Efficient Transmission and Reconstruction of
Dependent Data Streams via Edge Sampling

Joel Wolfrath and Abhishek Chandra
Department of Computer Science and Engineering
University of Minnesota, Minneapolis, USA
Email: {wolfr046, chandra} @umn.edu

Abstract—Data stream processing is an increasingly important
topic due to the prevalence of smart devices and the demand
for real-time analytics. Geo-distributed streaming systems, where
cloud-based queries utilize data streams from multiple distributed
devices, face challenges since wide-area network (WAN) band-
width is often scarce or expensive. Edge computing allows us
to address these bandwidth costs by utilizing resources close to
the devices, e.g. to perform sampling over the incoming data
streams, which trades downstream query accuracy to reduce the
overall transmission cost. In this paper, we leverage the fact
that correlations between data streams may exist across devices
located in the same geographical region. Using this insight, we
develop a hybrid edge-cloud system which systematically trades
off between sampling at the edge and estimation of missing
values in the cloud to reduce traffic over the WAN. We present
an optimization framework which computes sample sizes at the
edge and systematically bounds the number of samples we can
estimate in the cloud given the strength of the correlation between
streams. Our evaluation with three real-world datasets shows
that compared to existing sampling techniques, our system could
provide comparable error rates over multiple aggregate queries
while reducing WAN traffic by 27-42%.

Index Terms—Stream processing, edge computing, big data,
approximate computing

I. INTRODUCTION

Real-time analytics and data-driven insights continue to play
a pivotal role in online applications and business operations.
Organizations require efficient query mechanisms to handle
increasingly large datasets and the ubiquity of smart devices.
Data streaming applications in particular continue to grow at
an unprecedented rate, with projections suggesting there will
be more than 75 billion connected devices by the year 2025
[1]. This includes personal devices, smart home components,
smart cities, retail environments and industrial settings. This
enormous growth in data generated at the edge has driven
much research into efficient data transfer, given the scarcity
and expense associated with transferring data over the wide-
area network (WAN) [2]-[4]. Recent strides in edge computing
provide a mechanism for addressing these constraints by
leveraging computation close to the data-generating devices,
allowing us to make optimizations and reduce cost. While we
focus on minimizing network traffic, edge resources can ad-
dress many other objectives, including maximizing throughput
or minimizing end-to-end latency.

Approximation techniques are often used to trade down-
stream query accuracy for a reduction in traffic over the

WAN. Sampling at the network edge is commonly used to
reduce transmissions without introducing substantial error in
downstream queries [S]-[7]. Sampling also allows us to bound
the amount of error introduced in many kinds of queries—an
important property for quantifying worst-case performance
in production deployments. When data arrives in the cloud,
additional samples may be imputed or estimated using a
model [8], [9]. These techniques can be effective in practice,
but existing sampling algorithms focus on the properties of
individual streams and models fail to provide performance
guarantees when making inferences out-of-sample.

In this work, we propose a novel sampling algorithm for
addressing WAN scarcity which exploits similarities in data
streams collected by multiple localized devices in a geo-
distributed environment. Prior research suggests that devices
located in the same geographical region may produce data
streams that are correlated or exhibit some kind of dependency
[10]-[12]. These correlations arise naturally if the sensors’
are recording the same phenomenon in a geographic region
(e.g. temperature), or if there is a correlation between different
sensors due to external factors (e.g. human occupancy patterns
in a building or neighborhood). We identify and leverage these
dependencies in real time to improve sampling and modeling
decisions. Identifying these dependencies at the edge allows us
to explicitly control imputation accuracy, since we have access
to all of the data at the edge prior to sampling. We make the
following research contributions:

« We develop a hybrid edge-cloud streaming system which
addresses WAN scarcity by leveraging dependencies be-
tween multiple streams in real time (without any offline
profiling).

« We present a novel sampling algorithm and associated
optimization problem for computing the number of sam-
ples to send over the network and impute in the cloud,
given the dependence structure. We also provide explicit
bounds on the error introduced without making any strong
assumptions about the underlying data distribution.

« We evaluate our system across a variety of real-world
datasets using a Storm-based implementation’ and exam-
ine its efficacy and its sensitivity to a variety of tuning
parameters.

'We use the terms “device” and “sensor” interchangeably in this work.
Zhttps://github.com/jswolfrath/edge-approx.

Queries

E —

D/-ﬂ\
Wide Area

MNetwork
.
L =]
D/’

'~ Cloud

Fig. 1: A geo-distributed streaming system consisting of four
data-generating devices. Data is sent to two local edge nodes
prior to being transferred over the WAN and persisted in the
cloud.

II. PRELIMINARIES

To motivate our problem, we consider applications that
are inherently latency sensitive and potentially bandwidth
constrained. For example, wind turbines and smart trains can
be equipped with IoT devices that generate data and send it to
a centralized location [13], [14]. This data is used to identify
failures in real time, resulting in timely repairs and substantial
cost savings. Furthermore, monitoring the performance output
of wind turbines is important for estimating revenue in real
time [15]. Since trains and wind turbines are often in rural
areas, the available bandwidth will be scarce. Urban settings
can also benefit from bandwidth reduction techniques. Smart
cities can have a very large number of sensors generating data
simultaneously [16], [17], which increases the traffic over the
WAN. These applications highlight the importance of efficient
bandwidth usage in both rural and urban settings.

A. Problem Statement

We consider a three-tiered distributed streaming framework
consisting of data-generating devices, edge nodes for local pro-
cessing of this data, and a destination cloud data center where
the data is finally persisted. In this work, we broadly define
edge nodes to include routers, base stations, or dedicated edge
servers. Figure 1 shows an example of this system topology.
Streaming data typically consists of tuples and an associated
timestamp. The key property is that the stream is unbounded,
which implies the data observed at the edge is transient in
nature. In this work, we assume a tumbling window model,
where data is aggregated and processed as mini-batches across
fixed periods of time. Selecting a windowing method and
aggregation duration is an active area of research which
heavily depends on the application and its tolerance for delay
[18], [19].

When streaming data is persisted in the cloud, it can be
represented in a variety of ways, ranging from storing simple
point estimates (e.g. means or sums) to total reconstructions
of the original streams. In this work, our objective is to persist
samples that minimize error when computing multiple aggre-
gate functions, such as counts, averages, standard deviations,

and order statistics (e.g. minimum, maximum, or median).
These aggregates allow us to preserve properties of the under-
lying data distribution without requiring a full reconstruction
of the streams. The error minimization is subject to a budget
constraint which dictates the amount of data we are allowed to
send over the WAN in each window. Alternatively, the problem
can be viewed as attempting to minimize the data transfer cost,
subject to a specified tolerance for error.

