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and composition of DOM in flowing waters is driven 
largely by soil processes or direct inputs to chan-
nels, but high levels can be found in streams and riv-
ers from the tropics to the poles. Seven central chal-
lenges and opportunities in the study of DOM should 
frame ongoing research. These include maintaining 
or establishing long-term records of changes in con-
centrations and fluxes over time, capitalizing on the 
use of sensors to describe short-term DOM dynamics 
in aquatic systems, integrating the full carbon cycle 
into understanding of watershed and aquatic DOM 
dynamics, understanding the role of DOM in evasion 
of greenhouse gases from inland waters, unraveling 
the enigma of dissolved organic nitrogen, document-
ing gross versus net DOM fluxes, and moving beyond 
an emphasis on functional ecological significance to 
understanding the evolutionary significance of DOM 
in a wide range of environments.
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organic carbon · Dissolved organic nitrogen · 
Watershed · Inland waters · Carbon budget · DOC · 
DON

DOM and its role in inland waters and watersheds

Structure

Dissolved organic matter (DOM) is a heterogeneous 
mixture of organic compounds that is produced by a 

Abstract  Dissolved organic matter (DOM) is a 
heterogeneous mixture of organic compounds that 
is produced through both microbial degradation and 
abiotic leaching of solid phase organic matter, and 
by a wide range of metabolic processes in algae and 
higher plants. DOM is ubiquitous throughout the 
hydrologic cycle and plays an important role in water-
shed management for drinking water supply as well 
as many aspects of aquatic ecology and geochemis-
try. Due to its wide-ranging effects in natural waters 
and analytical challenges, the focal research ques-
tions regarding DOM have varied since the 1920s. 
A standard catchment-scale model has emerged to 
describe the environmental controls on DOM concen-
trations. Modest concentrations of DOM are found 
in atmospheric deposition, large increases occur in 
throughfall and shallow soil flow paths, and variable 
concentrations in surface waters occur largely as a 
result of the extent to which hydrologic flow paths 
encounter deeper mineral soils, wetlands or shallow 
organic-rich riparian soils. Both production and con-
sumption of DOM occur in surface waters but appear 
to frequently balance, resulting in relatively constant 
concentrations with distance downstream in most 
streams and rivers. Across biomes the concentration 
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wide range of biological and physical processes. Ini-
tial assessment of the composition of DOM in surface 
waters was based on bulk analysis of evaporated resi-
dues into fractions such as protein and carbohydrates 
(Birge and Juday 1926, 1934), the analysis of spe-
cific functional groups such as monomeric and poly-
meric carbohydrates using wet chemical approaches 
(Burney and Sieburth 1977), optical properties from 
which structure is inferred (Coble et al. 1990; McK-
night et  al. 2001), and various approaches to mass 
spectrometry such as FT-ICR MS (Stubbins et  al. 
2010) and TIMS-FT-ICR MS/MS (Levya et al. 2020). 
Many different analytical approaches to understand-
ing the structural and compositional characteristics of 
DOM are currently in use (Minor et  al. 2014; Neb-
bioso and Piccolo 2013), but no single method pro-
vides a complete accounting of the molecular struc-
ture of the entire DOM pool. Most characterization of 
DOM focuses on smaller molecules (< 1000 daltons), 
yet ultrafiltration suggests that the total DOM pool is 
dominated by material > 1000 daltons (e.g. Cole et al. 
1984). The composition of dissolved organic matter 
can also be expressed as the elemental content of its 
bulk constituents, in particular the concentrations of 
dissolved organic carbon (DOC), dissolved organic 
nitrogen (DON), and dissolved organic phosphorus 
(DOP). These bulk analyses provide a stoichiometric 
description of the entire pool of DOM, rather than the 
composition of individual compounds or structures. 
The stoichiometry of DOM can vary dramatically 
in response to environmental conditions, with the 
DOC:DON ratio in stream water, for example, nearly 
doubling across watersheds with a wide range of soil 
C:N (Yates et al. 2019).

