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Abstract—Physically Unclonable Functions (PUFs) are 
emerging hardware security primitives that leverage stochastic 
random process variations during chip manufacturing to generate 
unique secrets. However, the biased systematic variations that 
exist in the process variations will cause non-random spatial 
correlations among PUF elements in the layout, which 
significantly degrades randomness of PUF generated secrets. 
Existing methods of reducing systematic variations involve 
operations with high computational complexity and therefore 
require high implementation overheads. In this paper, we propose 
a lightweight method based on averaging neighboring PUF values 
to derive spatial bias and hence reduce spatial variations. 
Experimental results using RO PUF data from 192 Spartan 3E 
FPGAs show that the proposed method achieves comparable or 
even better randomness improvement compared to existing 
methods. The proposed method also demonstrates advantages of 
parameter diversity. The proposed method implemented on Xilinx 
FPGAs shows up to more than 10x lower implementation 
overhead compared with the existing method. 

Keywords— Physically Unclonable Functions, Systematic 
Variations, Spatial Correlations, Lightweight PUF Randomness 
Improvement    

I. INTRODUCTION  
A growing number of various intelligent Internet-of-Things 

(IoTs) applications poses a great demand for information 
processing and storage capability in the model digital systems. 
However, the increasing complexity of both software and 
hardware components integrated in such digital systems exposes 
a much wider attacking surface to adversaries. Moreover, the 
increasing amount of connected devices to each other and to the 
Internet has also enlarged the vulnerabilities of compromising 
data confidentiality, integrity and privacy to attacks. Security 
mechanisms such as authentication and encryption that are used 
to achieve security goals typically rely on a secret that is 
unpredictable by the attackers. Such secrets are conventionally 
stored in non-volatile memories (NVMs) which have shown to 
be vulnerable to physical attacks [1][2]. Physically Unclonable 
Functions (PUFs) have been proposed as a promising alternative 
for secret generation and storage due to its tamper-evident nature 
and feature of no-volatile secret generation. A PUF is an 
integrated circuit that leverages the random process variations 
during the chip manufacturing process to generate unique and 
unpredictable secrets for each Integrated circuit (IC) chip. The 
random and uncontrollable manufacturing variations serve as an 

entropy source for the PUF to generate unique, reproducible and 
unpredictable secrets that is “unclonable” by adversaries or even 
the manufacturer itself.        

Unfortunately, process variations during manufacturing not 
only includes the stochastically random variations but also a 
second type of systematic variations which demonstrates non-
random bias or patterns in the chip physical layout. Such bias or 
patterns will cause spatial correlations among PUF elements in 
the physical layout and hence will further reduce the randomness 
of PUF-generated secrets, posing a threat in PUF-based security 
applications.          

Several works have been proposed to reduce systematic 
variations including by applying polynomial regressions [5], 
logarithmic and square root-based operations [6], or by 
introducing normalized pseudo random number generators [7].  
While most of existing works have shown the effectiveness of 
the methods for reducing systematic variations, they require 
either complex non-linear mathematical operations or statistical 
computations which will inevitably occur significant 
implementation overheads. Such implementation inefficiency 
would render these methods inappropriate for those resource-
constrained IoT applications. Unfortunately, few of existing 
works has discussed or reported the implementation complexity 
and overheads of the methods.  

In this paper, we propose a lightweight method that only 
requires simple linear operations to effectively reduce 
systematic variations in PUFs. The proposed method extracts 
spatial bias by leveraging information of neighboring PUF 
elements using a simple averaging operation, which has 
significantly lower computational complexity and overhead 
over existing methods. This paper makes the following 
contributions:  
 We propose a lightweight scheme to effectively reduce 

systematic variations in PUFs by applying a simple linear 
averaging operation to neighboring PUF cells rather than 
complex mathematical or statistical methods. 

 We evaluated the effectiveness of the proposed method in 
reducing systematic variations on different types of 
response generation schemes (coding schemes) using a RO 
PUF dataset that includes 192 FPGAs. The NIST 
randomness results show that our scheme has achieved 
comparative or better improvement on randomness over 
existing methods.  
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We have implemented our scheme in Xilinx FPGAs and 
report a more than 10x lower implementation overhead over
other existing methods. We have also discussed the 
flexibility/diversity feature of our proposed method 
provided by its large effective parameter space. 

