
HACCS: Heterogeneity-Aware Clustered Client
Selection for Accelerated Federated Learning

Joel Wolfrath, Nikhil Sreekumar, Dhruv Kumar, Yuanli Wang, and Abhishek Chandra
Department of Computer Science and Engineering

University of Minnesota, Minneapolis, USA
Email: {wolfr046, sreek012, dhruv, wang8662, chandra}@umn.edu

Abstract—Federated Learning is a machine learning paradigm
where a global model is trained in-situ across a large number
of distributed edge devices. While this technique avoids the
cost of transferring data to a central location and achieves a
strong degree of privacy, it presents additional challenges due
to the heterogeneous hardware resources available for training.
Furthermore, data is not independent and identically distributed
(IID) across all edge devices, resulting in statistical heterogeneity
across devices. Due to these constraints, client selection strategies
play an important role for timely convergence during model
training. Existing strategies ensure that each individual device
is included, at least periodically, in the training process. In this
work, we propose HACCS, a Heterogeneity-Aware Clustered
Client Selection system that identifies and exploits the statistical
heterogeneity by representing all distinguishable data distribu-
tions instead of individual devices in the training process. HACCS
is robust to individual device dropout, provided other devices in
the system have similar data distributions. We propose privacy-
preserving methods for estimating these client distributions and
clustering them. We also propose strategies for leveraging these
clusters to make scheduling decisions in a federated learning
system. Our evaluation on real-world datasets suggests that
our framework can provide 18%-38% reduction in time to
convergence compared to the state of the art without any
compromise in accuracy.

Index Terms—Federated Learning, Non-IID data, Clustering,
Scheduling

I. INTRODUCTION

The proliferation of IoT sensors, smart phones, tablets, and
laptops has led to vast amounts of data being generated at the
edge of the network. This data can be utilized to perform
a wide variety of analytics such as SQL-based analytics,
graph analytics and machine learning based analytics. Given
the expense and scarcity associated with transferring data
over the wide area network (WAN), it is often infeasible to
transfer all of this data to a centralized location for analysis
or persistence. Furthermore, transferring this data may have
privacy implications for the user or even the application owner,
due to legal requirements such as the General Data Protection
Regulation (GDPR) [1].

Federated learning (FL) is a technique designed to address
these challenges for machine learning analytics. It performs
model training in-situ across a large number of distributed
devices. In doing so, it utilizes the computational resources
available at each device and avoids the cost and privacy impli-
cations associated with data transfers to a central location. FL
techniques have been successfully applied to many modeling

problems, especially in applications for object detection [2],
search suggestion [3], and healthcare [4]. Models are usually
trained via Federated Averaging (or its variants) [5]. In each
training epoch, a global set of model parameters are pushed to
each participating client and updated using local data. Clients
forward their model updates to a central server, where they
are averaged with the updates received from other devices.

FL has two key challenges: (1) System heterogeneity:
FL is performed on devices which may differ in processing
capacity, network bandwidth, and power. Additionally, devices
can join or leave the network during training. (2) Statistical
heterogeneity: Data residing on participating devices may
have different probability distributions. This violates the well-
known IID assumption in machine learning, which assumes
that all training samples are independent and come from the
same joint probability distribution (identically distributed).

The total number of devices participating in federated
learning can be in the millions [6]. Since it is not possible
for all devices to be available for training simultaneously,
federated learning selects a small subset of these devices
in each training epoch. System heterogeneity and data het-
erogeneity make device selection crucial for timely model
convergence and sufficient model accuracy [7], [8]. Existing
device selection strategies have mostly focus on incorporating
system heterogeneity during training. Statistical heterogeneity
has been considered [9], [10], but only to the degree that
it is captured by the loss function used by model training.
In this work, we propose HACCS, a Heterogeneity-Aware
Clustered Client Selection system which attempts to leverage
the actual data distribution present on the client devices to
mitigate statistical heterogeneity. We propose techniques for
identifying client devices with similar data distributions, while
still providing reasonable guarantees on user privacy. This
involves communicating privacy preserving data summaries to
the central server. The central server can then cluster similar
devices and select clients in a way that ensures representation
from each data distribution rather than ensuring representation
of each device. Ensuring that each unique data distribution is
represented during training, rather than every individual de-
vice, increases robustness during model training in a federated
setting.
Research Contributions. We make the following research
contributions in this work:

• We identify privacy-preserving summaries which can be



used to cluster client devices based on the discernible
differences in their data distributions.

• We develop a scheduling algorithm that focuses on
scheduling clusters rather than individual devices. The
scheduling algorithm attempts to leverage system hetero-
geneity as well.

• We evaluate HACCS, our proposed framework, using
real-world datasets. Our evaluation suggests that HACCS
can provide 18%-38% reduction in model training time
in comparison to the state of the art.

II. BACKGROUND

A. System Model

We consider a two-tier topology comprising multiple client
devices connected to a central server. The client devices
communicate with the central server via the wide area network
(WAN). The data is continuously or periodically generated at
each client device. During training, each participating client
device computes a locally optimal model update and propa-
gates it to the central server. The central server systematically
combines the updates from all the devices to compute a global
update. This global update is then communicated back to the
participating devices to further improve their local models.
This sharing of model updates between central server and
client devices happens over multiple iterations until model
convergence is achieved.

B. Challenges in Federated Learning

Federated learning has two key challenges:
1) System Heterogeneity: In general, variation in system

resources can have a large effect on training performance.
This also occurs in general distributed machine learning en-
vironments, and is not unique to federated learning [11]. For
example, differences in computational capacity and network
connectivity can have a large impact on performance, even
within a single data center. However, the problem is exacer-
bated in a federated environment due to further disparities in
computation, memory, and bandwidth. Additional challenges
are posed due to energy constraints and the possibility of
devices dynamically joining or leaving the system [12]. An-
other factor is the amount of data present on each device;
some devices may have much more data available for training
compared to their peers [9]. These differences highlight the
importance of client selection and workload distribution to
mitigate the straggler effect in federated settings.

