2022 23rd International Symposium on Quality Electronic Design (ISQED) | 978-1-6654-9466-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/ISQED54688.2022.9806223

A Lightweight Neighbor-Averaging Technique for
Reducing Systematic Variations in Physically
Unclonable Functions

Andres Martinez-Sanchez, Deva Borah and Wenjie Che
Klipsch School of Electrical and Computer Engineering
New Mexico State University
Las Cruces, NM, USA
{ amar5150, dborah, wche }(@nmsu.edu

Abstract—Physically Unclonable Functions (PUFs) are
emerging hardware security primitives that leverage stochastic
random process variations during chip manufacturing to generate
unique secrets. However, the biased systematic variations that
exist in the process variations will cause non-random spatial
correlations among PUF elements in the layout, which
significantly degrades randomness of PUF generated secrets.
Existing methods of reducing systematic variations involve
operations with high computational complexity and therefore
require high implementation overheads. In this paper, we propose
a lightweight method based on averaging neighboring PUF values
to derive spatial bias and hence reduce spatial variations.
Experimental results using RO PUF data from 192 Spartan 3E
FPGAs show that the proposed method achieves comparable or
even better randomness improvement compared to existing
methods. The proposed method also demonstrates advantages of
parameter diversity. The proposed method implemented on Xilinx
FPGAs shows up to more than 10x lower implementation
overhead compared with the existing method.

Keywords— Physically Unclonable Functions, Systematic
Variations, Spatial Correlations, Lightweight PUF Randomness
Improvement

1. INTRODUCTION

A growing number of various intelligent Internet-of-Things
(IoTs) applications poses a great demand for information
processing and storage capability in the model digital systems.
However, the increasing complexity of both software and
hardware components integrated in such digital systems exposes
a much wider attacking surface to adversaries. Moreover, the
increasing amount of connected devices to each other and to the
Internet has also enlarged the vulnerabilities of compromising
data confidentiality, integrity and privacy to attacks. Security
mechanisms such as authentication and encryption that are used
to achieve security goals typically rely on a secret that is
unpredictable by the attackers. Such secrets are conventionally
stored in non-volatile memories (NVMs) which have shown to
be vulnerable to physical attacks [1][2]. Physically Unclonable
Functions (PUFs) have been proposed as a promising alternative
for secret generation and storage due to its tamper-evident nature
and feature of no-volatile secret generation. A PUF is an
integrated circuit that leverages the random process variations
during the chip manufacturing process to generate unique and
unpredictable secrets for each Integrated circuit (IC) chip. The
random and uncontrollable manufacturing variations serve as an

entropy source for the PUF to generate unique, reproducible and

unpredictable secrets that is “unclonable” by adversaries or even

the manufacturer itself.

Unfortunately, process variations during manufacturing not
only includes the stochastically random variations but also a
second type of systematic variations which demonstrates non-
random bias or patterns in the chip physical layout. Such bias or
patterns will cause spatial correlations among PUF elements in
the physical layout and hence will further reduce the randomness
of PUF-generated secrets, posing a threat in PUF-based security
applications.

Several works have been proposed to reduce systematic
variations including by applying polynomial regressions [5],
logarithmic and square root-based operations [6], or by
introducing normalized pseudo random number generators [7].
While most of existing works have shown the effectiveness of
the methods for reducing systematic variations, they require
either complex non-linear mathematical operations or statistical
computations which will inevitably occur significant
implementation overheads. Such implementation inefficiency
would render these methods inappropriate for those resource-
constrained IoT applications. Unfortunately, few of existing
works has discussed or reported the implementation complexity
and overheads of the methods.

In this paper, we propose a lightweight method that only
requires simple linear operations to effectively reduce
systematic variations in PUFs. The proposed method extracts
spatial bias by leveraging information of neighboring PUF
elements using a simple averaging operation, which has
significantly lower computational complexity and overhead
over existing methods. This paper makes the following
contributions:

e We propose a lightweight scheme to effectively reduce
systematic variations in PUFs by applying a simple linear
averaging operation to neighboring PUF cells rather than
complex mathematical or statistical methods.

e We evaluated the effectiveness of the proposed method in
reducing systematic variations on different types of
response generation schemes (coding schemes) using a RO
PUF dataset that includes 192 FPGAs. The NIST
randomness results show that our scheme has achieved
comparative or better improvement on randomness over
existing methods.