The rest of the paper is organized as follows. Section II 
presented the related work and Section III introduces the 
preliminary work. Section IV provides the overall and detailed 
descriptions of our proposed neighbor-averaging scheme (NAS) 
and its variants. Experimental evaluations of the effectiveness 
and overheads are presented in Section V. Section VI concludes 
the paper.

II. RELATED WORK

Several works have proposed methods to reduce systematic 
variations in PUFs. An early work proposed to select only 
adjacent RO cells as pairs for generating response bits [11]. The 
most well-known method in [5] introduced polynomial 
regressions of varying degrees to approach the systematic bias. 
Another method uses complex logarithmic base 10 and square 
root operations which need to be performed using statistical 
analysis tool like SPSS [6]. Authors in [7] proposed to reduce 
systematic variations by introducing normalized pseudo random 
values to the raw RO frequencies which require both costly 
pseudo random number generators and normalization modules.
A recent work introduced a spatial autocorrelation analysis 
metric for single-challenge PUFs [8]. Different comparison 
strategies have been proposed to minimize the impact of 
systematic variations [14] and other works [12][13] improved 
the PUF entropy by reducing functional correlations through 
advanced pairing schemes.     

III. PRELIMINARIES

A. Basics of RO PUFs 
The structure of a conventional RO-PUF is illustrated in Fig. 

1(b). The RO-PUF typically consists of N identically designed 
Ring Oscillators that are wired into two N-to-1 multiplexers 
(MUXes) so that a pair is selected whose counter (frequency) 

Fig. 1. Systematic variations present in RO frequency distributions of FPGA 
layout. (a) RO Elements implemented in FPGA layout. (b) RO-PUF structure. 

(c) RO frequency distribution

values are compared. The “Select” signals of the two MUXes
are used as the challenge bits to select a particular pair of RO 
cells whose frequencies are compared. A response bit of ‘1’ (or 
‘0’) is generated depending on which frequency is faster.

B. Systematic variations
Systematic variations refer to the manufacturing bias in the 

physical layout of chips where groups of PUF elements are
implemented. Such physical bias will cause spatial bias present 
in PUF elements. Fig. 1(a) shows the physical layout of a Xilinx 
Spartan 3E where 512 RO cells are implemented across 32 rows 
and 16 column. Fig. 1(c) presents a 2D frequency distribution of 
these 512 RO cells in the same 2D profile as physical layout.
Obvious frequency bias can be observed at the four edges versus 
the center portion (smaller frequency values are presented at the 
four edges). Such frequency bias are caused by the systematic 
variations in the FPGA layout.    

C. RO PUF response generation methods (coding schemes) 
Similar to other related works, we evaluate several different 

response generation methods (coding schemes) for RO PUFs in 
this work. These coding schemes include 1-out-of-8 coding, 
decouple neighboring coding and T-sequence. Details of these 
coding schemes are provided in the experimental evaluation 
section.  

IV. PROPOSED NEIGHBOR AVERAGING SCHEME

A. Overview of the proposed neighbor-averaging scheme
Fig. 2 provides a high-level overview of the proposed 

neighbor-averaging scheme in comparison with existing
polynomial regression based methods. The curves in the boxes 
on the left and right sides show a region of adjacent RO 
frequency values before and after applying the method to reduce 
systematic variations (biased trend), respectively. The middle 
portion of Fig. 2 illustrates the two major differences of the 
calculating process between the existing method (top half) and 
the proposed method (bottom half), i.e., (1) the amount of 
involved data points in calculation and (2) the complexity of the 
operations. For the existing regression-based method, a large 
amount of data points need to be included and the calculation 
requires complex non-linear operations. For our proposed 
neighbor-averaging scheme, however, only a small portion of 
neighboring data points are involved and the calculation only 
requires simple linear averaging operations on neighboring 
values. Therefore, the much more simplified calculation process

Fig. 2. Overview of the proposed Neighbor Averaging Scheme.

