
Towards WAN-Aware Join Sampling over Geo-Distributed Data
Dhruv Kumar, Joel Wolfrath, Abhishek Chandra

University of Minnesota
Twin Cities, USA

{dhruv,wolfr046,chandra}@umn.edu

Ramesh K. Sitaraman
University of Massachusetts

Amherst, USA
ramesh@cs.umass.edu

ABSTRACT
Large scale data analytics over geographically distributed data
sources is challenging primarily due to the constrained and hetero-
geneous resource availability such as the wide area network (WAN)
bandwidth. In this work, we look at the problem of generating
random samples over joins for geo-distributed data sources. Joins
are one of the most fundamental yet expensive operations in data
analytics. To reduce the cost of computing joins, existing techniques
have looked at efficiently generating a random sample over the join
result for centralized environments, where all the data is available
in one location. These techniques fail to address the unique chal-
lenges posed by geo-distributed environments. To address these
challenges, we propose a sampling technique which aims to reduce
the WAN traffic and latency, thereby reducing the overall latency
for generating samples over joins for geo-distributed data sources.
We implement our geo-distributed sampling technique on top of
Apache Spark and compare it with existing state-of-the-art sam-
pling techniques to identify scenarios where the proposed approach
gives significant benefits. Based on this exploration, we provide
a detailed outline of additional factors which should be consid-
ered when designing a WAN-aware join sampling technique for
geo-distributed environments.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • In-
formation systems→ Data analytics; Join algorithms.

KEYWORDS
Geo-distributed systems, Edge, Cloud, Join sampling
ACM Reference Format:
Dhruv Kumar, Joel Wolfrath, Abhishek Chandra and Ramesh K. Sitara-
man. 2022. Towards WAN-Aware Join Sampling over Geo-Distributed Data.
In 5th International Workshop on Edge Systems, Analytics and Networking
(EdgeSys’22), April 5–8, 2022, RENNES, France. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3517206.3526268

1 INTRODUCTION
Big data analytics has become pervasive in today’s economy and
covers a diverse set of applications such as web analytics, energy
analytics, social media analytics, and IoT analytics. Many of these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EdgeSys’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9253-2/22/04. . . $15.00
https://doi.org/10.1145/3517206.3526268

analytical services utilize data generated from geographically dis-
tributed data sources such as mobile phones, tablets, laptops, IoT
devices and sensors. Collecting this geographically distributed data
and bringing it to one place for analysis is challenging due to net-
work and compute constraints [10, 12, 22] as well as data regulation
laws [25]. For instance, the wide area network (WAN) links which
are utilized for transferring this geo-distributed data have highly
constrained and heterogeneous bandwidth availability. Moreover,
the data transfer over these WAN links is also very costly. Con-
sequently, recent research has proposed geo-distributed analytics
(GDA) where data is analyzed in a geographically distributed man-
ner, taking advantage of the computational resources available
closer to the data sources [6, 7, 10, 13, 18, 22].

In this work, we focus on sampling over relational joins in a
geo-distributed environment. Joins are one of the most fundamen-
tal building blocks of any analytics pipeline. The joined result is
often utilized for a variety of analytical operations such as data ag-
gregation, computing statistics (medians, quantiles, kernel density
estimation) and training of machine learning models (regression,
classification, clustering, etc.). In a geo-distributed setting, join op-
erations may involve joining two or more tables partitioned across
edge nodes1 in multiple geographic locations. Such joins are often
the most compute and network intensive operations. They may
be performed over massive tables and may take a long time (up to
several days) to finish [32]. To reduce the join latency, it may be
preferable to simply compute a random sample of the joined result.
The random sample is often enough for analytical tasks (such as
those mentioned above) where the final result depends on the data
as a whole and not on each individual data point [24, 32].
Limitations of state-of-the-art approaches. Computing a ran-
dom sample over a join is challenging if the goal is to reduce the
latency. A naive solution would be to generate a random sample
after the join has been computed. This will defeat the very pur-
pose for which the sample is required: to avoid the large latency
associated with join computations. The state-of-the-art approaches
[24, 32] for sampling over joins propose techniques for sampling
the individual participating tables without computing the join first
and using the sampled records from individual tables to generate a
random sample of the final join. These approaches focus on central-
ized execution where all the data is located in one place. If these
approaches were applied to geo-distributed environments, they
would require shuffling all the data from various edges to a central
location. This can lead to high data transfer cost and high latency
since the wide area network (WAN) bandwidth is expensive and
scarce (as discussed above). Hence, we need a sampling technique
which reduces the WAN traffic as well as the sampling latency.

