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Abstract 31 

Electroencephalography (EEG) has long been used to index brain states, from early studies 32 

describing activity in the presence and absence of visual stimulation to modern work employing 33 

complex perceptual tasks. These studies have shed light on brain-wide signals but often lack 34 

explanatory power at the single neuron level. Similarly, single neuron recordings can suffer from an 35 

inability to measure brain-wide signals accessible using EEG. Here, we combined these techniques 36 

while monkeys performed a change detection task and discovered a novel link between spontaneous 37 

EEG activity and a neural signal embedded in the spiking responses of neuronal populations. This 38 

“slow drift” was associated with fluctuations in the subjects’ arousal levels over time: decreases in 39 

pre-stimulus alpha power were accompanied by increases in pupil size and decreases in microsaccade 40 

rate. These results show that brain-wide EEG signals can be used to index modes of activity present 41 

in single neuron recordings, that in turn reflect global changes in brain state that influence perception 42 

and behavior. 43 

 44 

Significance Statement 45 

Decades of research has used electroencephalography (EEG) to investigate how voltage fluctuations 46 

on the scalp are related to cognition. These studies are useful for measuring brain-wide signals in a 47 

non-invasive manner, but they lack the ability to detect small-scale changes at the level of single 48 

neurons. In this study, we bridged this gap by recording EEG and spiking responses in the brain while 49 

macaques performed a perceptual decision-making task. We found that a commonly used metric of 50 

arousal in human EEG studies, pre-stimulus alpha power, is associated with slow drifts in the activity 51 

of cortical neurons. Together, these recordings made non-invasively on the scalp and directly in the 52 

brain were predictive of changes in arousal levels over time. 53 

  54 
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Introduction 55 

For decades, researchers have investigated how the spiking responses of single cortical 56 

neurons relate to performance on decision-making (Britten et al., 1996), attention (Moran and 57 

Desimone, 1985) and working memory (Fuster and Alexander, 1971) tasks. Interactions between 58 

pairs of neurons have also been studied extensively since technological advances in neural recording 59 

systems (e.g. microelectrode arrays and two-photon imaging) made it possible to monitor the activity 60 

of neural populations simultaneously (Zohary et al., 1994; Cohen and Maunsell, 2009; Leavitt et al., 61 

2017). At the same time, it is becoming increasingly apparent that major insight about the 62 

neurobiological basis of cognition can be gained from the study of populations of neurons (Cohen 63 

and Maunsell, 2011; Harvey et al., 2012; Mante et al., 2013; Driscoll et al., 2017; Murray et al., 2017; 64 

Ni et al., 2018; Remington et al., 2018; Khanna et al., 2019; Oby et al., 2019; Valente et al., 2021). 65 

Furthermore, it has been shown that low-dimensional neural activity patterns can be used to index 66 

global brain states, which influence performance on cognitive tasks. For example, Stringer et al. 67 

(2019) applied principal component analysis (PCA) to data recorded from more than 10,000 neurons 68 

in the mouse and found that fluctuations in the first principal component were associated with a host 69 

of arousal-related variables including whisking, pupil size, and running speed. Musall et al. (2019) 70 

found that uninstructed movements, which themselves may occur at varying frequency based on 71 

arousal, were related to brain-wide activity in the mouse. In our own work in rhesus macaques, we 72 

have reported a pervasive “slow drift” of neural activity (Cowley et al., 2020), which is correlated 73 

with a distinctive pattern of eye metrics that is strongly indicative of changes in arousal (Johnston et 74 

al., 2021). However, it is unknown if slow drift is associated with other arousal-related variables that 75 

can be measured in a rapid, accurate and non-invasive manner.  76 

Spontaneous (i.e., pre-stimulus) oscillations in the alpha frequency band (~8-12Hz) are 77 

associated with lateralized changes in spatial attention and global changes in arousal. For example, 78 

studies investigating the effects of spatial attention on EEG activity have found that pre-stimulus 79 

alpha power is decreased in the visual cortex contralateral to the attended location (Worden et al., 80 
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2000; Sauseng et al., 2005; Kelly et al., 2006; Thut et al., 2006). In contrast, studies exploring the 81 

processes underlying perceptual decision-making have uncovered an association between task 82 

performance and brain-wide changes in pre-stimulus alpha power. To be more precise, the likelihood 83 

of detecting a near threshold visual stimulus increases when pre-stimulus oscillations in the alpha 84 

band decrease (Ergenoglu et al., 2004; Babiloni et al., 2006; Hanslmayr et al., 2007; van Dijk et al., 85 

2008; Busch et al., 2009; Mathewson et al., 2009; Romei et al., 2010). Recent work suggests that 86 

these global effects (that occur across a range of frontal, midline, and occipital sites) arise due to 87 

changes in arousal. According to signal detection theory (Green and Swets, 1966), differences in 88 

performance on perceptual decision-making tasks can either reflect shifts in sensitivity or response 89 

criterion. Several studies have sought to dissociate these components in macaque monkeys (Luo and 90 

Maunsell, 2015, 2018; Crapse et al., 2018; Jun et al., 2021) and similar work has been conducted in 91 

human subjects using EEG. For example, it has been shown that brain-wide decreases in pre-stimulus 92 

alpha power are associated with increased hit rate and false alarm rate on perceptual decision-making 93 

tasks (Limbach and Corballis, 2016; Iemi et al., 2017). These results point to a link between pre-94 

stimulus alpha power and response criterion, a variable that is modulated, at least in part, by 95 

subcortical regions that control arousal levels (de Gee et al., 2017).  96 

One structure that has been implicated in the control of arousal is the locus coeruleus (LC) 97 