(b) RO-PUF structure

(a) RO Elements implemented 
in FPGA Physical Layout

(c) RO frequency distribution

Column (X)

Row(Y)

Target poi nt fraw(n)

Area of involved data points 
in calcultion for the target

Existing regression-based method

Large amount of data points involved in calculation

Small amount of data points in calculation

Orange line: extracted trend by the method
Black line: raw frequency values

Complex non-linear operations

Simple linear averaging operations

Before After

Proposed neiboring-averaging scheme

Authorized licensed use limited to: New Mexico State University. Downloaded on November 04,2022 at 20:38:36 UTC from IEEE Xplore.  Restrictions apply. 



of the proposed scheme brings the advantage of being 
significantly more lightweight over existing schemes.

The idea of the proposed scheme is to approximate the local 
trend through calculating local average values. This is achieved 
by estimating the systematic bias for each individual raw data 
point through calculating the average of its neighboring data 
points. These calculated “average values” then are connected to 
represent the trend line of this data region. The left box of Fig. 2
shows an example. First, the black line connects each raw 
frequency values in the region. The corresponding systematic 
bias for each raw value is then computed by averaging its 
neighboring raw values, obtaining so-called “averaged values”. 
These averaged values are then connected by the orange line to 
approximate the local trend/bias in this region. To be compared 
with the actual local trendline represented as the green line, the 
orange line tracks it very well and therefore can be used to 
approximate the systematic variations. Finally, the averaged 
values are subtracted from their corresponding raw values to 
obtain the new values (shown in the right box of Fig.2) with 
reduced systematic variations.                                                     

B. Proposed Neighbor-Averaging Scheme (NAS)

Fig. 3. Explanation of selection method and results of scheme

This section presents a detailed description of the proposed 
neighbor-averaging scheme. Fig. 3 illustrates the calculation 
process of approximating the local systematic bias for each
specific raw value in the physical layout. Figure 3(a) presents a 
1-D representation of the frequency values from 256 RO cells
located (16 rows x 16 columns) across the lower half of the 
Spartan 3E FPGAs, with the upper and lower halves 
representing the frequency values before (raw) and after (new)
applying the proposed scheme respectively. In the upper half of 
Fig. 3(a), the black line, representing the raw frequencies, shows 
evident systematic variations as it deviates from the average 
frequency value (red horizontal line) in a non-uniform manner
across sub-regions of the layout. The new frequency values 
(green line in lower half of Fig. 3(a)) shows that such systematic 
variations have been significantly reduced, evidenced by the 
random jumping behavior across the global average line. The 
reduction of systematic variations in the new frequencies is 
achieved by subtracting the computed average frequency values
(orange line) from the raw frequencies.

For each raw frequency value, a corresponding “averaged 
value” needs to be calculated for its raw value by averaging a set 
of selected neighboring raw values. For illustration purpose, we 
call the raw data point under calculation as the “target point”.
On each side of the target point, a specific range of neighboring 
points are selected specified by a distance parameter that 

indicates the distance range from the target point. For example, 
a left distance parameter of 4 indicates that up to 4 neighboring 
points to the left side of the target point are selected. The farthest
selected point (4 positions away in this case) from the target 
point is called the “edge point”. In addition to the distance 
parameters, we also propose two selection methods for 
neighboring points, i.e., “block selection” and “edge selection”.
For “block selection”, all points between the target point and the 
edge point (included) are selected, while for “edge selection” 
only the edge point is selected and all points between are 
neglected.  

Fig. 3(b) illustrates a close-up view of the two selection 
methods from each side of a target point. First, a target point 
fraw(n) is selected (indicated by the black square dot). In this 
particular example illustrated in Fig. 3(b), we use block selection 
on the left side of the target point with a distance value of 4, 
which indicates that all 4 points to the left of the target point are 
selected (denoted by 4 green square dots in Fig. 3(b)). On the 
right side, the edge selection method is used with a distance 
parameter value of 3, indicating that only the third point to the 
right (edge point) of the target point is selected (denoted by the 
purple square dot in Fig. 3(b)). 