2) Statistical Heterogeneity: Machine learning modeling
commonly requires that the input data points are independent
and identically distributed (IID), which may or may not hold
in practice. For example, independence violations may occur
when spatial or temporal dependencies exist in the data [13].
When devices are geographically distributed, they may follow
unique probability distributions depending on their location.
This would also violate the IID assumption. For example,
the distribution of alphanumeric characters that are used on
a mobile phone will vary heavily by geographical region. The
distribution of transportation vehicles and diversity of plant

and animal species will also change based on location. This
kind of skewed data can have a substantial, negative impact on
model training and performance. Furthermore, higher degrees
of skew often correspond to increased degradation in the
system [14].

C. Problem Statement

Our objective is to minimize the training time of a global
federated machine learning model, in the presence of system
and statistical heterogeneity. More specifically, we are required
to train a supervised classification1 model across a set of n
distributed devices, with local training data Zi at device i
defined as:

Zi = {(Xi,1, yi,1), (Xi,2, yi,2), ... , (Xi,mi , yi,mi)} (1)

where Xi is the matrix of input feature vectors and yi is
the associated vector of class labels. We are tasked with
identifying a client selection strategy which minimizes the
time to convergence during model training. The convergence
must be with respect to all devices in the system, not just the
devices selected for training in each epoch, that is, the loss
function must be evaluated over Zi for all i ∈ {1, ... , n}.

III. IMPACT OF STATISTICAL HETEROGENEITY

Statistical heterogeneity in FL implies the local data at
each client may follow a different probability distribution.
Our hypothesis is that aggregating information about the
client data distributions can help improve scheduling decisions
and reduce training time. For example, if the local data on
two client devices, C1 and C2, follow a sufficiently similar
probability distribution, we may choose to perform model
training on only one of the two clients, while still getting
a good representation of the other client’s data distribution in
the training process. If C1 has more computational power, or
better network connectivity than C2, we may prefer to use C1

during most of the training process. Furthermore, if C1 drops
out of the system in the middle of training, we can ensure C2

is included during those epochs, so that their data distribution
is always represented.

To evaluate these hypotheses, we conduct an initial experi-
ment to determine the impact of distribution representation on
training performance using the MNIST dataset [15] and the
LEAF framework [16]. The dataset consists of 28x28 images
of hand-written numbers, labeled from [0-9]. We use the same
convolutional neural network model that is presented in LEAF.
The overall accuracy is the average test accuracy on all devices
across 1000 epochs. We simulated 100 clients and selected 20
of them for each training epoch. We adopt the setting from
Zhao et al. [17] to partition 100 clients into 10 groups. Each
group contains ten clients and is assigned two classes. We
ensure that devices in a group will only have training data
from the two classes assigned to the group (see Table I).
We implement two dropping policies: 1) randomly pre-select
some clients to drop 2) pre-select an entire group of devices

1Our technique is also applicable to supervised regression models, without
loss of generality.



TABLE I: Partition of training data on 100 devices

Device Group No. 0 1 2 3 4
Classes 6,7 1,4 5,9 2,3 0,4

Device Group No. 5 6 7 8 9
Classes 2,5 6,8 0,9 7,8 1,3

to drop. For each policy, we drop 80 out of 100 devices and
measure the trained global model’s accuracy on the local test
dataset of each device. The results are shown in Fig. 1.

(a) Devices are randomly dropped permanently

(b) Drop entire groups of devices permanently

Fig. 1: Dropout experiment with skewed labels

In Fig. 1a there is no drop in accuracy for any group,
since there are always other clients available to represent the
missing labels. We conclude that if some clients from each
group participate in training, the accuracy of the group as a
whole will not be impacted. In Fig. 1b we see that the groups
which have been dropped completely experience a significant
drop in accuracy. The accuracy drop for dropped groups that
have some of their class labels in participating groups is
less than the groups whose class labels are not present in
any of the participating groups. These results show that the
training accuracy depends on capturing all the unique data
distributions rather than all the clients. Based on these insights,
we propose a scheduling framework which attempts to identify
data distributions on devices and ensure representation from
each data distribution during model training.

IV. PROPOSED APPROACH: HACCS

Our proposed framework requires the scheduler to distin-
guish different distributions across clients and identify similar-
ities. At the beginning of training, clients can send a compact
summary of their local data to a central server, where it is
used to identify clients with similar data and make scheduling
decisions. Figure 2 shows an overview of HACCS. In the
beginning, a client joins the system (¶) and sends a summary
of its local data to the central server (·). Once the central
server is ready to begin model training, it compares the client
summaries and clusters them to identify groups with similar

Fig. 2: Our proposed system.

data. These clusters are then used to schedule clients for
training each epoch, e.g. by selecting the fastest devices within
each cluster for training (¸). The selected devices perform
model training and send their updates back to the central server
to generate the next global model via federated averaging (¹).
Given this proposal, we now explore methods for summarizing
distributions (§IV-A and §IV-B), clustering them (§IV-C), and
using the information for scheduling (§IV-D).

A. Identifying Similar Data Distributions

A clustered federated learning system must define and
implement the following components:

1. A function S(Zi) which is run on each client device.
This function takes the local dataset Zi as input and
produces a summary or distribution over the dataset,
which will be sent to the central server.

2. A distance function d(S(Za), S(Zb)) which computes
how different the summaries of Za and Zb are.

The central server is then able to perform clustering of clients
based on the computed pairwise distances. The clustering
quality will depend on the selections of S and d, while the
degree of privacy depends solely on the choice of summary, S .
Our framework proceeds by having each client device compute
S(Zi) and send it to the central server.

The distribution summaries we consider are motivated by
techniques for identifying IID violations. Standard distributed
machine learning models assume that the response variables
yi and the predictor variables Xi at each device are drawn
IID from a shared joint distribution, P (X, y). This joint
distribution can be factored as follows:

P (X, y) = P (y) P (X | y) (2)

Therefore, if P (y) (the marginal distribution of the response
labels) or P (X | y) (the data distribution conditioned on the
response) differs at any device, we have a violation of the IID
assumption. When IID violations occur, it follows that one
of these distributions must differ across one or more devices
[18]. Based on this insight, we propose P (y) and P (X | y)
as distribution summaries for our framework.