Authorized licensed use limited to: New Mexico State University. Downloaded on November 04,2022 at 20:38:36 UTC from IEEE Xplore. Restrictions apply.

e We have implemented our scheme in Xilinx FPGAs and
report a more than 10x lower implementation overhead over
other existing methods. We have also discussed the
flexibility/diversity feature of our proposed method
provided by its large effective parameter space.

The rest of the paper is organized as follows. Section II
presented the related work and Section III introduces the
preliminary work. Section IV provides the overall and detailed
descriptions of our proposed neighbor-averaging scheme (NAS)
and its variants. Experimental evaluations of the effectiveness
and overheads are presented in Section V. Section VI concludes
the paper.

II. RELATED WORK

Several works have proposed methods to reduce systematic
variations in PUFs. An early work proposed to select only
adjacent RO cells as pairs for generating response bits [11]. The
most well-known method in [5] introduced polynomial
regressions of varying degrees to approach the systematic bias.
Another method uses complex logarithmic base 10 and square
root operations which need to be performed using statistical
analysis tool like SPSS [6]. Authors in [7] proposed to reduce
systematic variations by introducing normalized pseudo random
values to the raw RO frequencies which require both costly
pseudo random number generators and normalization modules.
A recent work introduced a spatial autocorrelation analysis
metric for single-challenge PUFs [8]. Different comparison
strategies have been proposed to minimize the impact of
systematic variations [14] and other works [12][13] improved
the PUF entropy by reducing functional correlations through
advanced pairing schemes.

III. PRELIMINARIES

A. Basics of RO PUFs

The structure of a conventional RO-PUF is illustrated in Fig.
1(b). The RO-PUF typically consists of N identically designed
Ring Oscillators that are wired into two N-fo-I multiplexers
(MUZXes) so that a pair is selected whose counter (frequency)

Row(Y)

2 HEE - 0

e

D]
Input ——

(b) RO-PUF structure

[]
2N

. 16
Column (X)

o\

O
EEE
EEe

1 2 3
(a) RO Elements implemented
in FPGA Physical Layout

(c) RO frequency distribution

Fig. 1. Systematic variations present in RO frequency distributions of FPGA
layout. (a) RO Elements implemented in FPGA layout. (b) RO-PUF structure.
(¢) RO frequency distribution

values are compared. The “Select” signals of the two MUXes
are used as the challenge bits to select a particular pair of RO
cells whose frequencies are compared. A response bit of ‘1’ (or
‘0”) is generated depending on which frequency is faster.

B. Systematic variations

Systematic variations refer to the manufacturing bias in the
physical layout of chips where groups of PUF elements are
implemented. Such physical bias will cause spatial bias present
in PUF elements. Fig. 1(a) shows the physical layout of a Xilinx
Spartan 3E where 512 RO cells are implemented across 32 rows
and 16 column. Fig. 1(c) presents a 2D frequency distribution of
these 512 RO cells in the same 2D profile as physical layout.
Obvious frequency bias can be observed at the four edges versus
the center portion (smaller frequency values are presented at the
four edges). Such frequency bias are caused by the systematic
variations in the FPGA layout.

C. RO PUF response generation methods (coding schemes)

Similar to other related works, we evaluate several different
response generation methods (coding schemes) for RO PUFs in
this work. These coding schemes include 1-out-of-8 coding,
decouple neighboring coding and T-sequence. Details of these
coding schemes are provided in the experimental evaluation
section.

IV. PROPOSED NEIGHBOR AVERAGING SCHEME

A. Overview of the proposed neighbor-averaging scheme

Fig. 2 provides a high-level overview of the proposed
neighbor-averaging scheme in comparison with existing
polynomial regression based methods. The curves in the boxes
on the left and right sides show a region of adjacent RO
frequency values before and after applying the method to reduce
systematic variations (biased trend), respectively. The middle
portion of Fig. 2 illustrates the two major differences of the
calculating process between the existing method (top half) and
the proposed method (bottom half), i.e., (1) the amount of
involved data points in calculation and (2) the complexity of the
operations. For the existing regression-based method, a large
amount of data points need to be included and the calculation
requires complex non-linear operations. For our proposed
neighbor-averaging scheme, however, only a small portion of
neighboring data points are involved and the calculation only
requires simple linear averaging operations on neighboring
values. Therefore, the much more simplified calculation process