Assessment of the structure/composition of DOM 
has typically been driven by its potential utility as a 
means of tracking the sources, or quantifying the 
lability, of DOM. One of the earliest classifications 
of DOM structure involved quantifying the humic and 
fulvic acids in surface waters, which provided insights 
into the mechanisms by which DOM enhances pol-
lutant solubility (Chiou et  al. 1986). More recently, 
the physical separation of DOM into hydrophilic and 
hydrophobic fractions has provided insights into the 
transport of DOM through watersheds and its micro-
bial lability (Wickland et al. 2007). Quantification of 
optical properties beyond color (e.g. SUVA254, which 
generally reflects the aromaticity of DOM; Weishaar 
et  al. 2003) has been used to assess sources and 

potential lability of DOM. A wide range of fluores-
cent properties has been used to characterize sources 
and flow paths of DOM through watersheds (Fell-
man et al. 2010) and monitor changes in DOM over 
time (Jaffé et al. 2008). The presence of combustion 
products (e.g. benzenepolycarboxylic acids) in DOC 
has been used to quantify the contribution of “black 
carbon” produced by wildfires to riverine DOC loads 
(Jaffé et  al. 2013; Wagner et  al. 2018). Monitoring 
of specific organic compounds such as geosmin has 
been used to quantify the contributions of organic 
matter to objectionable odors in water supplies (Ridal 
et  al. 1999). In short, an extremely wide range of 
techniques has been used to characterize the naturally 
occurring dissolved organic matter in freshwaters, 
with the analytical approach dictated by the funda-
mental research question being addressed.

Ecological and environmental significance

Dissolved organic matter is found throughout the 
hydrologic cycle, with measurable concentrations in 
precipitation, throughfall, soil solution, groundwa-
ter, surface waters, estuaries and the ocean. Micro-
bial degradation of organic matter such as terrestrial 
foliage, aquatic detritus, or soil organic matter are all 
potentially important sources of the DOM in aquatic 
ecosystems (e.g. Hernes et  al. 2017). Release of 
DOM by autotrophs is also known to occur widely, 
from forest canopies in throughfall (McDowell et al. 
2020), exudation by roots (Chen et  al. 2017), and 
extracellular release by algae (Mueller et  al. 2016). 
Abiotic leaching of solid phase organic matter (leaf 
litter, soil organic matter, aquatic detritus) also occurs 
and can be a significant flux of DOM in aquatic eco-
systems (McDowell and Fisher 1976).

The effects of DOM in aquatic ecosystems have 
been addressed for well over a century, beginning 
with the large and obvious impacts of the dissolved 
and particulate organic matter in raw sewage on river 
oxygen levels (e.g. Mason 2002). These initial con-
cerns associated with sewage treatment are important 
for public health policy but will not be considered in 
detail here. Lakes high in DOM have been classified 
separately since the early 1900s (Hansen 1962) and 
have frequently been termed “dystrophic” in recogni-
tion of the fact that the brown-colored water in these 
lakes profoundly affects lake biology. DOM in lake 
waters alters thermal structure and light penetration, 



Biogeochemistry	

1 3
Vol.: (0123456789)

with implications for lake productivity and habitat 
quality (Rose et al. 2009). The light-absorbing prop-
erties of DOM also result in attenuation of UV-B 
radiation, with important implications for plank-
ton communities (Williamson et  al. 1996). DOM is 
widely known to chelate trace metals, such as cop-
per and aluminum, that may otherwise pose hazards 
to aquatic biota if they remained in their inorganic, 
unchelated form (Driscoll et  al. 1980). Conversely, 
DOM chelation of iron enhances iron uptake by 
cyanobacteria when iron is present at low concentra-
tions, and reduces photosynthesis by algal competi-
tors (Murphy et al. 1976). DOM can serve as both an 
energy and nutrient source for microbial food webs 
(Tanentzap et al. 2017). This dual function of DOM is 
particularly well studied for DON, which responds to 
both N and C additions in streams (Lutz et al. 2012; 
Wymore et  al. 2015). The chemical reactivity of 
DOM, in particular the N-rich fraction measured as 
DON, also plays a dominant role in determining the 
extent to which disinfection byproducts are produced 
upon chlorination of drinking water supplies (Dotson 
et al. 2009).

