decoding a binary value (i.e., cue-in-RF or cue-away), we focused on a more sensitive
metric – the probability that the RF had been cued (P (cueRF )), as an estimate of the attention state. This value was
obtained from the logistic regression described above and varies between 0 and 1, where 0 corresponds to cue-away and
1 corresponds to cue-in-RF. Since we were especially interested in the temporal stability of attention signals, we next
examined the average time course of P (cueRF ) in each brain area for trials from each attention condition. On trials for
which the RF had been cued, the average P (cueRF ) was greater than the equivocal level of 0.5 (Figure 5a). On average,
the P (cueRF ) using V4 activity started near low values, and then increased to a peak during the later half of the stimulus
presentation before falling again to low levels. In contrast, the average P (cueRF ) in PFC was more consistent over time
through the trial. On trials for which the RF was not cued, a similar time-course was seen when estimating the probability
that the cue had been away from the RF (P (cueaway)), but with weaker overall prediction strengths (Figure 5b). This
qualitative pattern of results suggests that the average read-outs of the attention code are more dynamic in V4 than in
PFC.

In the analysis described above, we trained an independent decoder at each time point during the peristimulus interval.
This enabled us to assess how consistent the decoder weights were over time for each brain area. In other words, we asked
whether, regardless of any change in P (cueRF ), does the pattern of population activity that best encodes the attention state
change over time. One way to test this would be to measure correlations between pairs of beta weight vectors measured at
different time points. Strong correlations persisting over time would be consistent with a stable code, whereas correlations
that weakened more rapidly over time would suggest a more dynamic code. We found that beta weight vectors in PFC
were indeed more strongly correlated over a longer time range than were beta weight vectors in V4 (not shown). However,
it could be the case that small changes in beta weights lead to a large changes in decoding performance or that large
changes in beta weights lead to small changes in decoding performance. That is, it is difficult to interpret the importance
of beta weight changes by directly comparing their values. Rather, we reasoned it would be more informative to test
the ability of decoders to generalize over time. Thus, we measured the correlation across trials between P (cueRF ) values
obtained using the data from one time point and the beta weights from another time-point, and P (cueRF ) values obtained
using data and beta weights from the same time point (in a cross-validated manner; Figure 5c,d). For V4, the decoded
P (cueRF ) values were highly correlated only between nearby time points, which indicates that the attention code in V4
changed over time (Figure 5c). In contrast, the decoded P (cueRF ) values for PFC were correlated over a significantly
greater time-range than in V4 (Figure 5d,e), indicative of a more stable attention code.

Our previous analyses considered the trial-averaged read-out of the attention code over time, and found that it was
more stable in PFC than in V4. However, it may have yet been the case that the P (cueRF ) in PFC was highly dynamic
on individual trials but appeared stable when averaged across trials. To test for this possibility, we examined the stability
of P (cueRF ) on individual trials for each brain area. At each time point, we calculated the prediction stability as the
negative absolute change in P (cueRF ) from the preceding time point (Figure 6a). We scaled the resultant stability values
so that a value of one indicated perfect stability (i.e., no change in P (cueRF ) over time), and a value of zero indicated
the expected value if time points were independent. For both animals, the prediction stability was substantially greater
in PFC than in V4 (Figure 6b,c; t-test, p < 0.05 at all time points, Bonferroni-corrected). This included pre-stimulus
time points, indicating that differences in P (cueRF ) stability were not due trivially, e.g., to different dynamics of stimulus
responsiveness. We note also that while stability dropped transiently in V4 around stimulus onset, in general stability in
V4 was at similar levels during spontaneous and stimulus-evoked activity, indicating stability was not trivially related to
overall activity levels. We also found that when comparing the average stability between the two brain areas on the same
trial, PFC was consistently more stable than V4 (121,283 total trials, ∆〈s〉 = 0.041±0.036 [mean±SD], t121282 = 395.46,
p ≈ 0, paired t-test). These results show that even on single trials, the decoded attention state in PFC was more stable
than in V4.
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Figure 7: Between-area prediction of attention states is better in the PFC-to-V4 direction than in the V4-to-PFC direction.
(a) Schematic of Granger causal influence (GCI) analysis. To test for GCI in the PFC-to-V4 direction, we measured the
reduction in error predicting the future P (cueRF ) in V4 from the past history of both brain areas compared to when
predicting from the past history of V4 alone. We also measured the reduction in error when predicting the future P (cueRF )
in PFC from the past history of both brain areas compared to when predicting from the past history of PFC alone. (b)
GCI in each direction during the pre-stimulus period. The value along each axis is the reduction in error in predicting
P (cueRF ) with both brain areas, compared to one brain area alone. Each marker represents a session (green: PFC-to-V4
significantly greater than zero for individual session, p < 0.05, permutation test, Bonferroni-corrected; purple: V4-to-PFC
significant, dark gray: both significant; light gray: neither significant). Points lie below the unity slope line on average,
indicating that adding PFC to V4 when predicting the upcoming P (cueRF ) in V4 is more helpful than adding V4 to PFC
when predicting the upcoming P (cueRF ) in PFC. That is, the P (cueRF ) in PFC explained more residual error about the
future P (cueRF ) in V4 than vice versa. Symbols with thick black border indicate sessions with a significant difference
between V4-to-PFC GCI and PFC-to-V4 GCI (p < 0.05, permutation test, Bonferroni-corrected). (c) Asymmetry in
GCI during the pre-stimulus period. Values greater than 1 indicate greater GCI in the PFC-to-V4 direction than in the
V4-to-PFC direction (median: 2.39x, t46 = 5.80, p = 5.79 ·10−7). (d) GCI in each direction during the stimulus response.
The P (cueRF ) in PFC explained more residual error about the future P (cueRF ) in V4 than vice versa (points below
the diagonal). (e) Asymmetry in GCI during the stimulus response. Values greater than 1 indicate greater GCI in the
PFC-to-V4 direction than in the V4-to-PFC direction (median: 2.31x, two-tailed t46 = 4.27, p = 9.68 · 10−5).