Arca of involved data points Orange line: extracted trend by the method
in_calcultion for the et | _/_ Black ling: raw frequency valyes
Existing regression-based method

| 'ﬂL‘- MLk ! ﬂ_\'ﬁ-“ﬂ f-“lﬂ"lﬂm;"ﬂn -
| ;n*\w."%'"}*f TR 4

Before
= Fo+ Bizs + Paz? + After
oo G

+eli=1,2,...,7)

Complex non-linear operatiorfs

[1 |
L_Large amount of data points involved in caleulation _ __ __ __ |
Proposed neiboring-averaging s

Simple linear averaging operatlons

—— —Small.amountof darg poinfsin calewlation o o

Fig. 2. Overview of the proposed Neighbor Averaging Scheme.

Authorized licensed use limited to: New Mexico State University. Downloaded on November 04,2022 at 20:38:36 UTC from IEEE Xplore. Restrictions apply.

of the proposed scheme brings the advantage of being
significantly more lightweight over existing schemes.

The idea of the proposed scheme is to approximate the local
trend through calculating local average values. This is achieved
by estimating the systematic bias for each individual raw data
point through calculating the average of its neighboring data
points. These calculated “average values” then are connected to
represent the trend line of this data region. The left box of Fig. 2
shows an example. First, the black line connects each raw
frequency values in the region. The corresponding systematic
bias for each raw value is then computed by averaging its
neighboring raw values, obtaining so-called “averaged values”.
These averaged values are then connected by the orange line to
approximate the local trend/bias in this region. To be compared
with the actual local trendline represented as the green line, the
orange line tracks it very well and therefore can be used to
approximate the systematic variations. Finally, the averaged
values are subtracted from their corresponding raw values to
obtain the new values (shown in the right box of Fig.2) with
reduced systematic variations.

B. Proposed Neighbor-Averaging Scheme (NAS)

Target Compute averaged target point f _ (n)
Red: g]nbala\erage of raw frequency values ~ point f,_ (n) e lh,, (0), @34, (02)+, (0 ”] L a53)— .. (1)

B}:ck raw frequency valms

~

Target %,
I A'ﬁq] &»*‘ 8 point £, (n Y
j ﬁﬁv ‘HW"%\'WY fl i 50 &N\ / Y,
F Orange: locally average Ircqucncws =6 ‘_:,e\z/) I \
u>u35 pmpo:ed scheme o= (Z; 5 \00 \
. Globz\l average of new Mqucncy values [%/
g
L

- N W

New target point f,_|

New target

point (o) = o (-0

Selected points.
to compute f, (n)

Fig. 3. Explanation of selection method and results of scheme

This section presents a detailed description of the proposed
neighbor-averaging scheme. Fig. 3 illustrates the calculation
process of approximating the local systematic bias for each
specific raw value in the physical layout. Figure 3(a) presents a
1-D representation of the frequency values from 256 RO cells
located (16 rows x 16 columns) across the lower half of the
Spartan 3E FPGAs, with the upper and lower halves
representing the frequency values before (raw) and after (new)
applying the proposed scheme respectively. In the upper half of
Fig. 3(a), the black line, representing the raw frequencies, shows
evident systematic variations as it deviates from the average
frequency value (red horizontal line) in a non-uniform manner
across sub-regions of the layout. The new frequency values
(green line in lower half of Fig. 3(a)) shows that such systematic
variations have been significantly reduced, evidenced by the
random jumping behavior across the global average line. The
reduction of systematic variations in the new frequencies is
achieved by subtracting the computed average frequency values
(orange line) from the raw frequencies.

For each raw frequency value, a corresponding “averaged
value” needs to be calculated for its raw value by averaging a set
of selected neighboring raw values. For illustration purpose, we
call the raw data point under calculation as the “target point”.
On each side of the target point, a specific range of neighboring
points are seclected specified by a distance parameter that

indicates the distance range from the target point. For example,
a left distance parameter of 4 indicates that up to 4 neighboring
points to the left side of the target point are selected. The farthest
selected point (4 positions away in this case) from the target
point is called the “edge point”. In addition to the distance
parameters, we also propose two selection methods for
neighboring points, i.e., “block selection” and “edge selection”.
For “block selection”, all points between the target point and the
edge point (included) are selected, while for “edge selection”
only the edge point is selected and all points between are
neglected.