Research focus in different eras

Over the past century the focal topics and research 
approaches used to understand DOM dynamics 
in inland waters have varied dramatically. Initial 
research largely focused on the yellowish water color 
that is characteristic of many high-DOM lakes, with 
analysis by photometer. Termed “Gelbstoff” (yel-
low matter) in the 1930s, the emphasis in the marine 
science community was on understanding how riv-
erine and open ocean sources contributed to this 
organic matter pool (reviewed by Kalle 1966). With 
the advent of several methods of chemical oxidation, 
emphasis on DOM dynamics shifted from a focus 
on light penetration and dystrophy to organic matter 
dynamics (DOM by dichromate oxidation and titra-
tion; Maciolek 1962). With the seminal publication 
of a method for wet chemical oxidation by persul-
fate (Menzel and Vacarro 1964) that allowed quanti-
fication of DOC, research emphasis shifted more to 
understanding DOC dynamics rather than those of 
DOM. This research emphasis on DOC was accel-
erated by development of various high temperature 
catalytic oxidation techniques, which ultimately 
allowed analysis of both DOC and TDN (Merriam 

et  al. 1994). Large numbers of papers in the 1980s 
and 1990s documented DOC dynamics in various 
aquatic and terrestrial ecosystems as well as the ocean 
(McDowell and Likens 1988; Hansell and Carlson 
1993; Kalbitz et  al. 2000), which has resulted in an 
explosion of interest in DOC across a wide range of 
research communities. In the journal Limnology and 
Oceanography, for example, a virtual special issue 
assembled in 2016 shows that the top 5 most cited 
papers published from 2010–2015 were dominated 
(3 of 5) by those with a significant focus on DOC or 
DOM (Fellman et al. 2010; Stubbins et al. 2010; Wil-
liams et al. 2010). With the advent of remote sensing 
of water color, refinement of optical proxies to infer 
molecular structure and composition (e.g. SUVA254 
and fluorescence excitation-emission spectroscopy), 
and multiple approaches to direct chemical analysis 
of molecular structure such as FT-ICR MS, the DOM 
research community is vast, with echoes of each of 
these earlier eras still present in current research.

Unified model for DOM production and transport 
from mountains to the sea

After decades of study a standard catchment-scale 
model has emerged to describe the environmental 
controls on DOM concentrations as water moves 
through terrestrial ecosystems and across the terres-
trial-aquatic interface into surface waters. Modest 
concentrations of DOM are found in atmospheric 
deposition, large increases occur in throughfall and 
shallow soil flow paths, and concentrations decline 
dramatically with depth in the mineral soil (McDow-
ell and Likens 1988; Qualls and Haines 1991). Vari-
able concentrations in surface waters result from the 
extent to which flow paths encounter deeper mineral 
soils versus organic-rich riparian soils (Fig. 1). This 
unified model has been invoked to explain variability 
between watersheds in the steep, well-drained Hub-
bard Brook Experimental Forest in New Hampshire 
USA (McDowell and Likens 1988), variation in DOC 
concentrations between high- and low-permafrost 
watersheds in Alaska (MacLean et al. 1999), and the 
high DOC that is found in wetland-dominated water-
sheds, which by definition have near-surface flow 
paths (Moore 2003). Recent work in boreal Sweden 
shows that riparian zones can be a major source of 
stream DOC (Fork et  al. 2020), but in many other 
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watersheds stream DOC reflects the concentrations 
found in soil solution of upland mineral horizons 
rather than shallow, organic-rich riparian horizons 
(McDowell 1998; Qualls and Haines 1991). Across 
biomes the concentration and composition of DOM 
in flowing waters is driven largely by soil processes, 
but high concentrations can be found in streams and 
rivers from the tropics to the poles (Aitkenhead and 
McDowell 2000). The composition of DOM in sur-
face waters, as well as its concentration, can also be 
dictated by soil processes. Qualls and Haines (1991) 
showed clear differences in the sorption behavior of 
different fractions of DOM, a conclusion further veri-
fied by Kaiser et al. (2004) and subsequent papers.