B. Stream Sampling

In general, streaming high-frequency data over the WAN
may be infeasible due to scarcity or high cost. This motivates
sampling schemes at the edge which send a subset of the
data while providing a bound on the error associated with
downstream queries. To ensure a fixed transmission cost, one
could select a simple random sample (SRS) of the data points
observed in a tumbling window and forward those points to
the cloud. However, in practice, an inbound data stream may
be composed of several heterogeneous sub-streams, each with
their own statistical properties [20]. This heterogeneity justifies
the use of more sophisticated sampling techniques at the edge.

When each stream has distinct statistical properties or
observed frequencies, stratified sampling may be preferable
to a SRS [20], [21]. Widely used in practice [5], [22], this
technique has the desirable property of ensuring each stratum
of a partitioned dataset is represented in the sample. Some
systems use stratification methods that leverage properties of
the underlying data. For example, the S-VOILA system strati-
fies samples by assigning more samples to streams with a high
degree of variability and fewer samples to streams with less
variability [23]. These stream sampling techniques provide
a mechanism for streaming applications to trade downstream
query accuracy for a reduction in the amount of data sent over
the network.

C. Imputation Strategies

One way to handling missing values in a dataset is to impute
them, i.e., replace them with some kind of point estimate. It
is common to replace missing values with a statistic (e.g. the
mean) or estimate them using a model (e.g. linear regression)
which is estimated using the available data. When sampling
is performed at the edge, the cloud will necessarily receive
a partial dataset which does not contain samples for every
point in time. We propose a careful use of these imputation
techniques to estimate a subset of the missing values while
controlling for error. We leverage the fact that statistics or
models used for imputation can be estimated at the edge,
where more data is available to us as compared to the cloud,
which can only work with the downsampled data.

III. PROPOSED APPROACH

A. Overview

We propose an edge-cloud framework for data streaming
that combines edge-side sampling with cloud-based imputation
of missing data values. We leverage edge resources to sample

St

Fig. 2: Proposed edge-cloud streaming framework.

multiple incoming data streams and estimate dependencies be-
tween them. The edge also performs optimization to determine
which samples and models to send over the network. The
cloud uses these samples and models to impute missing data
values. This framework uses the insight that streams produced
by individual devices in the same geographical region may be
correlated [10]-[12].

For example, this is expected when devices in the same
sensor network generate streaming data [24], [25]. Mazhar et
al. show that smart-home IoT traffic is often directly correlated
with human activity patterns [11]. Even devices in a smart
city that measure different quantities could produce correlated
streams [10], [24], [26]. The real-world datasets we use for
evaluation also substantiate this claim (see section V for de-
tails). Identifying these dependencies provides an opportunity
for exploiting them for efficient data transfer.

To illustrate the opportunity, consider two data generating
devices, D; and D3, which are located in the same geograph-
ical region and forward their data to a single edge node. The
local edge node caches the inbound streaming data for the
duration of the tumbling window and then selects a subset
of the received data to be forwarded to the cloud. Existing
sampling techniques follow this same approach and allow us to
bound the amount of error introduced for aggregation queries
in each window [5].

Now, suppose that the data streams generated by D; and
Dy, represented by random variables X; and X,, exhibit
strong linear correlation over time. This is expected, for
example, if the devices are in close proximity and capturing
temperature data. We can leverage this dependency by generat-
ing a compact representation of E[X|X3] (or X5 given X7) at
the edge and instruct the cloud to impute values based on this
model. If the correlation is sufficiently strong, the edge may
choose to exclusively forward samples from D, along with
a compact representation of E[X;|X5]. The cloud can then
use the model to generate samples from D; without incurring
any cost for transferring them (see Figure 2). This technique
has the potential to reduce the network traffic required to
obtain error rates comparable to other sampling mechanisms,
provided we can determine how many samples to send and
impute each window.

B. Optimization Problem

Our optimization framework allocates real samples to device
streams (to forward to the cloud) and computes the number
of samples to impute for each device to minimize the error
introduced for aggregate queries. Table I outlines the notation
used throughout this section with respect to a single tumbling

window. We assume that the streams produce real-valued data;
however, we make no strong assumptions about the data dis-
tribution of each device. We also assume that samples drawn
from each device are independent and identically distributed
within a single stream window (we relax this assumption in
section IV). Then for each stream ¢, we seek the optimal
number of real and imputed samples (n,.; and n ;), in addition
to identifying a highly correlated stream to use as a predictor
(p;). We can then build a model for the expected value of X;
given X, which allows us to impute data from stream ¢ given
observations from stream p;. We also include an upper bound
on the number of values we should impute, given the quality
of the model. Our full optimization problem is outlined in
equation 1. We motivate and provide intuition for the objective
and constraints in the following sections.

TABLE I: Notation

k Number of streams available for sampling

X; A random variable following the probability distribution
from stream 1%

N; The number of tuples that arrive from stream 7

Nr s Number of real samples allocated to stream %

Ns.i Number of imputed samples allocated to stream %

Di An index associated with stream 7 corresponding to a
predictor stream which correlates with stream

i The mean of stream ¢

Uf The variance of stream ¢

w; Weights identifying a stream’s importance

c;i(n,m) | Cost to forward n samples and impute m samples for
stream 4 (must be a convex function of n,m)

C Upper bound on the traffic cost

€; Bound on the reduction in variance introduced by impu-
tation for stream %

k
. 2 ~

Ny ;mrllglv p lez Var[,uz} (la)
s.t. pi € {1,2,....k} — {i} (1b)
OS U7 S NZ (1C)
0 S Ns g S Npi (1d)
Ny +mss) >1 (le)

k
Zci(nr,ia ns,i) S C (lf)

i=1

| Bias(67) | < ¢ (1g)

1) Objective Function: We seek to minimize error when
estimating aggregate queries, subject to a bound on the traffic
cost. Our problem statement requires us to minimize the
error associated with many aggregate functions. However,
the sampling distributions for certain aggregates (e.g. order
statistics) depend on the data distribution itself, which we do
not assume is known. Our proposal is to directly minimize
the error associated with an AVG query while simultaneously
controlling for the amount of bias introduced in our estimates
for other aggregates. Minimizing the error for the mean
necessarily reduces the error for many other aggregates. Errors
for order statistics and percentiles are inversely proportional

to the number of samples, so increasing the effective sample
size through accurate imputation necessarily reduces errors
for these queries [27]. Therefore, minimizing a weighted3 sum
of the squared errors for an AVG query across all the streams
results in the objective:

k
Zw Varju] =3 @)

Note that this formulation does not require us to make any
strong assumptions about the distribution of each stream.