Fig. 3(b) illustrates a close-up view of the two selection
methods from each side of a target point. First, a target point
fraw(n) is selected (indicated by the black square dot). In this
particular example illustrated in Fig. 3(b), we use block selection
on the left side of the target point with a distance value of 4,
which indicates that all 4 points to the left of the target point are
selected (denoted by 4 green square dots in Fig. 3(b)). On the
right side, the edge selection method is used with a distance
parameter value of 3, indicating that only the third point to the
right (edge point) of the target point is selected (denoted by the
purple square dot in Fig. 3(b)).

Once the neighboring points are selected for a specific target
value, they are summed up to calculate the localized average
value of the target point, fi«(n). The new target value is then
calculated by subtracting the averaged value from the raw target
value, i.e., foew(n) = fraw(n) - fave(n). Fig. 3(b) illustrates this
calculation process using an example where the block selection
is used on the left side of the target point with a distance value
of 4, and edge selection is used on the right side with a distance
value of 3. The averaged value fi.(n) is then calculated by
summing up and then average 4 data points from the left side
and one edge data point to the right side of the target point,
shown by the equation on top of Fig.3(b). The calculated
average point fy(n) is denoted as the orange square dot in Fig.
3(b). The final target point value foew(n) is then calculated by
subtracting the averaged point fi.(n) from the original
frequency point f.w(n), denoted as the green square dot in Fig.
3(b).

C. Variants and configurations of the proposed method and
enhanced flexibility

Examples of thefour variants of our scheme

Left Block &Right Block | 6}0 Left Edge &Right Edge || Y
8 . NG 8) &
Target point f_ (n) fg/ Target point fraw(n)/ N Y
7 Q.. o — @
6 Sl ok o T \il \

;1)

EaRaNINE

3 4
Frequency indicies

o

Frequency (MHz)
<) ~

Frequency (MHz)

- N W s

Left Block &Right Edge ||| . % Left Edge &Right Block |\/ 6}0

s Target point f_ (n)/’ \o'g sr Target point f_ (n) Qfg
7 | \@/ | 7F & < @}
Lo ¢ ol T] %)
=5 \ S5k o5 |
2 2
84 I |gaF 7
g g
23 N 3 4

2 - 21 -

1 1

indicies 8 ! 2 3Freuﬁ‘lencvﬁmdic es 8
[=] selected Foint

Fig. 4. Tllustration of the four variants of our propoesd scheme.

Authorized licensed use limited to: New Mexico State University. Downloaded on November 04,2022 at 20:38:36 UTC from IEEE Xplore. Restrictions apply.

TABLE I. NIST RANDOMNESS TEST RESULTS OF THE PROPOSED NEIGHBORING AVERAGING SCHEME (WITH 3 BEST CONFIGURATIONS) IN COMPARISON WITH
DIFFERENT POLYNOMIAL DEGREES OF EXISTING REGRESSION-BASED METHOD

Scheme Variants and T Test (# of failures 10f8 (# of failures out Decouple (# of Total failures
Parameters out of 9 tests) of 9 tests) failures out of 9 tests) | (1of8+Decouple+T)
) Order 1 9 9 8 8 1 3 38
i"lyn"“?‘al Order 2 8 8 8 8 1 3 36
cgression Order 3 4 1 8 8 1 3 25
across all points
(in-line) Order 4 1 1 8 7 2 3 22
Order 5 0 2 8 7 2 3 22
Order 1 8 2 5 1 0 0 16
Existing Row Bas;d Order 2 8 3 5 6 1 0 23
methods [5] Polynon_nal Order 3 9 5 6 3 0 0 23
Regression Order 4 9 5 4 2 1 0 21
Order 5 9 5 4 1 1 3 23
Order 1 9 9 3 0 0 0 21
X-Y based Order 2 7 7 3 4 1 0 22
regression in Order 3 2 2 2 3 1 0 10
MATLAB Order 4 0 1 1 0 0 0 2
Order 5 1 1 0 0 0 0 2
Variant IT L3/R4 6 2 0 0 2 1 11
Proposed Best Variant 1l L4/RS 5 0 3 3 2 0 13
methods Configurations -

Variant IT L5/R4 4 0 2 2 4 1 13

The edge selection and block selection can be used
interchangeably for both sides of the target point, resulting in 4
different combinations. All these 4 combinations construct the 4
variants of our scheme as illustrated in Fig. 4. For each of the 4
variants, a configuration can be determined by specifying the
values of the two distance parameters, i.e., the left distance and
the right distance. For example, Variant III L4/R3 indicates a
configuration that chooses variant III which uses left block
selection with a distance of 4, and right edge selection with a
distance of 3. The 4 variants as well as the range of left and right
distance values provides a large parameter space of the proposed
scheme which increases the flexibility of potential adjustment to
accommodate PUF designs on different hardware layouts.

