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 29 
Abstract: 30 
In many brain areas, neural populations act as a coordinated network whose state is tied to behavior on a millisecond 31 
timescale. Two-photon (2p) calcium imaging is a powerful tool to probe such network-scale phenomena. However, 32 
estimating network state and dynamics from 2p measurements has proven challenging because of noise, inherent 33 
nonlinearities, and limitations on temporal resolution. Here we describe RADICaL, a deep learning method to overcome 34 
these limitations at the population level. RADICaL extends methods that exploit dynamics in spiking activity for application 35 
to deconvolved calcium signals, whose statistics and temporal dynamics are quite distinct from electrophysiologically-36 
recorded spikes. It incorporates a novel network training strategy that capitalizes on the timing of 2p sampling to recover 37 
network dynamics with high temporal precision. In synthetic tests, RADICaL infers network state more accurately than 38 
previous methods, particularly for high-frequency components. In 2p recordings from sensorimotor areas in mice 39 
performing a forelimb reach task, RADICaL infers network state with close correspondence to single-trial variations in 40 
behavior, and maintains high-quality inference even when neuronal populations are substantially reduced. 41 
 42 
Main 43 
In recent years, advances in neural recording technologies have enabled simultaneous monitoring of the activity of large 44 
neural populations1–3. These technologies are enabling new insights into how neural populations implement the 45 
computations necessary for motor, sensory, and cognitive processes4. However, different recording technologies impose 46 
distinct tradeoffs in the types of questions that may be asked5–7. Modern electrophysiology enables access to hundreds 47 
to thousands of neurons within and across brain areas with high temporal fidelity2. Yet in any given area, electrophysiology 48 
is limited to a sparse sampling of relatively active, unidentified neurons6 (Fig. 1a). In contrast, two photon (2p) calcium 49 
imaging offers the ability to monitor the activity of vast populations of neurons - rapidly increasing from tens of thousands 50 
to millions3,8,9 - in 3-D, often with identified layers and cell types of interest10,11. Thus 2p imaging is a powerful tool for 51 
understanding how neural circuitry gives rise to function. 52 
 53 
A key tradeoff, however, is that the fluorescence transients measured via calcium imaging are a low-passed and 54 
nonlinearly-distorted transformation of the underlying spiking activity (Fig. 1b). Further, because neurons are serially 55 
scanned by a laser that traverses the field of view (FOV), a trade-off exists between the size of the FOV (and hence the 56 
number of neurons monitored), the sampling frequency, and the pixel size (and therefore the signal-to-noise with which 57 
each neuron is sampled). These factors together limit the fidelity with which the activity of large neuronal populations can 58 
be monitored and extracted via 2p, and thus limit our ability to link activity measured with 2p imaging to neural computation 59 
and behavior on fine timescales. Although a large amount of effort has been dedicated to improving the inference of spike 60 



 

 

trains from 2p calcium data12, recent benchmarks illustrate that a variety of algorithms to infer calcium events all achieve 61 
limited correspondence to ground truth spiking activity obtained with electrophysiology, particularly on fine timescales13,14. 62 
 63 
Rather than focusing on the responses of individual neurons, an alternative approach is to characterize patterns of 64 
covariation across a neuronal population to reveal the multi-dimensional internal state of the network as a whole. These 65 
“latent variable models”, or simply “latent models”, describe each neuron’s activity as a reflection of the whole network’s 66 
state over time. For example, when applied to electrophysiological data, latent models assume that an individual neuron’s 67 
spiking is a noisy observation of a latent “firing rate”, which fluctuates in a coordinated way with the firing rates of other 68 
neurons in the population. Despite their abstract nature, the trajectory of network state inferred by latent models can reveal 69 
key insights into the computations being performed by the brain areas of interest4. Inferred network state can also enhance 70 
our ability to relate neural activity to behavior. For example, one state-of-the-art deep learning method to estimate network 71 
state from electrophysiological spiking data is Latent Factor Analysis via Dynamical Systems (LFADS)15,16. In applications 72 
to data from motor, sensory, and cognitive regions, LFADS uncovers network state that corresponds closely with single-73 
trial behavior on a 5-10 millisecond timescale16,17. 74 
 75 
Building on the success of latent models for electrophysiological data, here we develop an approach to achieve accurate 76 
inference of network state from activity monitored through 2p calcium imaging. We first begin with LFADS and evaluate 77 
network state inference using simulated 2p data in which activity reflects known, nonlinear dynamical systems, and with 78 
real 2p data from mice performing a water reaching task. LFADS uncovers network state with substantially higher accuracy 79 
then standard approaches (e.g., deconvolution plus Gaussian smoothing). We then develop the Recurrent Autoencoder 80 
for Discovering Imaged Calcium Latents (RADICaL) to improve inference over LFADS through innovations tailored 81 
specifically for 2p data. In particular, we modify the network architecture to better account for the statistics of deconvolved 82 
calcium signals, and develop a novel network training strategy that exploits the staggered timing of 2p sampling of 83 
neuronal populations to achieve precise, sub-frame temporal resolution. Our new approach substantially improves 84 
inference from 2p data, shown in synthetic data through accurate recovery of high-frequency features (up to 20 Hz), and 85 
in real data through improved prediction of neuronal activity, as well as prediction of single-trial variability in hand 86 
kinematics during rapid reaches (lasting 200-300 ms). Ultimately, RADICaL provides an avenue to tie precise, population-87 
level descriptions of neural computation with the anatomical and circuit details revealed via calcium imaging. 88 
 89 

Results 90 
Inferring network state from 2p imaging data using dynamics 91 
Dynamical systems models such as LFADS rely on two key principles to infer network state from neural population activity. 92 
First, simultaneously recorded neurons exhibit coordinated patterns of activation that reflect the state of the network18,19. 93 
Due to this coordination, network state might be reliably estimated even if the measurement of individual neurons’ activity 94 
is unreliable. Second, these coordinated patterns evolve over time based on consistent rules (dynamics)4,20. Thus, while 95 
it may be challenging to accurately estimate the network’s state based on activity at a single time point, knowledge of the 96 
network’s dynamics provides further information to help constrain network state estimates using data from multiple time 97 
points.  98 
 99 
To apply these principles to improve inference from 2p data, we extended LFADS to produce RADICaL (Fig. 1c). Both 100 
LFADS and RADICaL model neural population dynamics using recurrent neural networks (RNNs) in a sequential 101 
autoencoder configuration (details in Methods, and in previous work15,16). This configuration is built on the assumption 102 
that the network state underlying neural population activity can be approximated by an input-driven dynamical system, 103 
and that observed activity is a noisy observation of the state of the dynamical system. The dynamical system itself is 104 
modeled by an RNN (the ‘generator’). The states of the generator are linearly mapped onto a latent space to produce a 105 
‘factors’ representation, which is then transformed to produce the time-varying output for each neuron (detailed below). 106 
The model has a variety of hyperparameters that control training and prevent overfitting, whose optimal settings are not 107 
known a priori. To ensure that these hyperparameters were optimized properly for each dataset, we built RADICaL on top 108 
of a powerful, large-scale hyperparameter optimization framework we recently developed known as AutoLFADS17,21. 109 
 110 
Novel features of RADICaL 111 



 

 

RADICaL incorporates two major innovations over LFADS and AutoLFADS. First, we modified RADICaL’s observation 112 
model to better account for the statistics of deconvolved events. In LFADS, discrete spike count data are modeled as 113 
samples from an underlying time-varying Poisson process for each neuron. However, deconvolving 2p calcium signals 114 
results in a time series of continuous-valued events, with imperfect correspondence to the actual spike times and counts13. 115 
These deconvolved events can be better approximated at each timepoint by a zero-inflated gamma (ZIG) distribution, 116 
which combines a gamma distribution to model the calcium event magnitudes and a point mass that represents the 117 
elevated probability of zero values22. In RADICaL, deconvolved events are therefore modeled as samples from a time-118 
varying ZIG distribution whose parameters are taken from the output of the generator RNN (Fig. 1c; details in Methods). 119 
We define the network state at any given time point as a vector containing the inferred (i.e., de-noised) event rates of all 120 
neurons, where the de-noised event rate is taken as the mean of each neuron’s inferred ZIG distribution at each time 121 
point (equation (3) in Methods). The de-noised event rates are latent variables that are tied to the underlying network state 122 
at each time point. Because of the complicated transformation from generator states to individual neurons’ activity, we 123 
used the de-noised event rates as the model output for subsequent analyses to compare methods as directly as possible. 124 
 125 
Second, we developed a novel neural network training strategy, selective backpropagation through time23 (SBTT), that 126 
leverages the precise sampling times of individual neurons to enable recovery of high-frequency network dynamics. Since 127 
standard 2p microscopes rely on point-by-point raster scanning of a laser beam to acquire frames, it is possible to 128 
determine the sample times for each neuron with high precision within the frame (Fig. 1d). To leverage this information 129 
to improve inference of high-frequency network dynamics on single trials, we recast the underlying interpolation problem 130 
as a missing data problem: we treat imaging a whole frame as sequentially imaging multiple, smaller bands containing 131 
different neurons. In this framing, each neuron is effectively sampled sparsely in time, i.e., the majority of time points for 132 
each neuron do not contain valid data (Fig. 1e). Such sparsely sampled data creates a challenge when training the 133 
underlying neural network: briefly, neural networks are trained by adjusting their parameters (weights), and performing 134 
this adjustment requires evaluating the gradient of a cost function with respect to weights. SBTT allows us to compute 135 
this gradient using only the valid data, and ignore the missing samples (Fig. 1f; see Methods). Because SBTT only affects 136 
how we compute the gradient and update the weights, the network still infers event rates for every neuron at every time 137 
point, regardless of whether samples exist at that time point or not. This allows the trained network to accept sparsely-138 
sampled observations as input, and produce high-temporal resolution event rate estimates as its output. 139 
 140 
RADICaL uncovers high-frequency features from simulated data 141 
We first tested RADICaL using simulated 2p data where the underlying network state is known and parameterizable. We 142 
hypothesized that the new features of RADICaL would allow it to infer higher-frequency features with greater accuracy 143 
than standard approaches, such as Gaussian-smoothing the deconvolved events (“smth-dec”), smoothing the simulated 144 
fluorescence traces themselves (“smth-sim-fluor”), or state-of-the-art tools for electrophysiology analysis, such as 145 
AutoLFADS. We generated synthetic spike trains by simulating a population of neurons whose firing rates were linked to 146 
the state of a Lorenz system15,24 (detailed in Methods and Extended Data Fig. 1a). We ran the Lorenz system at various 147 
speeds, allowing us to investigate the effects of temporal frequency on the quality of network state recovery achieved by 148 
different methods. In the 3-dimensional Lorenz system, the Z dimension contains the highest-frequency content 149 
(Extended Data Fig. 1b). Here we denote the frequency of each Lorenz simulation by the peak frequency of the power 150 
spectrum of its Z dimension (Extended Data Fig. 1c). 151 
 152 
We used the synthetic spike trains to generate realistic noisy fluorescence signals consistent with GCAMP6f (detailed in 153 
Methods and Extended Data Fig. 2). To recreate the variability in sampling times due to 2p laser scanning, fluorescence 154 
traces were simulated at 100 Hz and then sub-sampled at 33.3 Hz, with offsets in each neuron’s sampling times consistent 155 
with spatial distributions across a simulated FOV. We then deconvolved the generated fluorescence signals to extract 156 
events 25,26. Because RADICaL uses SBTT, it could be applied directly to the deconvolved events with offset sampling 157 
times. In contrast, for both AutoLFADS and smth-dec, deconvolved events for all neurons were treated as all having the 158 
same sampling times (i.e., consistent with the frame times), as is standard in 2p imaging (detailed in Methods). 159 
 160 
Despite the distortions introduced by the fluorescence simulation and deconvolution process, RADICaL was able to infer 161 
event rates that closely resembled the true underlying rates (Fig. 2a). To assess whether each method accurately inferred 162 
the time-varying state of the Lorenz system, we mapped the representations from the different approaches - i.e., the event 163 