There are a number of geo-distributed analytics (GDA) systems
[10, 18, 22] which optimize the WAN traffic, query latency, and
1We define "edges" to include true edges and medium-tier data centers (micro clouds).

https://doi.org/10.1145/3517206.3526268
https://doi.org/10.1145/3517206.3526268

EdgeSys’22, April 5–8, 2022, RENNES, France Dhruv Kumar, Joel Wolfrath, Abhishek Chandra, and Ramesh K. Sitaraman

WAN cost for a variety of analytical tasks, including database joins.
These techniques focus on generating exact results by computing
the complete join over the original tables and hence, are not suitable
for generating a sample of the joined result. Moreover, these GDA
systems distribute the join computation tasks across geo-distributed
edges assuming that the final query result is going to be much less
than the size of the individual tables. This is not always true for join
sampling where the result can be very large in size and transferring
it to the destination site can drastically inflate the latency and
WAN traffic. Therefore, these systems are not suitable for efficiently
generating a sample of the join over geo-distributed data sources.
Research contributions. In this work, we explore the problem of
sampling over joins for geo-distributed datasets.

• We propose a geo-distributed sampling technique which aims
to reduce the WAN cost and WAN latency, thereby reducing the
overall sampling cost and latency. Our proposed approach en-
sures that the generated samples are uniform and independent,
which provides theoretical guarantees over the error introduced
in subsequent applications [32]. Moreover, unlike existing GDA
approaches, our approach does not distribute the join computa-
tions across geo-distributed edges. Instead, it performs all join
computations at the destination location, which leads to an over-
all reduction in the amount of data transferred over the WAN.
• We implement a prototype of the sampling technique on top of
Apache Spark, a popular analytics framework and then evaluate
the proposed technique by varying different data and sampling
parameters which affect the sampling cost and latency.
• Based on our evaluation, we gather insights to identify scenarios
where the proposed technique shows significant benefits as well
as scenarios which require further exploration.
• We conclude with a detailed outline of additional factors which
must be incorporated for designing a WAN-aware join sampling
technique for geo-distributed environments.

2 BACKGROUND AND PRELIMINARIES
System model. We consider a geo-distributed analytics (GDA)
system comprising multiple edges with each edge in a different
geographic location. The edges are connected with each other via
wide area network (WAN) links. Each edge continuously ingests
data from user devices and stores it for future analysis. The analytics
results are required to be made available at one data center (called
the central DC, henceforth).
Batch processing model. Data is analysed in batches as and when
the query arrives. For instance, there can be a periodic query exe-
cuted at the beginning of every day for analyzing the data gathered
in the previous day.
Resource constraints and heterogeneity in GDA. Data transfer
between the edges and DCs takes place via WAN links where band-
width is (1) highly constrained: WAN bandwidth is 1-2 orders of
magnitude lesser than the LAN bandwidth available within a DC
[27], (2) highly heterogeneous: WAN bandwidth can vary substan-
tially between different regions. For instance, there is up to a 20x
difference between the bandwidth availability in two AWS regions
[27], and (3) expensive: Inter-DC data transfer over WAN is more
costly than intra-DC data transfer over LAN. Similarly, compute
resources can also be constrained in edge clusters and vary across

different regions [10]. These resource constraints and heterogeneity
need to be addressed when designing GDA systems.
Target queries.We consider queries joining two or more tables. A
typical join query would have the following SQL:
SELECT c_custkey, o_orderkey, l_linenumber
FROM customer, orders, lineitem
WHERE c_custkey = o_custkey AND l_orderkey = o_orderkey

Metrics. We consider the following metrics:
• Latency: The time taken for the query to finish executing, i.e.
from the time the query arrives at the system to the time the
complete results are available at the central DC. This latency
includes both (1) compute latency: the CPU time incurred in
performing all the computations, and (2) network latency: the
time taken to transfer data across WAN links.
• WAN traffic: The amount of data transferred over the WAN
links during the entire course of query execution.