(Aston-Jones and Cohen, 2005; Sara, 2009; Chandler, 2016). This small region in the pons represents 98 

the primary source of norepinephrine to the central nervous system and drives fluctuations in raw and 99 

evoked (baseline-corrected) pupil size: non-invasive markers that have been used extensively in the 100 

neurosciences to index changes in arousal (Varazzani et al., 2015; Joshi et al., 2016; Reimer et al., 101 

2016; Breton-Provencher and Sur, 2019). Given that the LC is involved in modulating response 102 

criterion (de Gee et al., 2017) and pupil size (Joshi and Gold, 2020), one might also expect it to exert 103 

an influence on pre-stimulus alpha power. To test this hypothesis non-invasively, one could determine 104 

if there is a significant association between pre-stimulus alpha power and pupil size. Several studies 105 

have used a combination of EEG and pupillometry to explore if this is the case in humans (Hong et 106 
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al., 2014; Van Kempen et al., 2019; Podvalny et al., 2021). For example, Compton et al. (2021) had 107 

subjects perform a classic Stroop task and found that alpha power during inter-trial periods was 108 

inversely related to raw pupil size. That is, trials with greater pupil size were associated with reduced 109 

power in the alpha band and vice versa. These results suggest that spontaneous EEG signals can be 110 

used to index global brain state and raise the possibility that they might be associated with other 111 

arousal-related metrics such as microsaccade rate. 112 

Microsaccades are small eye movements that occur at a rate of 1-2Hz through the activity of 113 

neurons in the superior colliculus (SC) (Rolfs, 2009). As with larger saccades (Burr et al., 1994; 114 

Diamond et al., 2000; Knöll et al., 2011), research has shown that visual perception is altered in the 115 

hundreds of milliseconds following a microsaccade (Hafed and Krauzlis, 2010; Hafed, 2013; Chen 116 

et al., 2015; Chen and Hafed, 2017; Scholes et al., 2018). Interestingly, Bellet et al. (2017) found that 117 

these short timescale modulations occur in a rhythmic manner at a frequency of 8–20Hz. However, it 118 

is unclear if a relationship exists between alpha oscillations and fixational eye movements at longer 119 

timescales, which are more likely to be associated with changes in a subject’s internal state (Cowley 120 

et al., 2020). Recent work in our laboratory found that slow fluctuations in raw pupil size over the 121 

course of a recording session were negatively correlated with microsaccade rate (Johnston et al., 122 

2021). That is, microsaccade rate decreased under conditions of heightened arousal (as indexed by 123 

greater pupil size) and vice versa. As described above, the relationship between pre-stimulus alpha 124 

power and microsaccade rate has not yet been explored at long timescales. However, based on our 125 

previous results, one might expect there to be a positive correlation between these two variables over 126 

time.   127 

 The primary aim of this study was to determine if EEG signals recorded on the scalp can be 128 

used to index a neural measure of brain state acquired directly from the spiking activity of neural 129 

populations termed “slow drift”. In addition, we investigated if pre-stimulus oscillations in the alpha 130 

band are associated with two non-invasive metrics that have previously been used to index global 131 

shifts in arousal and that we have found to be related to “slow drift” (Johnston et al., 2021): raw pupil 132 
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size and microsaccade rate. EEG from the scalp and spiking activity from populations of neurons in 133 

V4 was simultaneously recorded from two monkeys while they performed an orientation-change 134 

detection task (Figure 1A). Results showed that fluctuations in pre-stimulus alpha power over the 135 

course of a recording session were companied by changes in raw pupil size and microsaccade rate. 136 

As expected, pre-stimulus power in the alpha band was negatively correlated with raw pupil size and 137 

positively correlated with microsaccade rate. Interestingly, we also found a significant correlation 138 

between pre-stimulus alpha power and neural slow drift. This finding is of particular importance as it 139 

suggests that spontaneous components of the EEG signal recorded non-invasively on the scalp index 140 

low-dimensional patterns of neural activity acquired from microelectrode array recordings in the 141 

brain. These results support previous research showing that slow drift is associated with changes in 142 

arousal over time (Cowley et al., 2020; Johnston et al., 2021), and provide a strong link between 143 

global measurements made across recording modalities and species. 144 

Methods 145 

Subjects 146 

Two adult male rhesus macaque monkeys (Macaca mulatta) were used in this study. A 147 

previous report (Snyder et al., 2018b) presented analysis of different aspects of the same experiments 148 

described here. This study reports the results from a subset of the data from Snyder et al. (2018b) in 149 

which EEG was recorded. Surgical procedures to chronically implant a titanium head post (to 150 

immobilize the subjects’ heads during experiments) and microelectrode arrays were conducted in 151 

aseptic conditions under isoflurane anesthesia, as described in detail by Smith and Sommer (2013). 152 

Opiate analgesics were used to minimize pain and discomfort during the perioperative period. Neural 153 

activity was recorded using 100-channel "Utah" arrays (Blackrock Microsystems) in V4 (Monkey Pe 154 

= right hemisphere; Monkey Wa = left hemisphere). The arrays comprised a 10x10 grid of silicon 155 

microelectrodes (1 mm in length) spaced 400 µm apart. Experimental procedures were approved by 156 

the Institutional Animal Care and Use Committee of the University of Pittsburgh and were performed 157 
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in accordance with the United States National Research Council’s Guide for the Care and Use of 158 