 

 

rates inferred by RADICaL or AutoLFADS, the smoothed deconvolved events, and the smoothed simulated fluorescence 164 
traces - onto the true underlying Lorenz states using cross-validated ridge regression. We then quantified performance 165 
using the coefficient of determination (R2), which quantifies the fraction of the variance of the true latent variables captured 166 
by the estimates. Figure 2b shows the Lorenz Z dimension for example trials from three Lorenz speeds, as well as the 167 
recovered values for three of the methods. RADICaL inferred latent states with high fidelity (R2>0.8) up to 15 Hz, and 168 
significantly outperformed other methods across a range of frequencies (Fig. 2c; performance for the X and Y dimensions 169 
is shown in Supp. Fig. 1; p<0.05 for all frequencies and dimensions, paired, one-sided t-Test, detailed in Methods). 170 
Notably, performance in estimating latent states was improved due to both of the innovations in RADICaL, with SBTT 171 
contributing more (Supp. Fig. 2). To test RADICaL’s ability in estimating single-trial dynamics for a task that lacks a 172 
repetitive trial-structure, we varied the simulation so that each trial had a unique initial condition for the Lorenz system. 173 
RADICaL accurately inferred the latent states on single trials (Extended Data Fig. 3a) and outperformed AutoLFADS and 174 
smth-dec at high Lorenz oscillation frequencies (Extended Data Fig. 3b). 175 
 176 
To better understand the regimes in which RADICaL recovers the underlying latent variables well or poorly, we performed 177 
variants of the simulation experiments along 4 additional axes: imaging speed (Extended Data Fig. 4), high frequency 178 
structure in the latent variables (Supp. Fig. 3), noise levels (Supp. Fig. 4), and whether RADICaL could be effective when 179 
used with algorithms that infer spike times instead of event rates, such as MLspike27 (Supp. Fig. 5). In all cases we found 180 
that RADICaL substantially outperformed alternate approaches. However, as expected, our analysis showed that 181 
deconvolution itself performs poorly at very slow sampling rates (e.g., 2Hz and below), and for very high frequency content 182 
(e.g., >20 Hz), and thus RADICaL’s performance in those regimes is limited by the use of deconvolution as a 183 
preprocessing step. 184 
 185 
These simulations demonstrate RADICaL’s performance in various circumstances, but the parameter space of possible 186 
experiments is very large (calcium indicators, expression patterns, imaging settings, etc.) and an exhaustive search of 187 
this parameter space is infeasible. Thus, we next benchmarked performance on real data to demonstrate RADICaL’s 188 
utility in the real world. 189 
 190 
RADICaL improves inference in a mouse “water grab” task 191 
We next tested RADICaL on 2p recordings from mice performing a forelimb water grab task (Fig. 3a, top). We analyzed 192 
data from four experiments: two mice with two sessions from each mouse, in which different brain areas were imaged 193 
(M1, S1). Our task was a variant of the water-reaching task of Galiñanes & Huber28. In each trial, the mouse was cued by 194 
the pitch of an auditory tone to reach to a left or right spout and retrieve a droplet of water with its right forepaw (Fig. 3a, 195 
bottom; see Methods). The forepaw position was tracked at 150 frames per second with DeepLabCut29 for 420-560 trials 196 
per experiment. To test whether each method could reveal structure in the neural activity at finer resolution than left vs. 197 
right reaches, we divided trials from each condition into subgroups based on forepaw height during the reach (Fig. 3a, 198 
top right; see Methods). Two-photon calcium imaging from GCaMP6f transgenic mice was performed at 31 Hz, with 430-199 
543 neurons within the FOV in each experiment (Fig. 3b). 200 
 201 
With real datasets, a key challenge when benchmarking latent variable inference is the lack of ground truth data for 202 
comparison. A useful first-order assessment is whether the event rates inferred for individual trials match the empirical 203 
peri-stimulus time histograms (PSTHs), i.e., the rates computed by averaging noisy single-trial data across trials with 204 
similar behavioral characteristics16,17. While this approach obscures meaningful across-trial variability, it provides a ‘de-205 
noised’ estimate that is useful for coarse performance quantification and comparisons. To compute empirical PSTHs, we 206 
averaged the smoothed deconvolved events (smth-dec rates) across trials within each subgroup.  207 
 208 
We found that RADICaL-inferred event rates recapitulated features of individual neurons’ activity that were apparent in 209 
the empirical PSTHs, both when averaging across trials, but also on individual trials (Fig. 3c). Importantly, RADICaL is 210 
an unsupervised method, meaning that it was not provided any behavioral information, such as whether the mouse 211 
reached to the left or right on a given trial, or which subgroup a trial fell into. Yet the single-trial event rates inferred by 212 
RADICaL showed clear separation not only between left and right reach conditions, but also between subgroups of trials 213 
within each condition. This separation was not clear with the single-trial smth-dec rates. We quantified the correspondence 214 
between the single-trial inferred event rates and the empirical PSTHs via Pearson’s correlation coefficient (r; see 215 



 

 

Methods). RADICaL single-trial event rates showed substantially higher correlation with the empirical PSTHs than smth-216 
dec rates (Fig. 3d) or those inferred by AutoLFADS (Extended Data Fig. 5). Importantly, these improvements were not 217 
limited to a handful of neurons, but instead were broadly distributed across the population. Within the trials modeled by 218 
RADICaL, we found there was a subset of right reaches from Mouse1/S1 that were “loopy” and atypical, showing multiple 219 
large peaks in hand speed (Fig. 3e, top). The RADICaL single-trial event rates exhibited distinct patterns of neural 220 
responses for these atypical trials (Fig. 3e, bottom), demonstrating RADICaL’s ability to automatically capture 221 
idiosyncrasies of single-trial activity that are common in experiments that constrain behavior less tightly. 222 
 223 
We next tested whether the population activity inferred by RADICaL also showed meaningful structure on individual trials. 224 
We used principal component analysis (PCA) to produce low-dimensional visualizations of the population’s activity 225 
(detailed in Methods). The low-D trajectories computed from the RADICaL-inferred rates showed consistent, clear single-226 
trial structure that corresponded to behavioral conditions and subgroups for all four experiments (Fig. 4a, top row; 227 
Extended Data Fig. 6, top row), despite RADICaL receiving no direct information about which trials belonged to which 228 
subgroup, or even the kinematics used to define the subgroups. In comparison, low-D trajectories computed from the 229 
smth-dec rates showed noisy single-trial structure with little correspondence to behavioral subgroups (Fig. 4a, bottom 230 
row; Extended Data Fig. 6, bottom row). To provide a quantitative summary, we measured the distance of the low-D 231 
trajectories between each trial and other trials across subgroups (dacross) vs. within the same subgroup (dwithin) for any 232 
given time and computed the distance ratio (detailed in Methods). The distance ratio (i.e., dacross / dwithin) of RADICaL-233 
derived trajectories was higher than smth-dec-derived trajectories across time points, which was also consistent across 234 
four experiments (Fig. 4b). 235 
 236 
RADICaL captures dynamics that improve behavioral prediction 237 
We next tested whether the RADICaL-inferred event rates were closely linked to behavior by decoding forepaw positions 238 
and velocities from the inferred event rates using cross-validated ridge regression (Fig. 5a; Extended Data Fig. 7). 239 
Decoding using RADICaL-inferred rates significantly outperformed results from smth-dec rates, or from the AutoLFADS-240 
inferred rates (Fig. 5b; position: average R2 of 0.91 across all experiments, versus 0.75 and 0.85 for smth-dec and 241 
AutoLFADS, respectively; velocity: average R2 of 0.62 across the mice/areas, versus 0.37 and 0.51 for smth-dec and 242 
AutoLFADS, respectively; p<0.05 for position and velocity for all individual experiments, paired, one-sided t-test, detailed 243 
in Methods). Improvements achieved by RADICaL were shown on most trials (Supp. Fig. 6). Importantly, the performance 244 
advantage was not achieved by simply predicting the mean event rates for all trials of a given condition: RADICaL also 245 
outperformed AutoLFADS and smth-dec in decoding the kinematic residuals (i.e., the single-trial deviations from the 246 
mean; Supp. Fig. 7). To assess how decoding improvements were distributed as a function of frequency, we computed 247 
the coherence between the true and decoded positions and velocities for each method (Fig. 5c). RADICaL predictions 248 
showed higher coherence with behavior than predictions from smth-dec or AutoLFADS across a wide range of 249 
frequencies, and the difference in coherence between RADICaL and AutoLFADS widened (especially for position) at 250 
higher frequencies (5-15 Hz). This argues that RADICaL improved decoding particularly because it improved recovery of 251 
higher-frequency features of the neural activity. Notably, decoding was improved due to both innovations in RADICaL 252 
(i.e., modeling events with a ZIG distribution, and SBTT), and the combination of the two innovations significantly improved 253 
performance over each innovation alone (Supp. Fig. 8). 254 
 255 
We next tested whether RADICaL could capture meaningful trial-to-trial variability by predicting reaction time (RT) from 256 
the inferred event rates using cross-validated logistic regression30 (detailed in Methods). The RT in a trial is defined as 257 
the time between water presentation and movement onset. RTs predicted from RADICaL-inferred rates showed high 258 
correlation with the true RTs (Fig. 5d), and outperformed results from smth-dec rates, or from the AutoLFADS-inferred 259 
rates (Fig. 5e; Extended Data Fig. 8; average r of 0.93 across all experiments, versus 0.71 and 0.86 for smth-dec and 260 
AutoLFADS, respectively). 261 
 262 
RADICaL retains high performance with reduced neuron counts 263 
To evaluate RADICaL’s performance as a function of population size, we gradually reduced the number of neurons used 264 
in training RADICaL or AutoLFADS, either in a random fashion (Fig. 6), or in a FOV-shrinking fashion (Extended Data 265 
Fig. 9). In both cases, RADICaL retained relatively high decoding performance as the population size was reduced. 266 
Decoding performance declined gradually, with a steeper slope for velocity. Notably, however, performance when only 267 