V.

This section presents experimental evaluations on the
effectiveness of the proposed method in reducing systematic
variations and the implementation overheads. The evaluated
results are compared with an existing regression-based method

(5]
A. Experimental Setup

We used a public RO PUF frequency dataset [9] that
contains 192 Xilinx Spartan 3E FPGA boards. Each FPGA
board contains 512 RO frequency values collected from the RO

EXPERIMENTAL EVALUATION

cells implemented as 32 rows by 16 columns in the FPGA layout.

B. NIST Randomness Evaluation

1) Bitstring size for different response generation methods
(coding schemes)

We evaluated the randomness of response bitstrings
generated by different coding schemes including 1-out-of-8
coding, decoupled neighbor coding and T-Sequence coding
schemes.

a) 1-out-of-8 Coding

For the 1-out-of-8 coding, we arrange the frequency values
into a 3-bit index from 000,001 up to 111 in the order of slowest
to fastest. This allows us to generate 6 bits per row. At 6 bits a
row we are able to generate 192 bits per chip and therefore 192
*192 = 26,864 total bits are generated for 192 chips.

b) Decoupled Neighbor Coding

The decouple neighbor coding is where we look at pairs of
frequency values and decide whether the bitis a 1 or 0 depending
on which is higher. Using this coding, we are able to generate 8
bits per row. This equates to 8 bits x 32 rows x 192 chips which
results in 49,152 bits for our testing sequence.

¢) T-Sequence Coding

The T-sequence coding is where we cut each column in half
and then compare the respective indices of each half and
generate a 1 or 0 depending on which frequency is faster. This
allows us to generate 256 bits per chip or 49,152 bits total across
all chips. We exclude the S-Sequence coding scheme because
most regression-based methods, including our methods,
generated abnormal results for S-Sequence coding. Therefore,
we only include the T test, 1-out-of-8 test, and the Decoupled
Neighbor test for meaningful comparisons.

2) NIST randomness results

Table I reports the results of NIST randomness test for our
proposed neighbor-averaging scheme as well as other existing
methods and the original scheme with unprocessed raw RO data.
In order to fully cover the regression-based methods, we
included 3 different variants of the regression-based schemes
including the in-line regression, row-based regression and X-Y
2-D based regression. Each scheme has been evaluated using
three different coding methods including 1-out-of-8 coding,
Decoupled Neighbor coding and the T-sequence coding. We
added the last column as the total number of failed NIST tests

Authorized licensed use limited to: New Mexico State University. Downloaded on November 04,2022 at 20:38:36 UTC from IEEE Xplore. Restrictions apply.

across all the three coding methods as an overall performance
metric for each scheme.

The third row in Table I shows the NIST randomness results
using the original raw RO data before applying any methods.
The response bitstring failed most of the T-sequence and 1-0f-8
coding schemes and generated a total of 33 failures out of 54
NIST P-value and proportion tests. This is used as the reference
to be compared with to show the effectiveness of any method in
improving the randomness of PUF response bitstrings.

Before After

Fig. 5.

RO frequency distributions before and after applying our proposed
scheme.

The first regression technique, called “in-line” regression, are
reported below the original scheme in Table I. The in-line
regression applies regressions across all 512 frequency values as
a |-dimensional array. The array is generated by appending each
of the 32 rows (each with 16 frequency values) to its previous
row. We test this regression method across 6 polynomials
degrees. The NIST test results show around 30% improvement
over the raw dataset at orders 3 and above. The best result is
achieved at polynomial orders 4 and 5 with 22 failures out of 54
tests.

The second type of regression method evaluated is the row-
based regression which applies regression to each row of the RO
frequency values across 32 rows in the FPGA layout. The best
NIST result is achieved at regression order 1 with 16 total
failures out of 54 tests.