3 GEO-DISTRIBUTED SAMPLING
3.1 Problem Statement
Let there be 𝑛 tables in a database where 𝑇𝑖 denotes the 𝑖th table.
Let 𝐶𝑖 denote the set of attributes in Table 𝑇𝑖 . Then a multi-way
join query 𝑇1 Z 𝑇2 Z ... 𝑇𝑛 will have 𝐶 = 𝐶1 ∪𝐶2 ∪𝐶𝑛 as the
set of attributes. Such a join query can be denoted as a hypergraph
𝐻 = (𝐶, {𝐶𝑖 , 𝑖 = 1, 2,, 𝑛}) where each vertex corresponds to an
attribute and each hyperedge contains all the attributes in a table.

Let 𝑅 be the set of all the tuples in the final result of a particular
execution of the join query 𝐻 . Each tuple in 𝑅 contains exactly
one value for each attribute in 𝐶 . Given a sample size 𝑠 , random
sampling over joins requires us to sample 𝑠 such tuples with each
tuple being sampled independently with probability 1/|𝑅 |. See Zhao
et al [32] for more details.

3.2 Centralized Sampling Over Joins
Zhao et al [32] and PGMJoins [24] propose join sampling algorithms
to efficiently generate a sample of the join result in a centralized
environment (i.e. where all the data is present in one location).
All of these algorithms have two characteristics: (1) Samples are
generated from each participating table before the join is actually
computed. This avoids the high computational cost required to
compute the complete join. Samples from the join result are then
constructed by joining the individual table samples. (2) Samples
from the join result are independent and selected with uniform
probability (1/|𝑅 | as explained above). We briefly discuss the exact
weights (EW) algorithm from Zhao et al [32] and use it as a basis for
proposed geo-distributed sampling algorithm2. The EW algorithm
for chain joins3 requires the following:
• Introduce a table 𝑇0 having just one single "root" tuple 𝑡0 which
joins with all the tuples in 𝑇1.
• For each 𝑇𝑖 and for each 𝑡 ∈ 𝑇𝑖 , define its weight𝑤 (𝑡) as

𝑤 (𝑡) = |𝑡 Z 𝑇𝑖+1 Z 𝑇𝑖+2 Z ... Z 𝑇𝑛 |. (1)

From the above definition, we get 𝑤 (𝑡0) to be the full join size
and for any 𝑡 ∈ 𝑇𝑛 , 𝑤 (𝑡) = 1. Additionally, we denote 𝑤 (𝑅) =
2Conclusions presented in this work hold true for other sampling algorithms as well.
3It can be easily extended to general acyclic joins and cyclic joins [32].

Towards WAN-Aware Join Sampling over Geo-Distributed Data EdgeSys’22, April 5–8, 2022, RENNES, France

∑
𝑡 ∈𝑅 𝑤 (𝑡) for any set of tuples 𝑅. Moreover, 𝑡 ><𝑇𝑖 denotes the

set of tuples in 𝑇𝑖 which join with tuple 𝑡 . Given these weights,
Algorithm 1 returns a sampled joined tuple after one invocation.
Invoking it 𝑠 times will result in a random sample4 of size 𝑠 .

Algorithm 1, when applied to geo-distributed datasets, requires
shuffling the entire data from all the geo-distributed edges to the
central DC. We call such an approach centralized sampling. This
can lead to huge network latency and data transfer cost since the
WAN network bandwidth is highly constrained, heterogeneous and
expensive as discussed in §2. This is true for all the existing join
sampling algorithms [24, 32]. We therefore require a WAN-aware
approach for sampling which can help reduce the network latency
and data transfer cost in WAN environments.
Algorithm 1: Exact Weights (EW) Algorithm
Input: 𝑇1,𝑇2, ...,𝑇𝑛, 𝑤 (𝑡) for 𝑡0 and for any 𝑡 ∈ 𝑇𝑖 , 𝑖 ∈ [1, 𝑛]
Output: A tuple sampled from 𝑇1 Z ... Z 𝑇𝑛
𝑡 ← 𝑡0
𝑆 ← (𝑡0)
foreach 𝑖 in {1, 2, ..., 𝑛} do

𝑡 ← a random tuple 𝑡 ′ ∈ (𝑡 ><𝑇𝑖) with probability
𝑤 (𝑡 ′)/𝑤 (𝑡 ><𝑇𝑖)

3.3 Geo-Distributed Sampling Over Joins
Our goal is to design a join sampling strategy which takes into
account the following: (1) Each participating table may be parti-
tioned across multiple geo-distributed edges. (2) WAN bandwidth
is constrained and heterogeneous.