 

 

25% of the neurons were used for training RADICaL was similar to that of AutoLFADS - and higher than for smth-dec - 268 
when those methods were applied to the full population of neurons. These results provide an avenue to retain information 269 
when scanning sparser populations (such as when a cell type of interest is in the minority), smaller areas when imaging 270 
deep structures with a limited FOV due to a relay (GRIN) lens, or using smaller FOVs to capture multiple layers or regions 271 
while retaining overall frame rate (see Discussion). 272 
 273 
Discussion 274 
2p imaging is a widely-used method for interrogating neural circuits, with the potential to monitor vast volumes of neurons 275 
and provide new circuit insights that elude electrophysiology. To date, however, it has proven challenging to precisely 276 
infer network state from imaging data, due in large part to the inherent noise, indicator dynamics, and low temporal 277 
resolution associated with 2p imaging. RADICaL bridges this gap. RADICaL is tailored specifically for 2p imaging, with a 278 
noise emissions model that is appropriate for deconvolved calcium events, and a novel network training strategy (SBTT) 279 
that takes advantage of the specifics of 2p laser scanning to achieve substantially higher temporal resolution. Through 280 
synthetic tests, we demonstrated that RADICaL accurately infers network state and substantially outperforms alternate 281 
approaches in uncovering high-frequency fluctuations. Then, through careful validation on real 2p data, we demonstrated 282 
that RADICaL infers network state trajectories that are closely linked to single-trial behavioral variability, even on fast 283 
timescales. Finally, we demonstrated that RADICaL maintains high-quality inference of network state even as the neural 284 
population size is reduced substantially.  285 
 286 
The ability to de-noise neural activity on single trials is highly valuable. First, de-noising improves the ability to decode 287 
behavioral information from neural activity, allowing subtle relationships between neural activity and behavior to be 288 
revealed (Fig. 5). Second, de-noising on single trials reduces the dependence on the stereotyped behaviors needed for 289 
de-noising through trial-averaging, which could allow greater insight in experiments with animals such as mouse and 290 
marmoset, where powerful experimental tools are available but highly repeatable behaviors are challenging to achieve. A 291 
move away from trial-averaging could also enable better interpretability of more complex or naturalistic behaviors17,31–34. 292 
Third, this de-noising capability will enable greater insight into processes that fundamentally differ from trial to trial, such 293 
as learning from errors35,36, variation in internal states such as arousal37,38, or paradigms in which tuning to uninstructed 294 
movements contaminates measurement of the task-related behavioral variables of interest39. Finally, this de-noising 295 
greatly improves inference of network state (Fig. 2), mitigating some of the known distortions of neural activity introduced 296 
by calcium imaging5. Importantly, electrophysiology and calcium imaging have distinct advantages and disadvantages, 297 
and both provide biased information about the underlying neural population6. Whereas LFADS has served as a powerful 298 
tool for denoising electrophysiology data and accurately inferring network state, no similar method existed for the 299 
complementary technique of calcium imaging; RADICaL fills this gap. 300 
 301 
In recent years, a variety of computational methods have been developed to analyze 2p imaging data12. 2p preprocessing 302 
pipelines8,26 normally include methods that correct for brain motion, localize and demix neurons’ fluorescence signals, and 303 
infer event rates from fluorescence traces. Several studies have applied deep learning in attempts to improve spike 304 
inference40–42, while a few others have focused on uncovering population-level structure43–48 or locally linear dynamics 305 
underlying population activity, in particular via switching linear dynamical systems-based methods49,50. Here we built 306 
RADICaL on the AutoLFADS architecture, which leverages deep learning and large-scale distributed training. This 307 
enables the integration of more accurate observation models (ZIG) and powerful optimization strategies (SBTT), while 308 
potentially inheriting the high performance and generalized applicability previously demonstrated for AutoLFADS17. 309 
 310 
Many behaviors are performed on fast timescales (e.g., saccades, reaches, movement correction, etc.), and thus previous 311 
work has made steps in overcoming the limits of modest 2p frame rates in attempts to infer the fast changes in neural 312 
firing rates that relate to these fast behaviors. Efforts to chip away at this barrier have relied on regularities imposed by 313 
repeated stimuli or highly stereotyped behavior51,52, or jittered inferred events on sub-frame timescales to minimize the 314 
reconstruction error of the associated fluorescence40. RADICaL takes a different approach. In particular, it links sub-frame 315 
timing to neural population dynamics, representing a more powerful and generalizable approach that does not require 316 
stereotypy in the behavior or neural response and which could therefore be applied to datasets with more naturalistic or 317 



 

 

flexible behaviors. Broadly speaking, this approach provides a solution to the spatiotemporal tradeoff that is inherent to 318 
any scanning technique, enabling retention of temporal resolution while increasing the spatial area of sampling. 319 
 320 
As shown in our simulated experiments, deconvolution places an upper bound on RADICaL’s performance, limiting its 321 
potential in slow sampling regimes (i.e., 2 Hz) with fast indicators or in more challenging inference cases (e.g., higher-322 
frequency latent content, higher noise levels, etc). To mitigate these limitations, future work could build an end-to-end 323 
model that integrates the generative rates-to-fluorescence process and operates on the fluorescence traces directly. 324 
Complementary work has begun exploring in this direction53, but our unique innovation of SBTT presents an opportunity 325 
to greatly improve the quality of recovering high-frequency features when the sampling rate is limited. More broadly, as 326 
benchmarking efforts are an invaluable resource for systematically comparing methods and building on advances from 327 
various different developers54, carefully-designed benchmarking efforts for network state inference from 2p data could 328 
accelerate progress in this field. 329 
 330 
The ability to achieve high-quality network state inference despite limited neuronal population size opens the door to 331 
testing new choices about how to perform the experiments themselves. For example, it could enable understanding the 332 
role of an uncommon neuronal subtype, or the single-trial outputs of an area by imaging projection neurons that are 333 
sparsely distributed throughout that area. With subcortical structures that require relay lenses, it could extract more 334 
information from a smaller FOV, permitting the use of a smaller relay lens that causes less damage to overlying brain 335 
structures. Or, when hopping between different layers10,11 or brain areas55,56, fewer lines could be imaged per FOV to 336 
retain a higher overall frame rate while achieving good inference from each FOV. When the number of neurons within 337 
each FOV is limited, one further advantage that RADICaL inherits from LFADS is that it allows for multi-session stitching16, 338 
which could provide an avenue to combine data from different sessions to improve inference of the underlying dynamics 339 
for each FOV.  340 
 341 
In sum, RADICaL provides a framework to push back the limits of the space-time tradeoff in 2p calcium imaging, enabling 342 
accurate inference of population dynamics in vast populations and with identified neurons. Future work will explore how 343 
best to exploit these capabilities for different experimental paradigms, and to link the power of dynamics with the 344 
anatomical detail revealed with calcium imaging. 345 
 346 
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 373 
Figure Legends 374 
Figure 1 | Improving inference of network state from 2p imaging. (a) Calcium imaging offers the ability to monitor the 375 
activity of many neurons simultaneously, in 3-D, often with cell types of interest and layers identified. In contrast, 376 
electrophysiology sparsely samples the neurons in the vicinity of a recording electrode, and may be biased toward 377 
neurons with high firing rates. (b) Calcium fluorescence transients are a low-passed and lossy transformation of the 378 
underlying spiking activity. Spike inference methods may provide a reasonable estimate of neurons’ activity on coarse 379 
timescales (left), but yield poor estimates on fine timescales (right; data from ref. 7). (c) RADICaL uses a recurrent neural 380 
network-based generative model to infer network state - i.e., de-noised event rates for the population of neurons - and 381 
assumes a time-varying ZIG observation model. For any given trial, the time-varying network state can be captured by 382 
three pieces of information: the initial state (i.e., “initial condition”) of the dynamical system (trial-specific), the dynamical 383 
rules that govern state evolution (shared across trials), and any time-varying external inputs (i.e., “inferred inputs”) that 384 
may affect the dynamics (trial-specific). (d) Top: in 2p imaging, the laser’s serial scanning results in different neurons 385 
being sampled at different times within the frame. Bottom: individual neurons’ sampling times are known with sub-frame 386 
precision (colors) but are typically analyzed with whole-frame precision (gray). (e) Sub-frame binning precisely captures 387 
individual neurons’ sampling times but results in neuron-time points without data. The numbers in the table indicate the 388 
deconvolved event in each frame. (f) SBTT is a novel network training method for sparsely sampled data that prevents 389 
unsampled time-neuron data points from affecting the gradient computation. 390 
 391 
Figure 2 | Application of RADICaL to synthetic data. (a) Example firing rates and spiking activity from a Lorenz system 392 
simulated at 7 Hz, deconvolved calcium events (inputs to RADICaL), and the corresponding rates and factors inferred by 393 
RADICaL. Simulation parameters were tuned so that the performance in inferring spikes using OASIS matched previous 394 
benchmarks13 (see Methods). (b) True and inferred Lorenz latent states (Z dimension) for a single example trial from 395 
Lorenz systems simulated at three different Lorenz oscillation frequencies. Black: true. Colored: inferred. (c) Performance 396 
in estimating the Lorenz Z dimension as a function of simulation frequency was quantified by variance explained (R2) for 397 
all 4 methods. 398 
 399 
Figure 3 | Application of RADICaL to real two-photon calcium imaging of a water grab task. (a) Task. Top left: 400 
Mouse performing the water grab task. Pink trace shows paw centroid trajectory. Bottom: Event sequence/task timing. 401 
RT: reaction time. ITI: inter-trial interval. Top right: Individual reaches colored by subgroup identity. (b) Top: an example 402 
field of view (FOV), identified neurons colored randomly. Bottom left: dF/F from a single trial for 5 example neurons. 403 
Bottom right: Allen Atlas M1/S1 brain regions imaged. (c) Comparison of trial-averaged (left) and single-trial (right) rates 404 
for 8 individual neurons for two different brain areas (left vs. right) and two different mice (top half vs. bottom half) for 405 
smth-dec and RADICaL (alternating rows). Left: each trace represents a different reach subgroup (4 in total) with error 406 
bars indicating s.e.m. Right: each trace represents an individual trial (same color scheme as trial-averaged panels). Odd 407 
rows: smth-dec event rates (Gaussian kernel: 40 ms s.d.). Even rows: RADICaL-inferred event rates. Horizontal scale 408 
bar represents 200 ms. Vertical scale bar denotes event rate (a.u.). Vertical dashed line denotes lift onset time. (d) 409 
Performance of RADICaL and smth-dec in capturing the empirical PSTHs on single trials. Correlation coefficient r was 410 
computed between the inferred single-trial event rates and empirical PSTHs. Each point represents an individual neuron. 411 
(e) Kinematic profiles and neural representations of atypical trials. Top: Z-dimension of hand velocity profile. Each trace 412 
represents an individual trial, colored by typical vs. atypical. Atypical trials are identified as the trials that have a second 413 
peak in Z-dimension of the hand velocity that is larger than 50% of the first peak. Middle and Bottom: Comparison of 414 
single-trial rates for 2 example neurons (data from Mouse1/S1) for smth-dec (middle row) and RADICaL (bottom row). 415 
Each trace represents an individual trial (same color scheme as top row). Horizontal scale bar represents 200 ms. Vertical 416 
scale bar denotes event rate (a.u.). Vertical dashed line denotes lift onset time. 417 
 418 