Directionality of attention codes

Our guiding thesis for this study was that a stable attention code in PFC may serve as a consistent beacon of the attention
state that may guide the dynamic behavior of sensory populations such as V4. Thus, we asked if there was evidence for a
greater directed flow of the encoded attention state information from PFC to V4. To test this, we calculated the Granger
causal influence (GCI) between the estimated attention states in PFC and V4 (Figure 7a). Intuitively, GCI estimates
how much the future of one signal can be (linearly) predicted from the past history of another signal, beyond what was
predictable from the first signal alone (Barnett & Seth, 2014), and can be quantified as the degree of improvement in that
prediction (i.e., as percent residual error explained). Note that GCI does not directly imply mechanistic causality because
the role of unobserved variables cannot be ruled out, but it does suggest the potential for a causal relationship exists. In
our case, we wanted to ask how well we could predict the P (cueRF ) of V4 neurons based on their own history alone, as
compared to their own history and that of PFC. By also making the analogous comparison in the complementary direction
(PFC alone or PFC with V4), we could assess whether changes in PFC were more predictive of what happened next with
the attention state in V4, or whether changes in V4 were more predictive of what happened next with the attention state
in PFC.

We performed our analysis of GCI between PFC and V4 during two time windows we have focused on before: one
prior to stimulus onset (-290 to -90 ms) and one during the sustained response to the stimulus (150 ms to 350 ms). In
each 200 ms time window of interest, the goal was to test how well we could predict the P (cueRF ) in each 20 ms time
bin based on past history within that larger time window. We chose these time windows for two reasons. First, GCI
analysis assumes that the signals are stationary –an assumption that would be violated during the transition from the
unstimulated to the stimulated state, but which was more reasonable during these two time windows before and after that
transition. Second, they represent two distinct contexts of attention function: the anticipatory period when an attentional
state of readiness is prepared, and the period of stimulus processing when the benefits of that readiness are conferred.
We found evidence for GCI in the PFC-to-V4 direction and/or the V4-to-PFC direction in many sessions (Figure 7b,d),
indicating that incorporating moment-to-moment knowledge of one brain area aided in prediction of upcoming activity
in the other. The absolute quantity of residual variance accounted for by GCI was small (< 1%), but this is attributable
in large part to the difficulty in explaining the variance in the brief time periods of our analysis (20 ms bins). Most
importantly, our measurements of GCI were substantially greater (by a factor of more than 2) in the PFC-to-V4 direction
than in the V4-to-PFC direction, both during the pre-stimulus anticipatory period (Figure 7b,c), as well as during the
sustained stimulus response (Figure 7d,e). These results are consistent with a framework in which the attention state in
PFC influences the future attention state in V4 more than vice versa, in line with the hypothesized role of PFC in the
executive control of endogenous selective attention.

Discussion

We found that the population code for attention in PFC was substantially more stable than the population code for
attention in V4. While evidence has been mounting for this type of areal specialization for temporal stability (e.g. Murray
et al. , 2014, who studied single-neuron dynamics), previous studies have typically compared neural recordings from
different brain areas measured in separate animals, performing separate tasks, often in separate laboratories, limiting
direct comparison. Furthermore, previous work has often analyzed trial-averaged activity from populations of neurons
that were sometimes not simultaneously recorded. Without direct observation, the hypothesized division of labor of
stable and unstable computational processes across cortical areas based on their intrinsic timscales of dynamics had been
speculative. Our simultaneous recordings show that even moment-to-moment within an animal, neural codes for attention
in PFC are more stable than those in V4.

We also found that the attention code in PFC carried more information from moment-to-moment about the future
attention state of the V4 populations than vice-versa. This type of causal role for attention has previously been suggested
for the frontal eye field (FEF) (Squire et al. , 2013; Bressler et al. , 2008), for which strong electrical stimulation causes
eye movements to a particular location (movement field) while weaker electrical stimulation leads to attention-like gain
modulations in extrastriate neurons sensitive to the movement field (Moore & Fallah, 2001) –a pattern of results lending
support to the so-called “premotor theory” of covert attention. The current results suggest an extension of this causal
role to more rostral populations, which, in our hands, did not lead to eye movements under strong electrical stimulation
(see Materials and Methods). We caution, however, that our observational GCI analyses should be taken merely as a
suggestion that the potential for a causal relationship exists, and cannot rule out alternatives such as both PFC and V4
receiving influence from a third, unobserved brain area. Taken together however, our results provide the first evidence
that PFC provides a stable attention code that leads a dynamic attention code in V4 at a timescale of tens of milliseconds,
consistent with PFC’s hypothesized role as a source of top-down endogenous attention control signals in primate cerebral
cortex.