Laboratory Animals. 159 

Microelectrode array recordings 160 

Signals from each microelectrode in the array were amplified and band-pass filtered (0.3–161 

7500Hz) by a Grapevine system (Ripple). Waveform segments crossing a threshold (set as a multiple 162 

of the root mean square noise on each channel) were digitized (30KHz) and stored for offline analysis 163 

and sorting. First, waveforms were automatically sorted using a competitive mixture decomposition 164 

method (Shoham et al., 2003). They were then manually refined using custom time amplitude window 165 

discrimination software (code available at https://github.com/smithlabvision/spikesort), which takes 166 

into account metrics including (but not limited to) waveform shape and the distribution of interspike 167 

intervals (Kelly et al., 2007). A mixture of single and multiunit activity was recorded, but we refer 168 

here to all units as “neurons”. The mean number of V4 neurons across sessions was 41 (SD = 10) for 169 

Monkey Pe and 21 (SD = 10) for Monkey Wa. 170 

EEG recordings 171 

We recorded EEG from 8 Ag/AgCl electrodes (Grass Technologies) adhered to the scalp with 172 

electrically conductive paste. The electrodes were positioned roughly at the following locations: Fz, 173 

Iz, CP3, CP4, F5, F6, PO7, and PO8 (see Fig. 1B). Signals for each electrode were referenced online 174 

to a steel screw on the titanium head post, digitized at 1kHz and amplified by a Grapevine system 175 

(Ripple) and low-pass filtered online at 250Hz. They were then rereferenced to the average activity 176 

across all electrodes for the entire session. One of the challenges associated with simultaneously 177 

recording EEG and the spiking responses of neural populations is the introduction of craniotomies 178 

and microelectrode recording arrays. Importantly, previous work in our lab has shown that this does 179 

not significantly alter the way current flows to the scalp (Snyder et al., 2018a). We found that FFTs 180 

computed before and after craniotomies (performed to implant microelectrode arrays) are highly 181 

correlated suggesting that our results are generalizable to EEG recorded from human subjects with 182 

an intact skull. Segments of EEG data were recorded for each electrode during the first 300ms of pre-183 
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stimulus periods on the change detection task (Figure 1A). A constant duration was needed in order 184 

to remove aperiodic activity that has a 1/f-like distribution (Donoghue et al., 2020). We did not include 185 

the first pre-stimulus period due to an increase in eye position variability resulting from fixation 186 

having been established a short time earlier. Such variability was not present in the following pre-187 

stimulus periods (see Figure 1 in Johnston et al., 2021). Several outlier rejection steps were then 188 

taken. First, segments of EEG data were considered excessively noisy and removed if any of the 189 

electrodes had a standard deviation that was 10 times greater than the mean of the entire session, or 190 

if any of the electrodes exhibited a flat signal defined as a standard deviation less than 300 nanovolts 191 

(Snyder et al., 2018a). Segments of EEG data were also removed if there was evidence of excessive 192 

variability in the eye trace. For each session, we computed 1D eye velocity during each pre-stimulus 193 

period. EEG segments were removed if the standard deviation of the eye velocity was 2 times greater 194 

than the mean eye velocity across all pre-stimulus periods. This final step was necessary to ensure 195 

that changes in pre-stimulus alpha power did not arise due to eye movement artifacts.  196 

Visual stimuli 197 

Visual stimuli were generated using a combination of custom software written in MATLAB 198 

(The MathWorks) and Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997). They were 199 

displayed on a CRT monitor (resolution = 1024 X 768 pixels; refresh rate = 100Hz), which was viewed 200 

at a distance of 36cm and gamma-corrected to linearize the relationship between input voltage and 201 

output luminance using a photometer and look-up-tables. 202 

Behavioral task 203 

Subjects fixated a central point (diameter = 0.6°) on the monitor to initiate a trial (Figure 1A). 204 

Each trial comprised a sequence of stimulus periods (400ms) separated by brief pre-stimulus 205 

(fixation) periods. The duration of each pre-stimulus period was drawn at random from a uniform 206 

distribution spanning 300-500ms but EEG data were only analyzed during the first 300ms (see 207 

above). The 400ms stimulus periods comprised pairs of drifting full-contrast Gabor stimuli. One 208 

stimulus was presented in the aggregate receptive field (RF) of the recorded V4 neurons, whereas the 209 
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other stimulus was presented in the mirror-symmetric location in the opposite hemifield. Although 210 

the spatial (Monkey Pe = 0.85cycles/°; Monkey Wa = 0.85cycles/°) and temporal frequencies 211 

(Monkey Pe = 8cycles/s; Monkey Wa = 7cycles/s) of the stimuli were not optimized for each 212 

individual V4 neuron they did evoke a strong response from the population. The orientation of the 213 

stimulus in the aggregate RF was chosen at random to be 45 or 135°, and the stimulus in the opposite 214 

hemifield was assigned the other orientation. There was a fixed probability (Monkey Pe = 30%; 215 