 

 

Figure 4 | RADICaL produces neural trajectories reflecting trial subgroup identity in an unsupervised manner. 419 
(a) Single-trial neural trajectories derived from RADICaL rates (top row) and smth-dec rates (bottom row) for two 420 
experiments (left: Mouse2/M1; right: Mouse1/S1), colored by subgroups. Each trajectory is an individual trial, plotting 421 
from 200 ms before to 400 ms after lift onset. Lift onset times are indicated by the dots in the same colors with the 422 
trajectories. Grey dots indicate 200 ms prior to lift onset time. Neural trajectories from additional experiments are shown 423 
in Extended Data Fig. 6. (b) Performance of RADICaL and smth-dec in revealing distinct subgroups in single-trial neural 424 
trajectories. The ratio of the cross-group distance to the within-group distance was computed for each individual time 425 
point in a window from 200 ms before to 400 ms after lift onset. Horizontal scale bar represents 100 ms. Vertical dashed 426 
line denotes lift onset time. Error bar indicates the s.e.m. across individual trials. Dots indicate the maximum ratio for 427 
each method. 428 
 429 
Figure 5 | RADICaL improves prediction of behavior. (a) Decoding hand kinematics using ridge regression. Each 430 
column shows an example mouse/area. Row 1: true hand position trajectories, colored by subgroups. Rows 2–4: 431 
predicted hand positions using ridge regression applied to the event rates inferred by RADICaL or AutoLFADS, or smth-432 
dec rates (Gaussian kernel: 40 ms s.d.). Hand positions from additional experiments are shown in Extended Data Fig. 433 
7. (b) Decoding accuracy was quantified by measuring variance explained (R2) between the true and decoded position 434 
(top) and velocity (bottom) across all trials across each of the 4 datasets (2 mice for M1, denoted by squares, and 2 mice 435 
for S1, denoted by triangles), for all 3 techniques. Error bar indicates the s.e.m. across 5 folds of test trials. (c) Quality of 436 
reconstructing the kinematics across frequencies was quantified by measuring coherence between the true and decoded 437 
position (top) and velocity (bottom) for individual trials across all 4 datasets, for all 3 techniques. (d) Predicting single-trial 438 
reaction times using RADICaL or smth-dec rates. Each dot represents an individual trial, color-coded by event rate 439 
inference method. Correlation coefficient r was computed between the true and predicted reaction times. Prediction of 440 
single-trial reaction times from additional experiments are shown in Extended Data Fig. 8. (e) Performance of predicting 441 
single-trial reaction times across each of the 4 datasets (2 mice for M1, denoted by squares, and 2 mice for S1, denoted 442 
by triangles), for all 3 techniques. 443 
 444 
Figure 6 | RADICaL retains high decoding performance in a neuron downsampling experiment. Decoding 445 
performance was measured as a function of the number of neurons used in each technique (top: Position; bottom: 446 
Velocity). Data are from Mouse2/M1 (left) and Mouse1/S1 (right). Performance was quantified using variance explained 447 
(R2). Figure insets indicate the selected neurons in the FOV for the full population of neurons and examples for different 448 
subsets. Error bar indicates the s.e.m. across 5 folds of test trials. Each black dot in the insets represents a neuron. 449 
Analyses were robust to the seed used for selecting different random subsets of neurons (Supp. Fig. 9). 450 
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 575 
Methods 576 
AutoLFADS and RADICaL architecture and training 577 
The core model that AutoLFADS and RADICaL build on is LFADS. A detailed overview of the LFADS model is given in 578 
refs. 15,16. Briefly, LFADS is a sequential application of a variational auto-encoder (VAE). A pair of bidirectional RNNs (the 579 



 

 

initial condition and controller input encoders) operate on the spike sequence and produce initial conditions for the 580 
generator RNN and time-varying inputs for the controller RNN. All RNNs were implemented using gated recurrent unit 581 
(GRU) cells. At each time step, the generator state evolves with input from the controller and the controller receives 582 
delayed feedback from the generator. The generator states are linearly mapped to factors, which are mapped to the firing 583 
rate of the neurons using a linear mapping followed by an exponential nonlinearity. The optimization objective is to 584 
maximize a lower bound on the likelihood of the observed spiking activity given the rates produced by the generator 585 
network, and includes KL and L2 regularization penalties. During training, network weights are optimized using stochastic 586 
gradient descent and backpropagation through time. 587 
 588 
Identical network sizes were used for both AutoLFADS and RADICaL runs and for both simulation and real 2p data. The 589 
dimension of initial condition encoder, controller input encoder, and controller RNNs was 64. The dimension of the 590 
generator RNN was 100. The generator was provided with 64-dimensional initial conditions and 2-dimensional controller 591 
outputs (i.e., inferred inputs u(t)) and linearly mapped to 100-dimensional factors. The initial condition prior distribution 592 
was Gaussian with a trainable mean that was initialized to 0 and a variance that was fixed to 0.1. The minimum allowable 593 
variance of the initial condition posterior distribution was set to 1e-4. The controller output prior was autoregressive with 594 
a trainable autocorrelation tau and noise variance, initialized to 10 and 0.1, respectively. The Adam optimizer (epsilon: 595 
1e-8; beta1: 0.9; beta2: 0.99; initial learning rate: 1e-3, Supp. Table 1) was used to control weight updates. The loss was 596 
scaled by a factor of 1e4 prior to computing the gradients for numerical stability. To prevent potential pathological training, 597 
the GRU cell hidden states were clipped at 5 and the global gradient norm was clipped at 300. 598 
 599 
AutoLFADS is a recent implementation of the population based training (PBT) approach57 on LFADS to perform automatic, 600 
large-scale hyperparameter (HP) search. A detailed overview of AutoLFADS is in refs. 17,21. Briefly, PBT distributes training 601 
across dozens of models in parallel, and uses evolutionary algorithms to tune HPs over many generations. To do so, trials 602 
were first split into training and validation sets. At the beginning of training, the value of the searchable HPs was randomly 603 
drawn from an initial range for each individual model. At the end of each generation, a selection process was performed 604 
to choose models with higher performance (i.e., lower negative log likelihood, or NLL) on the validation set and replace 605 
the poor models with the higher performing models. The HPs of the higher performing models were perturbed before the 606 
next generation to increase the HP search space.  607 
 608 
Training and hyperparameter search varies in the number of generations needed to converge (typically 70 - 150 609 
generations), depending on the data and hardware used (number and type of GPUs). With our data and hardware (10x 610 
NVIDIA GeForce RTX 2080 Ti GPUs), a run of RADICaL typically converges in 3 - 5 hours. RADICaL was built in Python 611 
2 and TensorFlow 1.14, and cloud implementations of RADICaL on Google Cloud Platform and NeuroCAAS are also 612 
being made available. Links to code and tutorials are given in Code availability above. 613 
 614 
For the PBT approach, 20 single models were trained in parallel for both AutoLFADS and RADICaL runs and for both 615 
simulation and real 2p data. Generations consisted of 50 epochs, and KL and L2 regularization penalties were linearly 616 
ramped for the first 80 epochs of training during the first generation. Training was stopped when there was no improvement 617 
in performance after 25 generations. The HPs optimized by PBT were the model’s learning rate and six regularization 618 
HPs: scaling weights for the L2 penalties on the generator, controller, and initial condition encoder RNNs, scaling weights 619 
for the KL penalties on the initial conditions and controller outputs, and two dropout probabilities (“keep ratio” for 620 
coordinated dropout21; and RNN network dropout probability). Coordinated dropout is a regularization technique which 621 
prevents pathological overfitting by forcing the network to model only structure that is shared across neurons. The HP 622 
search ranges are detailed in Supp. Table 1. The magnitudes of the HP perturbation were controlled by weights and 623 
specified for different HPs (a weight of 0.3 results in perturbation factors between 0.7 and 1.3; Supp. Table 1). The 624 
learning rate and dropout probabilities were restricted to their specified search ranges and were sampled from uniform 625 
distributions. The KL and L2 HPs were sampled from log-uniform distributions and could be perturbed outside of the initial 626 
search ranges. Identical hyperparameter settings were used for both RADICaL and AutoLFADS and for both synthetic 627 
datasets and real 2p datasets. 628 
 629 



 

 

RADICaL is an adaptation of AutoLFADS for 2p calcium imaging. RADICaL operates on sequences of deconvolved 630 
calcium events x(t). x(t) are modeled as a noisy observation of an underlying time-varying Zero-Inflated Gamma (ZIG) 631 
distribution22: 632 
 633 

(1) 634 
 635 
where xn(t) is the distribution of observed deconvolved events, an(t), kn(t), and locn are the scale, shape, and location 636 
parameters, respectively, of the gamma distribution, and qn(t) denotes the probability of non-zeros, for neuron n at time t. 637 
locn was fixed as the minimum nonzero deconvolved event (smin). In the original AutoLFADS model, factors were mapped 638 
to a single time-varying parameter for each neuron (the Poisson firing rate) via a linear transformation followed by an 639 
exponential nonlinearity. RADICaL instead infers the three time-varying parameters for each neuron, an(t), kn(t), and qn(t), 640 
by linearly transforming the factors followed by a trainable scaled sigmoid nonlinearity (sign). sign is a positive parameter 641 
that scales the outputs of the sigmoid to be in a range between 0 and sign, and is optimized alongside network weights. 642 
An L2 penalty is applied between sign and a PBT-searchable prior (Supp. Table 1) to prevent extreme values. The training 643 
objective is to minimize the negative log-likelihood of the deconvolved events given the inferred parameters: 644 
 645 

(2) 646 
 647 
 648 
The event rate for neuron n at time t was taken as the time-varying mean of the inferred ZIG distribution:  649 
 650 