2) Constraints: For each stream i, the variable p; is as-
signed the index of a different stream, which will be used as a
candidate for prediction (constraint 1b). We require that each
stream have an associated predictor stream, i.e. no predictor
can be null. If the predictor stream correlates poorly with the
target stream, constraint 1g will prevent us from performing
imputation. This formulation only allows for a single stream
to be used as a predictor; we discuss the possibility of using
multiple predictors in section V-G.

Constraints 1c and 1d provide upper bounds on the number
of real and imputed samples. We can’t send more real samples
than we observed at the edge and we can’t impute more than
the number of real samples taken from the predictor stream.

Constraint le ensures that we have at least one sample from
each stream, regardless of if it is real or imputed. This is
required for constraint 1g to be defined (see equation 5).

Constraint 1f requires that the number of real samples and
compact models forwarded across all streams stays within
our bound on WAN traffic. This constraint could be swapped
with the objective function to produce a related optimization
problem where we directly minimize network traffic subject
to a constraint on the accuracy.

Our final constraint (1g) simultaneously addresses two re-
lated modeling concerns:

1) Underestimating the variance. Our models estimate the
expected value of a target stream given a predictor stream.
Therefore, each time we impute a value we are implicitly
reducing the variability of the target stream sample and bi-
asing the result of a VAR or MAX query. If the streams are
not sufficiently correlated, we could severely underestimate
the variability in the target stream.

2) Model quality. If we construct a poor model for the ex-
pected value, our imputed values will not be representative
of the target stream. Therefore, we require a mechanism
for controlling model quality.

To address both concerns, consider the following variance
decomposition formula:

Var[X;] = E[Var[X;|X,,]] + Var[E[X;|X,,]] (3)

3In our implementation, we set the weights to be inversely proportional
to the expected value of each stream, thereby allowing us to minimize the
coefficient of variation. This is a common approach which prevents us from
disproportionately assigning samples to streams with high variance if the
variance relative to the mean is low [28].

The Var[E[X;|X,,]] term captures the variance in X that
is explained by our model for the expected value. Since

ar[E[X;]| X,,]] < o2, we introduce a constraint that allows the
user to dictate how large of a reduction in variance they can
tolerate. This is achieved by computing an expression for the
bias introduced by our imputation and bounding it above by
a constant (¢;). The expected reduction in variance associated
with imputing n,; values rather than sending them is equal
to the bias of our variance estimator (67), given by:

Ny — &2, + (ng; — 1 &gi
Bias(6?) = E (i = Dors (i = 1)0%, G
Ny + Nsys — 1
(ns; — 1) Var[E[X;| X,]] — ns.i02

= F— 5)

Ny + Ns,i — 1

Using this formula, we can readily compute how much we
expect the variance to decrease given n,; and n ;. In practice,
the bias will heavily depend on the type of imputation being
performed. If we simply replace missing values with a point
estimate for the mean, then Var[E[X;|X,,]] is exactly zero.
Model-based imputation techniques will almost always explain
a positive amount of the variance.

3) Optimization at the Edge: Our optimization problem has
a non-linear objective function and integer-valued variables,
making it a non-linear integer program, which is compu-
tationally NP-hard to solve in general. Our system solves
this problem at the edge after each aggregation window;
therefore, computational efficiency is important. To simplify
the problem, we propose treating p as a constant, i.e., we treat
the optimal selection of stream predictors as a sub-problem,
which we solve prior to solving the optimization problem. We
propose a heuristic in section IV-A for obtaining a solution
to this sub-problem efficiently, which leads to the following
result.
Theorem. The problem in equation 1 is a convex optimization
problem when p is treated as a constant and the integer
constraints are relaxed on the objective variables.

Proof. Concatenate n, and n, to form a single vector n =
(ny,ns) € R%. To simplify notation for the Hessian, for
1 €1 k, we define the non-negative variables 1);

2w?0? /(n; + niyx). Then the non-zero Hessian entries are:

P; 1<i¢<kandj=1

2f Vi
8nj8ni B ’Lpi

k<i<2kand j=1

/\

<kand j=1i+k

Y, k<i<2kandj=i—k

For arbitrary z € R?*, we have:

k k
(V)2 =YY 22(V2f(n)i

i=1 j=1

K K
=D ilE +) + Y 2Wizizien

i=1 i=1

k
=> iz + zipx)? =0
i—1

Therefore, the Hessian is positive semi-definite and the objec-
tive function is convex. Given the properties of our constraints
and the fact that R2% is a convex set, the problem is a convex
optimization problem [29].

This convexity result gives us some assurance that the opti-
mization problem can be solved efficiently, which is important
given the heterogeneous compute resources available at the
edge. Our sampling algorithm at the edge proceeds according
to the flow outlined in Algorithm 1.

Algorithm 1: Stream Sampling Algorithm

Input Window Duration, ¢; Cost bound, C,
Variation Reduction Bounds, ¢;
Output: Samples and models to send to the cloud

Start Timer for ¢ seconds
while Aggregation timer is running do
| Insert inbound samples into cache
end
Estimate o2
Use heuristic to select predictors for each stream
Solve optimization problem in eq. 1 for n,; and n, ;
Forward samples and compact models to cloud

I'V. PRACTICAL HEURISTICS

There are some barriers to directly applying our optimiza-
tion framework in real-world environments. We now discuss
some of those issues and how to handle them in practice.

A. Predictor Selection

Our optimization problem can be solved efficiently if we
treat the predictor indexes as constants. If we wanted a globally
optimal solution, it would require considering O(k!) possible
permutations for the predictors. We use a polynomial-time
heuristic that can be used to obtain a set of predictors more
efficiently. For a given stream X;, we simply select, as a
predictor, the stream which correlates the highest with X,
which requires O(k?) comparisons. This does not necessarily
yield the globally optimal solution; it may be better to choose a
slightly sub-optimal predictor for a given stream to reduce the
total number of overall predictors, which allows us to send real
samples for a small number of predictor streams. We evaluate
the accuracy of this heuristic and its impact on latency in
sections V-B and V-E.

B. Modeling and Dependence Estimation

There are many different kinds of predictive models that
could be used to impute values from a stream. We assume that
the model estimates the expected value E[X;|X,,,] and can be
represented compactly. An appropriate model will also depend
on the measure of dependence used by the implementation:

1) If we use the Pearson correlation coefficient as our measure
of dependence, a simple linear model will suffice for
estimating the expected value.

2) If we use the Spearman correlation as our measure of
dependence, a natural model choice could be polynomial
regression. Modeling the response stream based on a 3
degree polynomial provides compactness and the flexibility
to fit a variety of monotonic functions.

Our framework allows for arbitrarily complex models, but our
evaluation shows empirically that these simple models can
provide substantial benefit in practice. Furthermore, increasing
model complexity will increase traffic over the WAN to send
model parameters, require more computation at the edge for
dependence estimation and model fitting, and increase model
inscrutability. Therefore, simple models are preferable in our
proposed system.