We note that Algorithm 1 requires the weight𝑤 (𝑡) for each tuple
in each table for sampling. If every edge has the weights for all the
tuples in each table, then it may be possible to sample in-situ and
just shuffle the sampled data to the central DC. This leads us to the
first question of how to compute and make the weights available to
each edge. Further, Equation 1 tells us that the weights depend only
on the joining attributes in each table. The weights can be computed
if we know the frequency counts of distinct values of the joining
attributes for every table. But in a geo-distributed setting, each table
is partitioned across multiple edges. This leads us to the second
question of how to compute the frequency counts of distinct values of
the joining attributes per table. Finally, once we have the weights
per table, how do we further subdivide these weights to account for
the amount of data at each edge.

One method for computing the sampling weights for the geo-
distributed EW algorithm is to compute frequencies of the distinct
values in the joining columns for each of the local table partitions
at each edge and forward them to the central DC. Once the local
frequencies are received at the central DC, these frequencies can
be aggregated for each table and sampling weights can be com-
puted according to the modified version of Algorithm 1 (i.e. which
computes weights for every distinct value in the joining columns
instead of computing weights for every tuple in the table).
Proposed algorithm. Let A 𝑗 denote the attribute used to join
tables𝑇𝑗 and𝑇𝑗+1 in a chain join. The geo-distributed EW algorithm
proceeds as follows:

(1) Central DC sends {A 𝑗 | 𝑗 ∈ 1 ... 𝑛 − 1} to each of the edges.
4This is sampling with replacement. For sampling without replacement, we can reject
the sample which has been sampled before and invoke Algorithm 1 again.

(2) The edges retrieve/compute value frequencies for each of
the requested attributes using their local tables. Frequencies
are sent to the center.

(3) The center aggregates these frequencies for each join at-
tribute, then uses them to compute𝑤 (𝑡) per table. Note that
𝑤 (𝑡) weights are exactly equal for all tuples 𝑡 with the same
join attribute value.

(4) The center adjusts these weights according to the number of
tuples at each edge. Weights are then sent to the edge, along
with requested sample sizes.

(5) Each edge uses the provided weights to perform Stratified
Random Sampling With Replacement (SRSWR) and sends
the samples to the center.

(6) The center combines the samples on the join attributes to
obtain uniform and independent draws from 𝑅.

The proposed geo-distributed approach allows us to computeweights
for the EW algorithm and generates WAN traffic that is linear in the
number of distinct values in the joining columns at each edge. This
data could be substantially less than the number of tuples at each
edge, which would result in substantial cost savings and latency
reduction. Due to space constraints, we omit the full proof for the
uniformity and independence of the samples. The proof is similar
to the one provided by Zhao et al [32] for centralized sampling,
since we generate the same sampling weights for each tuple.

4 EVALUATION
4.1 Experimental Setup
Implementation. We implement our join sampling strategy in
Apache Spark [30], a highly popular data analytics framework.
Spark provides sampleByKey API [1] for performing stratified sam-
pling with or without replacement. We build on top of this API to
support sampling for geo-distributed table partitions. Our imple-
mentation contains around 300 lines of code in Scala.
Experimental testbed. We run our experiments by deploying
the Apache Spark framework on AWS EC2 instances. We consider
six geo-distributed edges for our experiments: California, Ireland,
Sydney, Mumbai, Tokyo, Ohio. We choose California as the central
DC where the sampled join results are required. We measure WAN
bandwidth between every pair of edges using iperf3 and use it for
measuring the data transfer time between any two edges.
Dataset and Queries. We generate synthetic data tables having a
joining key column and several non-joining columns. We vary the
following parameters to analyze their impact on the query latency
and WAN traffic:
• Records (Tuples) per key (RPK): We vary the number of
records per joining key (attribute) in each table using a uni-
form distribution where the RPK ranges from 1 to 150. In our
experiments, whenever both the tables have uniform RPK dis-
tribution, then any joining key has the same RPK value in both
the tables5. In such cases, the RPK for any key in the joined table
will be a quadratic function (RPK * RPK) of that key’s RPK in the
individual tables.
• Degree of skew in RPK (𝑧): We also generate tables where the
RPK follows Zipf distribution with the Zipf parameter 𝑧 varying

5This also means that we have 100% overlap between the joining keys in both tables.