(3) 651 
 652 
In AutoLFADS, the instantaneous intensity parameter of the Poisson process completely specifies the spike count 653 
distribution for a neuron, while in RADICaL, the ZIG distribution requires three parameters. The RADICaL generator RNN 654 
can therefore produce features that may not directly correspond to the biological network’s activity to produce the time-655 
varying, three-parameter distribution for each neuron at its output. To avoid analyzing these parameters, rather than using 656 
the intermediate factors representation as an estimate of the biological network’s state, we used the inferred event rates 657 
for the neuronal population. Doing so for both RADICaL and AutoLFADS allowed us to compare methods as directly as 658 
possible. 659 
 660 
RADICaL uses an SBTT training strategy to achieve sub-frame modeling resolution. RADICaL operates on binned 661 
deconvolved calcium events, with bin size smaller than the frame timebase of imaging. Bins where the neurons were 662 
sampled were filled with the corresponding event rates, while bins where the neurons were not sampled were filled with 663 
NaNs. Choosing the sub-frame bin width involves a trade-off. Finer bins improve the possible temporal resolution, but if 664 
the data are binned too finely, there may be very few neurons in certain bins, leading to uncertainty about the estimated 665 
latent states. It is important to choose the sub-frame bin size to ensure a reasonable number of neurons in each bin. We 666 
recommend a neuron count greater than 20 per sub-frame bin based on the results from our neuron downsampling 667 
experiments.  668 
 669 
The networks output the time-varying ZIG distribution at each sub-frame timestep; however, a mask was applied to the 670 
timesteps where the NaN samples were to prevent the cost computed from these timesteps being backpropagated during 671 
gradient calculation. As a result, the model weights were only updated based on the cost at the sampled timesteps. The 672 
reconstruction cost also excluded the cost calculated at the non-sampled timesteps so the PBT model selection was not 673 
affected by the cost computed from the non-sampled timesteps. 674 
 675 
Simulation experiments 676 
Generating spike trains from an underlying Lorenz system 677 
Synthetic data were generated using the Lorenz system as described in the original LFADS work15,16. Lorenz parameters 678 
were set to standard values (σ: 10, ρ: 28, and β: 8/3), and ∆t was set to 0.01. Datasets with different speeds of dynamics 679 



 

 

were generated by downsampling the original generated Lorenz states by different factors. The speed of the Lorenz 680 
dynamics was quantified based on the peak location of the power spectra of the Lorenz Z dimension, with a sampling 681 
frequency of 100 Hz. The downsampling factors were 3, 5, 7, 9, 11 and 14 for speeds 4, 7, 10, 13, 15 and 20 Hz, 682 
respectively. Each dataset/speed consisted of 8 conditions, with 60 trials per condition. Each condition was obtained by 683 
starting the Lorenz system with a random initial state vector and running it for 900 ms. The trial length for the 4 Hz dataset 684 
was longer (1200 ms) than that of other datasets (900 ms) to ensure that all conditions had significant features to be 685 
modeled - with shorter windows, the extremely low frequency oscillations caused the Lorenz states for some conditions 686 
to have little variance across the entire window, making it trivial to approximate the essentially flat firing rates. We 687 
simulated a population of 278 neurons with firing rates given by linear readouts of the Lorenz state variables using random 688 
weights, followed by an exponential nonlinearity. Scaling factors were applied so the baseline firing rate for all neurons 689 
was 3 spikes/sec. Each bin represents 10 ms and an arbitrary frame time was set to be 30 ms (i.e., one “imaging frame” 690 
takes 3 bins). Spikes from the firing rates were then generated by a Poisson process. 691 
 692 
Generating fluorescence signals from synthetic spike trains 693 
Realistic fluorescence signals were generated from the spike trains by convolving them with a kernel for an autoregressive 694 
process of order 2 and passing the results through a nonlinearity that matched values extracted from the literature for the 695 
calcium indicator GCaMP6f5,58 (Extended Data Fig. 2a & b). Three noise sources were added to reproduce variability 696 
present in real data59–61: Gaussian noise to the size of the calcium spike, and Gaussian and Poisson noise to the final 697 
trace (Extended Data Fig. 2a & b). This fluorescence generation process was realized as follows: First, spike trains s(t) 698 
were generated from the Lorenz system as mentioned above. Independent Gaussian noise (sd = 0.1) was added to each 699 
spike in the spike train to model the variability in spike amplitude. Next, we modeled the calcium concentration dynamics 700 
c(t) as an autoregressive process of order 2:  701 
 702 

(4) 703 
 704 
with s(t) representing the number of spikes at time t. The autoregressive coefficients  and  were computed based on 705 
the rise time, decay time (  = 20 ms,  = 400 ms for GCaMP6f) of the calcium indicators, and the sampling frequency. 706 
Note that while there is substantial variability in taus across neurons in real data5, selecting and mimicking this variability 707 
was not relevant in our work, because we compared the methods (i.e., RADICaL, AutoLFADS, and smth-dec) after 708 
deconvolution. The calcium concentration dynamics were further normalized so that the peak height of the calcium 709 
dynamics generated from a single spike equalled one, regardless of the sampling frequency. Subsequently, we computed 710 
the noiseless fluorescence signals by passing the calcium dynamics through a nonlinear transformation estimated from 711 
the literature58 for the calcium indicator GCaMP6f (Extended Data Fig. 2c & d). After the nonlinear transformation, the 712 
relationship between spike size and trace size was corrupted, and therefore we assumed the baseline of fluorescence 713 
signals to be zero and the signals were rescaled to the range in [0,1] using min-max normalization. Finally, Gaussian 714 
noise (~N(0,sn)) and Poisson noise (simulated as gaussian with mean 0 and variance proportional to the signal amplitude 715 
at each time point via a constant d) were added to the normalized traces. The resulting fluorescence traces had the same 716 
sampling frequency as the synthetic spike trains (100 Hz). 717 
 718 
A crucial parameter is the noise level associated with each fluorescence trace. High noise levels lead to very poor spike 719 
detection and very low noise levels enable a near-perfect reconstruction of the spike train. In order to select a realistic 720 
level of noise we matched the correlations between real and inferred spike trains of the simulated data to those observed 721 
in a recent benchmarking study13. We found that a truncated normal distribution of noise level for Gaussian and Poisson 722 
noise best matched the correlations. More specifically, for each neuron, sn=d was sampled independently from a truncated 723 
normal distribution N(0.12, 0.02) with the tail below 0.06 removed. With the above noise setting, the mean correlation 724 
coefficient r between the deconvolved events and ground truth spikes was 0.32, which is consistent with the standard 725 
results reported in the “spikefinder” paper13 for OASIS. In our additional tests of model tolerance to spike inference noise, 726 
the Gaussian noise added to the fluorescence traces was increased by 2x or 4x. It is worth stressing that real data feature 727 
a broad range of noise levels that depend on the imaging conditions, depth, expression level, laser power and other 728 
factors. Here we did not attempt to investigate all possible noise conditions, but instead, we aimed to create a simulation 729 
with known latent variables (i.e., low-dimensional factors and event rates) that reasonably approximated realistic signal-730 



 

 

to-noise levels, in order to provide a tractable test case to compare RADICaL to other methods before attempting 731 
comparisons on real data. 732 
 733 
Recreating variability in sampling times due to 2p laser scanning 734 
The fluorescence traces were simulated at 100 Hz as mentioned above. A subsampling step was then performed with 735 
sampling times for each neuron staggered in time to simulate the variability in sampling times due to 2p laser scanning 736 
(as in Fig. 1e). This produced fluorescence traces where individual neurons were sampled at 33.3 Hz, with phases of 0, 737 
11, 22 ms based on each neuron’s location (top, middle and bottom of the FOV, respectively). To break this down, each 738 
neuron was sparsely sampled every three time points and the relative sampled times between neurons were fixed. For 739 
example, in trial 1, neuron 1 was sampled at time points 1, 4, 7, … and neuron 2 was sampled at time points 2, 5, 8, …; 740 
in trial 2, neuron 1 was sampled at time points 2, 5, 8, … and neuron 2 was sampled at time points 3, 6, 9, … . Thus, the 741 
sampling frequency for each individual neuron was 33.3 Hz, while the sampling frequency for the population was retained 742 
at 100 Hz by filling the non-sampled time points with NaNs. The resulting 33.3 Hz simulated fluorescence signals for each 743 
individual neuron (i.e., with NaNs excluded) were deconvolved using OASIS25 (as implemented in CaImAn26) using an 744 
auto-regressive model of order 1 with smin of 0.1. For experiments with slower imaging speeds, the same steps were 745 
repeated but the simulated 100 Hz fluorescence signals were subsampled at different rates (i.e., 16 Hz, 8 Hz and 2 Hz). 746 
 747 
Data preparation for each method 748 
Four methods (RADICaL, AutoLFADS, smth-dec and smth-sim-fluor) were compared by their performance on recovering 749 
the ground truth latent states across different datasets/speeds. Trials (480 total for each simulated dataset) were split into 750 
80/20 training and validation sets for modeling AutoLFADS and RADICaL. To prepare data for non-RADICaL methods, 751 
non-sampled bins were removed so all the sampled bins were treated as if they were sampled at the same time and each 752 
bin then represented 30 ms (i.e., sampling frequency = 33.3 Hz). Preparing the data for AutoLFADS required discretizing 753 
the deconvolved events into spike count estimates, because AutoLFADS was primarily designed to model discrete spiking 754 
data. In the discretizing step, if the event rate was 0, it was left as 0; if the event rate was between 0 and 2, it was cast to 755 
1 (to bias toward the generally higher probability of fewer spikes). If the event rate was greater than 2, it was rounded 756 
down to the nearest integer. We note that this is one of many possible patches to convert continuously-valued event 757 
intensities to natural numbers for compatibility with the Poisson distribution and AutoLFADS; a more principled solution 758 
would be to modify the network to use the ZIG distribution, as we have done in RADICaL. With smth-dec, the deconvolved 759 
events were smoothed by convolution with a Gaussian filter (6 ms s.d.) to produce event rates. With smth-sim-fluor, the 760 
generated fluorescence signals were smoothed by convolution with a Gaussian filter (6 ms s.d.) to produce event rates. 761 
The choice of filter width was optimized by sweeping values ranging from 3 to 40 ms. Smoothing with a 6 ms s.d. filter 762 
gave the highest performance in recovering the ground truth Lorenz states for experiments with higher Lorenz frequencies 763 
(i.e., >= 10 Hz). The event rates produced from RADICaL had a sampling frequency of 100 Hz, while the event rates 764 
produced from the non-RADICaL methods had a sampling frequency of 33.3 Hz. The non-RADICaL rates were then 765 
resampled at 100 Hz using linear interpolation.  766 
 767 
Mapping to ground truth Lorenz states 768 
Since our goal was to quantify modeling performance by estimating the underlying Lorenz states, we trained a mapping 769 
from the output of each model (i.e., the event rates) to the ground truth Lorenz states using ridge regression. First, we 770 
split the trials into training (80%) and test (20%) sets.  We used the training set to optimize the regularization coefficient 771 
using 5-fold cross-validation, and used the optimal regularization coefficient to train the mapping on the full training set. 772 
We then quantified state estimation performance by applying this trained mapping to the test set and calculating the 773 
coefficient of determination (R2) between the true and predicted Lorenz states. We repeated the above procedure five 774 
times with train/test splits drawn from the data in a complementary fashion. We reported the mean R2 across the repeats, 775 
such that all reported numbers reflect held-out performance. We tested whether the difference of R2 between each pair of 776 
methods was significant by performing a paired, one-sided Student’s t-test on the distribution of R2 across the five folds 777 
of predictions. In our simulations we observed a delay caused by deconvolution, where the deconvolved events came 778 
systematically later than the true spikes, consistent with findings in a recent study41. We swept across different lags 779 
between the event rates and the true latent states in the latent mapping analysis and chose to include a 30 ms lag 780 
correlation which gave the highest latent recovery performance empirically. 781 