C. Bounding the Bias

The €; constants form upper bounds on the amount of
bias we are willing to tolerate in our variance estimates
for each stream. While our estimator for the variance is
necessarily biased after imputation, that does not imply that,
on average, it deviates substantially from the true variance.
One method for computing €; would be to use a percentage
of the observed variance in the stream. For example, we could
specify o = 0.05 and set ¢; = ao? which allows us to bias the
variance estimate up to 5% of the observed variance. To avoid
the problem of selecting « for each application, we consider a
heuristic based on how much uncertainty is in our estimate of
o? at the edge. In practice, we actually compute two estimators
for the variance in our framework: one at the edge and one in
the cloud. Since this edge estimate is necessarily an imperfect
representation of what was observed on the device, we can
compute the variance of the edge estimator as follows [30]:

. 1 N; —3
Varlo?] = - (s - =30t ©

where p4 is the fourth central moment of X;. We consider
selecting €; = \/Var[67], which requires the bias to fall within
one standard error of the unbiased estimate. The intuition is
that we allow the amount of bias in the cloud estimator to
scale with the amount of uncertainty in our edge estimator; if
we have a precise estimate of the variance at the edge, we will
force the optimization framework to avoid substantially biasing
the estimate computed in the cloud. Similarly, if our estimate
at the edge is noisy, we will allow more bias to be introduced
in the downstream estimate. We explore the implications of
different selection strategies in our evaluation.

D. Independence Assumption

Our framework assumes the independence of samples ob-
tained from each stream in a given window. We believe this as-
sumption is sometimes justified in practice, since measurement
noise may dominate changes in the signal during a sufficiently
small time interval. However, this is an unreasonable expecta-
tion for most time-series applications. In practice, a thinning
technique [31] could be used to address this dependence,
which is a common method used for obtaining independent
samples from a Markov chain.

We could also weaken the independence assumption to
allow for m-dependence, where data points that are more than
m lags apart are assumed to be independent [32]. This allows
us to add an error term to our objective function which is
proportional to the strength of the dependence:

m
Var[/]i] = 0'2»2 + 2 Z COV[J?I'J, .131‘,1_5_]‘] @)
j=1
The number of additional terms in this sum is linear in m
(and a constant with respect to our optimization objective).
Therefore, the convexity of our problem is unaffected.

V. EVALUATION
A. Experimental Setup

1) Testbed and Methodology: We simulate an edge de-
vice using a local machine equipped with an Intel i7-7500U
processor and constrained to have 1 GB of RAM. Inbound
streams are constructed by reading data from files in fixed
size windows. At the end of each window, we call into an
optimization module which solves for the real and imputed
sample counts. To test the end-to-end system, we stream this
data over the WAN using Amazon Kinesis [33]. Our t2-
medium EC2 instance in the cloud runs Apache Storm [34],
which consumes and processes data from Kinesis.

2) Datasets: We consider three real-world datasets for our
evaluation: the Home dataset, the Turbine dataset, and the
Smart City dataset. The Home dataset contains temperature
measurements taken from three homes in Massachusetts [35].
The Turbine dataset consists of sensor traces collected from
wind turbines in France [36]. These sensors collect various
measurements, including temperatures, power, wind speed,
rotor speed, among other things. The Smart City dataset
contains measurements across a diverse set of devices located
in Aarhus, Denmark [16]. We aggregated data from several
different devices, including:

o Weather sensors, which measure a variety of quantities
including temperature and humidity.

« Pollution sensors, which capture the amount of a chemical
compound in the air.

« Parking lot sensors, which measure the current capacity of

a specific lot.

« Traffic sensors, which report counts of cars that travel past

a specific location.

We prefer the smart city dataset for examining sensitivity, since
it is noisy and representative of a real-world scenario.

3) System Comparisons: We consider the following stream-
ing systems in our evaluation:

o ApproxloT: A stream-sampling system which performs a
variant of stratified sampling at the edge [5]

e S-VOILA: A stream-sampling system which allocates sam-
ple sizes based on the observed variability in each
stream [23]

e Mean: Our proposed system with edge sampling and cloud-
side imputation using the mean

e Model: Our proposed system with edge sampling and cloud-
side imputation using a compact model

For each sampling technique, we systematically vary the
amount of data we can send to the cloud and report the
error rates for each data size. Unless otherwise specified, our
proposed method defaults to using the Spearman correlation
as our dependence measure and a cubic representation of
the conditional expectation. By default, we set the €¢; bounds
equal to one standard error of the edge variance estimate, as
discussed in section IV-C.

4) Queries and Metrics: We use a variety of aggregate
queries to evaluate our framework, including AVG, VAR, MIN,
and MAX. As an example, a query for the average value in a
window for each device can be written as:

SELECT AVG (response),
FROM Response_Table
WHERE win_id = current_window
GROUP BY dev_id;

dev_id, win_id

If we have temperature data, these queries could be used to
obtain the average or max temperature on a given day. In
a smart city setting, we might be interested in quantifying
the variability associated with traffic patterns. The MIN and
MAX queries are important for applications that are interested
in outlier detection or top-k results. We deliberately exclude
COUNT queries, since our framework can be easily modified
to behave similarly to the ApproxIoT system, which can
provide exact answers [5]. We emphasize that our framework
supports other aggregates and arbitrary selection predicates,
since we are performing sampling. We chose the AVG, VAR,
and MIN/MAX queries to evaluate our framework’s ability
to capture the average behavior and the variability present in
each stream (including extreme outliers). To quantify the error
for each query, we compute the normalized root mean square
error (NRMSE) , given by:

—
\/% 2251055 — 0i)?
0;

NRMSE; = (®)
where 0;; is the true value of the aggregate for device ¢
in window j and 7 is the total number of windows in the
experiment. We require a normalized RMSE, since each device
may have a radically different expected value and variance.

B. Heuristic vs. Optimal Predictor Selection

We first evaluate our predictor selection heuristic. Since
there are a factorial number of predictor combinations, we use

—o— ApproxloT —»— Heuristic ‘ Method ‘ Average ‘ Gain ‘
S-VOILA —— Optimal NRMSE
%0100 \\ ApproxIoT | 0.077 0.0%
2 0.075 S-VOILA 0.071 7.8%
Soom } Heuristic | 0.030 | 61.0%
Looms \ —,| | optimal | 0028 | 63.6%

01 02 03 04 05 06 07 08
Sampling Percent

0.000

(b) Performance with a 20% sam-

pling rate.
(a) Error rates for an AVG query.

Fig. 3: Heuristic performance on the Home dataset.

only three highly correlated streams from the Home dataset
to measure how well our heuristic approximates the global
solution.