Once the neighboring points are selected for a specific target 
value, they are summed up to calculate the localized average 
value of the target point, fave(n). The new target value is then 
calculated by subtracting the averaged value from the raw target 
value, i.e., fnew(n) = fraw(n) - fave(n). Fig. 3(b) illustrates this 
calculation process using an example where the block selection
is used on the left side of the target point with a distance value 
of 4, and edge selection is used on the right side with a distance 
value of 3. The averaged value fave(n) is then calculated by 
summing up and then average 4 data points from the left side 
and one edge data point to the right side of the target point, 
shown by the equation on top of Fig.3(b). The calculated 
average point fave(n) is denoted as the orange square dot in Fig.
3(b). The final target point value fnew(n) is then calculated by 
subtracting the averaged point fave(n) from the original 
frequency point fraw(n), denoted as the green square dot in Fig.
3(b).

C. Variants and configurations of the proposed method and 
enhanced flexibility

Fig. 4. Illustration of the four variants of our propoesd scheme.
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TABLE I. NIST RANDOMNESS TEST RESULTS OF THE PROPOSED NEIGHBORING AVERAGING SCHEME (WITH 3 BEST CONFIGURATIONS) IN COMPARISON WITH 
DIFFERENT POLYNOMIAL DEGREES OF EXISTING REGRESSION-BASED METHOD 

 
The edge selection and block selection can be used 

interchangeably for both sides of the target point, resulting in 4 
different combinations. All these 4 combinations construct the 4 
variants of our scheme as illustrated in Fig. 4. For each of the 4 
variants, a configuration can be determined by specifying the 
values of the two distance parameters, i.e., the left distance and 
the right distance. For example, Variant III L4/R3 indicates a 
configuration that chooses variant III which uses left block 
selection with a distance of 4, and right edge selection with a 
distance of 3. The 4 variants as well as the range of left and right 
distance values provides a large parameter space of the proposed 
scheme which increases the flexibility of potential adjustment to 
accommodate PUF designs on different hardware layouts. 

V. EXPERIMENTAL EVALUATION 
This section presents experimental evaluations on the 

effectiveness of the proposed method in reducing systematic 
variations and the implementation overheads. The evaluated 
results are compared with an existing regression-based method 
[5].  

A. Experimental Setup 
We used a public RO PUF frequency dataset [9] that 

contains 192 Xilinx Spartan 3E FPGA boards. Each FPGA 
board contains 512 RO frequency values collected from the RO 
cells implemented as 32 rows by 16 columns in the FPGA layout.  

B. NIST Randomness Evaluation 
1) Bitstring size for different response generation methods 

(coding schemes) 
We evaluated the randomness of response bitstrings 

generated by different coding schemes including 1-out-of-8 
coding, decoupled neighbor coding and T-Sequence coding 
schemes.    

a) 1-out-of-8 Coding 

For the 1-out-of-8 coding, we arrange the frequency values 
into a 3-bit index from 000,001 up to 111 in the order of slowest 
to fastest. This allows us to generate 6 bits per row. At 6 bits a 
row we are able to generate 192 bits per chip and therefore 192 
* 192 =  26,864 total bits are generated for 192 chips. 

b) Decoupled Neighbor Coding 
The decouple neighbor coding is where we look at pairs of 

frequency values and decide whether the bit is a 1 or 0 depending 
on which is higher. Using this coding, we are able to generate 8 
bits per row. This equates to 8 bits x 32 rows x 192 chips which 
results in 49,152 bits for our testing sequence. 

c) T-Sequence Coding 
The T-sequence coding is where we cut each column in half 

and then compare the respective indices of each half and 
generate a 1 or 0 depending on which frequency is faster. This 
allows us to generate 256 bits per chip or 49,152  bits total across 
all chips. We exclude the S-Sequence coding scheme because 
most regression-based methods, including our methods, 
generated abnormal results for S-Sequence coding. Therefore, 
we only include the T test, 1-out-of-8 test, and the Decoupled 
Neighbor test for meaningful comparisons. 