Monkey Wa = 40%) that one of the Gabors would change orientation by ±1, ±3, ±6, or ±15° on each 216 

stimulus presentation. The sequence continued until the subject: 1) made a saccade to the changed 217 

stimulus within 400ms (“hit”); 2) made a saccade to an unchanged stimulus (“false alarm”); or 3) 218 

remained fixating for more than 400ms after a change occurred (“miss”). If the subject correctly 219 

detected an orientation change, they received a liquid reward. In contrast, a time-out occurred if the 220 

subject made a saccade to an unchanged stimulus delaying the beginning of the next trial by 1s. It is 221 

important to note that the effects of spatial attention were also investigated (although not analyzed in 222 

this study) by cueing blocks of trials such that the orientation change was 90% more likely to occur 223 

in one hemifield relative to the other hemifield.  224 

Eye tracking 225 

 Eye position and pupil diameter were recorded monocularly at a rate of 1000Hz using an 226 

infrared eye tracker (EyeLink 1000, SR Research). 227 

Microsaccade detection 228 

Microsaccades were defined as eye movements that exceeded a velocity threshold of 6 times 229 

the standard deviation of the median velocity for at least 6ms (Engbert and Kliegl, 2003). They were 230 

required to be separated in time by at least 100ms. In addition, we removed microsaccades with an 231 

amplitude greater than 1° and a velocity greater than 100°/s. To assess the validity of our 232 

microsaccade detection method, the correlation (Pearson product-moment correlation coefficient) 233 

between the amplitude and peak velocity of detected microsaccades (i.e., the main sequence) was 234 

computed for each session. The mean correlation between these two metrics across sessions was 0.84 235 
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(SD = 0.06) indicating that our detection algorithm was robust as microsaccades fell on the main 236 

sequence (Zuber et al., 1965).  237 

Pre-stimulus power 238 

For each electrode, FFTs were computed using Hanning-windowed segments of EEG data 239 

spanning the first 300ms of the pre-stimulus period (Figure 1A). Note that we did not include the first 240 

pre-stimulus period due to an increase in eye position variability resulting from fixation having been 241 

established a short time earlier (see above). The data for each electrode was then binned using a 30-242 

minute sliding window (step size = 6 minutes), which yielded eight FFTs per time bin (one for each 243 

electrode). We wanted to rule out the possibility that slow drift was associated with gradual changes 244 

in 1/f noise (Donoghue et al., 2021). Therefore, the aperiodic component of the signal was estimated 245 

by fitting an exponential to the binned FFTs for each electrode (Donoghue et al., 2020). Residual 246 

power was then computed by subtracting off the aperiodic portion of the signal. Previous research 247 

has shown that pre-stimulus alpha power is associated with performance on visual detection tasks 248 

across a range of frontal, midline, and posterior electrodes (Ergenoglu et al., 2004; Busch et al., 2009; 249 

Iemi et al., 2017). Hence, the aperiodic adjusted (residual) FFTs from all eight electrodes were 250 

averaged together for each time bin. Finally, we computed the mean residual power in different 251 

frequency bands. For each time bin, residual power was computed in the theta (4-8Hz), alpha (8–252 

12Hz), beta (12–30Hz) and gamma (30–50Hz) bands. 253 

Eye metrics  254 

Mean pupil diameter was measured during stimulus periods, whereas microsaccade rate was 255 

measured during pre-stimulus periods (Johnston et al., 2021). We did not include the initial fixation 256 

period when measuring microsaccade rate. As described above, there was an increase in eye position 257 

variability during this period resulting from fixation having been established a short time earlier (300-258 

500ms). Such variability was not present in following pre-stimulus periods (see Figure 1 in Johnston 259 

et al., 2021). Reaction time and saccade velocity were measured on trials in which the subjects were 260 

rewarded for correctly detected an orientation change. Reaction time was defined as the time from 261 
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when the change occurred to the time at which the saccade exceeded a velocity threshold of 150°/s. 262 

Saccade velocity was the peak velocity of the saccade to the changed stimulus. To isolate slow 263 

changes in the eye metrics over time, the data for each session was binned using a 30-minute sliding 264 

window stepped every 6 minutes. The width of the window, and the step size, were chosen to isolate 265 

slow changes over time based on previous research. They were the same as those used by Cowley et 266 

al. (2020) and Johnston et al. (2021), which meant direct comparisons could be made across studies. 267 

Calculating slow drift 268 

The spiking responses of populations of neurons in V4 were measured during a 400ms period 269 

that began 50ms after stimulus presentation (Figure 1A). Research has shown that neurons in V4 are 270 

tuned for stimulus orientation (Desimone and Schein, 1987). To prevent the PCA identifying 271 

components related to stimulus tuning, residual spike counts were computed by subtracting the mean 272 

response for a given orientation (45 or 135°) across the entire session from individual responses to 273 

that orientation. To isolate slow changes in neural activity over time, residual spike counts for each 274 

V4 neuron were binned using a 30-minute sliding window stepped every 6 minutes. PCA was then 275 

performed to reduce the high-dimensional residual data to a smaller number of latent variables 276 

(Cunningham and Yu, 2014). Slow drift in V4 was estimated by projecting the binned residual spike 277 

counts for each neuron along the first principal component.  278 

Aligning slow drift across sessions 279 

As described above, slow drift was calculated by projecting binned residual spike counts along 280 

the first principal component. The weights in a PCA can be positive or negative (Jolliffe and Cadima, 281 

2016), which meant the sign of the correlation between slow drift and a given metric was arbitrary. 282 

Preserving the sign of the correlations was particularly important in this study because we were 283 

interested in whether slow drift was associated with a pattern that is indicative of changes in the 284 

subjects’ arousal levels over time i.e., decreased pre-stimulus alpha power, increased pupil size and 285 

decreased microsaccade rate. For simplicity, we adopted an identical approach to that used in our 286 

previous study (Johnston et al., 2021). That is, the sign of the slow drift was flipped if the majority of 287 
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neurons had negative weights. Forcing the majority of neurons to have positive weights established 288 

a common reference frame in which an increase in the value of slow drift was associated with higher 289 

firing rates among the majority of neurons. 290 

Estimating the timescale of slow drift and pre-stimulus alpha power 291 

 To determine the timescale at which each variable fluctuated over the course of a session 292 