Figure 3a compares AVG query errors across different
sampling rates. We observe a slight drop in accuracy when
using the heuristic compared to the global solution. Figure 3b
shows the exact difference in errors for the 20% sampling rate.
The maximum difference between the heuristic and optimal
error reductions across all sampling rates was 3.5%. Our
heuristic performs comparably on the other two datasets, with
a maximum degradation around 4%.

C. Turbine Dataset

The Turbine dataset contains measurements from a di-
verse set of sensors. This application is a perfect fit for
our framework, given that bandwidth is often congested in
rural locations and low latency is required to react to failures
promptly [15]. Since these sensors are in the same location, we
readily observe correlation in their measurements and expect
our framework to leverage it. The strength of the pairwise
linear correlations vary substantially, with some pairs less than
0.05, several pairs in the 0.3-0.5 range, and a few around 0.9.

Figure 4 shows the performance of our strategies across
various sample allowances and aggregate queries. For the
AVG query in figure 4a, we observe that if the user can
tolerate an NRMSE of 0.1, our model imputation approach
can obtain that level of accuracy sending 16% of the data,
while ApproxIoT requires 32% of the data, which represents a
50% decrease. However, this performance varies based on the
application’s error bound, e.g. obtaining an NRMSE of 0.15
and 0.05 requires 44% and 60% less data respectively, when
compared to ApproxIoT approach. We observe that S-VOILA
consistently outperforms ApproxIoT, since it considers the
variance in each stream. Both of our methods also outperform
the S-VOILA system, with the model method requiring 27%
and 36% less data to obtain an NRMSE of 0.1 and 0.05
respectively.

Figures 4b, 4c, and 4d explore how our minimization of the
average impacts queries that depend on an accurate represen-
tation of the variability. In all cases, we observe an accuracy
drop with mean imputation, especially for the VAR query. This
is expected, given that imputing values with a constant will
necessarily have a greater impact on the variability. The S-
VOILA technique is comparable to our model method when

at least 80% of the data is sent over the network. However, on
smaller sample sizes our technique outperforms the baseline
sampling methods on all four aggregate queries. This effect
is caused by the relative importance of the imputed samples.
When data is scarce, each imputed sample provides substantial
information about the data distribution. This information be-
comes less important as the number of real samples increases.

D. Smart City Dataset

For this experiment, we consider devices which have radi-
cally different data distributions. We observed modest corre-
lations between devices that measure different quantities, e.g.,
between parking lot occupancy and temperature (0.4 - 0.6).
The strength of these correlations vary across stream windows.

Figure 5 shows the performance of our strategies across
various sample allowances and aggregate queries. For the AVG
query in figure 5a, we observe that if the user can tolerate an
NRMSE of 0.1, our model imputation approach obtains that
level of accuracy sending 18% of the data, while ApproxIoT
requires 26% of the data, which represents a 30% decrease.
This performance varies based on the application’s error
bound, e.g. obtaining a NRMSE of 0.05 requires 42% less data
compared to ApproxIoT. Both of our methods also outperform
the S-VOILA system, with the model method requiring 18%
less data to obtain an NRMSE of 0.1 and 42% less data for
an NRMSE of 0.05. We also note that the mean imputation
technique begins to outperform the modeling technique once
the sample size is sufficiently large. This is expected, since
higher sample sizes will allow us to perform more imputation
without completely removing the variability from the data. If
the number of imputed samples allowed for the model and
mean methods are the same, the mean imputation method
will necessarily produce a smaller AVG error while inflating
the error for the variance. This effect can be observed in
figures 5b, Sc, and 5d, where model imputation outperforms
the mean approach. We observe that our model imputation
approach outperforms the baseline sampling methods on all
four aggregate queries.

E. Computational Overhead

Our system introduces an overhead after each stream win-
dow to model dependence and compute optimal sample sizes
at the edge. There is also a computational cost incurred on
the cloud side to perform imputation; however, our system
uses compact models which are cheap to evaluate. Clouds also
have substantial computational resources available to the user,
so we exclude it from this analysis. We used the sequential
least squares programming (SLSQP) solver in the Python scipy
library to perform the optimization [37].

Figure 6a shows how the overall latency scales with an
increasing number of streams. We fixed the arrival frequency
at 12 points per stream (e.g. one sample every 5 seconds
with a window length of one minute). We observe that
the overall latency is less than 400 milliseconds for both
imputation methods with a stream count of 50. Solving the
optimization problem accounts for the vast majority of the

—e— ApproxloT —»— Mean
S-VOILA —4— Model

w 0.20

)

=

x 015

=z

% 0.10

o

2 0.05

3

01 02 03 04 05 06 07 08

Sampling Percent

(a) Error for an AVG query

—e— ApproxloT
S-VOILA

—— Mean
—— Model

Average NRMS|
o o o
& 5 &

01 02 03 04 05 06 07 08
Sampling Percent

(a) Error for an AVG query

—e— ApproxloT —»— Mean —e— ApproxloT —»— Mean —e— ApproxloT —»— Mean
S-VOILA —4— Model S-VOILA —&— Model S-VOILA —4— Model
w w w
n1s 020 Wo2s
= = =
o < 0.15 o 0.20
N = =z
& &o.10 Lo1s
o o o
Qos 9 0.05 go.10
< < <
0.00 0.05
01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08

Sampling Percent Sampling Percent

(b) Error for a VAR query (c) Error for a MIN query

Fig. 4: Turbine Dataset

—e— ApproxloT
S-VOILA

—— Mean
—&— Model

—e— ApproxloT
S-VOILA

—— Mean
—— Model

N
o

I
n
o o
w o

o

Average NRMSE
o
2

o
&
Average NRMSE

°
e

Sampling Percent

(d) Error for a MAX query

—e— ApproxloT
S-VOILA

—— Mean
—— Model

°
W

o
N

L

Average NRMSE
°

01 02 03 04 05 06

Sampling Percent

07 08 01 02 03 04 05 06 07 08
Sampling Percent

(b) Error for a VAR query (c) Error for a MIN query

Fig. 5: Smart City Dataset

01 02 03 04 05 06 07 08
Sampling Percent

(d) Error for a MAX query

Model Optimization
BN Heuristic Evaluation
3001 mmm Mean Optimization 300

Model Optimization
B Heuristic Evaluation
Emm Mean Optimization

Latency (ms)
HoNN
Latency (ms)
NN
S

100 100

— — — — -
10 20 30 40 50 10 20 30 40 50
Number of Streams Samples per Stream

(a) Number of streams vs latency. (b) Samples per stream vs latency.