For a system to be stable entails dynamics that are robust to outside perturbation. Such stability would be adaptive for
maintaining cognitive states in mind while actively exploring a dynamic environment. From this perspective, the finding
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of a stable representation of a long-term attention state (as in PFC) is intuitive. A more challenging question concerns the
corollary: why is the code for attention states in V4 dynamic?. A prominent view of the neural correlates of attention is
an enhancement of the activity of neurons tuned for relevant information that comes at the expense of suppressed activity
for neurons processing less-relevant information through a normalized gain mechanism (Reynolds & Heeger, 2009). That
is, neurons show a gain in responses that is roughly proportional to the alignment of their tuning curves to the attended
information. Under the simplest version of this framework, attention would be viewed as a stable modulation of activity
levels –i.e., the gain modulation in V4 would remain constant while attention is held constant. The current results are
incompatible with this view because even during brief periods of spontaneous activity on single trials we found attention
signals to be dynamic on timescales much briefer than those that have been found to characterize attention shifts (on the
order of 200 – 300 ms; Posner (1980); VanRullen et al. (2007)). Instead, our findings suggest a key role for dynamic
coding of attention in sensory cortex; i.e., if response gain is a key mechanism of attention, it is not applied equally to all
sensory neurons at all times.

One potential explanation of dynamic attention codes in V4 is simply as a side-effect of the function of sensory cortex to
respond to sensory input. This is not to say that dynamic responses to sensory events trivially manifest dynamic attention
signals. Indeed, in our experiment we took two steps to rule out a potentially trivial relationship between sensory response
dynamics and attention signals in V4. First, we performed our analyses on residual firing rates after the average stimulus
response had been subtracted away, removing the greatest contribution of sensory response dynamics from the data.
Second, we calculated P (cueRF ) stability moment-to-moment to hold stimulus context relatively constant (Figure 6c).
The strongest example of this is that we found P (cueRF ) stability differed between brain areas during spontaneous activity
when there was no stimulus response, ruling out a difference in stimulus processing dynamics as a trivial explanation for the
difference in attention signal dynamics. Instead, our results are consistent with a more interesting relationship in which
the properties of sensory networks that enable them to be responsive predispose them to dynamic attention signaling
independent of sensory input. For example, if a stable activity pattern were imposed on sensory populations, even weakly,
this stabilizing influence would maladaptively reduce the sensitivity of those populations to sensory input. Indeed, evidence
indicates that stable dynamics due to synchronizing input are associated with suppressed sensory processing, in particular
in the form of 8–10 Hz oscillations measured as field potentials or electroencephalogram (EEG) (Snyder et al. , 2015;
Bollimunta et al. , 2011; Kelly et al. , 2006). Although this provides a simple explanation for the presence of dynamic
attention codes in V4, we can further consider whether such dynamic codes provide additional function.

One context where such a dynamic coding scheme might make sense is to distinguish between the stimulated and
unstimulated state. Neural populations in visual cortex face different computational demands in the presence versus the
absence of a stimulus. A pattern of neural activity that functions to enhance representation during visual processing may
be inappropriate if instead there was no stimulus to process. In support of this notion, we and others recently reported
that the pattern of modulations across the V4 population differed fundamentally between spontaneous and visual-evoked
activity (Snyder et al. , 2018; Sani et al. , 2017). These observations are also consistent with human neuroimaging
work, where attentional modulations of visual cortical areas are greatest during sensory processing, whereas attention
modulations in frontal and parietal association cortices are in contrast greatest during non-sensory periods (Kastner et al.
, 1999; Hopfinger et al. , 2000; Corbetta & Shulman, 2002). Human neuroimaging work further aligns with our Granger
causality findings suggesting a top-down role of frontal anticipatory signals influencing sensory areas (Bressler et al. , 2008).
The stimulus-context-dependent population codes that we observed may provide a means to multiplex multiple signals
within a neural population, enabling separable representations of sensory and cognitive information, such as expectation
(Rungratsameetaweemana et al. , 2018; Rungratsameetaweemana & Serences, 2019) or motor intention (Kaufman et al. ,
2014; Elsayed et al. , 2016).

Even within the context of processing visual stimuli, there is a growing appreciation that attention is an inherently
dynamic process. Evidence suggests that attention is automatically re-oriented several times per second to sample multiple
sources of sensory information (James, 1890; Posner, 1980; VanRullen et al. , 2007; Fiebelkorn et al. , 2011; Landau & Fries,
2012). These automatic attention cycles are associated with interactions occurring around the 3–5 Hz “theta” frequency
range across a network including lateral prefrontal and parietal areas (Fiebelkorn et al. , 2018), anterior cingulate cortex
(Voloh et al. , 2015), multiple visual cortical areas (Spyropoulos et al. , 2018), and pulvinar nucleus of the thalamus
(Fiebelkorn et al. , 2019). The frequency of these re-orientation cycles is similar to that of the periodic planning and
execution of saccadic eye movements in primates, which researchers have also linked to attention-like perceptual effects
(Hafed & Clark, 2002; Hafed et al. , 2011; Hafed, 2013; Lowet et al. , 2018). While the time-scale of these effects are too
slow to fully explain our results, it underscores that attention and perception rely fundamentally on dynamic processes.
Such periodic movements and covert shifts in perception may have evolved to help us explore our environment, even in the
face of particularly salient or engrossing stimuli. This ethological tendency to regularly shift attention is sensible in natural
contexts, which are highly dynamic. In contrast, our task was relatively static in that it required subjects to attend for
long periods to a consistent location, while target probabilities and reward expectations were held constant. Thus, one
important remaining question for further study concerns how the division of labor of stable and dynamic attention codes
between prefrontal and sensory cortex that we found operates in more naturalistic contexts.