Response Distribution. For our first summary, we consider
the distribution of response labels, P (y). For instance, in an
object detection application, this would be the distribution of
labels attached to each image, e.g. ”cat” or ”dog”. We use
a histogram representation of P (y) as our choice for S . To
perform clustering, we need a mechanism for measuring the
distance between these histograms. We define our distance
function d to be the Hellinger distance [19], given by:

H(S(Za), S(Zb)) =
1√
2
‖
√
S(Za)−

√
S(Zb)‖2 (3)

This distance function is useful for measuring the distance
between histograms, since it can tolerate zero entries. It
also produces a nice bounded output over our inputs, more
specifically:

0 ≤ H(S(Za), S(Zb)) ≤ 1 (4)

If ci < ∞ is the number of class labels that exist on a
given device, then the data size required to send this histogram
summary over the network is Θ(ci).
Conditional Data Distribution. For the P (X | y) summary,
we need to use a set of histograms as our choice for S , one for
each unique class label ci. Taking the example of the object
detection application again, this would be the distribution of
pixels associated with each response label. Therefore, the data
size required to send this summary over the network is Θ(cip),
where p is the number of bins in the histogram used to estimate
the local Xi values. For the distance function, we use the
average Hellinger distance between the two sets of histograms.
Clearly, the P (X | y) summaries are more expensive than
the P (y) summaries to send over the network. However, both
summaries have the added benefit of being relatively consistent
over time (assuming data isn’t being generated very rapidly).

Gradients of the loss function or model weights could also
be leveraged as a summary in our framework. The intuition
is that after each epoch, some devices may have gradients
that point in similar directions. However, these patterns may
change rapidly, since gradients change every training epoch.
This requires that summaries be communicated to the central
server frequently and clustering be performed each epoch,
which may not be optimal in practice.

B. Privacy Considerations

Federated learning frameworks ensure the privacy of user
data, to the degree that model updates do not provide informa-
tion about the data distribution [5]. Aggregating summaries of
local data has the potential to weaken these privacy guarantees.
To address this issue, we utilize techniques from differential
privacy to provide stronger guarantees with respect to the
privacy of each user. This allows us to explicitly quantify the
degree to which a user’s privacy is violated by our distribution
summary.

As discussed in section IV-A, we use histograms to repre-
sent distributions in our framework. Since histograms have the
potential to leak information about the client’s data, we need
to apply differential privacy techniques to ensure they meet
the privacy requirements of the application. More formally,

Fig. 3: Example histograms for a client with 1000 training
points for each of 10 labels, using ε = 0.1 and ε = 0.005.

given a tolerable privacy loss ε, our histograms satisfy (ε, 0)-
differential privacy if for each histogram bin, we add a random
noise value λi drawn independently from a Laplace(0, 1/ε)
distribution. This technique is known as the Laplace mecha-
nism [20]. The second parameter for the Laplace distribution
controls the variability, given by:

Var[λi] = 2

(
1

ε

)2

(5)

Therefore, smaller values of the privacy loss ε correspond
to a larger variance in the noise distribution. This increases
the difficulty of identifying the true distribution that was
originally represented by the histogram, as is illustrated in
figure 3. Thus, smaller values of the privacy loss provide
stronger privacy but reduce accuracy of identifying similar
distributions, establishing a fundamental trade-off between
privacy and accuracy. We explore this trade-off in section V.

C. Clustering Mechanisms

There are many different clustering techniques in the liter-
ature which could be used for our proposed data summaries.
For our implementation of HACCS, we use density-based al-
gorithms, such as DBSCAN [21] and OPTICS [22], to identify
similarities between clients. There are some key properties of
these algorithms that make it useful for our application [23],
including:

• The ability to identify clusters of arbitrary shape
• A relatively low number of hyperparameters to specify
• The ability to classify points as noise, rather than forcing

them to be assigned a cluster. This is important, since our
scheduling algorithm assumes a good degree of statistical
similarity between clients in the same cluster.

We selected the OPTICS algorithm for our evaluation, since
it satisfies these properties and has one less hyperparameter
compared to DBSCAN. In practice, the data distribution at
a given client device could change over time. While it seems
unlikely that the distribution could change substantially during
model training, our framework can adapt in real time to shifts
in data distribution. If clients are allowed to asynchronously
send updated data summaries to the central node, new cluster
assignments could be generated while training is in progress.
The same technique can be applied for devices joining the
system during model training, which allows our framework to
adapt to new information in real time.



D. Scheduling Policies

Given a set of client devices and their corresponding cluster
assignments, we are required to schedule a subset of clients
in each epoch during training. Assuming our clusters capture
some of the statistical heterogeneity, our scheduler now must
account for the difference in training loss across the devices, in
addition to any system heterogeneity that exists. We propose
a scheduling algorithm which leverages weighted random
sampling of our identified clusters. We employ a selection
strategy loosely based on the algorithm proposed by Xu et. al.
[24] which systematically selects clients with higher loss and
lower training latency (or time to completion). We adapt this
technique to sample clusters rather than individual devices,
using the average loss and latency in each cluster as inputs.
We define the latency for a given client to be the expected
time required to transfer the model parameters to and from
the client, plus the time required to perform a single epoch.