 

 

 782 
Additional tests of deconvolution using MLspike 783 
To test whether RADICaL works on deconvolved events that have a spike-time-like structure, we tested MLspike27 as an 784 
alternative for deconvolution. Calcium traces were generated using the identical steps as described above. For MLspike, 785 
the cubic polynomial model was chosen as the nonlinearity model consistent with GCaMP6f. The drift parameter was set 786 
to 0.001. The decay time constant tau was set to 0.4s. We did not use auto calibration in MLspike because it produced 787 
inconsistent results in our tests. Instead, to give MLspike the best chance at high performance, we manually tuned the 788 
remaining parameters in MLspike by reducing the error rates for inferred spikes compared to ground truth spikes using a 789 
small subset of neurons. Transient amplitude was set to 1 and the noise parameter sigma was set to 0.15. Spikes inferred 790 
by MLspike were then prepared for AutoLFADS and RADICaL as described above. Note that the discretizing step was 791 
omitted here when preparing data for AutoLFADS. 792 
 793 
Real 2p experiments 794 
Subjects and surgical procedures 795 
All procedures were approved by the University of Chicago Animal Care and Use Committee. Two male Ai148D transgenic 796 
mice (TIT2L-GC6f-ICL-tTA2, stock 030328; Jackson Laboratory) were used. Mice were individually housed in a reverse 797 
12-hour light/dark cycle, with an ambient temperature of 71.5 degree fahrenheit and a humidity of 58%. Experiments were 798 
conducted during the animal’s dark cycle. Each mouse underwent a single surgery. Mice were injected subcutaneously 799 
with dexamethasone (8 mg/kg) 24 hours and 1 hour before surgery. Mice were anesthetized with 2-2.5% inhaled isoflurane 800 
gas, then injected intraperitoneally with a ketamine-medetomidine solution (60 mg/kg ketamine, 0.25 mg/kg 801 
medetomidine), and maintained on a low level of supplemental isoflurane (0-1%) if they showed any signs that the depth 802 
of anesthesia was insufficient. Meloxicam was also administered subcutaneously (2 mg/kg) at the beginning of the surgery 803 
and for 1-3 subsequent days. The scalp was shaved, cleaned, and resected, the skull was cleaned and the wound margins 804 
glued to the skull with tissue glue (VetBond, 3M), and a 3 mm circular craniotomy was made with a 3 mm biopsy punch 805 
centered over the left CFA/S1 border. The coordinates for the center of CFA were taken to be 0.4 mm anterior and 1.6 806 
mm lateral of bregma. The craniotomy was cleaned with SurgiFoam (Ethicon) soaked in phosphate-buffered solution 807 
(PBS), then virus (AAV9-CaMKII-Cre, stock 2.1*1013 particles/nL, 1:1 dilution in PBS, Addgene) was pressure injected 808 
(NanoJect III, Drummond Scientific) at two or four sites near the target site, with 140 nL injected at each of two depths 809 
per site (250 and 500 µm below the pia) over 5 minutes each. The craniotomy was then sealed with a custom cylindrical 810 
glass plug (3 mm diameter, 660 µm depth; Tower Optical) bonded (Norland Optical Adhesive 61, Norland) to a 4 mm #1 811 
round coverslip (Harvard Apparatus), glued in place first with tissue glue (VetBond) and then with cyanoacrylate glue 812 
(Krazy Glue) mixed with dental acrylic powder (Ortho Jet; Lang Dental). A small craniotomy was also made using a dental 813 
drill over right CFA at 0.4 mm anterior and 1.6 mm lateral of bregma, where 140 nL of AAVretro-tdTomato (stock 1.02*1013 814 
particles/nL, Addgene) was injected at 300 µm below the pia. This injection labeled cells in left CFA projecting to the 815 
contralateral CFA. Here, this labeling was used solely for stabilizing the imaging plane (see below). The small craniotomy 816 
was sealed with a drop of Kwik-Cast (World Precision Instruments). Two layers of MetaBond (C & B) were applied, then 817 
a custom laser-cut titanium head bar was affixed to the skull with black dental acrylic. Animals were awoken by 818 
administering atipamezole via intraperitoneal injection and allowed to recover at least 3 days before water restriction. 819 
 820 
Behavioral task 821 
The behavioral task (Fig. 3a) was a variant of the water reaching task of ref. 28 which we term the “water grab” task. This 822 
task was performed by water-restricted, head-fixed mice, with the forepaws beginning on paw rests (eyelet screws) and 823 
the hindpaws and body supported by a custom 3D printed clear acrylic tube enclosure. After holding the paw rests for 824 
700-900 ms, a tone was played by stereo speakers and a 2-3 µL droplet of water appeared at one of two water spouts 825 
(22 gauge, 90-degree bent, 1” blunt dispensing needles, McMaster) positioned on either side of the snout. The pitch of 826 
the tone indicated the location of the water, with a 4000 Hz tone indicating left and a 7000 Hz tone indicating right, and it 827 
lasted 500 ms or until the mouse made contact with the correct water spout. The mouse could grab the water droplet and 828 
bring it to its mouth to drink any time after the tone began. Both the paw rests and spouts were wired with capacitive touch 829 
sensors (Teensy 3.2, PJRC). Good contact with the correct spout produced an inter-trial interval of 3-6 s, while failure to 830 
make contact (or insufficiently strong contact) with the spout produced an inter-trial interval of 20 s. Because the touch 831 



 

 

sensors required good contact from the paw, this setup encouraged complex contacts with the spouts. The mice were 832 
trained to make all reaches with the right paw and to keep the left paw on the paw rest during reaching. Training took 833 
approximately two weeks, though the behavior continued to solidify for at least two more weeks. Data presented here 834 
were collected after 6-8 weeks’ experience with the task. Control software was custom written in MATLAB R2018a using 835 
PsychToolbox 3.0.14, and for the Teensy. Touch event monitoring and task control were performed at 60 Hz. 836 
 837 
Behavior was also recorded using a pair of cameras (BFS-U3-16S2M-CS, FLIR; varifocal lenses COZ2813CSIR2, 838 
Computar) mounted 150 mm from the right paw rest at 10° apart to enable 3D triangulation. Infrared illuminators enabled 839 
behavioral imaging while performing 2p imaging in a darkened microscope enclosure. Cameras were synchronized and 840 
recorded at 150 frames per second with real-time image cropping and JPEG compression, and streamed to one HDF5 841 
file per camera (areaDetector module of EPICS, CARS). The knuckles and wrist of the reaching paw were tracked in each 842 
camera using DeepLabCut29 and triangulated into 3D using camera calibration parameters obtained from the MATLAB 843 
Stereo Camera Calibration toolbox62,63. To screen the tracked markers for quality we created distributions of all inter-844 
marker distances in 3D across every labeled frame and identified as problematic frames with any inter-marker distance 845 
exceeding the 99.9th percentile of its respective distribution. Trials with more than one problematic frame in the period of 846 
-200 ms to 800 ms after the raw reach onset were discarded (where reach onset was taken as the first 60 Hz tick after 847 
the paw rest touch sensor fell below contact threshold). The kinematics of all trials that passed this screening procedure 848 
were visualized to confirm quality. Centroid marker kinematics were obtained by averaging the kinematics of all paw 849 
markers, locking them to behavioral events and then smoothing using a Gaussian filter (15 ms s.d.). To obtain velocity 850 
and acceleration, centroid data was numerically differentiated with MATLAB’s diff function and then smoothed again using 851 
a Gaussian filter (15 ms s.d.). 852 
 853 
Two-photon imaging 854 
Calcium imaging was performed with a Neurolabware two-photon microscope running Scanbox 4.1 and a pulsed 855 
Ti:sapphire laser (Vision II, Coherent). Depth stability of the imaging plane was maintained using a custom plugin that 856 
acquired an image stack at the beginning of the session (1.4 µm spacing), then compared a registered rolling average of 857 
the red-channel data to each plane of the stack. If sufficient evidence indicated that a plane not at the center of the stack 858 
was a better match to the image being acquired, the objective was automatically moved to compensate. This typically 859 
resulted in a slow and steady upward (outward) movement of the objective over the course of the session. This plane drift 860 
is probably due to ETL warming, as it occurred when imaging slides at high power but not low power. The power range 861 
used in imaging was approximately 50-65 mW average power, including the net power reduction due to end-of-line 862 
blanking. 863 
 864 
Offline, images were run through Suite2p to perform motion correction, region-of-interest (ROI) detection, and 865 
fluorescence extraction from both ROIs and neuropil. ROIs were manually curated using the Suite2p GUI to retain only 866 
those corresponding to somas. We then subtracted the neuropil signal scaled by 0.77. Neuropil-subtracted ROI 867 
fluorescence was then detrended by performing a running 10th percentile operation, smoothing with a Gaussian filter (20 868 
s s.d.), then subtracting the result from the trace. This result was fed into OASIS25 using the ‘thresholded’ method, AR1 869 
event model, and limiting the tau parameter to be between 300 and 800 ms. Neurons were discarded if they did not meet 870 
a minimum signal-to-noise (SNR) criterion. To compute SNR, we took the fluorescence at each time point when OASIS 871 
identified an “event” (non-zero), computed (fluorescence - neuropil) / neuropil, and computed the median of the resulting 872 
distribution. ROIs were excluded if this value was less than 0.05. To put events on a more useful scaling, for each ROI 873 
we found the distribution of event sizes, smoothed the distribution (ksdensity in MATLAB, with an Epanechnikov kernel 874 
and log transform), found the peak of the smoothed distribution, and divided all event sizes by this value. This rescales 875 
the peak of the distribution to have a value of unity. Data from two mice and two brain areas (4 sessions in total) were 876 
used (Mouse1/M1: 510 neurons, 560 trials; Mouse1/S1: 543 neurons, 506 trials; Mouse2/M1: 439 neurons, 475 trials; 877 
Mouse2/S1: 509 neurons, 421 trials). 878 
 879 
Data preparation for modeling with RADICaL and AutoLFADS 880 
To prepare data for RADICaL, the deconvolved events were normalized by the s_min value output by OASIS so that the 881 
minimal event size was 0.1 across all neurons. The deconvolved events for individual neurons had a sampling rate equal 882 



 