A third regression method is also evaluated that applies more
advanced 2-dimensionsal regression operations to the raw RO
frequency values in the layout [3]. The two 1-dimensional
regression operations are first applied to the data in the X and Y
dimensions respectively followed by a multiplication operation
to generate a new 2-D equation fitsurface(x,y) =
p00+pl0*x+p01*y + pl1*x*y.... This method is implemented
in MATLAB using the CurveFitting Toolbox [10]. As shown in
Table I, the higher orders regression (orders 4 and 5)
outperforms all other methods in obtaining the least number of
failed NIST tests of 2 out of 54 tests. However, the high
implementation costs associated with the high degrees of order
4 and 5 (with 7k+ equivalent LUTs reported in the overhead
evaluation section) makes this method much less attractive.

We report the NIST results for the best 3 configurations of
our scheme across the 4 variants at the bottom of Table I. The
best configuration is able to achieve only 11 failures out of 54
NIST tests, which only has as half failures as the best results of
22 failures for the in-line regression method, and has
significantly less failures than the best results of row based
polynomial regression method of 16 failures. Compared to the

least cost-efficient method, 2D regression, we achieved less or
comparable number of failures than the lower orders (orders 1
to 3), but more failures than the higher orders of 4 and 5 which
occur significantly higher overheads. Our method has also
shown dramatic improvement over the 35 failures of the
reference design with the unprocessed raw data. A more
intuitive demonstration of the effectiveness of our proposed
scheme in reducing systematic variations is presented in Fig. 5.
The right sub-figure shows a much more uniformly distributed
2D RO frequency distribution after applying our proposed
method than that using the reference raw RO frequency values
(left figure).

TABLE II. CONFIGURATION DIVERSITY OF THE PROPOSED SCHEME: NUMBER
(#) OF DIFFERENT CONFIGURATIONS THAT ACHIEVED NO MORE THAN 2

FAILURES
of configurations
with x Fallufes (p- lof8 Decouple Both
value/proportion)
out of 9 NIST tests
P —
x=0 1 12 2
x=1 15 52 35
=2 8 5 28
TOTAL 24 69 65

3) Configuration Diversity of the proposed method

Focusing on 1-out-of-8 and decoupled neighbor coding, we
found that our scheme has up to 65 different configurations that
are able to achieve no more than 2 failures out of 9 P-value and
9 proportion NIST tests, as shown in Table II. Specifically, as
many as 24 different configurations are able to achieve no more
than 2 failures for 1-out-of-8 coding, and 69 different
configurations achieved for the decoupled neighbor coding.

C. Overhead Evaluation and Comparison

A typical hardware cost of implementing different orders of
polynomial regression on Xilinx Virtex-6 platform is reported in
lower portion of Table III [4]. The equivalent number of LUTs
(including those converted from DSP blocks) is used as the
metric to evaluate the hardware cost.

For a comparable comparison, we implemented the 3
configurations with best NIST results (see Table I) of our
proposed scheme in hardware (VHDL) on the same Xilinx
Virtex-6 FPGA platform. The resource utilization of the
proposed method as well as the comparison are reported in Table
II. The lower portion of Table III reports the estimated
converted resource utilization reported in Fig. 6 [4]. For the 3
best configurations of our proposed method, the overheads are
reported in the upper half of Table III with 111 LUTSs, 76 FFs
and 1 Carry element, respectively. For the regression-based
scheme of orders 2-6, however, the number of equivalent LUTs
consumed are significantly higher up to several thousands, as
reported in the lower portion of table III. For the 2D polynomial
regression with degrees of 4 and above that achieved best NIST
results of 2 failures (shown in Table I), the amount of equivalent
utilized LUTs is as high as 7k+ which is more than 50x of our
proposed scheme. For the polynomial degree of 3 that achieve
comparable NIST results of 10 failures as our proposed scheme,
it also requires 4K+ equivalent LUTs which is more than 10x
overhead than the proposed scheme.

Authorized licensed use limited to: New Mexico State University. Downloaded on November 04,2022 at 20:38:36 UTC from IEEE Xplore. Restrictions apply.