Even within a period of relatively constant attention, the underlying mechanisms may be dynamic on fast time-scales
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reflecting differential modulation of specific stages of sensory processing (as in, Sripati & Johnson, 2006; Sani et al. ,
2017; Snyder et al. , 2018). For example, Sani et al. (2017) found that different types of attention gain manifested in
V4 activity across time during sensory responses: an early contrast-gain followed by a stimulus-tuned multiplicative gain
peaking around 150 ms after stimulus onset, and then another later round of contrast-gain. Those authors interpreted
the gradual emergence of stimulus-dependent multiplicative effects that they observed as consistent with a mechanism in
which relatively weak top-down input becomes amplified locally through a time-consuming dynamic process. Our current
results are also consistent with this notion.

This faster time-scale for dynamic attention in V4 is reminiscent of the emergence of feature-selectivity in visual cortex.
For example, Ringach et al. (1997) used a reverse correlation approach to measure the temporal development of orientation
selectivity in primary visual cortex of monkeys. They found that while neurons in input layers showed relatively static
orientation tuning preferences, the orientation preferences of neurons in output layers continued to change over time, in
many cases preferring one orientation at short delays but the orthogonal orientation at longer delays, or in some cases
developing multimodal orientation preferences. The authors compared the predictions of feedforward and feedback models
to conclude the dynamics of orientation preferences in output layers were likely due to feedback influences, and surmised
the slower complex tuning preferences might encode subtler features of images. One implication of this pair of observations
–dynamic attention and dynamic feature-selectivity –is that one potential mechanism for feature-based attention would be
to preferentially allocate resources to the time period in the sequence of processing steps when selectivity for that feature
emerges. One testable prediction of this hypothesis is that attention directed selectively towards the “subtler features” of
images to which Ringach and colleagues alluded should manifest later during the sensory response when tuning for those
features emerges, which may account for why attention modulation of sensory responses typically develops well after the
initial stimulus-onset transient response (Mehta et al. , 2000).

The current results are consistent with a framework in which maintaining stable task-set representations relies on
brain areas with intrinsically stabler dynamics (Murray et al. , 2014; Runyan et al. , 2017), as we showed here for
PFC populations. This particular brain area has been linked to many processes unfolding on slow time-scales, including
categorical reasoning (McKee et al. , 2014; Cromer et al. , 2011; Freedman et al. , 2003), flexible rule-based decision-
making (Siegel et al. , 2015; Bunge et al. , 2003), working memory (Parthasarathy et al. , 2019; Constantinidis et al. ,
2018; Wasmuht et al. , 2018), and attention (Paneri & Gregoriou, 2017; Ikkai & Curtis, 2011). It is important to note that
the “stability” in this case resides not at the level of individual neuron firing rates, which in fact vary substantially over
time, but rather at a population-level read-out. This type of population-level stability has previously been reported for
PFC populations in the context of working memory. For example, individual PFC neurons encode mnemonic information
predominantly transiently during maintenance periods, with peak latencies distributed so as to “tile” the entire interval
(e.g., Hussar & Pasternak, 2012, 2013; Spaak et al. , 2017). In a compelling recent example, Tremblay et al. (2015)
recorded populations of PFC neurons in monkeys performing a spatial attention task and found that patterns of ensemble
activity encoding attention states generalized across time periods within a trial, and even across multiple days over a
month of recording sessions. This type of population-level stability despite single-cell variability may enable individual
PFC neurons to temporally multiplex several concurrent processes while maintaining stable signals at the population
level (Mante et al. , 2013). Indeed, the activity of prefrontal and sensory populations have been linked to a number of
cognitive processes other than selective attention relevant for our task, such as monitoring choice history (Mochol et al.
, 2021), arousal (Cowley et al. , 2020), and reward expectation (Roesch & Olson, 2003), which are likely contributing to
the mixtures of population activity that we observed. While it is often difficult to disentangle these cognitive processes
in the context of a given task (Maunsell, 2004), some studies have suggested distinct neural and behavioral signatures for
attention compared to sensory expectation (Rungratsameetaweemana et al. , 2018; Rungratsameetaweemana & Serences,
2019; Summerfield & de Lange, 2014), reward valuation (Baruni et al. , 2015), arousal (Luo & Maunsell, 2019; Cowley
et al. , 2020), and other, related processes. The current experiment cannot tease apart the precise contributions of these
various cognitive processes, because we did not vary the expected value of rewards separately from the attention cue
(thus, reward and expectation were confounded with attention), and the animals almost always chose the cued target
when making actions (thus choice history and cue were also confounded). A future study that separately manipulated
rewards within the context of a given attention condition could further dissect the nuances of fronto-sensory interactions
during cognition.

Perhaps our most novel finding is that population attention codes in V4 vary rapidly, and the moment-to-moment
interactions between PFC and V4 have apparent control over the attention state. One lingering question remains
whether the details of these population-level dynamics are specifically germane for behavior. For example, one reasonable,
but unintuitive, prediction would be that stable attention signals in prefrontal cortex would be beneficial for behavior,
whereas stable attention signals in sensory cortical areas such as V4 may actually be detrimental to behavior, as they
may undermine responsiveness to external events. Another reasonable prediction is that shifts of attention (e.g., to detect
invalidly-cued targets), might be accompanied by rapid dynamics of attention signals in both V4 and PFC. The current
study was not designed to address these predictions because targets were infrequent, and reactive saccades to targets
prohibited disentanglement of sensory and motor signals; a future study with delayed responses and a greater proportion
of targets could test these predictions and other issues related to target-processing. Taken together, our results suggest
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that different cortical areas implicated in attention control are specialized to function in different regimes of stability
in order to resolve the competing demands of attention: stable representations of task variables are maintained on long
time-scales in prefrontal cortical populations, freeing up sensory cortical populations to maintain the sensitivity to outside
perturbation essential for efficient perception.