Although decades of study support the contention 
of McDowell and Wood (1984) that soil processes 
control stream and river DOM at the landscape scale, 
it is equally clear that both production and removal of 
DOM also occur within the channel itself (Lock and 
Hynes 1976; McDowell and Fisher 1976) through 
some combination of abiotic sorption (McDowell 
1985; Groeneveld et  al. 2020); biotic uptake (Fell-
man et  al. 2009); or photodegradation (Cory et  al. 
2014). Because DOC is relatively constant in concen-
tration with distance downstream in most drainage 
networks beyond the smallest tributaries (e.g. Coble 

et  al. 2019) the rates of in-channel production and 
consumption of DOM thus appear to be in balance, 
or of small magnitude. This results in a fundamen-
tal conundrum: the rates of DOC uptake (as fraction 
removed per time; Vf) for specific organic compounds 
such as acetate are much higher than those that appear 
to be occurring in situ for bulk DOC in stream chan-
nels (Mineau et al. 2016). Thus, one might expect that 
labile inputs of organic matter will have exceedingly 
short half lives in streams, and the remaining DOM 
pool is composed of relatively refractory materials.

Current opportunities and challenges

Long‑term records

Because DOM can alter food webs, thermal structure, 
and other aspects of inland waters, documenting the 
trajectory of DOM over time is essential for under-
standing the ecology of inland waters in a chang-
ing world (Kritzberg et  al. 2020). Various assess-
ments have documented long-term increases in DOC 
in northern hemisphere lakes, running waters and 
remote ponds in response to improved air quality and 
decreased atmospheric deposition of many solutes 

Fig. 1   Unified model of 
DOM flux from mountains 
to the sea. Values for con-
centration are mg/L DOC. 
Created with Biorender.com
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(e.g. Monteith et al. 2007; Hruška et al. 2009; Nelson 
et al. 2021). Recent work also shows that the nitrogen-
rich fraction of DOM (DON) often behaves differ-
ently over time than does DOC (Rodríguez-Cardona 
et  al. 2021). In addition to documenting the “press” 
effects of potential drivers such as temperature, CO2, 
and atmospheric deposition, long-term records are 
also essential for understanding the impacts of signifi-
cant “pulse” events such as wildfires, which for exam-
ple have been shown to reduce stream DOC concen-
trations for up to 10  years in continuous permafrost 
terrain (Parham et al. 2013).

Inclusion of DOC, DON and DOP in biogeochem-
ical analysis of long-term study watersheds is crucial 
to understanding the drivers of change in DOM con-
centrations. Monitoring of stream and river chemistry 
without also understanding the role of watershed pro-
cesses in driving change will limit the ability to gen-
eralize across sites and regions. Broad international 
networks such as the Critical Zone Observatory net-
work or International Long-Term Ecological Research 
network (Brantley et al. 2016; Mirtl et al. 2018) pro-
vide excellent opportunities to link understanding of 
watershed-scale processes to changes in DOC and 
DON, but maintenance of the networks themselves 
is essential. The U.S. experience with Critical Zone 
Observatories, which were originally established as 
long-term sites but were disbanded after little more 
than a decade, speaks to the difficulty in maintaining 
long-term sites that can capture important biogeo-
chemical changes occurring over decades. Without 
such networks, it will be very difficult to understand 

when, where, and why DOC concentrations are 
increasing, and whether the increases will continue 
for decades, will plateau, or will return to some lower 
“baseline” level after reaching peak levels.