Gaussian smoothing was performed (Cowley et al., 2020). The first thing to note is that slow drift 293 

was computed in a slightly different manner. To improve temporal resolution, the thirty-minute 294 

sliding window (used to bin residual spike counts) was stepped every 1 minute instead of every 6 295 

minutes. The same approach was taken when computing pre-stimulus alpha power. Gaussian 296 

smoothing was then performed in a cross-validated manner using standard deviations (i.e., timescales) 297 

ranging from 1 to 90 minutes (step size = 1 minute). To determine the timescale of the fluctuation, a 298 

R2 was computed for each standard deviation by leaving out randomly chosen time points for each 299 

fold (10 in total) and then predicting the value of each held-out point by calculating a Gaussian 300 

weighted average of its neighbors. We found the standard deviation with the maximum R2 and the 301 

standard deviation at which the R2 dropped to 75% of the maximum R2. The latter was taken to be 302 

the timescale of the fluctuation. 303 

Choice of analysis time windows 304 

 We chose to analyze spiking responses during stimulus periods for consistency across studies. 305 

This was the approach taken in our original paper that discovered a slow drift of neural activity in 306 

macaque visual and prefrontal cortex (Cowley et al., 2020) and in a follow-up study that included 307 

other eye-related metrics such as microsaccade rate and evoked pupil size (Johnston et al., 2021). The 308 

reason we chose to analyze microsaccade rate during pre-stimulus periods was to avoid bi-phasic 309 

changes that occur during visual stimulus presentation. More specifically, microsaccade rate 310 

decreases shortly after a visual stimulus has been presented and then increases later (Engbert and 311 

Kliegl, 2003; Rolfs et al., 2008; Hafed and Ignashchenkova, 2013). With regards to segments of EEG 312 

data, decades of research has shown that decreased alpha power during pre-stimulus periods is 313 
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associated with improved performance on change detection tasks (Ergenoglu et al., 2004; Babiloni et 314 

al., 2006; Hanslmayr et al., 2007; van Dijk et al., 2008; Busch et al., 2009; Mathewson et al., 2009; 315 

Romei et al., 2010). Therefore, we adopted the same approach and analyzed segments of EEG data 316 

during pre-stimulus periods.  317 

Data availability 318 

All data and code for this manuscript are available at the following link: 319 

https://doi.org/10.1184/R1/19248827 320 

 321 

Results 322 

To determine if spontaneous components of the EEG signal can provide insight into the 323 

internal brain state associated with slow drift, we trained two macaque monkeys to perform an 324 

orientation-change detection task in which pairs of stimuli were repeatedly presented (Figure 1A). 325 

Spiking responses of populations of neurons in visual cortex (V4) were recorded using 100-channel 326 

“Utah” arrays as well as EEG on the scalp (Figure 1B). For each electrode, FFTs were computed 327 

using segments of EEG data recorded during pre-stimulus periods. The data were then binned using 328 

a 30-minute sliding window stepped every 6 minutes (Figure 2A). Prior to averaging across 329 

electrodes, aperiodic activity that was 1/f-like in nature was estimated and subtracted off (see 330 

Methods). Finally, mean residual power was computed in distinct frequency bands. Our primary focus 331 

was on pre-stimulus alpha oscillations, but we also computed pre-stimulus power in the theta, beta, 332 

and gamma bands. In addition, raw pupil size and microsaccade rate were recorded during stimulus 333 

and pre-stimulus periods, respectively. 334 

 335 

 336 

 337 

 338 
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Correlation between pre-stimulus alpha power and raw pupil size 350 

First, we explored the relationship between pre-stimulus alpha power and raw pupil size. As 351 

described above, several studies in humans have established a link between these two variables using 352 

a combination of EEG and pupillometry (Hong et al., 2014; Van Kempen et al., 2019; Podvalny et 353 

al., 2021). Most recently, Compton et al. (2021) found that alpha power during inter-trial periods on 354 

a Stroop task was inversely related to raw pupil size. That is, trials with greater pupil size were 355 

associated with reduced power in the alpha band and vice versa. To investigate if a similar relationship 356 

was found in our data, raw pupil size measurements were binned using the same 30-minute sliding 357 

window that was used to bin the EEG data. Note that the width of the window, and the step size, were 358 

chosen to isolate slow changes over time based on previous studies we performed (Cowley et al., 359 

2020; Johnston et al., 2021). Example sessions for Monkey Pe and Monkey Wa are shown in Figure 360 

2B (top and bottom rows, respectively). In support of previous research, pre-stimulus power in the 361 

alpha band was negatively associated with raw pupil size in each example session for both subjects. 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 
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 392 