EdgeSys’22, April 5–8, 2022, RENNES, France Dhruv Kumar, Joel Wolfrath, Abhishek Chandra, and Ramesh K. Sitaraman

from 2.5 to 4.5. Lower values of 𝑧 correspond to a higher degree
of skew. We consider two scenarios: (1) only one of the two
participating tables have skewed RPK distribution and the other
table has uniform RPK distribution (2) both tables have skewed
RPK distribution.
• Ratio of size of non-joining attributes to joining attributes
(NJC): Since our join sampling algorithm shuffles the joining
attributes and non-joining attributes in different communication
rounds, we generate tables with varying ratio of size of non-
joining attributes to joining attributes. For example, if a table
has one joining attribute of size 4 bytes and two non-joining
attributes each of size 16 bytes, NJC would be (16 + 16)/4 = 8.
• Sampling fraction (SF): This is the fraction (%) of the total
number of records in the complete join which should be present
in the sample.

We run queries of the type:
SELECT Key, T1.C_1, T2.C_2, T2.C_3, T2.C_4
FROM Table1 T1, Table2 T2
WHERE T1.Key == T2.Key

Approaches for comparison. We compare two approaches:
• Centralized sampling (CS). This approach transfers all the
table data from all the edges to the central DC and samples using
the centralized EW algorithm (§3.2).
• Geo-distributed sampling (GDS). This is the proposed geo-
distributed sampling approach (§3.3).

Metrics.Wemeasure latency andWAN traffic for all the approaches.
In all figures, the latency (WAN traffic) incurred by GDS is normal-
ized with respect to CS. Hence, lower values are better.

4.2 Results
Variation in SF. Figure 1 shows the variation in latency and WAN
traffic as the sampling fraction (SF) increases. Both tables have
uniform RPK distributions and NJC is set to 20. For a fixed RPK6,
the latency and WAN traffic increases as SF increases. For RPK=15
and SF between 0.5% - 10%, we observe that GDS gives 1.3x - 4.4x and
1.3x - 8.7x reduction over CS in latency andWAN traffic respectively.
If SF increases beyond a certain threshold (20% for RPK = 15), GDS
does not provide any benefit over CS. This is expected since more
samples need to be sent from the geo-distributed edges to the central
DC as SF increases. For very high SF (50%), GDS incurs slightly
higher latency than CS even when its WAN traffic is not higher
than CS. This is because GDS has more computational overhead. In
general, we expect SF to be low (≤ 10%) as part of the query input
in order for sampling to be meaningful. Hence, we expect GDS to
be beneficial in general.
Variation in RPK. Figure 2 shows the variation in latency and
WAN traffic as the average number of records per joining key (RPK)
increases. Both tables have a uniform RPK distribution and NJC is
set to 20. For a fixed SF, the latency and WAN traffic decreases as
the RPK increases, up to a certain threshold. For SF=2% and RPK
between 1 - 12, GDS gives 1.2x - 2.7x and 2.5x - 4.5x reduction over
CS in latency and WAN traffic respectively. Beyond this RPK value
(RPK=15 for SF=2%), the latency and WAN traffic start increasing.
At very high RPK values (RPK ≥ 125 for SF=2%), GDS does not

6In all our experiments, RPK refers to the average RPK in both the tables.

(a) Latency (b) WAN Traffic

Figure 1: Latency and WAN Traffic for varying SF. Each curve
corresponds to a different RPK value.

provide much additional benefit over CS. The initial decrease and
the subsequent increase in normalized latency and WAN traffic is
because WAN traffic for CS increases linearly with the increase
in RPK while WAN traffic for GDS increases non-linearly until
it becomes equal to CS (when all the records for every joining
key are being sent as samples). The WAN traffic for GDS has two
components which also vary in different ways: (1) Traffic for joining
key frequencies (and weights) does not change with RPK. (2) Traffic
for actual samples increases non-linearly with the increase in RPK
because the RPK in the joined table is a quadratic function of the
RPK in the individual tables (as mentioned in §4.1).

(a) Latency (b) WAN Traffic

Figure 2: Latency and WAN Traffic for varying RPK. Each curve
corresponds to a different SF value.