2) NIST randomness results 
Table I reports the results of NIST randomness test for our 

proposed neighbor-averaging scheme as well as other existing 
methods and the original scheme with unprocessed raw RO data. 
In order to fully cover the regression-based methods, we 
included 3 different variants of the regression-based schemes 
including the in-line regression, row-based regression and X-Y 
2-D based regression. Each scheme has been evaluated using 
three different coding methods including 1-out-of-8 coding, 
Decoupled Neighbor coding and the T-sequence coding. We 
added the last column as the total number of failed NIST tests 

 Scheme Variants and 
Parameters 

T Test (# of failures 
out of 9 tests) 

1of8 (# of failures out 
of 9 tests)  

Decouple (# of 
failures out of 9 tests)  

Total failures 
(1of8+Decouple+T)  

     Pval Prop Pval Prop Pval Prop   
Original RAW  /  9  9 7  7  1  2  35  

Existing 
methods [5] 

Polynomial 
Regression 

across all points 
(in-line) 

Order 1 9 9 8 8 1 3 38 
Order 2 8 8 8 8 1 3 36 
Order 3 4 1 8 8 1 3 25 
Order 4 1 1 8 7 2 3 22 
Order 5 0 2 8 7 2 3 22 

Row Based 
Polynomial 
Regression 

Order 1 8 2 5 1 0 0 16 
Order 2 8 3 5 6 1 0 23 
Order 3 9 5 6 3 0 0 23 
Order 4 9 5 4 2 1 0 21 
Order 5 9 5 4 1 1 3 23 

X-Y based 
regression in 
MATLAB 

Order 1 9 9 3 0 0 0 21 
Order 2 7 7 3 4 1 0 22 
Order 3 2 2 2 3 1 0 10 
Order 4 0 1 1 0 0 0 2 
Order 5 1 1 0 0 0 0 2 

Proposed 
methods 

Best 
Configurations  

Variant II L3/R4 6 2 0 0 2 1 11 
Variant II L4/R5 5 0 3 3 2 0 13 
Variant II L5/R4 4 0 2 2 4 1 13 
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across all the three coding methods as an overall performance 
metric for each scheme.  

The third row in Table I shows the NIST randomness results 
using the original raw RO data before applying any methods. 
The response bitstring failed most of the T-sequence and 1-of-8 
coding schemes and generated a total of 33 failures out of 54
NIST P-value and proportion tests. This is used as the reference 
to be compared with to show the effectiveness of any method in 
improving the randomness of PUF response bitstrings. 

Fig. 5.    RO frequency distributions before and after applying our proposed 
scheme.

The first regression technique, called “in-line” regression, are 
reported below the original scheme in Table I. The in-line 
regression applies regressions across all 512 frequency values as 
a 1-dimensional array. The array is generated by appending each 
of the 32 rows (each with 16 frequency values) to its previous 
row. We test this regression method across 6 polynomials 
degrees. The NIST test results show around 30% improvement 
over the raw dataset at orders 3 and above. The best result is 
achieved at polynomial orders 4 and 5 with 22 failures out of 54 
tests. 

The second type of regression method evaluated is the row-
based regression which applies regression to each row of the RO 
frequency values across 32 rows in the FPGA layout. The best
NIST result is achieved at regression order 1 with 16 total
failures out of 54 tests.

A third regression method is also evaluated that applies more 
advanced 2-dimensionsal regression operations to the raw RO 
frequency values in the layout [3]. The two 1-dimensional 
regression operations are first applied to the data in the X and Y 
dimensions respectively followed by a multiplication operation
to generate a new 2-D equation fitsurface(x,y) = 
p00+p10*x+p01*y + p11*x*y…. This method is implemented 
in MATLAB using the CurveFitting Toolbox [10]. As shown in 
Table I, the higher orders regression (orders 4 and 5) 
outperforms all other methods in obtaining the least number of 
failed NIST tests of 2 out of 54 tests. However, the high 
implementation costs associated with the high degrees of order 
4 and 5 (with 7k+ equivalent LUTs reported in the overhead 
evaluation section) makes this method much less attractive. 

