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Abstract— Mental health disorders, such as depression, affect
a large and growing number of populations worldwide, and
they may cause severe emotional, behavioral and physical
health problems if left untreated. As depression affects a
patient’s speech characteristics, recent studies have proposed
to leverage deep-learning-powered speech analysis models for
depression diagnosis, which often require centralized learning
on the collected voice data. However, this centralized training
requiring data to be stored at a server raises the risks of severe
voice data breaches, and people may not be willing to share
their speech data with third parties due to privacy concerns.
To address these issues, in this paper, we demonstrate for the
first time that speech-based depression diagnosis models can be
trained in a privacy-preserving way using federated learning,
which enables collaborative model training while keeping the
private speech data decentralized on clients’ devices. To ensure
the model’s robustness under attacks, we also integrate different
FL defenses into the system, such as norm bounding, differ-
ential privacy, and secure aggregation mechanisms. Extensive
experiments under various FL settings on the DAIC-WOZ
dataset show that our FL model can achieve high performance
without sacrificing much utility compared with centralized-
learning approaches while ensuring users’ speech data privacy.

Clinical Relevance — The experiments were conducted on
publicly available clinical datasets. No humans or animals were

involved.

I. INTRODUCTION

As one of the most common mental illnesses, depression
affects approximately 280 million people worldwide [1], and
it has an enormous impact on the quality of life by not only
affecting emotional well-being but also increasing the risk of
physical health problems. An early diagnosis of depression,
therefore, is essential for prompt treatment to help lessen
depression symptoms and reduce any risk of suicide.

Existing studies [2] show that depressed individuals tend
to have distinguishable speech characteristics, such as lower
speech speed, frequent pauses, and smaller speaking rate,
compared to non-depressed individuals. Thus, such an un-
derlying difference in speech provides an alternative path-
way to detect depression and assess its severity. Thanks
to recent advances in deep learning techniques, speech-
based Automatic Depression Detection (ADD), which relies
on speech analysis learning models to help facilitate the
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early intervention of depression by patients themselves, has
received considerable attention. Existing studies build certain
classifiers or regressors on top of speech characteristics via
centralized training for depression prediction [3]-[5]. While
they provide reasonably good results in certain cases, their
centralized training schemes require a large amount of speech
data along with patients’ diagnosis results to be gathered to
a centralized server during the model development phase.
Inevitably, this will not only raise serious privacy concerns
about data breaches but also imposes limited transparency
and provenance on the system, leading to a lack of trust
from users and unwillingness to share their private speech
data. Thus, a solution that can enable individual patients or
medical facilities with medical records to contribute to the
development of an accurate ADD model while protecting
patients’ privacy is highly desirable.

Towards this goal, we propose a federated framework for
achieving privacy-preserving ADD via speech analysis. To
the best of our knowledge, this is the first attempt to utilize
federated learning (FL) [6] to enable collaborative learning
of a speech-based ADD model across multiple clients while
keeping the training data decentralized. Because private data
is stored locally in FL, the proposed framework can mitigate
many systemic privacy risks presented in the traditional cen-
tralized models. To further achieve robustness against attacks,
we integrate defense mechanisms such as norm bounding,
differential privacy, and secure aggregation rules into our
framework. Evaluation is conducted under different federated
settings on the DAIC-WOZ dataset and the results show that
the proposed framework can reach a decent performance
without sacrificing much utility compared with centralized
models while achieving privacy preservation.

II. RELATED WORK

Depression Diagnosis Using Speech. The characteristics
of speech (e.g., loudness, pitch variation) have long been
recognized as important cues for detecting depression [2]. To
achieve speech-based ADD, various acoustic features have
been explored, such as spectral features, glottis features,
and voice quality features [7]. Early studies of speech-based
ADD often pair up these features with machine learning
classifiers and predict the depression state. Motivated by
the recent prosperity in deep learning, another line of work
propose to replace these traditional classifiers with deep neu-
ron networks (e.g., autoencoder [3], long short-term memory
network [4] and convolutional neural network (CNN) [5]) to
improve detection accuracy. However, speech signals encode
a rich body of privacy-sensitive information, including age,
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Fig. 1. Overview of the proposed approach.