Variation in NJC. Figure 3 shows the variation in latency and
WAN traffic as the ratio of the size of non-joining attributes to the
joining attributes (NJC) increases. Both tables have a uniform RPK
distribution and the expected RPK is set to 15. For SF=2%, GDS
gives 1.3x - 2.7x and 1.4x - 3.7x reduction over CS in latency and
WAN traffic respectively. For a fixed SF, the normalized latency and
WAN traffic decreases with the increase in NJC because GDS sends
only a sample of the distinct values in non-joining attributes but
all the distinct values in the joining attributes. If the non-joining
attributes form a larger portion of the table data, GDS can give
greater reduction in latency and WAN traffic as compared to CS.
Variation in Skew. Figures 4 and 5 show the variation in latency
and WAN traffic as the skew of the RPK distribution decreases. We
consider two scenarios: Figure 4 where both tables have skewed
RPK distributions and Figure 5 where only one table has a skewed
distribution (the other table has a uniform RPK distribution). We
observe that skew in the data does not have much impact on the
latency and WAN traffic. Regardless of the skew, GDS gives signifi-
cant reductions in latency and WAN traffic over CS.

Towards WAN-Aware Join Sampling over Geo-Distributed Data EdgeSys’22, April 5–8, 2022, RENNES, France

(a) Latency (b) WAN Traffic

Figure 3: Latency and WAN Traffic for varying NJC. Each curve
corresponds to a different SF value.

(a) Latency (b) WAN Traffic

Figure 4: Latency and WAN Traffic for varying skew in both
tables (Lower 𝑧 signifies higher skew). Each curve corresponds
to a different SF value.

(a) Latency (b) WAN Traffic

Figure 5: Latency andWAN Traffic for varying skew in one table
(Lower 𝑧 signifies higher skew). Each curve corresponds to a
different SF value.

5 DISCUSSION AND LIMITATIONS
Our evaluation in §4 shows that the performance of the proposed
geo-distributed sampling algorithm depends on a number of pa-
rameters such as sampling fraction (SF), records per key (RPK),
and relative size of joining and non-joining attributes (NJC). First,
we summarize the scenarios where geo-distributed sampling gives
significant benefits over the centralized sampling:
• Low Sampling Fraction
• RPK within a certain range (i.e. not too low or not too high)
• High NJC (i.e. non-joining attributes occupy more space as com-
pared to joining attributes)
• Skewed and uniform RPK distribution
The proposed approach does not give much benefit for high sam-
pling fractions, too low/high RPK, and low NJC because it ends up
shuffling almost all of the data from the geo-distributed edges to
the central DC. We now discuss possible solutions to this problem
and several other key issues which require further research.

Using sketches to reduce WAN traffic and latency. The pro-
posed approach shuffles two types of data over the WAN: (1) The
frequencies and sampling weights associated with the distinct val-
ues in the joining attributes. (2) The actual samples comprising
both joining and non-joining attributes. If we can reduce the data
shuffle of either type, we may be able to improve the performance
of our proposed approach.

One way to reduce the data shuffle could be to use sketches.
Sketching is a widespread technique for generating compact repre-
sentations of data while introducing a theoretically bounded error
when queried. We can use sketching in two ways:

• Frequency sketch: Our proposed approach currently sends
exact key frequencies for each joining attribute, which generates
traffic linear in the number of keys. This could be made sub-
linear by sending a count-min sketch of the key frequencies [3].
However, these sketches will likely cause us to overestimate the
size of the join and therefore send more samples over the network
than required.
• Density sketch: The frequency sketch discussed above does not
reduce the amount of data shuffle associated with non-joining
attributes. Density sketches [4] provide a way to summarize the
data distribution and may be useful in reducing the data shuffle
associated with non-joining attributes. Instead of sending the
actual samples, we can build a density sketch at each edge and
communicate it to the central DC. The central DC can then use
these sketches to sample data from the underlying data distribu-
tion of each table. As in the case with frequency sketches, density
sketches also introduce error.

Exploring the trade-off between sampling error and WAN traffic/la-
tency would be an interesting future work.
Heterogeneity-aware sampling.Although our proposed approach
addresses the issue of constrained resources (WAN bandwidth) in
geo-distributed environment, it does not explicitly address the issue
of resource heterogeneity. For example, the available compute and
bandwidth resources and their associated dollar costs may vary
based on the edge location. Therefore, it may be cheaper/faster to
generate/transfer samples exclusively from a subset of the edges.
Integrating a preference for edges which have cheap and/or abun-
dant resources can be done in ways similar to prior work [18, 22].
However, this also introduces non-uniformity and can introduce
bias in the overall sampled join. This would be another trade-off
worth exploring in a subsequent work.
Exploiting data similarity. It may also be interesting to exploit
data similarity for join sampling. It is possible that some of the
geo-distributed partitions may have similar data distribution [8, 28].
If we can identify and quantify the degree of similarity between
different data partitions [28], wemay exploit it to reduce the amount
of data shuffled over WAN. For instance, if two edges have similar
data distribution, we may just sample from the edge which is cheap
and/or has more bandwidth availability. This can be yet another
direction for future work.
Exploring additional parameters. We also plan to further evalu-
ate the impact of other factors such as the number of distinct values
in the joining attributes, the fraction of overlapping keys between
the joining tables, the number of tables participating in the join
and the number of data partitions or edges.