We report the NIST results for the best 3 configurations of 
our scheme across the 4 variants at the bottom of Table I. The  
best configuration is able to achieve only 11 failures out of 54 
NIST tests, which only has as half failures as the best results of 
22 failures for the in-line regression method, and has 
significantly less failures than the best results of row based 
polynomial regression method of 16 failures. Compared to the 

least cost-efficient method, 2D regression, we achieved less or 
comparable number of failures than the lower orders (orders 1 
to 3), but more failures than the higher orders of 4 and 5 which 
occur significantly higher overheads. Our method has also 
shown dramatic improvement over the 35 failures of the 
reference design with the unprocessed raw data. A more 
intuitive demonstration of the effectiveness of our proposed 
scheme in reducing systematic variations is presented in Fig. 5. 
The right sub-figure shows a much more uniformly distributed 
2D RO frequency distribution after applying our proposed 
method than that using the reference raw RO frequency values 
(left figure).           
TABLE II. CONFIGURATION DIVERSITY OF THE PROPOSED SCHEME: NUMBER 

(#) OF DIFFERENT CONFIGURATIONS THAT ACHIEVED NO MORE THAN 2
FAILURES 

3) Configuration Diversity of the proposed method     
Focusing on 1-out-of-8 and decoupled neighbor coding, we 

found that our scheme has up to 65 different configurations that 
are able to achieve no more than 2 failures out of 9 P-value and 
9 proportion NIST tests, as shown in Table II. Specifically, as 
many as 24 different configurations are able to achieve no more 
than 2 failures for 1-out-of-8 coding, and 69 different 
configurations achieved for the decoupled neighbor coding.

C. Overhead Evaluation and Comparison
A typical hardware cost of implementing different orders of 

polynomial regression on Xilinx Virtex-6 platform is reported in 
lower portion of Table III [4]. The equivalent number of LUTs 
(including those converted from DSP blocks) is used as the 
metric to evaluate the hardware cost. 

For a comparable comparison, we implemented the 3 
configurations with best NIST results (see Table I) of our
proposed scheme in hardware (VHDL) on the same Xilinx 
Virtex-6 FPGA platform. The resource utilization of the 
proposed method as well as the comparison are reported in Table 
III. The lower portion of Table III reports the estimated 
converted resource utilization reported in Fig. 6 [4]. For the 3 
best configurations of our proposed method, the overheads are 
reported in the upper half of Table III with 111 LUTs, 76 FFs 
and 1 Carry element, respectively. For the regression-based 
scheme of orders 2-6, however, the number of equivalent LUTs 
consumed are significantly higher up to several thousands, as 
reported in the lower portion of table III. For the 2D polynomial 
regression with degrees of 4 and above that achieved best NIST 
results of 2 failures (shown in Table I), the amount of equivalent 
utilized LUTs is as high as 7k+ which is more than 50x of our
proposed scheme. For the polynomial degree of 3 that achieve 
comparable NIST results of 10 failures as our proposed scheme, 
it also requires 4K+ equivalent LUTs which is more than 10x 
overhead than the proposed scheme.    

# of configurations 
with x Failures (p-
value/proportion) 
out of 9 NIST tests

1of8 Decouple Both

x=0 1 12 2
x=1 15 52 35
x=2 8 5 28
TOTAL 24 69 65
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TABLE III. IMPLEMENTATION OVERHEAD OF THE PROPOSED SCHEME ON 
XILINX VIRTEX-6 FPGAS IN COMPARISON WITH EXISTING METHODS 

VI. CONCLUSION 
We propose a lightweight technique that can effectively 

reduce systematic variations in the physical layout where PUFs 
elements are implemented. The proposed method avoids 
complex computations by applying simple linear operations to a 
small number of neighboring PUF elements to derive local 
bias/trend, hence significantly reduces the implementation 
overheads. Experimental results have shown the effectiveness of 
our proposed scheme in improving PUF randomness, and 
hardware implementation cost has been reported as more than 
10x lower over existing methods. The flexibility feature 
provided by the large effective parameter space of the proposed 
method can be potentially leveraged as a reconfiguration feature 
that enables dynamic re-enrollment on the same PUF instance. 
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 Configurations of 
proposed scheme # LUTs 

# 
FF
s 

# 
CARRY 

Proposed scheme (3 
configurations with 
best NIST results) 

Variant-II, L3R4 111 76 1 
Variant-II, L4R5 110 75 1 
Variant-II, L5R4 110 75 1 

Regression-based 
methods 
(polynomial 
degrees) [4]  

Degree 2 1k+ ~7k    / / 
Degree 3 4k+ ~11k    / / 

Degrees 4-6 7k+ ~25k  / / 
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