Fig. 6: System Latency

latency compared to the time required to model dependence
with our proposed heuristic. We also note that mean imputation
requires substantially less time to optimize compared to our
model imputation method. There are two reasons for this
effect: (1) mean imputation introduces more bias, so we are
allowed to impute fewer data points, which restricts the search
space in the optimization and (2) almost no time is required to
evaluate the heuristic, since the degree of correlation between
streams does not impact imputation accuracy. These latencies
are unlikely to be an issue if the number of devices is relatively
low or the window duration is sufficiently high. Applications
that are latency sensitive may need to consider additional
parallelism or ensure each edge has a manageable number of
client devices.

Figure 6b shows the effect of arrival frequency on latency.
We observe some effect; however, its impact on performance
doesn’t appear to grow without bound. We conclude that the
dimension of the optimization variable (i.e. the number of
streams) has the biggest impact on latency.

F. Sensitivity Analysis

Tolerance for Variance Bias. Modeling the expected value bi-
ases the variance estimator by reducing the variability present
in the sample. We now examine how different tolerances for
bias impact error rates using the Smart City dataset and a
sampling rate of 50%. The tolerance values are expressed as
a multiple of the standard error (SE) observed in the edge
variance estimator, as discussed in section IV-C.

Figure 7a summarizes the error for an AVG query for our
mean and model imputation techniques. For both methods, we
observe smaller AVG errors as our tolerance for bias increases.
This is expected, since a higher tolerance implies we are
allowed to perform more imputation with our model for the
expected value.

Figure 7b shows the impact of these bounds on a VAR
query. We observe a steady increase in the error as our ability
to bias the result increases. In addition, model imputation
method has a smaller impact on the error, since it models the
variability more accurately. We also note that mean imputation
outperforms model imputation at the 0.5 SE level. This is
caused by the difference in imputation frequency between
the methods: model imputation is allowed to perform almost
3x as much imputation at that level, since it explains more
of the variance. However, this introduces more bias in the
variance query. Each application will have a different tolerance
for biasing variance queries. Applications mostly interested in
the average values will be able to allow higher amounts of
imputation compared to those concerned with outliers.
Correlation Effects. The efficacy of our approach depends on
our ability to identify correlation in the data and exploit it. We
examine the role of correlation in our framework by generating

N Mean Model N Mean Model

o
®

0.025

o
o
N
S
o
£y

0.015

o
Y

0.010

Average NRMSE
Average NRMSE

o
N

0.005

0.000 0.0
0.5 SE 1.0SE 2.0 SE 3.0 SE 0.5 SE 1.0SE 2.0 SE 3.0 SE

Bound on VAR Bias Bound on VAR Bias

(a) Error for a AVG query. (b) Error for a VAR query.

Fig. 7: Bounding the bias of the variance estimator.

a synthetic dataset and varying the correlation present in the
data. For these experiments, we use two streams drawn from
a multivariate normal distribution with means equal to 30 and
the diagonal elements of the covariance matrix equal to 16. We
systematically vary the off-diagonal elements of the covariance
matrix to obtain the desired correlation.

Figure 8a shows how much imputation we are allowed
to perform across multiple values for bias tolerance and
correlation. For 1 standard error, the amount of imputation
allowed slowly increases as the strength of the correlation
increases. When the correlation is above 0.8, we are allowed to
impute a point for every real sample we send over the network.
For 3 standard errors, there is no restriction on imputation,
even if the correlation is zero. Using a small tolerance value
of 0.5 results in more conservative behavior, requiring very
strong dependence before significant imputation is performed.

Figure 8b shows the AVG query error rates across correla-

tion levels. Our imputation methods always perform as well
as the S-VOILA system, regardless of correlation strength.
For smaller bias values (0.5 and 1.0 SE) we obtain a steady
decrease in error as the correlation between streams increases.
However, for larger bias values (2.0 and 3.0 SE), there is a
more complex relationship between correlation and error. The
largest errors for these values is obtained when the streams are
very strongly correlated. This is explained by considering the
difference between mean imputation and model imputation.
When the correlation is very low, these techniques are essen-
tially performing mean imputation, since only a small fraction
of the variance is explained by the model. As the strength of
the correlation increases, the model begins explaining more
of the variance, but is a noisier representation of the expected
value when compared to mean imputation.
IID Assumption. Time series data often exhibit autocorre-
lation; however, our framework assumed that samples for
each device were IID within a stream window. In section
IV-D we discussed options for relaxing this assumption in
practice, including implementing a thinning mechanism or
adding a penalty term for the autocorrelation. We use the Smart
City dataset to evaluate the performance of these options in
practice.

Figure 9a displays a partial autocorrelation function (PACF),
which shows the strength of the autocorrelation for one of the
pollution sensors. There is only one statistically significant lag

—e— 0.5SE
1.0 SE

S-VOILA

z
% 0.0250
=3
© 0.0225
2 00200
Zo

0.0175

0.0 02 04 056 038 10 0.0 02 04 056 038 10
(Linear) Correlation (Linear) Correlation

—— 2.0 SE
—— 3.0SE

—e— 0.5SE
1.0SE

—— 2.0 SE
—— 3.0 SE

0.0325

-
o

W 0.0300

)
®

= 0.0275
o

Ratio of Imputed
to Real Samples
o o
s o

o
N

(a) Imputation allowed. (b) Errors for an AVG query.

Fig. 8: Correlation effects on imputation.

0.8

m Assumed IID
0.6 X M-Dependence
H = Thinning

0.4

0.2

PACF

0.0

-0.2

6 [10 12 : 20% 33% 50% 80%
Lag Sampling Percent

(a) PACF for the NO2 stream. (b) Errors for an AVG query.

Fig. 9: IID experiments Smart City Dataset

with a positive correlation around 0.8, so we let m = 1 for
this experiment when estimating m-dependence.

Figure 9b compares the performance of these techniques
on an AVG query. The thinning technique consistently obtains
the lowest error rate. Furthermore, thinning works without
significant tuning from the user. Implementing m-dependence
in practice would require dynamically computing a PACF to
estimate the number of significant lags in a time series. We
therefore recommend the thinning technique in practice.
Linear vs Cubic Models. In section IV-B, we discussed
options for measuring dependence between device streams and
compact representations of the conditional expectation. Our
experiments used the cubic representation by default; however,
we observe no significant difference between the two methods
on an AVG query. The results of the VAR and MAX queries
are show in figures 10a and 10b respectively. The cubic models
provide a slight improvement (around 3%) when estimating
these queries due to their ability to capture the tails of the
distributions more accurately. A future enhancement could use
LASSO or some other regularization method to dynamically
trade-off between linear and cubic models [38].

G. Discussion

Our sampling and imputation technique generates much less
WAN traffic and obtains comparable error rates compared
to other stream sampling systems. The bias tolerance ¢; is
an important tuning parameter, which bounds the amount
of bias in the variance estimator and implicitly dictates the
model quality required to perform imputation. The correlation
strength also affects our ability to minimize WAN traffic; high
correlations between streams provides more opportunity for
cost savings.