Materials and Methods

Ethical oversight

Experimental procedures were approved by the Institutional Animal Care and Use Committee of the University of Pitts-
burgh and were performed in accordance with the United States National Research Council’s Guide for the Care and Use
of Laboratory Animals.

Subjects

We used two adult male rhesus macaques (Macaca mulatta) for this study. Surgeries were performed in aseptic conditions
under isoflurane anesthesia. Opiate analgesics were used to minimize pain and discomfort perioperatively. A titanium
head post was attached to the skull with titanium screws to immobilize the head during experiments. After each subject
was trained to perform the spatial attention task, we implanted one 100-electrode Utah array (Blackrock Microsystems)
in each of the brain areas V4 and prefrontal cortex (PFC, area 8Ar; Figure 1a). We implanted in the right hemisphere
for Monkey P and in the left hemisphere for Monkey W. A separate analysis of a portion of these data was previously
reported, along with a complete description of the experimental methods (Snyder et al. , 2018). The pattern of results
was highly similar across the two animals, so we combined across animals for the results reported in the main text.

Visual change-detection task

Subjects maintained central fixation as sequences of drifting Gabor stimuli were presented in one or both of the visual
hemifields, and were rewarded with water or juice for detecting a change in orientation of one of the stimuli in the sequence
(the target) and making a saccade to that stimulus (Figure 1b). The probable target location was block-randomized such
that 90% of the targets would occur in one hemifield until the subject made 80 correct detections in that block (including
cue trials, described below), at which point the probable target location was changed to the opposite hemifield.

The fixation point was a 0.6◦ yellow dot at the center of a flat-screen cathode ray tube monitor positioned 36 cm from
the subjects’ eyes. The background of the display was 50% gray. We measured monitor luminance gamma functions by
photometer and linearized the relationship between input voltage and output luminance using lookup tables. We tracked
the gaze of the subjects using an infrared eye tracking system (EyeLink 1000; SR Research, Ottawa, Ontario). Gaze
was monitored online by the experimental control software to ensure fixation within ≈ 1◦ of the central fixation point
throughout each trial. We excluded from analysis data segments during which a subject’s gaze left the fixation window.

After fixating for a randomly-chosen duration of 300 to 500 ms (uniformly distributed), a visual stimulus was presented
for 400 ms, or until the subjects’ gaze left the fixation window, whichever came first. For the initial trials within a block,
a Gabor stimulus was presented only in the hemifield that was chosen to have a high probability of target occurrence for
the block. These cue trials were to alert the subjects to a change in the probable target location and were excluded from
the analysis. The initial cue location was counterbalanced across recording sessions. Once a subject correctly detected
five orientation changes during the cue trials, bilateral Gabor stimuli were presented for the remainder of the block.

Each trial consisted of a sequence of 400 ms stimulus presentations separated by 300 – 500 ms interstimulus intervals
(uniformly distributed). We varied the interstimulus intervals so that stimulus onset times would be relatively less
predictable, encouraging the animal to deploy attention consistently over time (as opposed to transiently disengaging
attention during the interstimulus interval). Stimulus sequences continued until the subject made an eye movement (data
during saccades were excluded from analysis), or a target was presented but the subject did not respond to it within 400
ms (i.e., a miss). For the first presentation in a sequence, the orientation of the stimulus at the cued location was randomly
chosen to be 45 or 135 degrees and the orientation of the stimulus in the opposite hemifield, if present, was orthogonal
to this. Subsequent stimulus presentations in the sequence each had a fixed probability (uniform hazard function) of
containing a target (30% for Monkey P, 40% for Monkey W), i.e., a change in orientation of one of the Gabor stimuli
compared to the preceding stimulus presentations in the trial. Within a block, 90% of targets (randomly chosen) occurred
in one hemifield (valid targets) and 10% of targets occurred in the opposite hemifield (invalid targets). For valid targets,
the orientation change was randomly chosen to be 1, 3, 6, or 15 degrees in either the clockwise or anti-clockwise direction
(Monkey P: 11.49 ± 3.14 [mean ± SD, across sessions] valid targets of each orientation at each location; Monkey W:
14.56± 4.75 valid targets of each orientation at each location). For invalid targets, the orientation change was always the
near-threshold value of 3 degrees, clockwise or anti-clockwise (because invalid targets occur infrequently, we restricted the
number of orientation change magnitudes for this condition in order to derive a reasonable estimate of the target detection
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rate). We analyzed trials including either valid or invalid targets, but excluded from analysis all neural data from the
time of target onset through the end of the trial.

Monkey R completed 24 sessions of the experiment; Monkey P completed 25 sessions. One session for each subject
was subsequently excluded from analysis because of recording equipment failure.

Microelectrode array recordings

Signals from the arrays were band-pass filtered (0.3 - 7500 Hz), digitized at 30 kHz and amplified by a Grapevine system
(Ripple). Signals crossing a threshold (periodically adjusted using a multiple of the root-mean-squared noise) were stored
for offline analysis. We first performed a semi-supervised sorting procedure followed by manual refinement using custom
MATLAB software (https://github.com/smithlabvision/spikesort), taking into account waveform shapes and interspike
interval distributions. These initial sorting steps yielded 93.2 ± 8.9 (mean ± SD) candidate units per session in V4 and
119.6 ± 17.5 units per session in PFC for Monkey P and 61.9 ± 27.4 candidate units per session in V4 and 113.8 ± 21.9
units per session in PFC for Monkey W. We likely recorded a mixture of single units and multiunit activity, though for
simplicity we refer to all units as “neurons”. The arrays were chronically implanted and likely recorded some (but not all)
neurons over more than one recording session, but we calculated our results within each recording session and treated each
session as an independent sample for the analysis. We note with respect to statistical inference that if we had, in fact,
repeatedly sampled the same pool of neurons across sessions, then our p-values would have a different meaning than if we
had sampled a completely new set each time. In the former case, the interpretation would be that a particular sample of
neurons shows the effects we found (and that that effect was not due to chance, e.g. on the first session), whereas in the
latter case the interpretation would be that neurons in general show the effect we found. Both are valid inferences, and
both are interesting findings. In fact, our view is that attention mechanisms can be conceived as latent factors that affect
neural populations, and that we observed the same latent factors each session with our population-level analysis whether
or not the neurons were the same or completely different between sessions.