TABLE III. IMPLEMENTATION OVERHEAD OF THE PROPOSED SCHEME ON
XILINX VIRTEX-6 FPGAS IN COMPARISON WITH EXISTING METHODS

Configurations of # #
& #LUTs | FF | CARRY

proposed scheme s
Proposed scheme (3 | Variant-II, L3R4 111 76 1
configurations with | Variant-II, L4R5 110 75 1
best NIST results) Variant-1I, L5R4 110 75 1
Regression-based Degree 2 1k+~7k / /
methods Degree 3 4k+ ~11k / /
(polynomial /
degrees) [4] Degrees 4-6 Tk+ ~25k /

VI. CONCLUSION

We propose a lightweight technique that can effectively
reduce systematic variations in the physical layout where PUFs
elements are implemented. The proposed method avoids
complex computations by applying simple linear operations to a
small number of neighboring PUF elements to derive local
bias/trend, hence significantly reduces the implementation
overheads. Experimental results have shown the effectiveness of
our proposed scheme in improving PUF randomness, and
hardware implementation cost has been reported as more than
10x lower over existing methods. The flexibility feature
provided by the large effective parameter space of the proposed
method can be potentially leveraged as a reconfiguration feature
that enables dynamic re-enrollment on the same PUF instance.

ACKNOWLEDGMENT

This work is supported in part by the National Science Foundation
under Grant 1914635.

REFERENCES

[1] P. Tuyls, G.-J. Schrijen, B. Skoric, J. van Geloven, N. Verhaegh, and R.
Wolters, “Read-Proof Hardware from Protective Coatings,” Proc. Eighth
Int’l Workshop CHES °06, vol. 4249, pp. 369-383, Oct. 2006.

[2] S. H. Weingart, “Physical security devices for computer subsystems: A
survey of attacks and defenses,” in Proc. Cryptographic Hardware
Embedded Syst (CHES)., 2000, pp. 302-317.

[3] Polynomial regression. (2020). In Wikipedia.
https://en.wikipedia.org/w/index.php?title=Polynomial_regression&oldi
d=996324225

[4] S. Xu, S. A. Fahmy, and I. V. McLoughlin, “Square-rich fixed point
polynomial evaluation on FPGAs,” in Proc. ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays (FPGA), Monterey, CA, USA, 2014, pp. 99—
108.

[5] CE Yin and Q. Gang, “Improving PUF Security with Regression-based
Distiller,” Design Automation Conference (DAC), Jun 2013.

[6] M. Mustapa, M. NiamatNovel, “Novel RPM Technique to Dismiss
Systematic Variation for RO PUF on FPGA,” Proc. NAECON, 2014.

[71 F.Amsaad, A. Prasad, C. Roychaudhuri and M. Niamat, ““A novel security
technique to generate truly random and highly reliable reconfigurable
ROPUF-based cryptographic keys,” in 2016 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), McLean,
VA, 2016, pp. 185-190.

[8] F. Wilde, B. M. Gammel, and M. Pehl, “Spatial correlation analysis on
physical unclonable functions,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 6, pp. 14681480, June 2018.

[91 A. Maiti, J. Casarona, L. McHale, and P. Schaumont, “A large scale
characterization of RO-PUF,” in Proc. IEEE Int. Symp. Hardw.-Oriented

[10]

(1]

[12]

[13]

[14]

Secur. Trust (HOST), Jun. 2010, pp- 94-99.
https://github.com/patrickschaumont/ropuf host2010
MathWorks Curve Fitting Toolbox,

https://www.mathworks.com/help/curvefit/index.html?s_tid=CRUX_Iftn
av

A. Maiti and P. Schaumont, ‘‘Improving the quality of a physical
unclonable function using configurable ring oscillators,”” in Proc. IEEE
Int. Conf. Field Program. Logic Appl., Aug./Sep. 2009, pp. 703-707.
C.E. Yin and G. Qu, “Lisa: Maximizing RO PUF’s Secret Extraction,” in
Hardware Oriented Security and Trust (HOST), pp. 100-105, Jun. 2010.
R. Valles-Novo, A. Martinez-Sanchez, and W. Che, "Boosting Entropy
and Enhancing Reliability for Physically Unclonable Functions." Asian
Hardware Oriented Security and Trust Symposium (AsianHOST). IEEE,
2020, pp. 1-6.

W. Liu, Y. Yu, C. Wang, Y. Cui, and M. O’Neill, “RO PUF design in
FPGAs with new comparison strategies,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2015, pp. 77-80.

Authorized licensed use limited to: New Mexico State University. Downloaded on November 04,2022 at 20:38:36 UTC from IEEE Xplore. Restrictions apply.