gender, health conditions, and most importantly, biometric
identity. Grounded on a centralized training framework, these
methods require a large volume of speech data to be gathered,
transmitted, and maintained on a central machine, which
inevitably brings concerns on potential privacy breaches.
Federated Learning for Healthcare and Speech Process-
ing. Federated learning (FL) is a training paradigm proposed
to enable collaborative training of a machine learning model
across distributed private datasets. Its strong emphasis on
user privacy has recently attracted much attention in health
research. A recent study by Nicola et al. [8] summarized
several scenarios where FL could be used to provide better
digital health. Sadilek et al. [9] demonstrated the successful
use of FL in clinical research for the first time by comparing
centralized and FL models across several diseases. However,
these studies mainly focus on physical health and medical
image analysis, leaving FL-based mental health analysis
via speech signals still unexplored. Despite its attractive
attributes, to date, there are only a few applications of
FL for speech-related tasks. Gao et al. [10] presented the
first study on Automatic Speech Recognition models under
FL. Granqvist et al. [11] proposed to improve the centrally
trained speaker verification system via FL. Hard et al. [12]
demonstrated the feasibility of on-device FL training of
the keyword-spotting model. Despite their initial success in
applying FL to extract verbal information from speech, no
study has investigated FL speech analysis models for privacy-
preserving automatic depression diagnostics.

ITII. PRIVACY-PRESERVING DEPRESSION
DIAGNOSIS VIA FEDERATED LEARNING

A. Depression Diagnosis Model

As depicted in Fig.1, the proposed model contains the
following components:
Feature Extraction. The Mel Frequency Cepstral Coeffi-
cients (MFCCs) feature is the most commonly used audio
feature in speech-related tasks because of its robustness
in describing the variation of low frequencies signal and
concentration on human perception. We thus derive 13-
dimensional MFCCs using 26 filters in the Mel filter bank,
with a window size of 25ms and a step size of 10ms from
each speech segment. All MFCC coefficients are normalized
to prevent its wide variation from impeding the training.

Classification Model. We design a speech-based ADD
model utilizing convolutional neural network (CNN) to
perform convolutions over the time dimension of mel-
spectrograms for the participants. This special convolutional
structure can help detect depression by extracting higher
level information from the MFCC features. In specific, our
model structure contains 3 convolution layers, consisting of
32, 64, and 128 filters of size 3 x 3. Each convolution layer
is followed by a ReLU activation function. To reduce the
dimensionality of the output feature maps, a max-pooling
layer of size 2 x 2 is succeeded. The output feature is then
fed to 2 fully connected layers with 64 and 32 hidden units,
and both of them are followed by a dropout layer (the dropout
rate is set to 0.1). Each fully connected layer is activated by
the ReLu function. Finally, a neuron with Sigmoid activation
is utilized to predict the binary labels: depressed or non-
depressed. The model is trained on binary cross-entropy loss
using SGD optimizer.

B. Federated Depression Diagnostics

1) FL Training Protocol: At the beginning of the FL
process, the central model is first randomly initialized with
weights wy. After initialization, the central server interacts
with clients at each communication round repeatedly until
the model converges. Specifically, a communication round
at time ¢ € [1,...,T] contains the following steps: (1) The
server selects a subset of clients to participate in the local
training phrase from all N clients with a fixed participate
ratio p; (2) The central model w;_; is shared with the
selected p x N = M clients; (3) The M clients perform one
or several training steps on the received central model using
their local data; (4) All participated clients send back their
model updates to the central server after finishing the local
training; and (5) The central server computes an updated
model with weight w; by an aggregation method based on
the clients’ individual updates w; ;, ¢ € M. Unless mentioned
otherwise, we adopt the most commonly used aggregator
FedAvg [13], which aggregates the clients’ updates according
to: wy = sz\il ﬁwtﬂ».

2) Improving Resilience by Integrating Defenses: Recent
studies have revealed that FL is vulnerable to various types
of adversarial attacks [14]. We also evaluate our FL. model
with the presence of several following defense mechanisms.
Norm Bounding. To mitigate the negative impact of adver-
sarial updates with large norms, we bound each participant’s
influence over the global model by clipping the L2 norm
of the client’s update gradient Aw:; = wy; — we—1,; in
communication round ¢ to a threshold C' before aggregation.
Differential Privacy. Differential Privacy (DP) can provide
a guaranteed upper bound on the amount of information that
can be leaked [11]. We implement the following types of
DP: (1) Local DP: each local client adds Gaussian noise
to its computed local update; (2) Central DP: the central
server adds Gaussian noise to the aggregation result; and (3)
Layerwise DP: Following an existing work from Rachel et.
al [15] which shows that different layers in a deep neural
network have various levels of sensitivity towards noises,
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we inject different levels of Gaussian noise to clients’ local
updates according to the types of layers.