The example sessions in Figure 2B exhibit moderate to strong trends. However, it is difficult 393 

to determine if two variables that fluctuate slowly over time are correlated over the course of a single 394 

session. Standard correlation analyses assume that all samples are independent, but smoothed 395 

variables can violate this assumption leading to “nonsense  correlations” between variables that are 396 

unrelated (Harris, 2020). An easy way to overcome this problem is to record data from multiple 397 

sessions. Two approaches can then be adopted: 1) one can compute a correlation for each session, and 398 

then perform a statistical test to investigate if the distribution of coefficients across sessions is 399 

centered on zero; or 2) one can explore if the magnitude of fluctuations in one of the variables is 400 

associated with the magnitude of fluctuations in the other variable. Both approaches were adopted in 401 

the present study to investigate if there was a relationship between pre-stimulus alpha power and pupil 402 

size across sessions (Monkey Pe = 15 sessions; Monkey Wa = 16 sessions). First, we investigated if 403 

pre-stimulus power in the alpha band and raw pupil size were correlated over time. Within each 404 

session, we computed a correlation (Pearson product-moment correlation coefficient) between pre-405 

stimulus alpha power and raw pupil size. As in our previous study (Johnston et al., 2021), we found 406 

that null distributions (generated by computing correlations between sessions recorded on different 407 

days) were centered on zero. Therefore, a Wilcoxon signed rank test was then used to test the null 408 

hypothesis that the median correlation across sessions was equal to zero. Consistent with the pattern 409 

of results observed in the four example sessions, we found that pre-stimulus alpha power was 410 

significantly and negatively correlated with raw pupil size (Figure 2C, median r = -0.35, p = 0.012). 411 

Next, we investigated if the magnitude of changes in EEG alpha power was correlated with the 412 

magnitude of changes in raw pupil size. Within each session, we computed the variance of pre-413 

stimulus alpha power and raw pupil size. The data were then z-scored for each monkey separately to 414 

control for potential differences in variance that might have led to an artifactual correlation when the 415 

data were pooled across subjects. Finally, a correlation (Pearson product-moment correlation 416 

coefficient) was performed to investigate if within-session variance in pre-stimulus alpha power was 417 
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significantly associated with within-session variance in raw pupil size. Results showed that the 418 

magnitude of changes in pre-stimulus alpha power was significantly correlated with the magnitude 419 

of changes in raw pupil size (Figure 2D, r = 0.38, p = 0.035). These findings support previous work 420 

in humans as they show that fluctuations in pre-stimulus alpha power were accompanied by global 421 

changes in the subjects’ arousal levels (Hong et al., 2014; Van Kempen et al., 2019; Compton et al., 422 

2021; Podvalny et al., 2021). This motivated us to ask if pre-stimulus alpha power is associated with 423 

other arousal-related metrics such as microsaccade rate.  424 

Correlation between pre-stimulus alpha power and microsaccade rate 425 

Recently, we found that microsaccade rate fluctuates over the course of a recording session in 426 

a manner that is consistent with slow changes in arousal over time (Johnston et al., 2021). More 427 

specifically, decreases in raw pupil size on a change detection task were accompanied by increases in 428 

microsaccade rate and vice versa. Hence, we were interested in whether pre-stimulus alpha power is 429 

correlated with microsaccade rate. Based on our previous research, we hypothesized that 430 

microsaccade rate would be positively correlated with pre-stimulus alpha power. To test this 431 

prediction, microsaccade rate measurements were binned using the same 30-minute sliding window 432 

stepped every 6 minutes. Example sessions for Monkey Pe and Monkey Wa are shown in Figure 3A 433 

(top and bottom rows, respectively). In support of our hypothesis, pre-stimulus alpha power was 434 

positively associated with microsaccade rate in each example session for both subjects.  435 

 436 

 437 

 438 

 439 

 440 

 441 
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session variance in pre-stimulus alpha power and within-session variance in microsaccade rate. 469 

Results showed that the magnitude of changes in pre-stimulus alpha power was significantly 470 

correlated with the magnitude of changes in microsaccade rate (Figure 3C, r = 0.39, p = 0.029). 471 

Although we note that the median within-session correlation between slow drift and microsaccade 472 

rate was not significantly different from zero (Figure 3B), the compelling match in the time course of 473 

individual sessions (Figure 3A) and the significant session-by-session correlation in variance (Figure 474 

3C) are important for at least two reasons. Firstly, they establish a novel link between pre-stimulus 475 

alpha power and fixational eye movements at long timescales. Secondly, they provide further 476 

evidence to suggest that fluctuations in pre-stimulus alpha power are associated with changes in 477 

arousal. If this is the case, one might expect alpha oscillations to be correlated with behavioral 478 

performance and other eye metrics that have been used to index changes in brain state such as saccadic 479 

reaction time and saccade velocity (Castellote et al., 2007; Di Stasi et al., 2013; DiGirolamo et al., 480 

2016). 481 

Correlation between pre-stimulus alpha power and other arousal-related metrics 482 

 Previously, we found that performance on a change detection task, as measured by computing 483 

hit rate and false alarm rate, fluctuates slowly over the course of a recording session (Cowley et al., 484 

2020). The same is also true of other eye metrics including saccadic reaction time and saccade 485 

velocity (Johnston et al., 2021). To explore if pre-stimulus alpha power is associated with these 486 

additional arousal-related metrics, correlations (Pearson product-moment correlation coefficient) 487 

were computed within each session. Wilcoxon signed rank tests were then used to test the null 488 

hypothesis that the median correlation across sessions was equal to zero. Results showed that pre-489 

stimulus alpha power was negatively correlated with false alarm rate (Figure 4, median r = -0.28, p = 490 

0.046). However, it was not significantly correlated with hit rate (Figure 4, median r = 0.03, p = 491 

0.906), reaction time (median r = 0.12, p = 0.176) or saccade velocity (Figure 4, median r = -0.12, p 492 