Once a cluster has been sampled, we then select devices
within a cluster based primarily on their estimated latency,
since the devices within each cluster should have similar data
distributions. Let ACLi be the average loss per client in cluster
i and define τi ∈ [0, 1] be the expected reduction in latency:

τi = 1− Latencyi
Latencymax

(6)

where Latencymax is the maximum latency across all clusters.
Then, we are assigning a sampling weight θi to each cluster,
which is a convex combination of the reduction in latency and
the (normalized) average cluster loss:

θi = ρτi + (1− ρ)
ACLi∑k
j=1 ACLj

(7)

where ρ ∈ [0, 1] specifies the trade-off between loss and
latency optimization. We use these weights for simple random
sampling with replacement (Weighted-SRSWR) to select clus-
ters each training epoch. The probability of selecting a given
cluster increases if the expected reduction in latency is large or
if the average loss in the cluster is large. Figure 4 depicts the
scheduling algorithm at a high level. The full client selection
proposal is outlined in Algorithm 1.

E. Bias Considerations

Our scheduler prefers more performant devices within a
cluster, which has the potential to bias the model by neglecting
stragglers. If we assume the data across devices within a
cluster is IID, then no bias is introduced since model updates
for low latency devices are guaranteed to benefit all devices
in that cluster. However, our summaries only consider part of
the joint distribution and not the full joint (eq. 2). Therefore,
in practice, it is possible for some amount of skew to exist
within a cluster. For example, if we configure HACCS with the
P (X | y) summary, it is still possible for the label distribution,
P (y), to vary across devices within a cluster. This bias could
be mitigated by clustering based on joint distributions. How-
ever, requiring the clients to send these distributions as a data

Fig. 4: Six clients are grouped into 2 clusters based on their
data similarity. If we are allowed to schedule 3 devices, we
sample the set of clusters 3 times and take the lowest latency
device available. This illustrates one possible outcome.

Algorithm 1: Centralized Client Selection
Input: Device summaries S(Zi), Distance function d,

Target number of clients k
Result: Devices for training in the current epoch

/* Computed at the start of training */

distMatrix ← Pairwise differences, d(S(Zi), S(Zj))
clusters ← OPTICS(distMatrix)

/* Computed each epoch */

θi ← Output from eq. 7
sample ← Weighted-SRSWR(k, clusters, θi)
clients ← empty list
for cluster in sample do

bestClient← < min latency client in cluster >
insert(clients, bestClient)
remove(cluster, bestClient)

end
return clients

summary will not scale well in practice. Other FL frameworks
give the user a parameter which can control the preference for
performance (and therefore the amount of bias) [9], [10]. The
analogous parameter in our framework is ρ, which specifies
the preference for low latency vs. bias in the system. Smaller
values of ρ will cause us to assign larger weights to clusters
with high loss. This increases the probability of sampling these
clusters, and therefore increases the probability of including
slow devices in training. We examine these device inclusion
frequencies in section V.

Changes in the system can also help mitigate bias in our
framework, since the ordering of clients in a given cluster can
change during training. For example, re-clustering can occur
when clients join or leave the system (dropout). Furthermore,
the performance of any given client can change over time, e.g.
in the case of mobile phones, a user might move to a Wi-Fi
connection or charge the battery on the device. In these cases,
devices could be reordered within a cluster, since the latencies
have changed. If the relative performance of a device in a



cluster increases, its selection probability will also increase,
since we include the fastest devices first for model training.

F. Implementation

Our implementation of HACCS is built in Python and uses
gRPC [25] for communication between clients and the central
server. When a client is initialized, it connects to the server
and provides some basic information, including a summary
of its local data for scheduling as well as estimates of its
available computational resources. The client can optionally
add noise to its data summary prior to sending, which enforces
any differential privacy requirements for the system.

We use the PySyft [26] framework for the model training
and communication of model weights between the clients
and server. Each training epoch, the central server pushes the
global model parameters to each of the clients scheduled for
training. PySyft communicates these parameters to each client
and computes a model update using the local data of each
client. Once all client updates are received, the server averages
the model updates to produce a new set of global parameters.

V. EVALUATION

We evaluate the performance of HACCS compared to other
techniques in the literature using real-world datasets. We use
the time-to-accuracy (TTA) metric to evaluate performance,
which measures how long it takes to obtain a pre-specified
model accuracy on the selected dataset.

A. Setup

Datasets. We consider two datasets for our evaluation:
• FEMNIST [16]: This dataset is part of the LEAF frame-

work and is an extended version of MNIST [15]. It con-
sists of 28x28 black and white handwritten alphanumeric
characters (lowercase and uppercase).

• CIFAR-10 [27]: This dataset consists of 32x32 color
images used for classification with 10 classes. Example
response labels include cars, airplanes, cats, and dogs.

Testbed. Our experimentation setup considers two 24 core
hyperthreaded Intel Xenon CPU E5-2620 machines with 64GB
RAM each to emulate 25 clients per machine, to get 50 clients
in total2. We train a convolutional neural network based upon
the LeNet architecture [28]. The data distribution per client
consists of a majority label (75%) and three noise labels (12%
/ 7% / 6%) unless otherwise specified. The amount of data
available in each client varies.

To address system heterogeneity, we introduced time-based
delays to simulate differences in computation, bandwidth, and
network latency. For each attribute, we assigned a performance
category: fast, medium, slow, and very slow, with the probabil-
ity of assignment being 60%, 20%, 15%, and 5% respectively.
Table II outlines the differences between each category. Where
there are intervals listed in the table, we randomly generated
a number uniformly over that interval for each client. We

2Since real world client devices may not necessarily have GPUs, we emulate
the client devices using commodity CPU hardware. Nevertheless, we expect
similar results with GPUs.

Attribute Fast Medium Slow Very Slow
Compute No Delay 1.5 - 2.0x

Delay
2.0 - 2.5x
Delay

2.5 - 3.0x
Delay

Bandwidth 75-100
Mbps

50-75
Mbps

25-50
Mbps

1-25
Mbps

NW Latency 20-200 ms 20-200 ms 20-200 ms 20-200 ms

TABLE II: Categories for modeling system heterogeneity.

used these delays and distributions to simulate performance
differences across clients in the system.
Client Selection Strategies. We evaluate the following base-
line and proposed strategies:

• Random Selection: Out of the available clients, we ran-
domly select k clients per epoch for training.