Secure Aggregation. We explore the following secure ag-
gregation rules as a replacement for the conventional FedAvg
aggregator: (1) Median [16]: at each round, the server sorts
the ith parameter from n local updates and takes the median
value as updated ith parameter; (2) Trimmed Mean [16]:
given a trimmed rate -, the server sorts ¢th parameter from
n local updates, removes the smallest and largest yn values
and computes the mean of the remaining (1 — 2y)n as the
updated ith parameter; and (3) Krum [17]: suppose f out of n
local clients are malicious. At each communication round, for
each local update wy, Krum computes the sum of Euclidean
distances between wy, and n— f —2 neighboring local updates
that are closest to wy, as its score. Then the m local model
updates with the smallest scores will be selected and their
average will be computed as the global model update.

IV. EVALUATION
A. Experimental Setting

Dataset. Our experiments are conducted on the Distress
Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ)
dataset [18]. The dataset contains audio recordings of clinical
interviews from 189 participants in English, 56 of which
are from depressed participants and the remaining are from
non-depressed participants, each between 7-33 minutes (16
minutes on average) in length. Each participant is assessed
using the Patient Health Questionnaire-8 (PHQ-8) metrics,
which rates the severity of depression. The task is to classify
the mental state of participants as depressed or not depressed.
Each participant’s audio recording is split into the training set
and the test set, containing 80% and 20% of data respectively.
Each sample is segmented to contain 15s of speech.
Federated Learning Settings. Regarding data partition,
there are mainly two FL scenarios: (1) /ID scenario, where
data are independently and identically distributed across
clients; and (2) Non-IID scenario, where each client holds
data from different distribution patterns. In addition, accord-
ing to the behavior of the participating clients, FL. can be
further categorized as (1) Cross-Silo FL that involves only
a small number of relatively reliable clients, simulating FL
across multiple organizations such as hospitals and research
institutions; and (2) Cross-Device FL that involves a large
number of mobile or edge devices with personal data.

In this work, we conduct experiments in all of the above
scenarios. Specifically, the following 3 concrete settings are
considered in the IID scenario: (1) Cross-Silo-8: 8 clients,
each holding % data that is randomly non-repetitively se-
lected from the training set; (2) Cross-Silo-56: 56 clients,
each holding 5—16 data that is randomly non-repetitively
selected from the training set; and (3) Cross-Device-189:
189 clients, each holding F}sa data that is randomly non-
repetitively selected from the training set. In the Non-IID
scenario, we study the following 3 settings: (1) Cross-Silo-
8: 8 clients, each holding data from 7 depressed participants
and 15 non-depressed participants; (2) Cross-Silo-56: 56
clients, each with data from 1 depressed participants and

TABLE I
COMPARISON WITH DIFFERENT TRAINING SETTINGS.

Scenario Setting Accuracy  Precision Recall F1 Score AUC
Centralized - 0.968 0.937 0.923 0.930 0.918
Cross-Silo-8 0.906 0.860 0.823 0.841 0.865

FL IID Cross-Silo-56 0.887 0.809 0.820 0.814 0.849
Cross-Device-189 0.863 0.755 0.805 0.779 0.835

Cross-Silo-8 0.890 0.855 0.763 0.806 0.764

FL Non-IID Cross-Silo-56 0.879 0.830 0.752 0.789 0.722
Cross-Device-189 0.853 0.761 0.746 0.754 0.713

2 non-depressed participants; and (3) Cross-Device-189: 189
clients, each containing data from 1 participant. The first two
Non-IID settings are set to ensure data balance on each client,
whereas the last Non-IID setting is naturally assigned by the
number of participants in the dataset. The number of clients
in IID setting is to make a fair comparison with non-IID
settings. All of the above settings use a client participation
rate of p = 0.5.

Defense Parameter Selection. (1) Norm Bounding: To
maintain a good utility-robustness balance, the norm bound
C is empirically set to 1.5; (2) Differential Privacy: the level
of noise can be measured by the mean (1) and variance (o)
of Gaussian noise. The Gaussian noise is set to u = 0,0 =
1073 for both Local DP and Central DP. In Layerwise DP,
the noise is set to = 0,0 = 10~ on the convolution layers
and p = 0,0 = 10~* on the fully connected layers; and (3)
Secure Aggregation: in Trimmed Mean, the trimmed rate ~y
is set to 0.1, and we set f = 1—”0 in Krum.