= 0.389). Note that pupil size and microsaccade rate have also been included in Figure 4 so that 493 

comparisons can be made across the different behavioral and eye metrics. This data is the same as 494 
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between α power and pupil size was -0.31 (p = 0.301). Error bars represent bootstrapped 95% confidence intervals. α = 515 

alpha. p < 0.05*. 516 

 517 

Correlation between pre-stimulus alpha power and slow drift 518 

As described above, we recently observed a pervasive signal in visual and prefrontal cortex 519 

termed “slow drift” (Cowley et al., 2020). Interestingly, this neural signature was related to a subject’s 520 

tendency to make impulsive decisions on a change detection task and a constellation of eye metrics 521 

that are indicative of slow changes in arousal over time (Johnston et al., 2021). For example, we found 522 

that slow drift was positively correlated with raw pupil size and negatively correlated with 523 

microsaccade rate. This motivated us to ask if non-invasive EEG signals recorded on the scalp are 524 

associated with slow drift. Based on our previous work, we hypothesized that pre-stimulus alpha 525 

power would be negatively correlated with slow drift. 526 

 To calculate slow drift, residual spike counts were computed by subtracting the mean 527 

response for a given orientation across the entire session from individual responses. This was an 528 

important first step as it ensured that signals related to stimulus tuning were not present in the slow 529 

drift. Residual spike counts were then binned using the same 30-minute sliding window that had been 530 

used to bin the EEG, pupil and microsaccade rate data (Figure 5A, see Methods). We then applied 531 

principal component analysis (PCA) to the neural data and estimated slow drift by projecting the 532 

binned residual spike counts along the first principal component (i.e., the loading vector that 533 

explained the most variance in the data). The sign of the weights in PCA is arbitrary meaning that the 534 

correlation between slow drift and pre-stimulus alpha power in any session was equally likely to be 535 

positive or negative (Jolliffe and Cadima, 2016). To overcome this issue, we flipped the sign of the 536 

slow drift such that the majority of neurons had positive weights (Hennig et al., 2021). This 537 

established a common reference frame in which an increase in the value of the drift was associated 538 

with higher firing rates among the majority of neurons (see Methods). 539 

We computed the slow drift of the neuronal population in each session using the above-540 

mentioned method, and then compared it to pre-stimulus alpha power.  Example sessions for Monkey 541 
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 627 

Discussion  628 

In this study, we investigated if pre-stimulus oscillations in the alpha band could be utilized 629 

as an external signature of an internal brain state, a recently discovered neural activity pattern called 630 

“slow drift” (Cowley et al., 2020). We know from previous work that slow drift in macaque visual 631 

and prefrontal cortex is correlated with a host of eye metrics across tasks with differing cognitive 632 

demands (Johnston et al., 2021), suggesting that slow drift can be used to index brain-wide changes 633 

in arousal. Since pre-stimulus alpha power is also related to arousal, we wondered if a link could be 634 

established between a neural measure of an internal brain state acquired directly from the spiking 635 

activity of populations of neurons (i.e., slow drift) and indirect signals recorded non-invasively from 636 

the scalp using EEG. Results showed that slow drift was significantly associated with a pattern that 637 

is indicative of changes in the subjects’ arousal levels over time: decreases in pre-stimulus alpha 638 

power were accompanied by increases in raw pupil size and decreases in microsaccade rate. 639 

Several studies in humans have found a relationship between pre-stimulus alpha power and 640 

pupil size (Hong et al., 2014; Van Kempen et al., 2019; Podvalny et al., 2021). For example, on classic 641 

Stroop tasks, trials with greater raw pupil size are associated with reduced alpha power and vice versa 642 

(Compton et al., 2021). Our results support this finding as slow changes in pre-stimulus alpha power 643 

were negatively correlated with raw pupil size. Furthermore, there was an association between the 644 

magnitude of fluctuations in pre-stimulus alpha power (as measured by computing within-session 645 

variance) and the magnitude of fluctuations in raw pupil size. These findings suggest that pre-stimulus 646 

alpha power is associated with global changes in brain state that occur naturally over time, perhaps 647 

due to fluctuating levels of neuromodulators in the brain. Testing this hypothesis would require the 648 

simultaneous recording of EEG from the scalp and spiking activity in subcortical regions associated 649 

with arousal such as the LC (Aston-Jones and Cohen, 2005; Sara, 2009; Chandler, 2016). Such studies 650 

have been conducted in monkeys (Foote et al., 1980; Swick et al., 1994) but the relationship between 651 

pre-stimulus alpha power and pupil size has not been elucidated in awake behaving animals 652 
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performing cognitively demanding tasks. Hence, an important question for future research would be 653 

to determine how the spiking activity of subcortical regions associated with arousal relates to pre-654 

stimulus alpha power recorded on the scalp. 655 

Another non-invasive metric that has been linked to oscillations in the alpha band is 656 

microsaccade rate. We know from previous research that visual perception is altered up to 700ms 657 

after a microsaccade has occurred, at a frequency of ~8 to 20Hz (Bellet et al., 2017). The results of 658 

the present study show that a relationship also exists between alpha oscillations and microsaccade 659 

rate at longer timescales. Recently, we found that slow fluctuations in raw pupil size were negatively 660 

correlated with microsaccade rate (Johnston et al., 2021). That is, microsaccade rate decreased under 661 

conditions of heightened arousal (as indexed by greater pupil size and increased saccade velocity) 662 

and vice versa. Given this result, we hypothesized that there would be a positive correlation between 663 

pre-stimulus alpha power and microsaccade rate at longer timescales, which are more likely to reflect 664 

changes in a subject’s internal cognitive state (Cowley et al., 2020). This is exactly what was found 665 

in several example sessions for both monkeys. Furthermore, the magnitude of fluctuations in pre-666 

stimulus alpha power was significantly correlated with the magnitude of fluctuations in microsaccade 667 

rate across sessions. A key goal for future research is to bridge the gap between microsaccade-related 668 