• TiFL: Clients are first grouped into tiers based on their
computational performance [9]. Each epoch, a tier is
randomly selected based on the average loss in each tier
and how often tiers have been sampled in past epochs.

• Oort: Each client is assigned a utility based on the current
loss and the estimated latency [10]. In each epoch, we
recompute the utility of each client available for training
and select k clients with the highest utility.

• HACCS using P (y) : Clients are clustered based on
the marginal distribution of response labels. Clusters and
clients are selected as outlined in §IV-D.

• HACCS using P (X | y) : Clustering is based on data
conditioned on the response labels as discussed in §IV-A.

B. Scheduling Performance

In this experiment, we compare the time-to-accuracy (TTA)
for different client selection strategies. The number of clients
participating in the training process is set to 10 (20% of 50
clients) and the total number of labels available is set to 10
across both CIFAR-10 and FEMNIST3.

Figure 5 shows a smoothed curve for the training time
across both datasets. For CIFAR-10 (Figure 5a), P (y) achieves
the highest accuracy and lowest convergence time followed by
P (X | y), TiFL, Oort and Random. For example, to reach
an accuracy of 50%, both P (y) and P (X | y) take less
than 4300 seconds compared to the 5600 seconds taken by
TiFL and Oort, a 23% improvement. P (y) and P (X | y)
take advantage of the data summaries of response labels and
input features respectively to cluster clients with similar data
distributions. TiFL and Oort eventually obtain comparable
model performance to P (X | y); however, they take more time
to converge in the absence of methods which take advantage
of data heterogeneity.

For FEMNIST (Figure 5b), P (y) achieves higher accuracy
with low convergence time when compared to P (X | y), TiFL,
Oort and Random. P (y) takes 18%, 27%, 40% and 74% less
time than P (X | y), TiFL, Random and Oort respectively to
reach 80% accuracy. All models eventually obtain comparable
accuracy on this dataset. The Oort scheduler ensures that it

3Wherever applicable, we consider only a portion of labels so as to have a
tangible overlap of labels between clients.



always selects the highest utility clients per epoch. However,
it may fail to accommodate all the data distributions during
training, leading to a higher convergence time.

(a) Performance with the CIFAR-10 dataset

(b) Performance with the FEMNIST dataset

Fig. 5: Training convergence performance of different client
selection strategies for CIFAR10 and FEMNIST.

C. Dropout Performance

Federated learning systems can experience a large amount
of volatility during the model training process. For example,
the owners of the client devices may move from one location to
another, resulting in a switch or loss of internet connectivity.
In this section, we investigate the effect of device dropout
across the client selection strategies. To simulate dropout,
we randomly mark 10% of the clients as unavailable at the
beginning of each epoch. At the end of each epoch, we recover
the failed devices and mark them as available for the next
epoch. We seed the random number generators to ensure that
the same set of devices are dropped in each epoch across all the
client selection strategies. We use 20 classes of the FEMNIST
dataset for this experiment, where labels are distributed across
the devices in the same proportion (75% / 12% / 7% / 6%) as
used in the scheduling performance experiments.

Figure 6 depicts the model accuracy over time with device
dropout. P (X | y) achieves higher accuracy and lower training
time, followed by TiFL, P (y) , Random and Oort. To reach
an accuracy of 50%, TiFL, P (y), and Random take 18%, 29%
and 60% extra time as compared to P (X | y). The clustering
of client devices based on data and system heterogeneity
allows P (y) and P (X | y) to replace dropped devices with
next best performing devices in the same cluster if one is

Fig. 6: Performance with 10% dropout on FEMNIST dataset.

available. The availability of more features ensures better
clustering of client devices for P (X | y), causing it to perform
better compared to P (y) . As for TiFL, the dropped devices
can be replaced by devices from the same tier. P (y) and TiFL
have a similar trajectory, so we believe the devices present
in tiers for the experiment had similar data distributions.
However, for the Oort strategy, which takes into account the
loss for client selection, if a client with unique distribution
drops frequently, this can cause oscillation of accuracy values
leading to more time to converge.

D. Sensitivity Analysis

We now evaluate the degree to which our framework’s
performance depends on the various tuning parameters in
HACCS, in addition to the degree of skew in the data dis-
tribution using the CIFAR-10 dataset.

1) Degree of Label Skew: This work proposes techniques
for leveraging skewed data (via clustering) to accelerate model
training. However, the degree of skew can vary substantially in
practice. If the data across federated devices is close to IID, our
clustering could result in one large cluster. We now evaluate
HACCS against data distributions with various degrees of skew
to characterize the worst-case performance. We compare three
levels of skew: the IID case (no skew) with 10 labels per client,
skewed data with 5 randomly selected labels per client, and
highly skewed data, which has one main label per client, plus
a few randomly selected noise labels.

Figure 7 shows the time-to-accuracy for each strategy and
degree of skew. First, we examine the IID case, where data
points across all devices come from the same joint distribution.
More specifically, we ensure that data from each label is
present on every client device. We also ensure that the same
number of training samples exist on each client, which is
unlikely to occur in practice [14], [29]. All of the techniques
outperform the random scheduler, which selects slow clients
unnecessarily. Our P (y) method and the Oort scheduler both
achieve the fastest TTA in this setting. The clustering for
P (y) groups all of the clients into a single cluster, which
allows us to simply select the fastest clients each epoch. Our
P (X | y) scheduler was only better than the random scheduler.
The higher dimensional data summaries used for clustering
caused it to identify a few clusters, even though the data was



Fig. 7: Time to obtain 50% accuracy across various degrees
of skew in the data distribution.

IID. Therefore, some slower devices were selected for training
unnecessarily. Tier selection in TiFL is probabilistic in nature,
so it will not necessarily select the fastest tier each epoch. All
of the experiments with IID data outperform the experiments
using skewed data, which is expected.