To avoid potential confounds due to our blocked design, we excluded neurons that were not recorded stably throughout
a session. These were identified by dividing all the recorded data for a session into ten equally-sized blocks, measuring the
average firing rate of each neuron within each block, and then calculating the coefficient of variation (CV) of each neuron’s
average firing rate over the blocks. Neurons with a CV greater than 1 were deemed to be unstable and were excluded
(9.3± 8.7 neurons excluded for Monkey P per session, 14.3± 16.5 neurons excluded for Monkey W per session). We also
excluded neurons with an average firing rate less than 0.1 spikes per second measured over the entire session (2.3 ± 2.2
additional neurons excluded for Monkey P per session, 6.0± 5.7 neurons excluded for Monkey W per session).

We used a factor analysis method to reduce the dimensionality of the population activity (see section Dimensionality
reduction of population activity). Neural activity recorded on different electrodes can, in rare cases, show highly correlated
activity due to electrical “cross-talk” between electrodes on the array (Yu et al. , 2009). Such correlated activity can
confound methods such as factor analysis (FA) or GPFA, which seek to identify shared variance among neurons. To be
conservative, we measured the Pearson correlation between spike trains for all pairs of neurons, and randomly excluded
one neuron from each pair with a correlation coefficient greater than r = 0.1. This criterion was quite liberal (12.9± 9.3
neurons excluded per session), and the results were not affected by substantial variation around this correlation threshold.

One of our goals was to test how much variability in one neural population was explained by the population activity
of the other brain area (see section Granger causal influence (GCI)). Such an analysis may be biased if we used a greater
number of neurons in one brain area to predict the activity of a fewer number of neurons in another brain area. To
place the two areas on the same footing, for each session, we randomly selected neurons from the population with greater
cardinality to equate the population size used for all analyses between the two brain areas (final population size in each
area for the analysis: 79.1± 12.5 [mean ± SD] neurons for Monkey P per session, 50.9± 22.0 neurons for Monkey W per
session).

From the continuous recording, we extracted data segments from 300 ms prior to stimulus onset to 300 ms following
stimulus offset (1 s total segment duration; Monkey P: 2253.1±591.3 data segments per session, Monkey W: 2894.2±946.8
data segments per session) and counted spikes for each neural unit in 1 ms bins. For the calculation of PSTHs (Figure 2),
we smoothed spike trains with a causal half-Gaussian function with σ = 20 ms prior to averaging across data segments.

Receptive field (RF) mapping

Prior to beginning the visual change-detection experiment, we mapped the RFs of the spiking neurons recorded on the
V4 arrays by presenting small (≈1◦) sinusoidal gratings (four orientations) at a grid of positions. We subsequently used
Gabor stimuli scaled and positioned to roughly cover the aggregate RF area determined by the responses to the small
gratings at the grid of positions. For Monkey P this was 7.02◦ full-width at half-maximum (FWHM) centered 7.02◦ below
and 7.02◦ to the left of fixation, and for Monkey W this was 4.70◦ FWHM centered 2.35◦ below and 4.70◦ to the right
of fixation. We next measured tuning curves by presenting gratings at the RF area with four orientations and a variety
of spatial and temporal frequencies. For each subject we used full-contrast Gabor stimuli with a temporal and spatial
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frequency that evoked a robust response from the population overall (i.e., our stimulus was not optimized for any single
neuron). For Monkey P this was 0.85 cycles/◦ and 8 cycles/s. For Monkey W this was 0.85 cycle/◦ and 7 cycles/s. For
the task, we presented a Gabor stimulus at the estimated RF location, at the mirror-symmetric location in the opposite
hemifield, or at both locations simultaneously. We did not measure RFs for the PFC neurons; stimulus properties were
chosen solely on basis of V4 responses. In a preliminary step, we electrically microstimulated each of our PFC electrodes
at a range of current amplitudes, and found that we were unable to evoke eye movements even at current amplitudes
several times greater than those that typically evoke eye movements from electrodes implanted in the frontal eye field
(FEF) (Goldberg & Bruce, 1986), suggesting that our electrodes did not impinge upon FEF, but were rather exclusively
in PFC.