 

to the frame rate (31.08 Hz). For modeling with RADICaL, the deconvolved events were assigned into 10ms bins using 883 
the timing of individual measurements for each neuron to achieve sub-frame resolution (i.e., 100 Hz). The non-sampled 884 
bins were filled with NaNs. To prepare data for AutoLFADS, the deconvolved events were rescaled using the distribution-885 
scaling method described above, and casted using the casting step described in the simulation section. For both 886 
AutoLFADS and smth-dec, the deconvolved events were assigned into a single time bin per frame (i.e., 32.17 ms bins) to 887 
mimic standard processing of 2p imaging data, where the sub-frame timing of individual measurements is discarded. 888 
Trials were created by aligning the data to 200 ms before and 800 ms after reach onset (100 time points per trial for 889 
RADICaL, and 31 time points per trial for AutoLFADS and smth-dec). An individual RADICaL model and AutoLFADS 890 
model were trained for each dataset (4 total). Failed trials (latency to contact with correct spout > 15 s for Mouse1, 20 s 891 
for Mouse2), or trials where the grab to the incorrect spout occurred before the grab to the correct spout, were discarded. 892 
For each dataset, trials (Mouse1/M1: 552 total; Mouse1/S1: 500 total; Mouse2/M1: 467 total; Mouse2/S1: 413 total) were 893 
split into 80/20 training and validation.  894 
 895 
Trial grouping 896 
PSTH analysis and low dimensional neural trajectory visualization were performed based on subgroups of trials. Trials 897 
were sorted into two subgroups per spout based on the Z dimension (height) of hand position. The hand position was 898 
obtained by smoothing the centroid marker position with a Gaussian filter (40 ms s.d.). Time windows where the height of 899 
hand was used to split trials were hand-selected to present a good separation between subgroups of hand trajectories. 900 
For Mouse1/M1, a window of 30 ms to 50 ms after reach onset was used to split left condition trials and a window of 180 901 
ms to 200 ms after reach onset was used to split right condition trials; for Mouse1/S1, a window of 140 ms to 160 ms after 902 
reach onset was used to split both left and right condition trials; for both Mouse2/M1 and Mouse2/S1, a window of 30 ms 903 
to 50 ms after reach onset was used to split both left and right condition trials. For both left or right conditions and for all 904 
mice/areas, 55 trials with the lowest and highest heights were selected as group 1 and group 2, respectively; trials with 905 
middle-range heights were discarded. 906 
 907 
PSTH analysis and comparing RADICaL and AutoLFADS single-trial rates 908 
RADICaL was first validated by comparing the PSTHs computed using RADICaL inferred event rates and the empirical 909 
PSTHs. Empirical PSTHs were computed by trial-averaging smth-dec rates (40 ms kernel s.d., 32.17 ms bins) within each 910 
of the 4 subgroups of trials. RADICaL inferred rates were first downsampled from 100 Hz to 31.08 Hz with an antialiasing 911 
filter applied, to match the sampling frequency (i.e., the frame rate) of the original deconvolved signals. RADICaL PSTHs 912 
were computed by similarly averaging RADICaL rates. Single-trial inferred rates were then compared to the empirical 913 
PSTHs to assess how well each method recapitulated the empirical PSTHs on single trials. The correlation coefficient (r) 914 
was computed between inferred single-trial event rates and the corresponding empirical PSTHs in a cross-validated 915 
fashion, i.e., each trial’s inferred event rate was compared against an empirical PSTH computed using all other trials 916 
within the subgroup. r was assessed for the time window spanning 200 ms before to 800 ms after reach onset, and 917 
computed by concatenating all trials across the four subgroups, yielding one r for each neuron. Neurons that had fewer 918 
than 40 nonzero events within this time window (across all trials) were excluded from the analysis. 919 
 920 
Low-D analysis 921 
To visualize the low-dimensional neural trajectories that RADICaL produced, principal component analysis (PCA) was 922 
performed on RADICaL inferred rates and smth-dec event rates. RADICaL or smth-dec rates (aligned to 200 ms before 923 
and 800 ms after reach onset) were log-transformed (with 1e-4 added to prevent numerical precision issues) and 924 
normalized to have zero mean and unit standard deviation for each neuron. PCA was applied to the trial-averaged rates 925 
and the projection matrix was then used to project the log-transformed and normalized single-trial rates (aligned to 200 926 
ms before and 400 ms after reach onset) onto the top 3 PCs. 927 
 928 
Subgroup distance ratio analysis 929 
To quantitatively measure how informative RADICaL was about the subgroup identity of each trial, a subgroup distance 930 
ratio analysis was performed in the inferred rate space. For each trial at each time point, we measured the Euclidean 931 
distances to the corresponding time point of each other trials within the same subgroup as well as the distances to the 932 



 

 

corresponding time point of each trial from the other subgroup of the same condition. The distance ratio was computed 933 
as the ratio of the mean across-subgroup differences to the mean within-subgroup distances. A distance ratio greater than 934 
one indicates that the trial is more closely grouped with the trials within the same subgroup compared to the other 935 
subgroup. An averaged distance ratio was computed across all trials for each time point. 936 
 937 
Decoding analysis 938 
RADICaL-inferred rates, AutoLFADS-inferred rates, and smth-dec (Gaussian kernel 40 ms s.d.) rates were used to 939 
decode hand position and velocity using ridge regression. The hand position and velocity were obtained as described 940 
above and binned at 10 ms (i.e., 100 Hz). The non-RADICaL rates were retained to a sampling frequency of 100 Hz using 941 
linear interpolation. For simplicity, we did not include a lag between the neural data and kinematics. Trials with an interval 942 
between water presentation and reach onset that was longer than a threshold were discarded due to potential variations 943 
in behavior (e.g., inattention). The threshold was selected arbitrarily for different sessions based on the actual distribution 944 
of the intervals in the session (Mouse1/M1: 500 ms; Mouse1/S1: 600 ms; Mouse2/M1: 400 ms; Mouse2/S1: 600 ms). The 945 
data were aligned to 50 ms before and 350 ms after reach onset. The decoder was trained and tested using cross-946 
validated ridge regression. First, we split the trials into training (80%) and test (20%) sets. We used the training set to 947 
optimize the regularization coefficient using 5-fold cross-validation, and used the optimal regularization coefficient to train 948 
the decoder on the full training set. This trained decoder was applied to the test set, and the coefficient of determination 949 
(R2) was computed and averaged across x-, y- and z- kinematics. We repeated the above procedure five times with 950 
train/test splits drawn from the data in an interleaved fashion. We reported the mean R2 across the repeats, such that all 951 
reported numbers reflect held-out performance. We tested whether the difference of R2 between each pair of methods 952 
was significant by performing paired, one-sided Student’s t-Tests on the distribution of R2 across the five folds of 953 
predictions. 954 
 955 
One possible concern is that RADICaL improves decoding not because the single-trial traces are better denoised, but 956 
instead because they for some reason result in learning a better decoder. To address this, we performed a “cross-decoder” 957 
analysis where the decoder trained with smth-dec rates was applied to the RADICaL inferred rates. Note that it is not guaranteed that 958 
the cross-decoder would give better performance even if RADICaL’s rates are better denoised, because this is also a task of 959 
generalization - during training, the decoder did not see the RADICaL rates which might have different distributions of signal-to-noise 960 
across neurons or might require a different level of regularization. Despite this being a difficult task, the cross-decoder analysis shows 961 
improved performance over the original smth-dec decoding (Supp. Fig. 10). This suggests that the improvement seen in Fig. 5a & 962 
b does not merely reflect the training performance of the decoder but also demonstrates the higher quality of the inferred rates 963 
themselves. 964 
 965 
Coherence analysis 966 
Coherence was computed between the true and predicted kinematics (window: 200 ms before and 500 ms after reach 967 
onset) across all trials and across all x-, y- and z- dimensions using magnitude-squared coherence (MATLAB: mscohere). 968 
The power spectral density estimation parameters within mscohere were specified to ensure a robust calculation on the 969 
single trial activity: Hanning windows with 35 timesteps (i.e., 350 ms) for the FFT and window size, and 25 timesteps (i.e., 970 
250 ms) of overlap between windows. 971 
 972 
Although the coherence analysis presents the performance of each method as a function of frequency (Fig. 5c), the 973 
values are not directly comparable to the latent recovery analysis in simulation (Fig. 2c). In the simulations, the known, 974 
true underlying latent states can be used to directly measure success. In contrast, with real data the true underlying latent 975 
states are unknown and the behavioral measurements (hand position and velocity) are indirect correlates. The coherence 976 
metric therefore includes other sources of error such as muscle and tracking noise. Both the quicker drop as frequency 977 
increases, and the smaller difference between methods, could potentially be explained by the limitations of indirect 978 
measurement. In addition, the relationship between neural activity and hand position/velocity may be nonlinear or history-979 
dependent, while our decoding was linear and instantaneous.  980 
 981 
Reaction time prediction analysis 982 



 

 