We now introduce skew in the data distribution, which
is more representative of a real-world dataset. We randomly
assign 5 labels to each client; each individual label now exists
only on a subset of the clients. This puts more pressure
on the scheduling algorithm to select clients that ensure
representation from each data distribution. In this case, both
of our proposed methods outperform the baseline techniques
(TiFL and Oort). P (y) gives 16% and 35% reduction in
TTA when compared to TiFL and Oort respectively. We
observe that TiFL outperforms the Oort scheduler and both
outperform the random scheduler. In the final experiment, we
increase the skew further to a single label per device, plus
a few noise labels. We observe a similar result to the 5 label
experiment when comparing the schedulers. More specifically,
our proposed approaches outperform the baselines (TiFL and
Oort). P (y) gives 36% and 38% reduction in TTA when
compared to TiFL and Oort respectively. We conclude that
our techniques are most beneficial when the data distribution
is skewed and our P (y) technique is comparable to existing
techniques when the underlying data is IID.

2) Privacy Parameter: As previously discussed, we apply
differential privacy techniques to ensure that our histograms
do not reveal information about the client data. This technique
requires a privacy budget, epsilon (ε), which is specific to
each application. First, we evaluate the impact of epsilon
on our clustering accuracy. Then, we evaluate its impact on
scheduling and training time.

First, we evaluate the impact of privacy loss ε on our
clustering accuracy using the P (y) summary. We use 20 clients
for this experiment, where exactly 2 clients are assigned to
each response label from the CIFAR-10 dataset. This will
ideally generate 10 clusters, each containing two clients. The
clustering accuracy will be based on the number of clusters
we correctly identify. The results are plotted in figure 8a. Each
device has mi data points following a 70% / 10% /10 % /
10% distribution. We vary the amount of data, since the noise

(a) Epsilon values vs Clustering Accuracy for the P (y) sum-
mary. Small values of epsilon (< 0.01) can heavily impact our
ability to identify clusters for all three data sizes.

(b) Impact of the ε parameter on TTA.

Fig. 8: Differential privacy experiments using CIFAR-10

added to each histogram bin will have a larger impact on small
data sizes. For each value of ε, we performed clustering 10
times and averaged the observed accuracy values (all margins
of error for a 95% CI are less than 0.1). We observe that
when there are more than 500 data points on each client, the
clustering accuracy remains very high for ε ≥ 0.05. When
there are only 100 data points per device, we see a much
smoother drop in accuracy across the different values of ε.

Our second experiment evaluates the effect of the privacy
loss ε on the model training performance. Figure 8b shows the
results of this experiment. We observe that ε = 0.1 achieves a
34% reduction in TTA as compared to the random scheduler.
For ε = 0.01 and ε = 0.001, we observe reductions of
23% and 16% respectively. Therefore, increasing the privacy
requirements on the system reduces the effectiveness of our
clustering technique, which is expected. When data summaries
fail to accurately reflect the local data on each client, our
ability to leverage it in scheduling is also reduced.

3) Effect of ρ on Scheduling: We now systematically vary
the ρ parameter to identify its impact on training performance.
This parameter is used to specify the trade-off between latency
and loss when scheduling clusters in each epoch (see Eq. 7,
low values of ρ favor clients with high loss, while high values
of ρ favor clients with low latency). We used the CIFAR-10
dataset for this experiment and the same skewed distribution
of labels used in the performance experiments.



Fig. 9: Effect of the ρ parameter during model training.

Fig. 10: Performance with both label and feature skew.

Figure 9 shows the result of this experiment across multiple
values of ρ. We observe that larger values of ρ are associated
with a faster time to converge to 50% model accuracy. This
suggests that assigning a larger sampling weight to faster
clusters is preferable to assigning a larger weight to clusters
with higher loss. There are a few factors that explain this
relationship. First, our data distributions allowed for 25% of
the data on each client to consist of ”noise” labels. This pro-
vides some diversity in the data distributions of each cluster,
which allows us to learn more than just a single label from
each cluster. Second, even if smaller weights are assigned to
clusters with higher loss, the law of large numbers implies they
should still be sampled occasionally during training (provided
the weights are not extremely small).

4) Feature Skew: This work mostly considers label skew,
which is consistent with the evaluations in related works [9],
[10]. However, since one of our data summaries explicitly
considers feature skew, we include an experiment to briefly
examine its effects. For this experiment, we use a modified
MNIST dataset, where half of the images are randomly se-
lected and rotated 45° prior to training [15]. Similar to previous
experiments, we skew the label distribution and we also ensure
that the major labels all have the same rotation angle (either
0° or 45°). This rotation ensures that features will be skewed,
even when the majority labels match across devices.

Figure 10 shows the accuracy obtained over time for our
methods and the baselines. For a target accuracy of 85%, the

P (X | y) method had the fastest TTA, followed by P (y)
and TiFL, which were both about 4% slower. The decrease
in performance with the P (y) summary is expected, since we
have ensured there will be skew within the identified clusters.
For example, if the P (y) method puts all devices with the
label ”8” in a cluster, there will be some devices that have
rotated images and some without.

5) Scheduling Bias: The ρ parameter controls our prefer-
ence for low latency, at the expense of potentially introducing
bias into the model. Since our summary functions do not
represent the full joint distribution, it is possible for a slow
device to have a unique skew which is not captured elsewhere
in the cluster. To examine these effects, we ran the feature
skew experiment with ρ = 0.01 (i.e. a strong preference
for minimizing loss rather than latency). Table III shows the
fraction of devices in each cluster that were included for
training over 200 epochs. We observe that all clusters included
at least 50% of their devices at some point during training over
200 epochs. Most of the clusters (8/10 for P (y) and 30/31 for
P (X | y)) included 75% or more of their devices at some
point during training.