Dimensionality reduction of population activity

To focus the decoding analyses (see section Decoding attention state) on activity that is shared among neurons, we first
applied Gaussian process factor analysis (GPFA) to the spike counts recorded in each brain area separately (Yu et al.
, 2009, Figure 3). We then orthonormalized the dimensions using the procedure described in Yu et al. (2009). This
yielded single-trial time series of latent factors, which summarize the shared activity among neurons over time. For this
analysis, we restricted the dataset to presentations of standard stimuli to which the subject correctly withheld a response.
We applied GPFA separately to each of the two stimulus configuration conditions (i.e., when the stimulus in the RF
was oriented at 45◦and when it was oriented at 135◦). For each neuron we square-root-transformed the spike counts
(as a variance-stabilizing step), then subtracted the average PSTH for the included data segments from each individual
trial. That is, our analysis focused on residual trial-to-trial variation in firing rates beyond the average stimulus-evoked
response. We then binned the residual spike counts for each neuron in each data segment within fifty non-overlapping,
20 ms time bins. We aimed to specify a common model dimensionality across all brain areas and sessions so that values
across brain areas and sessions would be directly comparable. We tested several potential dimensionalities for our GPFA
models and found that 10 dimensions captured most of the explainable shared variance in all but one of our datasets,
so we used this dimensionality consistently. We also tested different criteria to select the number of dimensions, such
as using the minimum number of dimensions needed to retain 90% of the total shared variance of each population, and
found the pattern of results to be highly consistent. Thus, our results and conclusions are not dependent on the precise
criterion to choose the number of dimensions. Our goal in performing this initial dimensionality reduction step was to
reduce the tendency to overfit the logistic regression model to noisy individual neurons and instead to emphasize shared
variability. After separately applying GPFA for each stimulus configuration condition separately, we recombined the
results for subsequent analyses. The patterns of results and the conclusions were not affected if we restricted our entire
analysis to only one stimulus configuration or the other, therefore we used all the data from both conditions.

In GPFA, the amount of temporal smoothing (i.e., τ , the timescale of the Gaussian processes) was determined in an
unsupervised manner from the neural activity (through maximum likelihood estimation using expectation maximization
with cross-validation), and not pre-specified. Thus, differences across brain areas in how quickly latent variables change
over time reflect inherent differences in the activity across areas. To confirm this, we repeated the main analyses using
factor analysis (FA), which does not include temporal smoothing. We found similar qualitative results as with GPFA,
although the results tended to be “noisier” without temporal smoothing (which motivated us to use GPFA instead of FA
in the first place). Thus, our results and conclusions are robust to the use of temporal smoothing.

Decoding attention state

We used binomial logistic regression models to estimate the probability of which stimulus location was cued (i.e., attended)
using the GPFA latent variables obtained from the population activity from each brain area (Figure 5). Specifically, we

used the MATLAB function ‘mnrfit’ to find the ~βt that optimizes the following equation:

P (cueRF | ~xt) =
1

1 + e−
~βt~xt

(1)

where ~xt is the vector of 10-dimensional GPFA scores at time t. For each brain area, we fit a separate model at each
time point during the stimulus-aligned data segments. We used ten-fold cross-validation to quantify the classification
performance of the cue condition (cf. Figure 4c), as well as all subsequent analyses involving the decoded attention state.
Where indicated in the text, we used the single decoder from the time point with the best performance and applied that
decoder to the data from all time points, which enables a more straightforward comparison between time points. The
pattern of results and conclusions were unchanged if we used a separate decoder trained at each time point for such
analyses. To measure cross-temporal generalization of our decoders (Figure 5c,d), we measured the Pearson product-
moment correlation coefficient across trials between P (cueRF ) values obtained using a decoder trained on data from one
time point (“training time”) on data from another time point (“test time”), and P (cueRF ) values obtained using decoders
trained and tested at the same time point (in a cross-validated manner).
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Attention state prediction stability

We sought to quantify how much the estimated attention state in each brain area fluctuated from moment-to-moment.
Because the output of the logistic regression decoder was in units of probability (i.e., that the RF was attended), these
values were bounded between zero and one. This boundedness would have created a compression of the moment-to-
moment variation near those extreme values. To mitigate this ceiling/floor effect, we transformed the probabilities into
z-scores using a normal inverse cumulative distribution function. We then computed the attention prediction stability, st,
as one minus the absolute change in the z-transformed probability estimate from one time point to the next (Figure 6):

st = 1−
∣

∣

∣
z
(

P (cueRF | ~xt)
)

− z
(

P (cueRF | ~xt−1)
)

∣

∣

∣
(2)

Thus, the maximum value for prediction stability is one, which indicates no change in the attention prediction value over
time. To compare the measured stability values to what might be expected if there was no temporal structure in the data,
we randomly shuffled the time points of our data within each session, measured the stability of the shuffled data, and
then averaged within each session. We repeated this shuffling procedure several times and found that because each session
contained hundreds of thousands of time points, the same average stability resulted for each iteration to a precision of
< 0.0001, so we simply used that value. We then re-scaled our observed stability measurements so that a value of zero
equaled the least average stability that was found in our shuffled data set. Therefore, a value of one indicates perfect
stability, and a value of zero indicates the least expected stability if there was no temporal structure. Note that stability
can be negative. To ease comparison of P (cueRF ) across time, for this analysis of instantaneous stability and the analysis
of Granger causal influence (GCI) we used the decoder for each brain area from the time point with the best decoding
performance for each session, and applied it to the data across all the time points. The qualitative pattern of results
and conclusions were the same if we used a separate decoder trained at each time point, but would be more difficult to
interpret as it would ambiguous as to whether instability was accounted for by a change in decoder, a change in activity
patterns, or both.