—e— ApproxloT —»— Linear —e— ApproxloT —»— Linear
S-VOILA —4— Cubic S-VOILA —4— Cubic
w2° w03
(%] (%]
Z1s 2
= Zo02
o o
210 2
] g o1 T
> >
< <

o
n

01 02 03 04 05 06 07

Sampling Percent

0.8 01 02 03 04 05 06 07

Sampling Percent

0.8

(a) Errors for a VAR query (b) Errors for a MAX query

Fig. 10: Linear vs Cubic models with the Smart City Dataset

Our framework is restricted to using a single predictor
stream when building models for imputation. It is conceivable
that using multiple streams as predictors could produce better
models and allow us to impute more values. In this work,
we assume model estimation is performed locally at the edge.
Leveraging multiple predictor streams increases the complex-
ity of model fitting and increases the size of the model that
must be sent over the WAN. In this case, our framework could
potentially be modified to leverage historical data in the cloud
to identify more complicated relationships between streams.
However, our experiments provide some empirical evidence
that using a single predictor stream can provide significant
cost savings in practice.

VI. RELATED WORK
A. Edge and Stream Sampling

Stream sampling is a common technique for reducing net-
work traffic. Reservoir sampling is frequently used to obtain
a variety of probability samples over unbounded streams [20],
[39]. A similar work considers ways in which a central node
can obtain a random sample from geo-distributed edge nodes
and establishes lower bounds on the number of messages that
must be sent [40], [41]. A wide variety of other works exist
in the field of Approximate Query Processing which seek
to systematically trade accuracy for performance [42], [43].
The Approxlot and S-VOILA streaming systems both leverage
more sophisticated sampling strategies to address properties
of individual streams. We improve on these algorithms by
supplementing the samples using imputations with explicit
bounds on the error.

B. Sensor Networks

A related area of research considers methods for efficiently
obtaining samples from a sensor network. Energy constraints
are the main issue as opposed to bandwidth, but the objec-
tive is the same: minimize the query error subject to some
cost function. The TinyDB system leverages the estimated
energy cost and variation for a given device when executing
queries [44]. Dependence is another relevant consideration
for this problem, since sensors in the same sensor network
will likely produce correlated observations. Systems similar to
BBQ are designed with this dependence in mind and attempt
to exploit it to reduce the energy requirement [25], [45]. We

10

perform an analogous task over dependent data streams by
leveraging correlation to reduce the amount of data required
to answer queries. Futhermore, we do this in an online fashion
(with no offline profiling) and do not assume a parametric
model or anything about the underlying data distributions.

C. Sketch Summaries

Sketching is a widely used technique for computing com-
pact, approximate representations of data [46], [47]. In some
cases, approximation is not required; for example, moment
sketches can exactly estimate the mean and variance in con-
stant space and time [48]. However, our framework makes
no assumptions about the downstream operations a user will
perform on the resulting data. If a user wants to perform cen-
tralized machine learning in the cloud, our framework would
provide a dataset which maintains dependencies between
streams. Lower fidelity representations, including sketches,
would not be as amenable to these use cases.

VII. CONCLUSION

Given the increase in data volume and practical WAN
bandwidth constraints, efficient data transfer continues to be an
important research direction. We present a system that lever-
ages correlation between streams for supplementing samples
with accurate imputations in the cloud to reduce WAN traffic.
Our evaluation suggests it could reduce bandwidth costs by
anywhere from 27% to 42%, depending on the application.
While our implementation and evaluation focuses on real-
valued data, we believe this general approach can be applied
in other streaming settings, such as video streams. Camera
deployments often exhibit temporal/spatial correlation and
must contend with limited WAN resources [49]. Given these
constraints and additional compute constraints at the edge, it
may be preferable to use correlated video streams to obtain
approximate query results rather than performing expensive
inference at the edge or streaming frames to the cloud for
analysis. We leave further exploration of this application to a
future work. Computing and leveraging dependence in these
settings could allow for an even broader set of applications to
benefit from this approach.

ACKNOWLEDGEMENT

This research was supported in part by the NSF under grants
CNS-1717834 and CNS-1908566.

REFERENCES

Statista I.H.S., “Internet of things (iot) connected devices installed base
worldwide from 2015 to 2025 (in billions),” 2018.

D. Kumar, S. Ahmad, A. Chandra, and R. K. Sitaraman, “Aggnet: Cost-
aware aggregation networks for geo-distributed streaming analytics,”
ACM/IEEE Symposium on Edge Computing (SEC’21).

S. H. Mortazavi, M. Salehe, M. Gabel, and E. d. Lara, “Feather:
Hierarchical querying for the edge,” in 2020 IEEE/ACM Symposium
on Edge Computing (SEC), 2020, pp. 271-284.

P. Kang, P. Lama, and S. U. Khan, “Slo-aware virtual rebalancing for
edge stream processing,” in 2021 IEEE International Conference on
Cloud Engineering (IC2E), 2021, pp. 126-135.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Z. Wen, D. L. Quoc, P. Bhatotia, R. Chen, and M. Lee, “Approxiot:
Approximate analytics for edge computing,” in 2018 IEEE 38th Inter-
national Conference on Distributed Computing Systems (ICDCS), 2018,
pp. 411-421.

P. Lou, L. Shi, X. Zhang, Z. Xiao, and J. Yan, “A data-driven adaptive
sampling method based on edge computing,” Sensors, vol. 20, no. 8, p.
2174, Apr 2020.

D. Trihinas, G. Pallis, and M. D. Dikaiakos, “Adam: An adaptive
monitoring framework for sampling and filtering on iot devices,” in
2015 IEEE International Conference on Big Data (Big Data), 2015,
pp. 717-726.

S. Memon and M. Maheswaran, “Optimizing data transfers for band-
width usage and end-to-end latency between fogs and cloud,” in 2079
IEEE International Conference on Fog Computing (ICFC), 2019, pp.
107-114.

L. Mesin, S. Aram, and E. Pasero, “A neural data-driven algorithm for
smart sampling in wireless sensor networks,” in EURASIP Journal on
Wireless Communications and Networking, 2014.

J. Hribar and L. DaSilva, “Utilising correlated information to improve
the sustainability of internet of things devices,” in 2019 IEEE 5th World
Forum on Internet of Things (WF-10T), 2019, pp. 805-808.

M. H. Mazhar and Z. Shafiq, “Characterizing smart home iot traffic in
the wild,” 2020.

K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-IID
data quagmire of decentralized machine learning,” in Proceedings of the
37th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, H. D. III and A. Singh, Eds., vol. 119.
PMLR, 13-18 Jul 2020, pp. 4387—4398.