EdgeSys’22, April 5–8, 2022, RENNES, France Dhruv Kumar, Joel Wolfrath, Abhishek Chandra, and Ramesh K. Sitaraman

Dataset selection. We also plan to evaluate our approach on pop-
ular benchmarks such as the TPC-H and TPC-DS [26].

6 RELATED WORK
Join Sampling. Join sampling (without computing the join first) is
a well-studied problem albeit in centralized environments where all
the tables are located in one place. Olken et al [19] and Chaudhuri
et al [2] first proposed techniques for producing uniform and inde-
pendent samples from joins under different conditions. Zhao et al
[32] generalized these techniques for supporting random sampling
over arbitrary multi-way joins. PGMJoins [24] generate join sam-
ples based on a probabilistic graphical model of the dependencies
between tables. There are other techniques such as Ripple Join [5],
Wander Join [16], and ApproxJoin [23] which also generate join
samples efficiently but don’t ensure random sampling. All of these
techniques require shuffling of entire tables across the WAN and
are not suitable for geo-distributed environments. We build upon
some of these techniques [32] to propose a sampling technique
which works well in geo-distributed environments.
Join optimization. Joins are fundamental building blocks in any
analytics pipeline and have been extensively studied [11, 15, 20, 29].
These optimizations focus on exact join computations in central-
ized environments and are not suitable for join sampling over geo-
distributed data. Techniques such as Track Join [21] and AdaptDB
[17] optimize distributed joins and aim to minimize latency and
the amount of data shuffled over the network but these techniques
also focus on optimizing exact join computations. We focus on a
different goal wherein a sample of the join result suffices.
Geo-Distributed Data Analytics. Systems and algorithms for
geo-distributed analytics exist to help mitigate constrained and
heterogeneous bandwidth and computational resources. These sys-
tems optimize a variety of data analytics tasks such as machine
learning training [7], SQL-based analytics including joins and aggre-
gations [6, 10, 12–14, 18, 22], video analytics [9, 31] for both batch
and streaming workloads. These systems optimize metrics such as
WAN usage, latency, accuracy, cost etc. Among these, the systems
which optimize join computations focus on exact join computations
and their techniques do not provide any assistance over optimizing
join sampling. Additionally, these systems assume that the final
query result is going to be much smaller in size as compared to
the raw tables and hence, distribute the join computations across
multiple geo-distributed sites. This assumption is not true for join
sampling where the sample of the join can be arbitrary large, even
larger than the size of the raw tables. Hence, none of these systems
are suitable for geo-distributed sampling over joins.

7 CONCLUSION
In this work, we proposed a geo-distributed sampling technique
for join over geo-distributed data partitions. We implemented our
proposed technique on top of Apache Spark and evaluated it using
synthetic datasets on AWS. Our evaluation shows that the proposed
technique can give significant benefits over existing centralized
sampling techniques. At the same time, the benefits vary based
on a variety of factors associated with data and query such as the
sampling fraction, number of records per key, skew, relative size
of joining and non-joining attributes. We also discussed a number

of future research directions in order to design a fully WAN-aware
sampling technique for joins over geo-distributed data.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for many constructive
comments and suggestions. This work was sponsored in part by
NSF under Grants CNS-1717834 and CNS-1717179, as well as by
DARPA contract HR001117C0049.