EEG signals and neural activity in brain regions that have been implicated in eye movement control 669 

such as the SC (Martinez-Conde et al., 2013). Research combining EEG and eye tracking has shown 670 

that microsaccades are accompanied by: 1) a large potential over occipital electrodes ~100ms after 671 

movement onset; and 2) changes in alpha/theta power (Dimigen et al., 2009). However, it is unclear 672 

how these signals recorded on the scalp, at relatively short timescales, relate to the activity of SC 673 

neurons. Similarly, we do not know how long timescale changes in pre-stimulus alpha power, which 674 

we found to be correlated with microsaccade rate, link to firing rates in the SC. Future research 675 

combining eye tracking, EEG and single unit/population recordings in the SC is needed to determine 676 

the neural underpinnings of non-invasive scalp signals that are associated with fixational eye 677 

movements. 678 
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Taken together, the results of the pupil size and microsaccade rate analysis suggest that 679 

fluctuations in pre-stimulus alpha power are associated with global changes in arousal. This motivated 680 

us to ask if non-invasive signals recorded on the scalp can be used to index a recently discovered 681 

signature of an internal brain state called “slow drift” (Cowley et al., 2020). We know from previous 682 

research that slow drift is positively correlated with raw pupil size and negatively correlated with 683 

microsaccade rate across tasks with differing cognitive demands (Johnston et al., 2021). Therefore, 684 

we predicted that there would be an inverse relationship between changes in pre-stimulus alpha power 685 

and slow drift over time. In support of this hypothesis, we found that slow drift in visual cortex was 686 

negatively correlated with pre-stimulus alpha power in several example sessions for both monkeys. 687 

Furthermore, they were significantly and negatively correlated when the data were pooled across 688 

sessions. It is important to note that this finding cannot be attributed to changes in 1/f noise that are 689 

characteristic of several brain disorders (Peterson et al., 2017; Robertson et al., 2019) and healthy 690 

ageing (Voytek et al., 2015). Firstly, aperiodic components of the FFT were estimated and subtracted 691 

off prior to averaging across electrodes (Donoghue et al., 2020). Secondly, no significant correlation 692 

was found between slow drift and pre-stimulus power in the theta, beta, and gamma bands. One might 693 

have expected this to be the case if slow drift was associated with uniform shifts in power across 694 

frequencies. Nonetheless, 1/f noise and other aperiodic fluctuations, might be related to global brain 695 

modulations in ways that are not well captured by the slow drift we observe. A further interesting 696 

question is whether slow drift is associated with other EEG signals such as the P1 component of the 697 

visually evoked potential (VEP). There are at least two reasons why this might be the case. Firstly, 698 

evidence suggests that early VEP components are negatively correlated with pre-stimulus alpha 699 

power (Roberts et al., 2014; Iemi et al., 2019). Secondly, decades of research has shown that P1 700 

amplitude is associated with global changes in brain state (Luck et al., 2000). For example, it is 701 

significantly larger on trials in which a weak visual stimulus is detected (Ergenoglu et al., 2004; 702 

Pourtois et al., 2006; Del Cul et al., 2007; Mathewson et al., 2009) and negatively correlated with 703 

reaction time on spatial attention tasks (Mangun and Hillyard, 1991). 704 
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Another key finding from the present study is related to the timescale of slow drift and 705 

fluctuations in pre-stimulus alpha power. We found that the timescale of these two variables was 706 

significantly different: pre-stimulus alpha power had a shorter timescale than slow drift. This result 707 

is unsurprising given that oscillations in the 8 to 12Hz frequency band are influenced by processes 708 

such as attention that operate at a timescale of hundreds of milliseconds to seconds (Worden et al., 709 

2000; Sauseng et al., 2005; Kelly et al., 2006; Snyder and Foxe, 2010). However, we did find that the 710 

timescale of slow drift and the timescale of fluctuations in pre-stimulus alpha power was significantly 711 

correlated across sessions. This observation is important because it suggests that these two variables 712 

are modulated by a common process such as arousal that operates at a brain-wide level. In the present 713 

study, there was no experimental manipulation of the subjects’ arousal levels meaning that the 714 

timescale of slow drift and pre-stimulus alpha power varied naturally from session to session. 715 

Evidence suggests that LC is a major source of fluctuations in arousal (Aston-Jones and Cohen, 2005; 716 

Sara, 2009; Chandler, 2016). Therefore, activating neurons in this region directly via electrical 717 

microstimulation, or indirectly via pharmacological manipulations, should lead to correlated changes 718 

in the timescale of slow drift and pre-stimulus alpha power. 719 

In summary, we found that a commonly used metric of cognitive state in human EEG studies, 720 

pre-stimulus alpha power, is associated with gradual shifts in the underlying population structure of 721 

neural activity throughout the brain. Together, these measures at the scalp, and in the cortex, were 722 

predictive of changes in the monkeys’ arousal levels over time. These findings show that indirect 723 

measures of neural activity can be used to index a global signature of arousal. By linking a vast EEG 724 

literature in humans with simultaneous scalp/microelectrode array recordings in macaques our results 725 

bridge the gap between large-scale field potentials and the spiking responses of populations of cortical 726 

neurons. 727 
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