Short‑term dynamics: capitalizing on the use of 
sensors in aquatic systems

Optical sensors provide an unparalleled opportu-
nity to expand understanding of controls on DOM in 
inland waters, as DOM concentrations can now be 
followed in rivers through the entire hydrograph at 
the same frequency as discharge. Because the opti-
cal properties of organic matter (absorption or fluo-
rescence) provide only proxies for concentrations of 
DOC, DON and the structural properties of DOM, 
the sensors must be coupled with direct measure-
ments. Directly coupling data from in situ fluorescent 
sensors with full laboratory-based excitation-emis-
sion scans (EEMS) shows that the in situ sensors pro-
vide as good a proxy for DOC and DON as any of the 
commonly proposed optical metrics for DOM, with 
consistently better predictions of in  situ DOC con-
centrations than DON concentrations (Wymore et al. 
2018; Fig. 2). Furthermore, the relationship between 
optical properties and DOC can vary dramatically 
in streams across a region. For example, Wymore 
et al. (2018) found that most streams draining largely 
forested watersheds in New Hampshire had DOC 
concentrations that could be predicted reasonably 
well by fDOM and a variety of other optical param-
eters (33–76% of variance explained). Yet in a single 

Fig. 2   Relationship between (A) dissolved organic carbon 
concentration (DOC, mg/L) and fluorescent organic matter 
(fDOM; quinine sulfate units); (B) dissolved organic nitrogen 

concentration (DON, mg/L) and fluorescent organic matter 
(fDOM; quinine sulfate units). From Wymore et al. (2018)
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stream (Albany Brook), the relationships were dra-
matically stronger (98% of variance explained), and 
fDOM was also a remarkably good predictor of DON 
(93% of variance explained). The differences among 
these streams in optical properties are striking, and 
unrelated to land use. This suggests that relationships 
between optical properties and concentrations of 
DOC and DON are watershed-scale properties with 
as yet uncertain drivers over time and space.

The use of sensors to provide continuous assess-
ments of bioavailable DOM is largely unexplored but 
shows considerable promise (Fellman et  al. 2010). 
In developed catchments with a range of site condi-
tions and organic matter inputs, Knapik et al. (2015) 
showed that microbial degradation of BDOC was 
associated with removal of tryptophan-like material 
from solution. In a large catchment with rural and 
urban areas, Hosen et al. (2014) found that variability 
in BDOC concentrations across sub-catchments could 
be effectively predicted by both SUVA254 and trypto-
phan-like peaks in EEMS. The extent to which these 
results from urbanized watersheds can be applied to 
other systems is unclear. Development of sensors to 
provide continuous assessment of BDOM in real time 
is an important priority, and might be accomplished 
with specific fluorescence pairs, full EEMS in a sen-
sor, or by using the full wavelength scan of UV and 
visible light absorbance that is already available in 
multiple commercial sensors.

Obtaining funding to maintain a sensor network 
can be difficult once the initial period of installation 
and operation is completed, as most ongoing fund-
ing is tied to explicit hypothesis testing in many parts 
of the world. Aquatic sites within the U.S. National 
Ecological Observatory Network (NEON) provide 
the only ongoing research funding for aquatic sensor 
infrastructure in the US. NEON is now beginning to 
provide the data needed to meet the promise of inte-
grating metabolism with coupled measurements of 
dissolved oxygen, nitrate, and fluorescent DOM (e.g., 
Appling and Heffernan 2014; Hensley and Cohen 
2016). Integrating DOM dynamics into a whole-sys-
tem metabolic framework such as provided by NEON 
shows considerable promise in better understanding 
the dynamics of DOM in stream and river channels. 
Because many of the NEON aquatic sites are not co-
located with ongoing watershed studies, however, 
there is still a pressing need to develop aquatic sen-
sor networks embedded in broader watershed-scale 

studies of vegetation, soils, and hydrologic flow paths 
(McDowell 2015).