Granger causal influence (GCI)

To estimate how much future information about the attention state in one brain area was predicted from the past history
of the other brain area, we performed a GCI analysis using the Multivariate Granger Causality (MVGC) toolbox for
MATLAB (Barnett & Seth, 2014, Figure 7). While this analysis is traditionally known as “Granger causality”, we caution
that mechanistic causality may not be validly inferred since the procedure is strictly observational and the potential role
of unobserved variables cannot be ruled out. Traditionally, GCI analysis involves estimating parameters for both a full
and a reduced (nested) autoregressive model. The reduced model aims to predict the future state of one signal (the target,
y, in our case the P (cueRF ) estimated from activity in one brain area) using the past history of that signal:

yt = β1yt−1 + β2yt−2 · · ·βnyt−n + η (3)

where n is a specified model order and η is residual error. In our model for V4, for example, the reduced model aimed to
predict the value of P (cueRF ) in V4, and it did so by using the preceding values of P (cueRF ) from V4 in each trial (up
to the model order, and excluding any points in time that would span across trials).

The full model aims to predict the future state of the target signal using the past history of the target signal and also
an additional signal (the source, x, in our case the P (cueRF ) given the activity of the other brain area):

yt = β1yt−1 + β2yt−2 · · ·βnyt−n + α1xt−1 + α2xt−2 · · ·αnxt−n + η (4)

In this full model for V4, the current value of P (cueRF ) in V4 was predicted by the preceding values of P (cueRF ) from
both V4 and PFC in each trial (up to the model order, and again excluding any points that span across trials). Note that
the model order, n, is the same for both the reduced and full models.

If the full model predicts the target signal better than the reduced model, then this implies that the source signal
carries additional information about the future state of the target. We quantified the GCI as the percentage of residual
error from the reduced model that was accounted for by the full model.

Because GCI analysis assumes stationarity, we restricted our GCI analysis to two time windows relative to each stimulus
onset where this assumption was most reasonable: 1) a 200 ms time window before stimulus onset (-290 to -90 ms), and 2)
a 200 ms time window during the sustained stimulus response (i.e., after the initial onset transient; 150 to 350 ms). Our
two signals of interest for this analysis were the time series of P (cueRF ) for each of the two brain areas. We first estimated
an appropriate autoregressive model order (i.e., the number of 20 ms time bins of history used to predict the target) for
each session by estimating optimal parameters for each model order from 1 to 6 (by ordinary least-squares regression),
and then calculating the Bayes information criterion (BIC) for each model. The model order with the best BIC was taken
as the best model order (almost always order 4, sometimes 3 or 5, rarely 2). Our general pattern of results was robust to
deviations around this estimated optimal model order value. For example, if we performed our analysis setting the model
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order of all sessions to be 3, 4, 5 or 6, the qualitative pattern of results was highly similar to our main result. In cases
where our estimated autoregressive model parameters resulted in an unstable process (i.e., a spectral radius ≥ 1, which
is not realistic for brain activity), we rescaled the parameters to stabilize the process (using the ‘var specrad’ function of
the MVGC toolbox).

Statistical hypothesis testing

To test differences between cue conditions for behavioral accuracy (Figure 1c) and reaction time (Figure 1d) we used
two-tailed dependent-samples Student’s t-tests (24 sessions for Monkey P and 23 sessions for Monkey W) with α = 0.05.

To test for differences between the characteristic time-scales of the latent factors estimated by GPFA for the two brain
areas of interest, we used a two-tailed independent-samples Student’s t-test (2 brain areas, each with 470 observations of
latent factors [47 sessions with 10 factors each]) with α = 0.05.

To test the performance of our logistic regression decoders, we used the receiver operating characteristic (ROC)
(Figure 4c). For each session, we estimated P (cueRF ) at every time point for every trial (with cross-validation, see section
“Binomial logistic regression” above) for both brain areas. Then, we calculated the area under the ROC curve (AUC)
values at each time point, yielding a time-series of AUC values for each session. We then tested the results of the 47
sessions against the null-hypothesis chance value of AUC = 0.5 with a two-tailed, one-sample Student’s t-test at each time
point with α = 0.5, corrected for multiple comparisons with Bonferroni’s method.

To test for differences in cross-temporal generalization of our decoders between brain areas (Figure 5e), we applied
Fisher’s r-to-z transformation to correlation values then tested against a null hypothesis of no difference between brain
areas with a two-tailed dependent-samples Student’s t-test (N = 47 sessions, α = 0.05, Bonferroni-corrected for the number
of time-point pairs).

To test the difference in prediction stability between brain areas (Figure 6c), we used a two-tailed dependent-samples
Student’s t-test (47 sessions) with α = 0.05, corrected for multiple comparisons with Bonferroni’s method.

For testing GCI values (Figure 7), we used a non-parametric permutation test. For each session, we pseudorandomly
permuted the trial order for PFC data, holding the trial order for the V4 data constant, and taking care to ensure that
no permuted trial ever ended up in its original sequence position by chance. Because in this permutation the within-trial
order of the time points remained the same, it did not affect the prediction from the reduced model. Instead, it simply
destroyed the ability of the “added” brain area to increase the prediction in the full model. This permutation procedure
reflects the null hypothesis that there is no directed information flow between brain areas (i.e., the two brain areas are
independent, in which case permuting the trial order should make no difference). We then recalculated GCI for the
trial-order-permuted dataset (following all steps as described in Section Granger causal influence (GCI), including model
selection, parameter estimation, etc.). This procedure was iterated 10000 times for each session to yield a distribution of
GCI values reflecting the null hypothesis. We also generated a null hypothesis distribution for GCI asymmetry by taking
the ratio of the PFC-to-V4 null hypothesis distribution to the V4-to-PFC null hypothesis distribution. Observed GCI
values were considered significant if they were more extreme than 5% of the permutation test distribution, Bonferroni
corrected for the number of sessions tested. For testing the distribution of GCI asymmetry across sessions against a null
hypothesis of zero asymmetry, we used a two-tailed one-sample t-test with α = 0.05.
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