REFERENCES
[1] Apache Spark. Accessed: 2022-02-01. https://github.com/apache/spark/blob/

master/core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala.
[2] Surajit Chaudhuri et al. 1999. On Random Sampling over Joins. ACM SIGMOD

(1999).
[3] Graham Cormode et al. 2005. An Improved Data Stream Summary: The Count-

Min Sketch and Its Applications. J. Algorithms 55, 1 (apr 2005), 58–75.
[4] Aditya Desai et al. 2021. Density Sketches for Sampling and Estimation.

arXiv:2102.12301
[5] Peter J. Haas et al. 1999. Ripple Joins for Online Aggregation. ACM SIGMOD

(1999).
[6] Benjamin Heintz et al. 2015. Optimizing Grouped Aggregation in Geo-Distributed

Streaming Analytics. ACM HPDC (2015).
[7] Rankyung Hong et al. 2021. DLion: Decentralized Distributed Deep Learning in

Micro-Clouds. ACM HPDC (2021).
[8] Kevin Hsieh et al. 2020. The non-iid data quagmire of decentralized machine

learning. In International Conference on Machine Learning. PMLR, 4387–4398.
[9] Chien-Chun Hung et al. 2018. Videoedge: Processing camera streams using

hierarchical clusters. IEEE/ACM SEC (2018).
[10] Chien-Chun Hung et al. 2018. Wide-Area Analytics with Multiple Resources.

EuroSys (2018).
[11] Yannis E Ioannidis. 1996. Query optimization. Comput. Surveys (1996).
[12] Albert Jonathan et al. 2018. Multi-Query Optimization in Wide-Area Streaming

Analytics. ACM SOCC (2018).
[13] Dhruv Kumar et al. 2019. A TTL-Based Approach for Data Aggregation in

Geo-Distributed Streaming Analytics. ACM SIGMETRICS (2019).
[14] Dhruv Kumar et al. 2021. AggNet: Cost-Aware Aggregation Networks for Geo-

distributed Streaming Analytics. IEEE/ACM SEC (2021).
[15] Viktor Leis et al. 2015. How Good Are Query Optimizers, Really? PVLDB (2015).
[16] Feifei Li et al. 2016. Wander Join: Online Aggregation via Random Walks. ACM

SIGMOD (2016).
[17] Yi Lu et al. 2017. AdaptDB: Adaptive Partitioning for Distributed Joins. PVLDB

(2017).
[18] Kwangsung Oh et al. 2020. A Network Cost-aware Geo-distributed Data Analytics

System. IEEE/ACM CCGRID (2020).
[19] Frank Olken et al. 1986. Simple Random Sampling from Relational Databases.

VLDB (1986).
[20] K Ono et al. 1990. Measuring the Complexity of Join Enumeration in Query

Optimization. VLDB (1990).
[21] Orestis Polychroniou et al. 2014. Track Join: Distributed Joins with Minimal

Network Traffic. ACM SIGMOD.
[22] Qifan Pu et al. 2015. Low Latency Geo-Distributed Data Analytics. ACM SIG-

COMM (2015).
[23] Do Le Quoc et al. 2018. ApproxJoin: Approximate Distributed Joins. ACM SOCC

(2018).
[24] Ali Mohammadi Shanghooshabad et al. 2021. PGMJoins: Random Join Sampling

with Graphical Models. ACM SIGMOD (2021).
[25] Supreeth Shastri et al. 2020. Understanding and Benchmarking the Impact of

GDPR on Database Systems. PVLDB (2020).
[26] TPC-H Benchmark. Accessed: 2021-05-26. http://www.tpc.org/tpch/.
[27] Raajay Viswanathan et al. 2016. CLARINET: WAN-Aware Optimization for

Analytics Queries.
[28] JoelWolfrath et al. 2022. HACCS: Heterogeneity-Aware Clustered Client Selection

for Accelerated Federated Learning. IEEE IPDPS (2022).
[29] Sai Wu et al. 2011. Query optimization for massively parallel data processing.

ACM SOCC (2011).
[30] Matei Zaharia et al. 2012. Resilient Distributed Datasets: A Fault-Tolerant Ab-

straction for in-Memory Cluster Computing. USENIX NSDI (2012).
[31] Ben Zhang et al. 2018. AWStream: Adaptive Wide-Area Streaming Analytics.

ACM SIGCOMM (2018).
[32] Zhuoyue Zhao et al. 2018. Random Sampling over Joins Revisited. ACM SIGMOD

(2018).

https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala
https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala
https://arxiv.org/abs/2102.12301
http://www.tpc.org/tpch/

	Abstract
	1 Introduction
	2 Background and Preliminaries
	3 Geo-Distributed Sampling
	3.1 Problem Statement
	3.2 Centralized Sampling Over Joins
	3.3 Geo-Distributed Sampling Over Joins

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Discussion and Limitations
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