Integrating DOM into the full C cycle

It is imperative that the research community does 
a better job integrating the full carbon cycle into 
our understanding of watershed and aquatic DOM 
dynamics. The links between vegetation, soils and 
streams are built from coupled biotic and abiotic 
reactions playing out on the lithological template 
in a given watershed. Weathering, for example, is a 
major Earth surface process that shapes global C bal-
ance at the million-year time scale during cycles of 
volcanic uplift (Gaillardet et al. 1999). Respiration by 
roots and their mycorrhizal symbionts is an important 
source of the CO2 in soil air that regulates carbonic 
acid levels at the weathering front. DOC released to 
the rhizosphere thus can play a crucial role in weath-
ering. There is also compelling evidence that organic 
acid production by roots directly facilitates weather-
ing as seen in increased etch pits on primary miner-
als (Landeweert et  al. 2001). Because the net prod-
ucts of the weathering reactions typically include 
large amounts of bicarbonate, measurement of 
links between DOC and DIC can provide important 
insights into C dynamics in a watershed. In perma-
frost terrain of Siberia, for example, riverine fluxes of 
both DOC and DIC show comparable increases with 
discharge during periods of modest flow, but diverge 
at high flow, with much greater DOC than DIC fluxes 
(Fig.  3). In many well-drained watersheds in non-
permafrost terrain, however, DOC concentrations 
typically increase at high flow but DIC shows strong 
dilution (McDowell and Asbury 1994). Because 
direct connections may exist between bicarbonate 
production during weathering and DOC inputs to the 
soil environment, more emphasis should be placed 
on examining the full carbon cycle (DOC, dissolved 
inorganic carbon, particulate organic carbon) in a 
watershed rather than simply the DOM.

Greenhouse gases

An important aspect of fully integrating DOM into 
global biogeochemical cycles is an improved under-
standing of the role of DOM in production of green-
house gases (GHGs; CO2, CH4, and N2O) from 
inland waters, particularly given the increased DOC 
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concentrations reported for many regions. Recent 
assessments show that aquatic ecosystems serve as 
net sources of these important gases to the atmos-
phere (Stanley et al. 2016; Herreid et al. 2020). The 
links between DOC and greenhouse gases are com-
plex and may not be readily apparent when compar-
ing ambient DOC and GHG concentrations (Schade 
et al. 2016). Rapid consumption of labile DOC may 
drive the production of GHGs, but removal of this 
labile DOC from solution may thereby obscure the 
relationships between DOC availability and con-
centrations of GHGs. Likewise, production of CH4 
may be followed by subsequent CH4 consumption, 
and production of N2O may be limited in favor of 
N2 production in highly reduced environments. This 
complex situation is summarized by Stanley et  al. 
(2016), who eloquently argue the need for further 
study of controls on GHG production within aquatic 
systems, rather than simply focusing on the role of 
inland waters as vents for GHGs from the terres-
trial landscape. In their global summary of inland 
water CH4, Stanley et  al. (2016) found that among 
the predictive variables they considered (tempera-
ture, DOC, NH4, NO3, and soluble reactive P), DOC 
is the most informative, even though its predictive 
power is relatively weak (explaining 19% of varia-
tion in CH4 concentration; Fig. 4). A similar global 
summary is not available for drivers of variation 
in N2O concentrations and fluxes in inland waters. 

Such a summary is clearly needed to assess whether 
ongoing increases in DOC are likely to result in 
altered production and evasion of N2O.