P. Fraga-Lamas, T. M. Fernndez-Carams, and L. Castedo, “Towards the
internet of smart trains: A review on industrial iot-connected railways,”
Sensors, vol. 17, no. 6, 2017.

S. Tata, R. Jain, H. Ludwig, and S. Gopisetty, “Living in the cloud or on
the edge: Opportunities and challenges of iot application architecture,”
in 2017 IEEE International Conference on Services Computing (SCC),
2017, pp. 220-224.

M. Schlechtingen, 1. F. Santos, and S. Achiche, “Using data-mining
approaches for wind turbine power curve monitoring: A comparative
study,” IEEE Transactions on Sustainable Energy, vol. 4, no. 3, pp.
671-679, 2013.

S. Kolozali et al., “A knowledge-based approach for real-time iot data
stream annotation and processing,” September 2014.

M. K. Geldenhuys, J. Will, B. J. J. Pfister, M. Haug, A. Scharmann, and
L. Thamsen, “Dependable iot data stream processing for monitoring and
control of urban infrastructures,” in 2021 IEEE International Conference
on Cloud Engineering (IC2E), 2021, pp. 244-250.

K. Patroumpas and T. Sellis, “Window specification over data streams,”
in Proceedings of the 2006 International Conference on Current Trends
in Database Technology, ser. EDBT’06. Berlin, Heidelberg: Springer-
Verlag, 2006, p. 445464.

D. Kumar, J. Li, A. Chandra, and R. Sitaraman, “A ttl-based approach
for data aggregation in geo-distributed streaming analytics,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 3, no. 2, Jun. 2019.

M. Al-Kateb and B. S. Lee, “Stratified reservoir sampling over het-
erogeneous data streams,” in Proceedings of the 22nd International
Conference on Scientific and Statistical Database Management, ser.
SSDBM’10. Berlin, Heidelberg: Springer-Verlag, 2010, p. 621639.
M. Al-Kateb and B. Lee, “Adaptive stratified reservoir sampling over
heterogeneous data streams,” Inf. Syst., vol. 39, p. 199216, Jan. 2014.
D. L. Quoc et al., “Approxjoin: Approximate distributed joins,” in
Proceedings of the ACM Symposium on Cloud Computing, ser. SoCC
’18. New York, NY, USA: ACM, 2018, pp. 426-438.

T. Nguyen et al., “Stratified random sampling over streaming and
stored data,” Advances in Database Technology - 22nd International
Conference on Extending Database Technology (EDBT), Mar 2019.

M. Bermudez-Edo, P. Barnaghi, and K. Moessner, “Analysing real world
data streams with spatio-temporal correlations: Entropy vs. pearson
correlation,” Automation in Construction, vol. 88, pp. 87-100, 2018.
A. Deshpande et al., “Model-driven data acquisition in sensor networks,”
in Proceedings of the Thirtieth International Conference on Very Large
Data Bases - Volume 30, ser. VLDB *04, 2004, p. 588599.

L. Cohen et al., “Real-time data mining of non-stationary data streams
from sensor networks,” Information Fusion, vol. 9, no. 3, pp. 344-353,
2008, special Issue on Distributed Sensor Networks.

11

(27]

(28]

[29]
(30]

[31]

(32]

(33]
[34]
[35]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

H. A. David and H. N. Nagaraja, Order Statistics, Third Edition. Wiley,
2003.

T. D. Nguyen, M.-H. Shih, S. S. Parvathaneni, B. Xu, D. Srivastava, and
S. Tirthapura, “Random sampling for group-by queries,” in 2020 IEEE
36th International Conference on Data Engineering (ICDE), 2020, pp.
541-552.

S. Boyd and L. Vandenberghe, Convex Optimization.
University Press, 2004.

A. Mood et al., Introduction to the Theory of Statistics, ser. International
Student edition. McGraw-Hill, 1973.

A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin,
Bayesian Data Analysis, Third Edition, ser. Chapman & Hall/CRC Texts
in Statistical Science. Taylor & Francis.

R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its
Applications (Springer Texts in Statistics). Berlin, Heidelberg: Springer-
Verlag, 2005.

“Amazon kinesis.” [Online]. Available: https://aws.amazon.com/kinesis/
“Apache storm.” [Online]. Available: https://storm.apache.org/

S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, and J. Albrecht,
“Smart*: An open data set and tools for enabling research in sustainable
homes,” ser. ACM Proc. SustKDD, 2012.

E. Group, “La haute borne data,” 2020, data retrieved from ENGIE,
https://opendata-renewables.engie.com/.

E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001—. [Online]. Available: http://www.scipy.org/

R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodological),
vol. 58, mno. 1, pp. 267-288, 1996. [Online]. Available:
http://www.jstor.org/stable/2346178

J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math.
Softw., vol. 11, no. 1, p. 3757, Mar. 1985.

S. Tirthapura and D. P. Woodruff, “Optimal random sampling from
distributed streams revisited,” in Distributed Computing, D. Peleg, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 283-297.

R. Jayaram et al, “Weighted reservoir sampling from distributed
streams,” in Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, ser. PODS *19. New
York, NY, USA: Association for Computing Machinery, 2019, p.
218235.

S. Agarwal et al., “Blinkdb: Queries with bounded errors and bounded
response times on very large data,” in Proceedings of the S8th ACM
European Conference on Computer Systems, ser. EuroSys *13. New
York, NY, USA: Association for Computing Machinery, 2013, p. 2942.
S. Acharya, P. B. Gibbons, and V. Poosala, “Congressional samples for
approximate answering of group-by queries,” SIGMOD Rec., vol. 29,
no. 2, p. 487498, May 2000.

S. R. Madden et al., “Tinydb: An acquisitional query processing system
for sensor networks,” ACM Trans. Database Syst., vol. 30, no. 1, p.
122173, Mar. 2005.

L. A. Villas et al., “A spatial correlation aware algorithm to perform
efficient data collection in wireless sensor networks,” Ad Hoc Networks,
vol. 12, pp. 69-85, 2014.

G. Cormode and M. Garofalakis, “Sketching streams through the net:
Distributed approximate query tracking,” in Proceedings of the 3lst
International Conference on Very Large Data Bases, ser. VLDB ’05.
VLDB Endowment, 2005, p. 1324.

A. Dobra et al., “Processing complex aggregate queries over data
streams,” in Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’02. New York,
NY, USA: Association for Computing Machinery, 2002, p. 6172.

E. Gan, J. Ding, K. S. Tai, V. Sharan, and P. Bailis, “Moment-based
quantile sketches for efficient high cardinality aggregation queries,”
Proc. VLDB Endow., vol. 11, no. 11, p. 16471660, Jul. 2018.

J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable adaptation of video analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 253266.

USA: Cambridge