TABLE III: Device inclusion over 200 epochs

Devices Included 0-50% 50-75% 75-100%
P (y) Clusters 0 2 8

P (X | y) Clusters 0 1 30

Figure 11 takes a deeper look at the difference in accuracy
between the fastest and slowest devices in each cluster. We
observe that for both clustering methods, the difference in
accuracy between the fastest and slowest devices is close to
zero and even negative in some cases. Most of the zero entries
for the P (X | y) summary indicate clusters that only had a
single device as a member. Negative numbers indicate that
the global model actually performed better on the slowest
device rather than the fastest device. We also observe that
the global model sometimes performs worse on the slowest
devices within a cluster (which is more notable with the
clusters using the P (y) summary). This is caused by feature
skew within the identified clusters. One possible way to ensure
stragglers within a cluster are selected more frequently would
be to perform sampling within a cluster, rather than simply
using the current ordering based on latency.

E. Discussion

Both of our proposed methods, P (y) and P (X | y), perform
well compared to the baseline techniques. However, we did not
observe a consistent winner between the P (y) and P (X | y)
method across all the experiments. In practice, we believe the
P (y) summary may be preferable since it is more compact
and it provides less information about the user’s private data.
The P (X | y) summary generates a representation of the
distribution of pixels for each class of images on a device,
which has more privacy and bandwidth implications. While
we proposed and evaluated a scheduling strategy based on



(a) Accuracy difference for P (y) clusters

(b) Accuracy difference for P (X | y) clusters

Fig. 11: Difference in accuracy between fastest and slowest
device in each cluster.

clusters, we believe exploring additional scheduling strategies
will be an important future research direction. Different kinds
of privacy-preserving data summaries could also affect perfor-
mance in HACCS and could be a future topic of research.

VI. RELATED WORK

Distributed ML Systems: Many of the existing general pur-
pose distributed ML systems [30], [31] fall short of adapting
model training in presence of system heterogeneity (compute
and network) to reduce the training time. Although prior work
has addressed compute and network heterogeneity [32]–[35],
it led to trade-offs between training time and model accuracy.
This trade-off is addressed by [11], however it does not
take advantage of the data heterogeneity. Also, these systems
focus on complex machine learning models that require stable
CPU/GPU clusters. However, in case of FL, the heterogeneous
nodes are volatile in nature. Our methods accelerate model
training in this setting by utilizing the heterogeneous nodes.

System and Statistical Heterogeneity: Many systems exist
that attempt to identify and mitigate system heterogeneity
in federated learning [36]–[38]. The FedProx system [36]
attempts to address these issues by dynamically tailoring the
workloads to match the resources available on each client.
For example, devices that are bandwidth constrained or have
limited computational resources are allowed to perform a

smaller amount of work each training epoch. This non-
uniform distribution of work mitigates the straggler effect to
some degree. Other systems attempt to address both system
and statistical heterogeneity simultaneously. The Oort system
dynamically prioritizes devices for scheduling based on their
perceived utility [10]. The utility values are based on the
empirical loss each epoch, where devices with high losses
are given scheduling priority in the system. The TiFL system
first groups clients into tiers based on their system perfor-
mance capabilities and then selects one tier each epoch for
model training [9]. Disparities in accuracy between tiers are
considered when scheduling a specific tier. Both Oort and
TiFL quantify statistical heterogeneity using only the empirical
loss. Our evaluation results show that our proposed framework
outperforms both TiFL and Oort in a variety of scenarios,
especially when the degree of statistical heterogeneity is high.
This is because our system attempts to leverage additional
information about the client data to further mitigate the effects
of statistical heterogeneity.

Clustering: There is a growing literature on clustering
for addressing statistical heterogeneity in federated learning.
Clusters are identified based on the similarity of model updates
or model parameters, which may change every epoch [39],
[40]. In most of these works, separate models are then trained
for each identified cluster as opposed to training a single global
model. This literature is distinct from our approach, since our
problem statement focuses on training a single global model
across all devices and considers additional privacy-preserving
summaries when performing clustering. Other works focus
specifically on training models using stochastic gradient de-
scent (SGD) which could be clustered based on descent
directions for each device [41]. However, these clusters must
be re-evaluated each epoch as the model weights change. In
this work, we suggest some alternative data summaries that
can be used for clustering and are not expected to change as
frequently as data summaries used in the prior work.

Parallel/Distributed systems: Many of the existing paral-
lel/distributed systems [42]–[44] take into account system het-
erogeneity to schedule tasks for improved resource utilization.
In our methods, we also explore the system heterogeneity to
identify the best performing node among each device clusters
created using data heterogeneity factors.

VII. CONCLUSION

Both system and statistical heterogeneity can negatively
impact model training in a federated setting. Efficient client
selection strategies can have a large impact on model train-
ing time by mitigating the straggler effect. We proposed a
novel client selection scheme which leverages skewed data by
clustering devices with similar data distributions. In non-IID
settings, our technique can substantially reduce the required
model training time, up to 38%.

ACKNOWLEDGEMENT

This research was supported in part by the NSF under grant
CNS-1717834.



REFERENCES

[1] C. Tankard, “What the gdpr means for businesses,” Netw. Secur., vol.
2016, pp. 5–8, 2016.

[2] Y. Liu et al., “Fedvision: An online visual object detection platform
powered by federated learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 08, 2020, pp. 13 172–13 179.

[3] T. Yang et al., “Applied federated learning: Improving google keyboard
query suggestions,” CoRR, vol. abs/1812.02903, 2018. [Online].
Available: http://arxiv.org/abs/1812.02903

[4] L. Huang et al., “Patient clustering improves efficiency of federated
machine learning to predict mortality and hospital stay time using dis-
tributed electronic medical records,” Journal of Biomedical Informatics,
vol. 99, p. 103291, 2019.

[5] B. McMahan et al., “Communication-Efficient Learning of Deep Net-
works from Decentralized Data,” in Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics, ser. Proceed-
ings of Machine Learning Research, A. Singh and J. Zhu, Eds., vol. 54.
PMLR, 20–22 Apr 2017, pp. 1273–1282.

[6] K. A. Bonawitz et al., “Towards federated learning at scale: System
design,” in Proceedings of the 2nd SysML Conference, ser. SysML 2019,
2019.

[7] T. Li et al., “Federated learning: Challenges, methods, and future
directions,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60,
2020.