The enigma of dissolved organic nitrogen

Dissolved organic matter is most commonly meas-
ured by analysis of its C content, despite the fact that 
it contains nitrogen, phosphorus, and sulfur that may 
be significant in biogeochemical cycles or provide 
important nutrient sources upon mineralization. Anal-
ysis of DOS and DOP has lagged behind that of DON 
(McDowell 2003), for which some broad generali-
zations are starting to emerge. One conclusion from 
recent work is that the stoichiometry of DOM (C/N 
ratio) can vary over decadal time scales at a given site 
(Rodríguez-Cardona et  al. 2021), across a range of 
watershed soil conditions (mirroring soil C/N; Yates 

Fig. 3   Relationship between fluxes of DOC (filled squares) 
and DIC (open squares) in individual grab samples taken 
across the full flow regime from 2005 to 2010 on the Nizhn-
yaya Tunguska River, near Tura, Siberia. From Prokushkin 
et al. (2011)

Fig. 4   Relationship between and CH4 (µmol/L) and DOC 
(mg/L) concentrations in a global compilation of inland waters. 
Modified from Stanley et al. (2016)

Fig. 5   Monthly variation in dissolved organic matter stoichi-
ometry (molar ratio of DOC:DON) in river water over 6 years 
of weekly sampling for three study watersheds in Puerto Rico, 
the urban Río Piedras (RP) and forested Río Mameyes (MPR) 
and Quebrada Sonadora (QS). From McDowell et al. (2019)
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et  al. 2019), and due to introduction of waste mate-
rials such as untreated sewage leaking directly into 
streams from sewer mains (McDowell et  al. 2019; 
Fig. 5). More attention should be given to the role of 
the DON fraction of DOM in overall watershed bio-
geochemistry and nutrient availability to plants and 
microbes (Jilling et  al. 2018). Much less is known 
about drivers of variability in the stoichiometric ratios 
of DOS or DOP in DOM, but the stoichiometry of 
DOM can change in response to environmental driv-
ers. The DOS content of DOM as measured by FT-
ICR MS is higher in Everglades sawgrass sites with 
higher sulfate levels (Poulin et al. 2017), and both the 
N and S content of DOM vary by water source in riv-
ers and springs of Florida (Kurek et al. 2020).

One promising research avenue regarding DON 
is to examine when and where the N-rich fraction of 
DOM serves largely as a source of energy, or source 
of nitrogen, to aquatic microflora. This has been 
addressed by inference (Lutz et al. 2011) and more 
recently by direct experimental manipulations of the 
inorganic N pool in streams (Wymore et al. 2015). 
By adding nitrate to low-N streams, they were able 
to elicit both increases and decreases in DON, with 
nitrate addition generally resulting in increasing 
DON concentrations (Fig.  6). From this observa-
tion, Wymore et  al. (2015) concluded that DON 
is largely serving as a nitrogen source in streams. 
When additional inorganic nitrogen was available, 
the observed increase in DON concentrations sug-
gests that it was used preferentially to DON as a 

nutrient source. Wymore et  al. (2015) also found 
that the role of DON in streams may vary over 
seasonal time frames, serving as an energy source 
under some conditions and nitrogen source under 
others. Further work is needed to assess the broader 
applicability of these observations, and to provide 
independent verification that changes in ambi-
ent DON concentrations during manipulations are 
indeed the result of changes in the net rates of DON 
production and consumption by the microflora.

Documenting gross versus net DOM flux

A central challenge in understanding DOM dynam-
ics is to develop better ways to discriminate between 
gross and net DOM fluxes. Studies of DON have 
benefitted considerably from the use of 15N iso-
topes. For example, bulk DON concentrations were 
unchanged with distance downstream in a tropical 
rain forest stream, suggesting that little production 
or consumption of DON was occurring. Yet tracer 
level additions of 15NH4 revealed that considerable 
DON was being produced in the stream reach (Mer-
riam et  al. 2002), and similar production of DON 
from inorganic N occurred in streams throughout 
North America (Johnson et  al. 2013). Elegant iso-
topic experiments using 13C from labelled leaves to 
track DOM through aquatic ecosystems have been 
conducted by Wiegner et al. (2005). This approach 
shows promise but is highly labor intensive. Use of 
labelled individual organic compounds that can be 
purchased commercially is much more practical, 
yet is hampered by the wide range of compounds 
that might be used and the fact that the ambient 
pool of DOC in streams and rivers is not nearly 
as metabolically active as individual organic com-
pounds (Mineau et al. 2016). The development of a 
more systematic approach to measuring individual 
organic compounds or functional groups in known 
DOC inputs to aquatic ecosystems (e.g., leach-
ing leaves) that can then be labelled may provide 
promise in separating gross and net fluxes of the 
most metabolically active fractions of DOM. Link-
ing microbial activity (e.g. incorporation of tritiated 
thymidine) and metabolomics to whole-ecosystem 
metabolism and DOC fluxes also shows promise 
(Sobczak and Findlay 2002; Yeh et al. 2020).