RADICaL-inferred rates, AutoLFADS-inferred rates, and smth-dec (Gaussian kernel 40 ms s.d.) rates were used to predict 983 
reaction time (RT) using logistic regression. This analysis follows the same procedure used in ref. 30. Reaction time was 984 
defined as the interval from water presentation to movement onset. Movement onset was defined as the time when the 985 
speed of the paw centroid exceeded 20% of this trial’s peak speed. Single-trial rates by the three methods were first 986 
aligned to movement onset, then projected into the top 10-PC space. Data were binned into a “premovement” time point 987 
(100ms before to movement onset) and a “movement” time point (movement onset to 100ms after). Trials were split into 988 
training (75%) and test (25%) sets. A logistic regression classifier was trained using the training set and returned a 989 
projection dimension that best discriminated between premovement and movement data. The projection returned by 990 
logistic regression was then used to project the test trials binned at original bin size (i.e., 100 Hz). The RT was predicted 991 
as the time when the projected activity crossed a 50% threshold. The correlation coefficient (r) was computed between 992 
the true and predicted RTs for the test trials, such that the reported numbers reflect held-out performance. 993 
 994 
t-SNE analysis on the weights mapping from factors to ZIG parameters 995 
RADICaL relies on sub-frame bins in which neurons are grouped based on their spatial locations within the FOV. Because 996 
this strategy results in consistent neuron grouping, it could potentially result in different groups of neurons corresponding 997 
to different latent factors. To test whether such an artifact existed, we visualized the transformation from latents to neurons 998 
by using t-SNE to reduce the 300-dimensional weights vector (100 factors * 3 ZIG parameters) into a 2-D t-SNE space 999 
for each individual neuron (510 neurons total) (Supp. Fig. 11). We did not observe a relationship between neurons’ 1000 
position within the field of view (i.e., top, middle, and bottom) and the underlying factors. This suggested that the model 1001 
did not use distinct factors for sets of neurons that were sampled with different phases, despite neurons in distant portions 1002 
of the FOV never being grouped in the same bin.  1003 
 1004 
Neuron downsampling 1005 
Two neuron downsampling experiments were performed with different procedures to test the methods’ tolerance to low 1006 
neuron counts. The first procedure was designed to mimic scanning a sparse population of neurons. To do so, the number 1007 
of neurons included when training RADICaL or AutoLFADS was gradually reduced by randomly dropping a subset of 1008 
neurons from the previous subset, with a fraction kept of 1, 3/4, 1/2, 1/4, 1/8 or 1/16. This results in 439, 329, 219, 109, 1009 
54 or 27 neurons kept for the Mouse2/M1 dataset, and 543, 407, 271, 135, 67 or 33 kept for the Mouse1/S1 dataset. One 1010 
RADICaL model and one AutoLFADS model were trained for each number of neurons. Decoding was performed using 1011 
ridge regression (see above).  1012 
 1013 
The other procedure was designed to emulate scanning a smaller field of view, such as when using a lens relay to image 1014 
deep structures., Here, the number of neurons included when training RADICaL or AutoLFADS was gradually reduced by 1015 
limiting the area of FOV that the neurons were sampled from. The area was shrunk from the entire FOV with an area-to-1016 
FOV ratio of 1, 25/36, 9/16, 1/4, and 1/9, resulting in the number of included neurons being 439, 321, 262, 121 or 59 for 1017 
Mouse2/M1. An individual RADICaL model and AutoLFADS model were trained for each number of neurons. Decoding 1018 
was performed using ridge regression (see above). Note that this analysis represents a lower bound on performance: for 1019 
this proof-of-concept, we simply artificially excluded data from outside the restricted FOVs, which resulted in substantial 1020 
time periods that lacked data entirely (e.g., 2/3 of the total sampling time for the smallest FOV considered). In a real 1021 
application, those time periods that were artificially excluded could instead be used to monitor other brain areas or layers, 1022 
or to monitor the same neurons with higher sampling rates, either of which might be expected to provide additional 1023 
information. 1024 
 1025 
Data availability 1026 
Dataset Mouse2/M1 will be made available at the time of publication. 1027 
 1028 
Code availability 1029 
RADICaL for Google Cloud Platform can be downloaded from GitHub at github.com/snel-repo/autolfads and the tutorial 1030 
is available at snel-repo.github.io/autolfads. RADICaL for NeuroCAAS64 is available at 1031 



 

 

http://www.neurocaas.org/analysis/17. Source code for RADICaL is available at https://github.com/snel-repo/lfads-1032 
cd/tree/radical. 1033 
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section of the paper. If your paper does not have a Methods section, 
include all new references at the end of the main Reference list. 

Extended Data Fig. 1 Simulation of Lorenz 
system at different 
speeds. 
 

ed_fig1.jpg This figure illustrates the underlying dynamical system used for the 
simulation experiments. (a) An example Lorenz trajectory in a 3-
dimensional state space (far left) and with three dynamic variables 
plotted as a function of time (middle left) for a system with Z-oscillation 
peak frequency of 7 Hz (i.e., the power spectrum of the Lorenz 
system’s Z-dimension had a pronounced peak at 7 Hz). Firing rates 
for the simulated neurons were computed by a linear readout of the 
Lorenz variables followed by an exponential nonlinearity (middle 
right). Spikes from the firing rates were then generated by a Poisson 
process (far right). The example trial shown here is identical to “Trial 
2” in Fig. 2a, but with a wider plotting window. (b) Power spectrum of 
the individual Lorenz variables for the system with a Z-oscillation peak 
frequency at 7 Hz. Because only the Z variable has a clear peak in the 
power spectrum, this variable was used exclusively for all further 
analyses in simulations except Supp. fig. 1. (c) Power spectrum of 
the Z dimension for Lorenz systems simulated with different Z-
oscillation peak frequencies. 
 

Extended Data Fig. 2 Simulation pipeline to 
generate artificial 
fluorescence traces from 
the underlying Lorenz 
system. 
 

ed_fig2.jpg  (a) This pipeline begins from the Poisson-random spikes generated in 
the far-right panel of Supplementary Figure 1. Calcium traces were 
generated by first corrupting the spikes with amplitude noise, then 
modeling the dynamics of calcium indicators in response to a spike 
with an autoregressive process of order 2 transformed by a piecewise-
linear non-linearity. Sources of noise corrupting this fluorescence 
trace were then added. The nonlinearity and noise sources were 
chosen to approximate the variability observed in real data. (b) 
Example ground truth and simulated data using a GCaMP6f model. 
From top to bottom: original ground truth spikes fed into the simulator, 
perturbed spikes, idealized calcium trace, fluorescence trace with 
nonlinearity and noise sources added, fluorescence trace after 
subsampling, deconvolved spikes, and finally original ground truth 
spikes fed into the simulator (shown again for comparison; same as 
top). (c) Estimated nonlinearities for GCaMP6f from ref. 58. (d) 
Example traces generated by the simulator for a train of 10 Hz stimuli, 
with and without nonlinearity applied.    



 

 

 
Extended Data Fig. 3 RADICaL retains high 

latent recovery 
performance in a 
simulation experiment 
that lacks stereotyped 
conditions. 
 

ed_fig3.jpg This analysis was targeted at determining whether RADICaL simply 
‘memorized’ the stereotyped trajectories for a limited number of 
conditions, or whether it could generalize to cases where each trial 
was more unique. To answer this question, we designed a “zero 
condition” simulation experiment, where each trial had its own unique 
Lorenz initial state and there were no repeated trials with the same 
underlying latent trajectories. (a) Example true (top left) and estimated 
Lorenz trajectories by RADICaL (top right), AutoLFADS (bottom left), 
and smth-dec (bottom right). Each trajectory is an individual trial, 
colored by the location of the initial state of the true Lorenz trajectory. 
The initial states of the trials are indicated by the dots in the same 
colors as the trajectories. (b) Performance in estimating the Lorenz Z 
dimension as a function of Lorenz oscillation frequency was quantified 
by variance explained (R2) for all 4 methods. 
 

Extended Data Fig. 4 RADICaL retains high 
latent recovery 
performance at slower 
imaging speeds, but there 
are limits to 
deconvolution with 
slower sampling. 
 

 To understand the extent to which the model performance depends on 
imaging speeds, we simulated data at different sampling rates ranging 
from 2 Hz to 33.3 Hz. (a) Example ground truth spikes, simulated 
fluorescence, and deconvolved signals at different sampling rates. 
Sample times are denoted by gray triangles. Deconvolution 
performance degraded at slower sampling rates, particularly in 
regimes when transients could be missed entirely. In our simulation 
we used a GCaMP6f model with a decay time of 400ms (see 
Methods). At an imaging rate of 2Hz, the majority of transients were 
missed and the estimate of the decay time constant tau was 
inaccurate (916.8 +/- 49.4ms, compared to the ground truth 400ms). 
Because deconvolution performs poorly at these sampling rates (i.e., 
<= 2Hz) with fast indicators, we do not recommend using RADICaL 
under such circumstances. (b) Performance in estimating the Lorenz 
Z dimension as a function of sampling rate was quantified by variance 
explained (R2) for all 3 methods, for Lorenz oscillation frequencies of 
10Hz (top) and 15Hz (bottom). Squares with solid lines denote 
experiments with 278 neurons. Triangles with dashed lines denote 
experiments with 500 neurons. RADICaL retained high performance 
and outperformed AutoLFADS and smth-dec in recovering the latent 
states of a 10 Hz Lorenz system at moderately slow sampling rates (8 
and16 Hz; top). In real experiments, there may be benefits to slower 
sampling, e.g., one can image more neurons using a larger FOV. 
Increasing the number of neurons boosted RADICaL’s performance, 
while AutoLFADS and smth-dec showed negligible improvement 
(bottom). 



 

 

 
Extended Data Fig. 5 Performance of RADICaL 

and AutoLFADS in 
capturing the empirical 
PSTHs on single trials in 
the mouse water grab 
experiments. 
 

ed_fig5.jpg This figure is related to Figure 3d, but compares RADICaL with 
AutoLFADS instead of smth-dec. Correlation coefficient r was 
computed between the inferred single-trial event rates and empirical 
PSTHs. Each point represents an individual neuron. These results 
demonstrate that RADICaL captures the key features of individual 
neurons’ responses from single-trial activity better than AutoLFADS in 
nearly every case. 
 

Extended Data Fig. 6 Single-trial neural 
trajectories for additional 
mouse water grab 
experiments. 
 

ed_fig6.jpg This figure is related to Figure 3e, and shows the remaining datasets. 
Single-trial, log-transformed event rates were projected into a 
subspace computed by applying PCA to the trial-averaged, log-
transformed rates, colored by subgroups. Lift onset times are 
indicated by the dots in the same colors as the trajectories. Gray dots 
indicate 200 ms prior to lift onset time. Top row: single-trial neural 
trajectories derived from RADICaL rates; Bottom row: single-trial 
neural trajectories derived from smth-dec rates. 

 
Extended Data Fig. 7 Hand trajectories for 

additional mouse water 
grab experiments.  

 

ed_fig7.jpg This figure is related to Figure 4a, and shows the remaining datasets. 
True and decoded hand positions for Mouse1/S1 (left) and 
Mouse2/M1 (right). 
 

Extended Data Fig. 8 Prediction of single-trial 
reaction times for 
additional mouse water 
grab experiments. 
 

ed_fig8.jpg This figure is like Figure 4d, for the remaining datasets. Each dot 
represents an individual trial, color-coded by the technique. 
Correlation coefficient r was computed between the true and predicted 
reaction times. Data from Mouse2/M1 (left) and Mouse2/S1 (right). 
 

Extended Data Fig. 9 RADICaL retains high 
decoding performance in 
an FOV-shrinking 
experiment. 
 

ed_fig9.jpg This is an alternative method for evaluating performance with reduced 
neuron counts to the method in Figure 5. (a) The area selected to 
include was gradually shrunk to the center of the FOV to reduce the 
number of neurons included in training RADICaL or AutoLFADS. (b) 
Decoding performance measured using variance explained (R2) as a 
function of the number of neurons used in each technique (top: 
Position; bottom: Velocity). Error bar indicates the s.e.m. across 5 
folds of test trials. Data from Mouse2/M1. 
 

 1 
 2 
Item Present? Filename A brief, numerical description of file contents.  



 

 

This should be the name 
the file is saved as when it 
is uploaded to our system, 
and should include the file 
extension. The extension 
must be .pdf 

i.e.: Supplementary Figures 1-4, Supplementary Discussion, and 
Supplementary Tables 1-4. 

Supplementary Information Yes supplement.pdf Supplementary Figures 1-11 
Reporting Summary Yes NN-

T76578C_reporting_su
mmary.pdf 

 3 
 4 




















	Article File for deposition
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Extended Data Figure 1
	Extended Data Figure 2
	Extended Data Figure 3
	Extended Data Figure 4
	Extended Data Figure 5
	Extended Data Figure 6
	Extended Data Figure 7
	Extended Data Figure 8
	Extended Data Figure 9