[8] S. K. Lo et al., “A systematic literature review on federated machine
learning: From a software engineering perspective,” ACM Comput. Surv.,
vol. 54, no. 5, May 2021.

[9] Z. Chai et al., “Tifl: A tier-based federated learning system,” in Proceed-
ings of the 29th International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 125–136.

[10] F. Lai et al., “Oort: Efficient federated learning via guided participant
selection,” in 15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21). USENIX Association, Jul. 2021, pp.
19–35.

[11] R. Hong and A. Chandra, “Dlion: Decentralized distributed deep
learning in micro-clouds,” in Proceedings of the 30th International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’21. New York, NY, USA: Association for Computing
Machinery, 2020, p. 227–238.

[12] Y. Zhan, P. Li, and S. Guo, “Experience-driven computational resource
allocation of federated learning by deep reinforcement learning,” in 2020
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2020, pp. 234–243.

[13] T. Darrell, M. Kloft, M. Pontil, G. Rätsch, and E. Rodner, “Ma-
chine learning with interdependent and non-identically distributed data,”
Dagstuhl Reports, vol. 5, p. 18–55, 2015.

[14] K. Hsieh et al., “The non-IID data quagmire of decentralized machine
learning,” in Proceedings of the 37th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp.
4387–4398.

[15] Y. LeCun et al., “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[16] S. Caldas et al., “LEAF: A benchmark for federated
settings,” CoRR, vol. abs/1812.01097, 2018. [Online]. Available:
http://arxiv.org/abs/1812.01097

[17] Y. Zhao et al., “Federated learning with non-iid data,” 2018. [Online].
Available: https://arxiv.org/abs/1806.00582

[18] P. Kairouz et al., Advances and Open Problems in Federated Learning,
2021.

[19] T. Kailath, “The divergence and bhattacharyya distance measures in
signal selection,” IEEE Transactions on Communication Technology,
vol. 15, no. 1, pp. 52–60, 1967.

[20] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Found. Trends Theor. Comput. Sci., vol. 9, no. 3–4, p. 211–407,
Aug. 2014.

[21] M. Ester et al., “A density-based algorithm for discovering clusters
in large spatial databases with noise,” in Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining,
ser. KDD’96. AAAI Press, 1996, p. 226–231.

[22] M. Ankerst et al., “Optics: Ordering points to identify the clustering
structure,” in Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’99. New York,
NY, USA: Association for Computing Machinery, 1999, p. 49–60.

[23] A. Nagpal, A. Jatain, and D. Gaur, “Review based on data clustering
algorithms,” in 2013 IEEE Conference on Information Communication
Technologies, 2013, pp. 298–303.

[24] B. Xu et al., “Online client scheduling for fast federated learning,” IEEE
Wireless Communications Letters, vol. 10, no. 7, pp. 1434–1438, 2021.

[25] C. N. C. Foundation, “gRPC: gRPC Remote Procedure call,”
https://grpc.io/, 2021.

[26] T. Ryffel et al., “A generic framework for privacy preserving deep
learning,” CoRR, vol. abs/1811.04017, 2018. [Online]. Available:
http://arxiv.org/abs/1811.04017

[27] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[28] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[29] J. Luo et al., “Real-world image datasets for federated
learning,” CoRR, vol. abs/1910.11089, 2019. [Online]. Available:
http://arxiv.org/abs/1910.11089

[30] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in 12th {USENIX} symposium on operating systems design and
implementation ({OSDI} 16), 2016, pp. 265–283.

[31] T. Chen et al., “Mxnet: A flexible and efficient machine learn-
ing library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[32] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware distributed
parameter servers,” in Proceedings of the 2017 ACM International
Conference on Management of Data, 2017, pp. 463–478.

[33] Q. Luo et al., “Hop: Heterogeneity-aware decentralized training,” in Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2019, pp.
893–907.

[34] P. Watcharapichat et al., “Ako: Decentralised deep learning with partial
gradient exchange,” in Proceedings of the Seventh ACM Symposium on
Cloud Computing, 2016, pp. 84–97.

[35] K. Hsieh et al., “Gaia: Geo-distributed machine learning approaching
{LAN} speeds,” in 14th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 17), 2017, pp. 629–647.

[36] T. Li et al., “Federated optimization in heterogeneous networks,” in
Proceedings of Machine Learning and Systems, I. Dhillon, D. Papail-
iopoulos, and V. Sze, Eds., vol. 2, 2020, pp. 429–450.

[37] A. M. Abdelmoniem and M. Canini, “Towards mitigating device het-
erogeneity in federated learning via adaptive model quantization,” in
Proceedings of the 1st Workshop on Machine Learning and Systems,
ser. EuroMLSys ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 96–103.

[38] E. Diao, J. Ding, and V. Tarokh, “Hetero{fl}: Computation and
communication efficient federated learning for heterogeneous clients,”
in International Conference on Learning Representations, 2021.
[Online]. Available: https://openreview.net/forum?id=TNkPBBYFkXg

[39] A. Ghosh et al., “An efficient framework for clustered federated
learning,” in Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds.,
vol. 33. Curran Associates, Inc., 2020, pp. 19 586–19 597.

[40] C. Briggs et al., “Federated learning with hierarchical clustering of local
updates to improve training on non-iid data,” in 2020 International Joint
Conference on Neural Networks (IJCNN), 2020, pp. 1–9.

[41] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learning:
Model-agnostic distributed multitask optimization under privacy con-
straints,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 32, no. 8, pp. 3710–3722, 2021.

[42] D. Cheng et al., “Adaptive scheduling of parallel jobs in spark stream-
ing,” in IEEE INFOCOM 2017-IEEE Conference on Computer Commu-
nications. IEEE, 2017, pp. 1–9.

[43] V. S. Marco et al., “Improving spark application throughput via memory
aware task co-location: A mixture of experts approach,” in Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference, 2017, pp. 95–
108.

[44] L. Xu et al., “A heterogeneity-aware task scheduler for spark,” in
2018 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2018, pp. 245–256.