Fig. 6   The relationship between NO3 and DON concentrations 
when NO3 alone is added to stream water during whole-stream 
manipulations. From Wymore et al. (2015)
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Moving from functional ecological significance to 
evolutionary significance

Dissolved organic matter is ubiquitous, has been stud-
ied in soils and inland waters for almost 100  years, 
and is a fundamental product of life on earth. Despite 
this long history, most of the work on DOC has 
focused on its functional significance (blocking light, 
chelating metals, fueling food webs) rather than the 
evolutionary drivers that have resulted in its ubiquity 
as well as its variability in concentration, composi-
tion, and flux. The fundamental difficulty is one of 
ascribing “purpose” or “meaning” to this variability. 
Organic matter lost to solution could represent either 
an unfortunate but unavoidable loss of a valuable 
resource, or its production could be driven by evolu-
tionary pressures.

Is DOM a waste product or end product? The 
underlying assumption in most areas of DOM 
research appears to be that DOM is a waste product. 
This is perhaps best exemplified by the contention 
that organic matter (e.g., DON) in streams and riv-
ers is a largely refractory form of N that dominates 
in surface waters when more valuable inorganic nitro-
gen is unavailable. It thus represents a “leak” in the 
otherwise efficient N cycle (Hedin et  al. 1995). Yet 
tantalizing clues have been available for decades to 
suggest otherwise; that DOM may in fact be an end 
product of some ecological significance that is thus 
subject to evolutionary pressures. In terrestrial sys-
tems, for example, throughfall has been known since 
the 1970s to have the potential to influence plant 
community structure and competition (e.g., walnut 
trees producing juglone; summarized by McDow-
ell et al. 2020). Root exudates and decomposition of 
plant residues are additional pathways by which this 
sort of allelopathy is expressed (Zhang et  al. 2021). 
Salmon homing and return to natal rivers has been 
known for 50 years (Scholz et al. 1976), with recent 
work suggesting that in the low-nutrient systems 
that existed prior to the industrial era, the return of 
marine derived N and P can provide significant nutri-
ent subsidies to both aquatic and terrestrial ecosys-
tems that produce the DOM that results in a homing 
signal (Hocking and Reynolds 2011). The produc-
tion of DOM during algal photosynthesis has been 
noted since the 1950s (Tolbert and Zill 1956), and its 

ecological significance puzzled over in the decades 
since (Fogg 1983). Recent work on kelp shows that 
on an annual basis, 16% of the carbon fixed during 
photosynthesis is released as DOC, and DOC produc-
tion was higher under ambient low nitrate conditions 
than with nitrate added (Weigel and Pfister 2021). In 
coral reefs of French Polynesia, Wegley Kelly et  al. 
(2022) observed that distinctive sets of individual 
DOM compounds were found in water sampled 
above coral and different algal species. The role of 
this DOM in coral reef ecology is uncertain, but the 
authors emphasize that each primary producer can 
alter both the nutrient stoichiometry and energetic 
content of the DOM in its immediate vicinity. Each of 
these examples suggests that the production of DOC 
may not be a haphazard byproduct of cellular metabo-
lism or decomposition. Understanding the ways in 
which functional and evolutionary significance of 
DOM intersect is thus a major research challenge.
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