Evaluation Metrics. We evaluate the performance of the
model on the test set using the following five metrics: (1)
Accuracy: the ratio of correctly predicted samples to the
total samples; (2) Precision: the ratio of correctly predicted
positive samples to the total predicted positive samples; (3)
Recall: the ratio of correctly predicted positive samples to
all positive samples; (4) FI score: the harmonic mean of
Precision and Recall; and (5) AUC: the total area underneath
the ROC curve (receiver operating characteristic curve),
measuring the performance of the model at distinguishing
between the positive and negative classes.

B. Depression Diagnosis via Federated Learning

Centralized Learning (Baseline). The first row of Table I
shows the result of our model trained in a centralized manner.
Our model achieves an accuracy, precision, and recall of
96.8%, 93.7% and 92.3%, which are comparable to existing
studies under the centralized training setting [3]-[5].
Federated Learning with IID data. As we can see from Ta-
ble I, under the IID scenario, although the results are slightly
lower than the centralized model due to the decentralization
of the training data, our model can still maintain relatively
high accuracy (>86.3%) across all IID settings. In addition,
we observe that the worst performance occurs in the Cross-
Device-189 setting. It is possible that a larger number of
clients will decrease the quantity of data held by clients,
therefore degrading the accuracy of computed gradients.
Federated Learning with Non-IID data. As shown in
Table I, the performance of models trained in the Non-IID
scenario is decreased compared with centralized model and
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TABLE II
COMPARISON OF DEFENSE MECHANISMS IN A NON-IID SETTING
(CROSS-DEVICE-189).

Defenses Accuracy Precision Recall F1 Score AUC

Norm Bounding 0.852 0.779 0.712 0.744 0.704

Local DP 0.818 0.723 0.640 0.679 0.667

Differential Privacy Central DP 0.840 0.765 0.677 0.718 0.722
Layerwise DP 0.846 0.758 0.715 0.736 0.726

Median 0.857 0.789 0.717 0.751 0.729

Secure Aggregation | Trimmed Mean 0.849 0.784 0.690 0.734 0.693
Krum 0.845 0.774 0.686 0.727 0.686

models under the IID scenario. Such performance degra-
dation is expected as the data heterogeneity across clients
would cause the computed local model updates to drift
towards different directions, resulting in sub-optimal server
updates. Intuitively, a larger number of clients with more
distinct client distribution may make the convergence of
the global model more challenging. Therefore, in our work,
momentum is applied at the server side to help maintain
a more consistent update direction. Compared to the IID
scenario, the model under the Cross-Device-189 setting only
drops by 1.1%, 0.7%, and 7.3% in accuracy, precision, and
recall, respectively. This is due to the fact that the majority
of clients hold data from non-depressed participants in this
setting, which helps the model detect negative samples.
We believe that the performance can be further improved
by constraining the difference between client gradients and
the global gradient or between client and global optimum
values [19] when there are a massive number of clients in
practical deployments.

C. Federated Depression Diagnosis with Defenses

Norm Bounding. As shown in Table II, the model using
norm bounding performs similarly to the model without
defense. The recall and F1 score degraded slightly by 4.5%,
and 1.3%, while the precision improved by 2.3%. These
results show that applying a relatively small norm bound (i.e.,
C=1.5) has a limited impact on the model’s performance.
Differential Privacy. As shown in Table II, among models
with DP defenses, Central DP achieves better performance
compared with Local DP. This result is expected since at each
communication round, Central DP only injects noise to the
aggregation result at the server side, while Local DP injects
noise to every local update, resulting in a more negative
impact on the model’s utility. In addition, the Layerwise DP
can form a more flexible defense mechanism while obtaining
an acceptable utility because of the lower level of injected
noise, whose performance only drops by 0.8%, 0.4%, 4.1%,
2.4% and 1.7% compared with the model without defenses
in these metrics respectively.

Secure Aggregation. From the reported result in Table II, we
can observe that Median has the best performance among the
3 aggregation rules in the given setting. One of the possible
reasons behind this is that Median aggregation can provide
better statistical robustness, making the model robust against
a small fraction of clients with abnormal distribution.

V. CONCLUSION

In this work, we proposed the first privacy-preserving
framework via federated learning for training a speech-based

depression diagnosis model. Compared with conventional
centralized training schemes, the proposed framework can
mitigate systematic privacy risks by enabling collaborative
learning across multiple clients without sharing their private
data. In addition, several defenses were investigated under
the proposed framework to further improve the model’s
robustness. Experiments on the DAIC-WOZ dataset showed
that the proposed FL-based method can ensure the clients’
data privacy without scarifying much performance compared
to the centralized approaches.
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